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Abstract

Since December 2019, the Coronavirus Disease (COVID-19) pandemic has caused world-wide turmoil in a short period 

of time, and the infection, caused by SARS-CoV-2, is spreading rapidly. AI-driven tools are used to identify Coronavirus 

outbreaks as well as forecast their nature of spread, where imaging techniques are widely used, such as CT scans and chest 

X-rays (CXRs). In this paper, motivated by the fact that X-ray imaging systems are more prevalent and cheaper than CT scan 

systems, a deep learning-based Convolutional Neural Network (CNN) model, which we call Truncated Inception Net, is 

proposed to screen COVID-19 positive CXRs from other non-COVID and/or healthy cases. To validate our proposal, six dif-

ferent types of datasets were employed by taking the following CXRs: COVID-19 positive, Pneumonia positive, Tuberculosis 

positive, and healthy cases into account. The proposed model achieved an accuracy of 99.96% (AUC of 1.0) in classifying 

COVID-19 positive cases from combined Pneumonia and healthy cases. Similarly, it achieved an accuracy of 99.92% (AUC 

of 0.99) in classifying COVID-19 positive cases from combined Pneumonia, Tuberculosis, and healthy CXRs. To the best 

of our knowledge, as of now, the achieved results outperform the existing AI-driven tools for screening COVID-19 using the 

acquired CXRs, and proves the viability of using the proposed Truncated Inception Net as a screening tool.
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Introduction

Coronavirus Disease 2019 (COVID-19) is an infectious dis-

ease caused by Severe Acute Respiratory Syndrome Corona-

virus 2 (SARS-CoV-2) [1]. The disease was first identified 

in 2019 in Wuhan, China, and has since spread globally, 

resulting in the 2019–2020 Coronavirus pandemic [2]. With 

more than 5.92 million confirmed cases of infection and 

364,000 cases of death by the fifth month of its discovery 

(as on May 30, 2020), the SARS-CoV-2 continues to infect 

people worldwide [3]. The virus is primarily transmitted 

among individuals through respiratory droplets. Studies have 

also shown that the virus can persist on surfaces which an 

infected individual might have touched. As a consequence, 

by the end of March 2020, the spread of this virus had been 

described as exponential [3].

The gold standard for the diagnosis and detection of 

COVID-19 is the polymerase chain reaction (PCR). It can 

detect the SARS-CoV-2 RNA from respiratory specimens 

through nasopharyngeal or oropharyngeal swabs. Despite 

the high sensitivity and accuracy of the PCR technique, the 

method is highly time-consuming and resource-intensive. 

Therefore, considering the unprecedented spread rate of 

the virus across the globe and the rapid temporal progres-

sion of the disease throughout a subject’s body [4], a faster 

screening tool is necessary for COVID-19 outbreaks. As 

an alternative to the traditional PCR technique, researchers 

Note that the study has no clinical implications. Instead, we solely 

aimed to check whether the proposed Truncated Inception Net 

could possibly be used in detecting COVID-19 positive cases 

using CXRs.
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have proposed the use of radiography techniques such 

as Computed Tomography (CT) scans and chest X-rays 

(CXRs) for COVID-19 screening. Early studies of COVID-

19 positive patients have shown that their CT scans and 

CXRs show identifiable abnormalities [5, 6], according 

to which COVID-19 pneumonia was more likely to have 

peripheral distribution, ground-glass opacity, fine reticular 

opacity, and vascular thickening, but less likely to have a 

central+peripheral distribution, pleural effusion and lym-

phadenopathy. The idea is further strengthened by observ-

ing the high correlation between the PCR and radiological 

results, as demonstrated in [7]. In [8, 9], authors establish 

that the sensitivity of CT scan imaging outperforms the 

conventional PCR technique. The possible reasons may be 

immature development of nucleic acid detection technology, 

low patient viral load or improper clinical sampling, as stated 

in [8]. According to [6, 10–12], the infestation of COVID-

19 can primarily be characterized through radiographs by 

patches of Ground-Glass Opacity (GGO) and consolidation 

(See Fig. 1). Additionally, authors in [4, 13] have provided 

a deep insight into the statistical growth of radiological cues 

in COVID-19 positive patients and the temporal stages of the 

disease’s growth in a host’s body, respectively. According to 

these works, the disease can be temporally divided into four 

phases: early phase, progressive phase, severe phase, and 

dissipative phase. During this time, the CT scores and num-

ber of zones involved progress rapidly, which peak during 

illness days 6–11, followed by persistence of the high levels. 

The major pattern of abnormality found after symptom onset 

was ground-glass opacity, in accordance to the other con-

temporary works. These paved the way to a faster screening 

procedure than the PCR. Despite the radiological findings, 

there still exists a problem to use radiography as the primary 

screening tool for COVID-19. The problem being the lack of 

skilled radiologists across the globe. Ever since the advent 

of digital radiography, CT scans and CXRs have been used 

globally, but the final interpretations are required to be done 

by the experts, which could be time-consuming. Besides, 

authors in [5] have demonstrated through an experiment that 

sensitivity and specificity of screening COVID-19 positive 

CT images fluctuate significantly when done by radiologists. 

Therefore, for mass screening, automated or specifically AI-

driven tools are necessary to be deployed across the globe, 

particularly in resource-constrained regions.

For all healthcare and/or (bio)medical problems, for more 

than a decade, deep learning has been a pinnacle in automa-

tion, especially in medical imaging. This motivates its use in 

the COVID-19 screening. Recently in [14], the author stated 

that to detect COVID-19, AI-driven tools are expected to 

have active-learning based cross-population train/test mod-

els that employ multitudinal and multimodal data. In this 

work [14], the use of deep learning and image data, such 

as CT scans and CXRs are addressed. Even though mul-

timodal data can improve confidence in decision-making, 

for the COVID-19 case, such data are not available as of 

today. Due to lack of data, COVID-19 reveals the limits of 

AI-driven tools. As soon as the COVID-19 pandemic came 

into play, several systems have been released to automate 

the screening procedure. Alibaba released an AI-based sys-

tem to screen COVID-19 infection from CT scans, with an 

accuracy of 96% [15]. Researchers in [16] proposed a Con-

volutional Neural Network (CNN) based technique to differ-

entiate COVID-19 from Pneumonia and normal cases of CT 

scans, with a classification sensitivity of 0.90 for COVID-19. 

In [17], researchers have used a 3-dimensional deep learn-

ing model to segment infected regions from CT scans, fol-

lowed by an attention driven network to classify COVID-19 

from Influenza-A viral pneumonia and normal cases, and an 

Fig. 1  COVID-19 pneumonia is characterized primarily by patches 

of Ground-Glass Opacity (GGO) and consolidations. In these CXRs, 

the GGO areas, in early stages of COVID-19, are identified/annotated 

with white arrows. These annotations were made in the original data-

set, which solely attribute the clinical implications
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accuracy of 86.7% was reported. Further, researchers in [18] 

have also proposed image segmentation schemes to detect 

lesions in CT scans. The prospective system is based on 

the popular UNet++ architecture, and it produces bounding 

boxes around lesion regions. The system achieved a result of 

100% per patient and 94.34% per image sensitivity. Authors 

in [19, 20] have proposed deep learning models to classify 

COVID-19 positive CXRs from normal and Pneumonia 

cases, respectively. In [19], authors have investigated vari-

ous standard CNN models, such as ResNet and AlexNet to 

extract deep features, which was followed by a Support Vec-

tor Machine (SVM) to classify COVID-19 positive cases. A 

maximum accuracy of 95.38% was reported using ResNet50 

as the feature extractor. The latter work proposed a tailored 

CNN model using residual connections to achieve prom-

ising results of 80% positive predictive value (PPV)[20]. 

Additionally, authors in [21] have demonstrated the use of 

ResNet50, Inception Net V3, and Inception-Resnet V2 for 

identifying COVID-19 positive CXRs from healthy ones. 

Similar experiments have also been demonstrated in [22], 

which focuses on the importance of transfer learning for 

medical image classifications, in the context of COVID-19. 

On the whole, researchers found that the use of chest radio-

graphs is better in terms of lung abnormalities screening [11, 

14, 23–26]. With these, COVID-19 can be analyzed better 

using radiological image data [7, 8].

In this work, considering the fact that X-ray imaging sys-

tems are more prevalent and cheaper than CT scan systems, 

we use deep learning to screen COVID-19 using CXRs. 

We propose a CNN-based model, which we call Truncated 

Inception Net, solely based on the Inception Net V3 archi-

tecture [27] (Fig. 2). Using the limited number of COVID-19 

positive CXRs, made available by Cohen [28], we analyse 

our model’s performance as a binary classifier, where addi-

tional datasets are also taken into account. As the COVID-

19 dataset collection, alone, is not trivial, our experimen-

tal datasets that are composed of COVID-19, Pneumonia, 

Tuberculosis, and healthy cases, which are sufficient to 

validate COVID-19 positive cases. For this, several publicly 

available datasets, such as Pneumonia dataset [29], Tubercu-

losis datasets (Shenzhen, China, and Montgomery County, 

USA) [30] are used to create six different experimental tests. 

Such a varied dataset combinations for analyzing deep learn-

ing models on COVID-19 CXRs has not been demonstrated 

in the literature so far. On the whole, through this work, we 

demonstrate that the Truncated Inception Net deep learning 

model is a viable option for COVID-19 screening and it 

outperforms the state-of-the-art results for COVID-19 posi-

tive cases, on the obtained and manually combined datasets.

Proposed method

Given that COVID-19 shows patches of GGO and consoli-

dation in CXRs [10], to detect COVID-19 positive cases, 

a multi-resolution analysis of the CXR images is deemed 

useful. This functionality of analyzing spatial data at multi-

ple resolutions is possessed by the Inception module, which 

is the fundamental block of the popular Inception Net V3 

[27]. Additionally, considering the fact that the number of 

data samples of COVID-19 positive CXRs is very scarce at 

present, a modified version of the Inception Net V3 model 

[27] is proposed, which we call Truncated Inception Net. 

The Truncated Inception Net is primarily designed to avoid 

Fig. 2  (Above) The original architecture of the Inception Net V3 

model, which was implemented for classifying images of the Ima-

geNet database [27]. (Below) The Truncated Inception Net model, 

which is proposed in our work for screening COVID-19 positive 

CXRs. The model retains 3 inception modules and 1 grid size reduc-

tion module from the original architecture (given above)
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possible overfitting due to the lack of COVID-19 positive 

samples. Further, the Truncated Inception Net is computa-

tionally efficient. Originally, the Inception Net model was 

used on the ImageNet database, consisting of more than 1.3 

million images from 1000 different classes. In what follows, 

the different aspects of the Truncated Inception Net model 

architecture and implementation are discussed.

Inception module

The multi-resolution analysis capability of the Inception 

module comes from its inherent architecture. In traditional 

CNN models, kernels of specific receptive field sizes are 

used in specific layers to capture features through the use 

of convolution. On the contrary, in an inception module, 

kernels of various receptive field sizes (1× 1, 3 × 3, and 5 × 5) 

are used in parallel to extract features of varying sizes. The 

extracted parallel features are then stacked depth-wise to 

form the output of the inception module. A 3 × 3 max pooled 

version of the input is also stacked along with the previous 

feature maps. The combined output of the inception module 

provides rich feature maps of varying perspectives as inputs 

to the next convolutional layer of the CNN. Such a property 

of the Inception module explains its unique performance in 

medical imaging, and in our case, on the COVID-19 CXRs. 

For better understanding, the schematic representation of the 

Inception module is presented in Fig. 3.

Truncated architecture

Since the original Inception Net V3 model was built for 

the ImageNet database, the architectural complexity of the 

model is well justified. On the contrary, the COVID-19 data-

set used in our work is immensely small compared to the 

ImageNet database. Therefore, a truncation of the model is 

necessary to reduce the model complexity and eventually 

the number of trainable parameters to prevent the model 

from overfitting issues. The model was truncated at a point, 

where it retained 3 Inception modules and 1 grid size reduc-

tion block from the beginning, followed by the cascading 

of a Max Pooling and a Global Average Pooling layer to 

reduce the output dimension. The point of truncation was 

chosen experimentally, that yielded the best classification 

results. Finally, a fully connected layer was cascaded to per-

form the classification task. The truncation of the model 

not only reduced training time and trainable parameters but 

also reduced the processing time while evaluating a CXR to 

detect COVID-19 positive cases. As a consequence, it facili-

tates mass screening at an efficient speed and accuracy. For 

more detailed information about computational efficiency, 

we refer to “Experimental setup” section. The architecture 

of the complete Truncated Inception Net can be visualized 

in Fig. 2.

Adaptive learning rate protocol

For training the Truncated Inception Net, a dynamic pro-

tocol was used to control the learning rate at each epoch 

because of the following reasons: (a) A constant learning 

rate of high value often leads to divergence of the weight 

vectors’ trajectory from global minimum in the loss function 

space during the optimization process, and (b) an arbitrar-

ily chosen low value often takes longer period of training 

time. Therefore, a dynamic procedure was opted, where the 

learning rate was initialized with a value of 0.001 and then 

it was reduced by a factor of 2 every time the validation loss 

remained same or did not decrease for more than 3 epochs. 

In this case, the factor of 3 epochs is known as the patience 

factor. The process is well explained through the diagram in 

Fig. 4. This procedure yielded the behavior of reducing the 

velocity of approach when the weight vectors are close to the 

global minimum, to prevent overshooting. Note that, the ini-

tial value of 0.001, reduction factor of 2, and patience factor 

of 3 epochs were chosen after experimenting with multiple 

values and monitoring the classification performance. For 

the model and datasets considered in this work, the afore-

mentioned values proved to have the best results. Additional 

optimization procedures like Grid Search, Particle Swarm 

Optimization, or Genetic Algorithm can be used for the opti-

mization of the same.

Input
Image

1x1
Convolution

1x1
Convolution

1x1
Convolution

3x3 
Max pooling

3x3
Convolution

5x5
Convolution

1x1
Convolution

Depth-wise
feature maps 

(extracted)

Fig. 3  Block diagram: The block diagram presents the internal pipe-

line of an Inception module, which forms the building block of the 

InceptionNet. Multiple sized kernels (e.g. 3 × 3 and 5 × 5) are used to 

convolve with the input image, to extract features of varied spatial 

resolution. Finally, the activation maps obtained from the parallel 

computations are stacked depth-wise to form the output
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Transfer learning

Deep learning models are inherently data intensive. How-

ever, since the size of the COVID-19 dataset is very small 

compared to standard datasets used in deep learning, the 

concept of transfer learning can be applied to augment the 

decision-making process. Transfer learning uses the con-

cept of transferring knowledge from one domain to another 

by using trained weights from the previous domain. Tra-

ditionally in a CNN, the weight matrices of several layers 

from the beginning are frozen while training on the sec-

ondary domain, and only the remaining layers are fine-

tuned. This process works well when both the domains 

share an overlapping region in the low-level features. In 

our case, since the ImageNet and the COVID-19 datasets 

belong to non-overlapping domains, the trained weights 

from the ImageNet dataset were used to initialize the 

weights of our model, but none of them were frozen. This 

kept all the layers initialized with relatively more mean-

ingful weights than random initialization, and subject to 

learning during the training procedure.

Experimental setup

Datasets

Collecting COVID-19 dataset is not trivial. We, however, 

collect a number of CXR benchmark collections (C1 to 

C3) from the literature (See Table 1). They help to show-

case/validate the usability and robustness of our model. 

C1: COVID-19 collection[28] is an open-source collection 

that is made available and maintained by Joseph Paul 

Cohen. At the time of the present study, it is composed 

of 162 COVID-19 positive CXRs, along with some 

other CXRs of diseases like MERS, SARS, and viral 

Pneumonia. For our purpose, only COVID-19 positive 

posteroanterior CXRs are considered.

C2: Pneumonia collection[29] (Kaggle CXR collection) is 

composed of 5863 CXRs. Out of this, 1583 CXRs are 

normal or healthy CXRs and the remaining 4280 CXRs 

show various manifestations of viral and bacterial Pneu-

monia.

C3: Two publicly available Tuberculosis (TB) collections[30] 

are considered: (a) Shenzhen, China and (b) Montgom-

ery County, USA. These CXR benchmark collections 

were made available by the U.S. National Library of 

Medicine, National Institutes of Health (NIH). The 

Shenzhen, China collection is composed of 340 normal 

cases and 342 positive cases of TB. The Montgomery 

County, USA collection is composed of 80 normal 

CXRs and 58 TB positive CXRs.

A few samples from the aforementioned collections are 

visualized in Fig. 5. Using aforementioned collections, we 

constructed six different combinations of data to train and 

validate our model. As provided in Table 2, these six differ-

ent combinations of datasets (D1 to D6) are enlisted below: 

D1: In dataset D1, 162 COVID-19 positive CXRs and 340 

healthy CXRs from the Shenzhen, China collections are 

considered.

D2: For this dataset D2, 162 COVID-19 positive CXRs and 

80 healthy CXRs from the Montgomery County, USA 

are considered.

D3: D3 consists of 162 COVID-19 positive CXRs and 1583 

healthy CXRs from the Pneumonia collections are con-

sidered.

D2: D4 contains 162 COVID-19 positive CXRs and 2003 

healthy CXRs, combined from the Shenzhen, Montgom-

ery and Pneumonia collections are considered.

D5: In dataset D5, 162 COVID-19 positive CXRs, 4280 

Pneumonia positive CXRs and 1583 healthy CXRs from 

the Pneumonia collections are considered.

D6: In dataset D6, 162 COVID-19 positive CXRs and 6683 

non-COVID CXRs (comprising of 4280 Pneumonia 

positive, 400 TB positive and 2003 healthy CXRs) are 

considered.

The primary motivation behind constructing the vari-

ous data combinations (D1 to D6) is to show the robust-

ness of the Truncated Inception Net to detect COVID-19 

positive cases. Further, COVID-19 is believed to have a 

Fig. 4  The learning rate is reduced every time the validation loss does 

not improve for more than the specified patience factor, which is 3 

epochs (empirically designed)



920 Physical and Engineering Sciences in Medicine (2020) 43:915–925

1 3

close relationship with traditional Pneumonia. Therefore, 

a separate dataset (D5) was constructed to show whether 

our proposed model is able to differentiate COVID-19 posi-

tive cases from those traditional Pneumonia positive cases. 

Besides, CXRs of Tuberculosis manifestation were also 

added in D6 to prove that our model is robust enough to 

identify COVID-19 from other diseases like TB, Pneumonia, 

and healthy CXRs. The robustness also lies in the way we 

collect data, where regional variation can be considered as 

a crucial element. In our datasets, the healthy CXRs in D1, 

D2, and D3 are collected from different regions of the world. 

Considering multiple combination of data from different 

places can help develop cross-population train/test models.1

As an input to our model, CXR images were scaled down 

to the size of 224×224× 3 to match the input dimensions 

of the Truncated Inception Net. Such a resizing can also 

reduce computational complexity. Since the pixels of the 

CXRs have bounded discrete values, the images were nor-

malized using the min-max scaling scheme. The choice is 

further backed by the fact that standardization (zero-mean 

unit variance) assumes the data to always have a Gauss-

ian distribution that might not always be the case. Addi-

tionally, pixel intensities of COVID-19 features like GGO 

patches and consolidation falls in the same range of bones in 

Fig. 5  Few samples: a COVID-19, b Pneumonia, c Tuberculosis, and d) Healthy CXRs. GGO and consolidations are observed in COVID-19 

CXRs

Table 1  Data collection (publicly available)

Collection # of positive cases # of 

negative 

cases

C1: COVID-19 162 –

C2: Pneumonia 4280 1583

C3: TB (China) 342 340

TB (USA) 58 80

1 Even though, our tests proved that the proposed model can be con-

sidered as a cross-population train/test model, it is beyond the scope 

of the paper.
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CXRs, as demonstrated by quick preliminary experiments. 

So histogram matching was also excluded as a normaliza-

tion scheme, since it decreases the signal to noise ratio in 

this scenario.

Validation protocol and evaluation metrics

To validate our proposed model, a 10 fold cross-validation 

scheme was opted for training and testing purposes on all 

six datasets: D1–D6. The process of 10 fold cross-validation 

works in the following way: say there are 100 data samples 

in the total dataset. Then samples 1–10 are made a subset 

and labelled as fold-1, samples 11–20 are labelled as fold-2 

and so on. These creates 10 disjoint subsets of the original 

dataset. Following this, the model to be tested is first trained 

on subsets 1–9 and tested on subset 10. Similarly, in the sec-

ond trial the model is tested on subset 9 after being trained 

on the remaining subsets. This scheme ensures that the mod-

el’s performance is not biased by the presence of outlier data 

samples in the training or testing datasets. Following this 

strategy, each of the constructed datasets (D1–D6) was sub-

divided into 10 subsets of almost equal number of data sam-

ples. Then the model was trained on 9 subsets and tested on 

the remaining 1 subset. This process was repeated using each 

of the subsets as a test set for once. After the ten separate 

trials of training and testing, the result was averaged over the 

ten trials to assess the mean (and standard deviation) perfor-

mance of the model on that dataset. This procedure can be 

well understood by observing the result pattern in Table 4, 

which tabulates the tenfold cross-validation performance of 

the model on dataset D6. For each of the 10 folds, six differ-

ent evaluation metrics were employed: (a) Accuracy (ACC); 

(b) Area under the ROC curve (AUC); (c) Sensitivity (SEN); 

(d) Specificity (SPEC); (e) Precision (PREC); and (f) F1 

score. These can be computed as follows:

ACC = (tp + tn)∕(tp + tn + fp + fn), SEN = tp∕(tp + fn),

SPEC = tn∕(tn + fp), PREC = tp∕(tp + fp), and

F1 score = 2(( PREC × SEN )∕( PREC + SEN )),

where tp , fp , tn , and fn are the total number of true positives, 

false positives, true negatives, and false negatives. The mean 

scores from all 10 folds were taken for each of the above 

metrics, to get the final results on a particular dataset.

In traditional deep learning tasks, a primary metric like 

accuracy is sufficient to judge the performance of a deep 

learning model as binary classifier. On the contrary, such 

an assumption does not work well when considering imbal-

anced datasets. In such cases (like, in medical datasets), the 

positive class to be predicted often has much lower data 

samples than the negative class. Therefore, accuracy would 

demonstrate a fairly high value even if the model labels all 

the test data to be negative. Therefore, special attention is 

given to metrics like Sensitivity/Recall, Precision, and F1 

score here.

In the context of COVID-19, the Sensitivity metric plays 

a very crucial role when deploying a model for screening 

patients in the early stages of a pandemic. Sensitivity meas-

ures the likelihood that the model would not miss classi-

fying COVID-19 positive samples/patients. This prevents 

the further spreading of the infection. Secondly, the preci-

sion measures the likelihood that a model would not make a 

mistake to classify normal patients as COVID-19 positive. 

This metric becomes very important in the later stages of a 

pandemic, when medical resources are limited, and they are 

available only to the patients that are in need. Besides, F1 

score is used to extract the combined performance score of 

a model, which is the harmonic mean of the precision and 

sensitivity of a model.

Results and analysis

Before providing quantitative results, we first provide activa-

tion maps generated by our proposed model for a COVID-19 

positive, Pneumonia positive, and TB positive CXR can be 

visualized in Fig. 6. It can be observed that in the prelimi-

nary layers (like Conv2D), the lung region is clearly vis-

ible in the activation map for normal CXR, while the clarity 

gradually decreases for pneumonia and further for COVID-

19 CXR. This corresponds to the growth of GGO patches 

Table 2  Experimental datasets 

using Table 1

Index: +ve = positive cases and −ve = negative/healthy cases

Dataset COVID-19 Pneumonia TB (China) TB (USA)

+ve −ve +ve −ve +ve −ve +ve −ve

D1 162 – – – – 340 – –

D2 162 – – – – – – 80

D3 162 – – 1583 – – – –

D4 162 – – 1583 – 340 – 80

D5 162 – 4280 1583 – – – –

D6 162 – 4280 1583 342 340 58 80
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in COVID-19 positive CXRs. However, in the later layers 

of the model, the activation maps become more abstract, for 

which the terminal dense layer is used in the model to map 

these abstract feature representations to their corresponding 

labels (COVID+ or COVID−).

Following the validation protocol and evaluation metrics 

mentioned in the previous “Validation protocol and evalua-

tion metrics” section, we present the mean scores that were 

achieved using tenfold cross-validation train-test scheme, on 

each of the six different datasets: D1–D6. The experimental 

results are well documented in Table 3. Also, standard devia-

tion ( � ) is reported in all cases, whose very low value proves 

the statistical robustness of our model. Our proposed Trun-

cated Inception Net model achieves a classification ACC, 

AUC, SEN, SPEC, PREC, and F1 score of 99.96%, 1.0, 

0.98, 0.99, 0.98, and 0.98, respectively, on the dataset: D5 

Fig. 6  Activation maps generated by the second convolutional layer 

(Conv2D), the second inception module (Mixed1), and the grid-size 

reduction module (Mixed3) in our model. The input samples are 

taken from a COVID-19 positive, b Pneumonia positive, and c Tuber-

culosis positive CXRs

Table 3  Results: average ACC 

in %, AUC, SEN, SPEC, PREC, 

and F1 score using 10 fold 

cross-validation with � standard 

deviation

Dataset ACC AUC SEN SPEC PREC F1 Score

D1 99.50 ± 0.245 0.99 ± 0.053 0.96 ± 0.015 1.0 ± 0.0 1.0 ± 0.0 0.97 ± 0.007

D2 94.04 ± 3.250 1.0 ± 0.0 0.88 ± 0.092 1.0 ± 0.0 1.0 ± 0.0 0.93 ± 0.045

D3 100 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

D4 99.87 ± 0.019 0.99 ± 0.100 0.96 ± 0.020 1.0 ± 0.0 1.0 ± 0.0 0.97 ± 0.015

D5 99.96 ± 0.002 1.0 ± 0.0 0.98 ± 0.015 0.99 ± 0.100 0.98 ± 0.002 0.98 ± 0.013

D6 99.92 ± 0.100 0.99 ± 0.006 0.93 ± 0.096 1.0 ± 0.0 1.0 ± 0.0 0.96 ± 0.055

� 98.77 0.99 0.95 0.99 0.99 0.97

� ± 0.702 ± 0.026 ± 0.039 ± 0.016 ± 0.001 ± 0.021
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(COVID-19 positive case detection against Pneumonia and 

healthy cases) and that of 99.92%, 0.99, 0.93, 1.0, 1.0, and 

0.96, respectively, on the D6 dataset (COVID-19 positive 

case detection against Pneumonia, TB, and healthy CXRs). 

Since the custom datasets being used were highly imbalanced 

in terms of class representation, sensitivity and precision are 

the most significant metrics in our case, as said in “Valida-

tion protocol and evaluation metrics” section. Consequently, 

the proposed model achieves high sensitivity and precision 

on these datasets. For a better understanding of the results, six 

different ROC curves are shown in Fig. 7; one for each dataset, 

starting from D1 to D6.

Additionally, since for every dataset we computed tenfold 

cross-validation, for better understanding of how average 

scores and their standard deviation were computed, the results 

obtained from each fold on the dataset: D6 are provided in 

Table 4. Besides, the proposed Truncated Inception Net model 

performs 2.3 ± 0.18 times on an average faster than Inception 

Net V3 model. In Table 5, computational times (by taking 10 

different CXR samples as input) are used to demonstrate the 

differences between them. The primary reason being the large 

number of parameters in the original Inception Net V3 model. 

Precisely, this model contains more than 21.7 million trainable 

parameters in contrast our model which contains only 2.1 mil-

lion trainable parameters, making it a better choice for train-

ing on small datasets and also for active learning. Therefore, 

for mass screening in resource-constrained areas, employing 

a faster tool is the must.

Discussion

Since COVID-19 outbreak, very few pieces of works have 

been proposed/reported using CXRs to detect COVID-

19 positive cases (see “Introduction” section): In our 

Fig. 7  The ROC curves obtained for the six different datasets D1–D6. 

The black dotted curve represents the ROC of a random guessing 

classifier

Table 4  Results: ACC in %, 

AUC, SEN, SPEC, PREC, and 

F1 score for each fold of 10 

fold cross-validation on the D6 

dataset

Dataset-fold ACC AUC SEN SPEC PREC F1 Score

D6-1 100 1.0 1.0 1.0 1.0 1.0

D6-2 99.85 0.99 0.86 1.0 1.0 0.92

D6-3 99.85 0.99 0.86 1.0 1.0 0.92

D6-4 100 1.0 1.0 1.0 1.0 1.0

D6-5 100 1.0 1.0 1.0 1.0 1.0

D6-6 100 1.0 1.0 1.0 1.0 1.0

D6-7 100 1.0 1.0 1.0 1.0 1.0

D6-8 99.85 0.99 0.86 1.0 1.0 0.92

D6-9 99.70 0.99 0.71 1.0 1.0 0.83

D6-10 100 1.0 1.0 1.0 1.0 1.0

� 99.92 0.99 0.93 1.0 1.0 0.96

� ± 0.100 ± 0.006 ± 0.096 ± 0.0 ± 0.0 ± 0.055

Table 5  Comparison: computational time (in ms) between Inception Net V3 (full architecture) and Truncated Inception Net

10 Samples (randomly selected)

Model CXR1 CXR2 CXR3 CXR4 CXR5 CXR6 CXR7 CXR8 CXR9 CXR10 Mean ( �)

Inception Net V3 22.10 28.80 21.30 20.20 20.60 19.90 22.50 20.90 21.40 21.40 21.90±2.40

Truncated Inception Net 8.63 11.00 9.53 8.02 8.93 8.63 8.70 9.64 9.30 10.30 9.27±0.84

Ratio 2.56 2.61 2.23 2.52 2.30 2.30 2.58 2.16 2.30 2.07 2.36±0.18
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comparison, ResNet50 and SVM [19], COVID-Net [20], 

ResNet50 [21], and Inception Net V3 [21] are considered 

even though they are not peer-reviewed research articles. 

We have compared with these pieces works using exact same 

evaluation metrics (ACC in %, AUC, SEN, SPEC, PREC, 

and F1 score) and nature of dataset. Like other works, we 

take COVID-19 positive and healthy CXRs from Pneu-

monia dataset (D3 in our case), and used this result as a 

comparison to other works. Besides, since all models were 

based on deep learning models, we consider an essential ele-

ment i.e., number of parameters in our comparison. Table 6 

provides a complete comparative study. Not all the authors 

reported AUC, SPEC, and F1 score. Note that, our model 

was used as a binary classifier to screen a CXR as COVID+ 

or COVID-, while not all the stated works performed the 

same. The mentioned results belong to the COVID+ positive 

class, wherever multi-class classification was done instead 

of binary classification. On the whole, considering the num-

ber of parameters, the proposed Truncated Inception Net 

outperforms all. Note that, since our model is the derivative 

of Inception Net V3 model, it is worth to compare between 

them. We observe that, in both computational time (Table 5) 

and performance scores (Table 6), Truncated Inception Net 

performs better than Inception Net V3 [21]. For a better 

understanding, three different performance scores: poor, the 

best and average are considered from Table 3. This suggests 

that the Truncated Inception Net is not only more computa-

tionally effective in terms of training and usability, but also 

more flexible for the purpose of active learning [14].

Even though the performed experiments validate that 

the proposed deep learning model for screening COVID-19 

positive CXRs, it is important to understand that the system 

relies completely on visual cues in the input data. Therefore, 

in the early stages of COVID-19, when the radiologically 

observable cues have not yet developed, the system might 

fail to perform as stated. A detailed study on this is a scope 

for future work, where the input data shall be addition-

ally labeled with the stage of COVID-19 it depicts as well. 

However, data acquired for this work did not contain any 

explicit information regarding the stages of COVID-19 in 

the individual CXRs. Further, the system is limited by its 

capacity to localize the disease in the CXR. As seen in the 

activation maps of deeper layers (Fig. 6), the model develops 

an intrinsic representation of the CXR features rather than 

accurate spatial heat-map, which is then mapped to the out-

put using a dense layer classifier. The mentioned goal can 

be achieved by using increased number of data or a deep 

learning model(s) that is/are pre-trained on a large number 

of CXRs of different diseases (like CheXNet [31]), which 

shall be our future goal.

Conclusion and future works

In this work, we have proposed the Truncated Inception Net 

deep learning model to detect COVID-19 positive patients 

using chest X-rays. For validation, experimental tests were 

done on six different experimental datasets by combining 

COVID-19 positive, Pneumonia positive, Tuberculosis posi-

tive, and healthy CXRs. The proposed model outperforms 

the state-of-the-art results in detecting COVID-19 cases 

from non-COVID ones. Besides, considering the number of 

parameters used in our proposed model, it is computationally 

efficient as compared to original Inception Net V3 model 

and other works proposed in the literature. It is important 

to note that the study has no clinical implications. Instead, 

we solely aimed to check whether the proposed Truncated 

Inception Net could be used in detecting COVID-19 positive 

cases using CXRs.

Observing the performance scores, the Truncated Incep-

tion Net can serve as a milestone for screening COVID-19 

under active-learning framework on multitudinal/multi-

modal data [14]. It also motivates to work on cross-popula-

tion train/test models. Integrating this model with CheXNet 

model [31] will be our immediate plan, since ChexNet is 

primarily employed to analyze CXRs.

Table 6  Comparison table

Model # of 

COVID-19 

CXRs

# of non 

COVID-19 

CXRs

ACC (in %) AUC SEN SPEC PREC F1 score Remarks # of param-

eters (in 

million)

ResNet50 and SVM [19] 25 25 95.38 – 0.97 0.93 – 0.95 – 23.5

COVID-Net [20] 68 2794 83.50 – 1.0 – – – – 116.6

ResNet50 [21] 50 50 98.0 – 0.96 1.0 1.0 0.98 – 23.5

Inception Net V3 [21] 50 50 97.0 – 0.94 1.0 1.0 0.96 – 21.7

Truncated inception net 162 80 (D2) 94.04 1.0 0.88 1.0 1.0 0.93 Poor 2.1

162 1583 (D3) 100.0 1.0 1.0 1.0 1.0 1.0 Best

162 – 98.77 0.99 0.95 0.99 0.99 0.97 Average (D1–D6)
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