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Abstract—This work introduces a modified version of the
orthogonal frequency division multiplexing (OFDM) signal by
truncating OFDM symbols in the time domain. Sub-carriers are
no longer orthogonally packed in the frequency domain as time
samples are only partially transmitted, leading to improved spec-
tral efficiency. In this work, mathematical expressions are derived
for the newly proposed Truncated OFDM (TOFDM) signal, fol-
lowed by interference analysis and performance comparisons. We
also consider optimal and practical decoder architectures. Results
from a Sphere Decoder-based decoder indicate that truncation
length can significantly affect the error performance. With short
truncation length, using a purpose designed detector, signals can
be recovered even with truncated symbol transmission.

Index Terms—Multicarrier modulation; Truncated OFDM;
SEFDM.

I. INTRODUCTION

OFDM systems are a subset of multi carrier modulation

(MCM) systems, where the different subcarriers in OFDM

maintain orthogonality and where the data rate on each

subcarrier is a fraction of the overall data rate. Orthogonality

in OFDM is a crucial factor in its successful operation:

loss of orthogonality leads to interference and deterioration

in bit error rate [1]. Orthogonality, in time and frequency,

is maintained by ensuring that the spacing between the

subcarriers equals the inverse of the symbol rate.

Spectrum scarcity and the need to send data at higher

bit rates has led to an increase in research into systems

that use spectrum more efficiently. Recently a set of time-

and frequency-domain techniques has been proposed to

enhance spectrum efficiency by deliberate violation of the

orthogonality criterion in multicarrier systems. During the last

decade, spectrally-efficient frequency division multiplexing

(SEFDM) signals and systems have been proposed as a

means to economize on bandwidth, yet avoid intolerable

degradation of bit error rates, relative to OFDM [2], [3],

[4]. Such is achieved in SEFDM by decreasing the distance

between subcarriers in the frequency domain while keeping

the same data rate on each subcarrier [3], [4]. Similarly,

multi-stream faster-than-Nyquist (FTN) systems have been

suggested to improve spectral efficiency by transmitting at a

higher rate data than imposed by the Nyquist limit for the

same bandwidth [5][7][8]. FTN fulfils this by signaling on

each subcarrier at a rate higher than the frequency separation

between two adjacent subcarriers, effectively overlapping

symbols in time at the expense of loss of orthogonality

[5]. It is worth noting that systems that overlap multicarrier

symbols in time, without loss of orthogonality, were reported

in the 1990s such as the time-limited system of Li and Slette

reported in [6]. Another reported non-orthogonal multicarrier

system is termed high compaction multi carrier modulation

(HC-MCM), based on a similar concept to SEFDM and FTN,

where enhanced spectral efficiency is achieved by either

reducing the subcarrier spacing or decreasing the transmission

time for OFDM symbols [9].

The work reported here proposes a different non-orthogonal

system format which modifies OFDM signals by truncating

(as opposed to overlapping) the end of each OFDM symbol,

in a way similar to what was studied in the context of

assessing the spectrum of oversampled OFDM and SEFDM

signals [4]. As such, this new format is termed truncated

OFDM (TOFDM). Here, each OFDM time domain symbol

is truncated by a factor (γ) to generate the TOFDM signal.

Therefore, time samples are only partially transmitted and

part of the symbol is lost at transmission. Furthermore, the

fact that the TOFDM symbol time is shorter than that of an

OFDM one, implies loss of orthogonality and consequently

the introduction of inter-carrier interference (ICI) amongst

the subcarriers. In SEFDM, the issue of ICI was dealt with

through the application of different techniques, such as

orthonormalization [2], optimum detection using maximum

likelihood (ML) detectors [2][3][10], Sphere decoders [3][11]

and iterative interference cancellation [12][13]. To illustrate

the utility of TOFDM signals, a sphere decoder (SD) is used

in this work as it offers performance close to that of ML with

much reduced complexity and computation time.

The work in this paper focuses on studying the parameters

that affect the error performance and complexity in a proposed

TOFDM system. Therefore, mathematical derivations for

TOFDM signals and the characterization of its ICI are

presented and system performance is studied through

computer simulations. Results show that the TOFDM ICI

levels depend on two key signal parameters: the truncation

factor and the oversampling factor.

In this paper, Section II depicts the TOFDM signal model.



Fig. 1. TOFDEM simplified system modem.

Section III derives the characterization of ICI in TOFDM

signals. Section IV provides the description of an adopted

detection method TOFDM, and Section V concludes the paper.

II. TRUNCATED OFDM SIGNAL MODEL

This section first describes the basic signal model for

TOFDM signals, secondly depicts the methodology of imple-

menting the TOFDM system and then compares TOFDM with

other similar spectrally efficient techniques.

A. Signal Model

A TOFDM symbol x(t) is generated by multiplexing a

vector of N inputs of a complex signal denoted as S onto

parallel subcarriers, in a similar way to OFDM but with a

time truncation factor, γ, as :

x(t) =
1√

TTOFDM

∑∞
l=−∞

∑N−1
n=0 Sl,n exp (

j2π(t− lγTOFDM )

TOFDM

), (1)

Defining TTOFDM as the TOFDM symbol duration as

TTOFDM = γTOFDM .

Therefore, (1) can be represented as:

x(t) =
1√

TTOFDM

∑∞
l=−∞

∑N−1
n=0 Sl,n exp (

j2π(t− lTTOFDM )

TOFDM

), (2)

where Sl,n denotes the data symbol modulated on the nth

subcarrier and lth TOFDM symbol, N represents the index

of the subcarrier and 1/
√
TOFDM is a normalization factor.

The frequency spacing between two adjacent subcarriers in

TOFDM signals is defined as 1/TTOFDM , which is equal to

that of OFDM signals. However, the duration of each TOFDM

symbol, in comparison with OFDM symbols, is shorter by

the factor γ. Therefore, the subsequent symbol comes earlier

in time by (1− γ) because of the truncation in the preceding

symbol. For example, in the case of using digital signal, if

N = 10 and, γ = 0.8, the number of transmitted samples

per TOFDM symbol is eight while there are ten samples

for an OFDM symbol. Thus, five TOFDM symbols may be

sent in the same duration as four OFDM ones, carrying the

same data. Nevertheless, the TOFDM symbol duration is not

equal to the reciprocal of the frequency spacing between the

subcarriers, which means the generated TOFDM signal are

not orthogonal, where the transmission rate of each subcarrier,

in comparison with OFDM signal, is higher.

Fig. 1 illustrates a basic block diagram for the TOFDM

system model used in this study. The figure sketches a

simple time domain representation of TOFDM Transmitted

and received symbols, showing partial transmission for

the samples, as the shadowed samples are not transmitted.

Simply, OFDM symbols are generated and then truncated

before transmission. At the receiver, the duration of the

symbol at each modulator is shorter by the factor γ, relative

to the original OFDM symbol. Note that γN is equal to the

minimum number of the transmitted samples per TOFDM

symbol.

By sampling one TOFDM symbol with sample period

TOFDM/Q, where Q = ρN and ρ ≥ 1 is the oversampling

rate, a discrete TOFDM symbol is expressed as [14]:

X(k) = x(
kTOFDM

Q
) =

1√
γQ

Q−1
∑

n=0

Sn exp(
j2πnk

Q
), (3)

where k is the index of the time sample of the TOFDM symbol

for the range 0 ≤ k ≤ γQ−1. Equation (3) depicts the process

of modulating the input data onto different subcarriers in a

TOFDM symbol, it is written in matrix form as [14],



X = Φ ∗ S. (4)

X = [x0, x1, ..., xγQ−1]
T represents a γQ-dimensional vector

that is a sampled TOFDM symbol in the time domain,

S = [s0, s1, ..., sγQ−1]
T as an N -dimensional vector that is

a sampled input data in the freuency domain. The symbol

Φ signifies the sampled carrier matrix; Φ is a γQ × Q
two-dimensional matrix. The elements of the Φ matrix are

Φk,n = 1√
γQ

exp (j2πnk/Q), where 0 ≤ k ≤ Q − 1 and

0 ≤ k ≤ γQ − 1. The symbol [.]T refers to the matrix or

alternatively the vector transpose.

B. TOFDM Signal Representation vs OFDM, SEFDM and

FTN

As mentioned before, every OFDM symbol is truncated

to generate the TOFDM symbol, which means the TOFDM

symbol width is shorter than the OFDM symbol by a factor γ,

where only a γTOFDM duration of the signal is sent while the

remaining (1− γ)TOFDM is discarded. In the digital domain

this means only a partial number of samples of OFDM symbol

is sent. The TOFDM symbol is represented in terms of the

OFDM symbol as follows:

TOFDM symbol (TTOFDM ) =

w(t) ∗OFDM symbol (TOFDM ),
(5)

where w(t) is a time-domain rectangular window with interval

= γ.

w(t) =

[

1 , 0 ≤ t ≤ γ
0 , γ ≤ t ≤ 1

]

, (6)

where γ ≤ 1 When γ = 1, the symbol is an OFDM symbol,

whereas lesser values of γ achieve different truncations. A

lesser value of γ offers a greater spectral efficiency in the time

domain. This implies that more data can be sent over the same

frequency bandwidth. Equation (6) shows there is no change

in the power during the interval, which means the function

of the window is only truncating in time domain. In Fig.

2, it is clear that OFDM and SEFDM symbols are sent with

the same symbol duration, while FTN transmits overlapped

symbols. OFDM systems transmit orthogonal symbols in time

and frequency, while SEFDM systems transmit more data by

relaxing the spacing between the subcarriers in the frequency

domain, which means the bandwidth of these systems is nar-

rower than OFDM despite no difference in the time duration

of SEFDM and OFDM symbols. FTN systems send more

data on the same bandwidth that is used by OFDM system

by transmitting symbols faster than the Nyquist limit, which

makes FTN symbols shorter in the time domain. This allows

more symbols to be sent in a shorter time, equivalently saving

bandwidth. However, due to transmission at a higher rate, the

FTN signal will overlap and produce interference. On the other

hand, TOFDM sends partial samples of the OFDM symbol,

although TOFDM has the same symbol duration as FTN, the

features of these symbols are totally different as explained

earlier. However, truncation in the time domain can lead to

Fig. 2. Conceptual illustrations of OFDM, SEFDM, FTN and TOFDM in
time domain where the compression factor for FTN and TOFDM is γ = 0.8.

Fig. 3. Conceptual illustration of OFDM, TOFDM and FTN in frequency
and time.

lost information, and also generates interference between the

subcarriers.

In Fig. 3, the frequency spacing between the subcarriers of

OFDM, TOFDM and FTN signals are the same, which means

all the subcarriers are positioned at the same frequencies when

TOFDM signals are generated. However, the symbol duration

of TOFDM and FTN is shorter in time domain, which implies

that the transmission rate is higher. In addition, because the

symbol becomes shorter, the bandwidth of each subcarrier

becomes wider; the signals are changed to be non-orthogonal

which leads to interference in the system.

In Fig. 4, OFDM, TOFDM and FTN have the same

frequency spacing while SEFDM has a compressed

bandwidth. The bandwidth savings in SEFDM has been

accomplished by compressing the spacing in the frequency

domain between subcarriers. It can be noticed that SEFDM

has the same symbol duration (width in the figure) as



Fig. 4. Conceptual illustration of OFDM and SEFDM in frequency and time.

OFDM. Although the SEFDM system has the same symbol

duration as OFDM, the system produces interference due to

a compression in the frequency domain, which makes the

subcarriers closer.

III. CHARACTERISING THE ICI IN THE TOFDM SYSTEM

A similar method of analysis to that developed for SEFDM

in [13] is followed in this treatment. Sampling the subcarriers

of a TOFDM symbol results in the carrier matrix, denoted as

Φ, which represents the mathematical function of a sampled

bank of modulators:

Φ = 1√
γQ
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In order to study and understand the inter carrier interfer-

ence (ICI) in a TOFDM system, the cross correlation matrix,

denoted as C, is now evaluated.

We assume a discrete representation of the signal, as this

allows the study of truncation and oversampling’s effects on

generated signal and detection properties. We follow a similar

method to that reported in [14].

Cross correlation is a method used to evaluate to which

degree two signals are correlated. Assuming that the two

discretized TOFDM sub-carriers are e
2πkm

Q and e
2πkn

Q , the

cross correlation c[m,n] of two arbitrary subcarriers m and

n in a TOFDM signal may be represented by:

c[m,n] =
1

γQ

γQ−1
∑

k=0

exp(
−j2πmk

Q
) exp (

j2πnk

Q
)

=
1

γQ

[

1− e−j2π(m−n)γ

1− e
−j2π(m−n)

Q

]

,

(8)

where k = 0, . . . , (γQ− 1), and Q is the number of samples

per subcarrier, and the (m − n) represents the carriers index

distance, that is the index distance between a subcarrier m to

subcarrier n. Therefore, each correlation coefficients c[m,n]
in (8) above is an interference between two subcarriers.

Since the condition of orthogonality between all subcarriers is

violated, each subcarrier contributes some level of interference

to produce the overall ICI in the signal.

The derivation of the third line of (8) is based on the

sum of geometric series:
∑Q−1

k=0 rk = 1−rQ

1−r
. The correlation

matrix C, given in (9) below, is the interference matrix,

whose elements are those derived in (8) above, giving the

spillage of energy (i.e. interference) among all subcarriers as

well as the relative value of each subcarrier

C = 1
γQ
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Q

γQ . . .
1− ej2π(Q−2)γ

1− e
j2π(Q−2)

Q
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...
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...

1− e−j2π(Q−1)γ

1− e
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Q

1− e−j2π(Q−2)γ

1− e
−j2π(Q−2)

Q
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Q×Q

. (9)

The correlation matrix C is a Toeplitz [15] and Hermitian

Q×Q matrix and its elements are given by:

c[m,n] =
1

γQ















γQ ,m = n

1− e−j2π(m−n)γ

1− e
−j2π(m−n)

Q

,m 6= n















(10)

It is evident that the non-diagonal elements in the matrix

C are non-zero indicating the self-created inter carrier

interference in TOFDM. The correlation matrix is used to

estimate the interference among the subcarriers. Although

only partial data is transmitted and the rest is discarded, the

receiver has the ability to retrieve the data by estimating the

removed part of the symbol by using the correlation matrix.

Examination of (8) shows that the correlation matrix can be

found by using subcarrier matrix as they are directly related by

C = Φ
∗ ×Φ, (11)

where [.]∗ is the Hermitian transpose operation. Equation

(11) shows that the correlation matrix C can be generated

easily by using the carrier matrix Φ, where the latter can be

found by knowing the truncation and the oversampling factors.

IV. SIGNAL DETECTION AND RESULTS

This section starts with describing the detection stage at the

receiver side and then shows the BER results.



A. The Detection Stage

We follow detection techniques similar to those applied

to SEFDM in [3]. The transmitted TOFDM signal, x(t) is

contaminated with Additive White Gaussian Noise (AWGN)

signal, wn(t) to give the received signal y(t) as:

y(t) = x(t) + wn(t). (12)

At the receiver y(t) is correlated with the conjugate subcarrier

to demodulate the received signal. The discrete form of the

received signal is expressed as:

R(k) =
1√
γQ

γQ−1
∑

n=0

xn exp (
−j2πnk

Q
) +W ∗

c(k), (13)

where k = 0, . . . , Q−1, xn is the transmitted signal, R is the

received signal after demodulation and W ∗
c is a Q×1 vector

of AWGN samples correlated with the conjugate subcarriers.

The received signal is then fed to a SD to detect the signal.

The mathematical representation for the SD is expressed as:

SSD = arg min
S∈MQ,‖R−CS‖2≤g

‖ R− CS ‖2, (14)

where SSD is the estimated signal, MQ is the all possible

combinations for the transmitted TOFDM symbols, M is

the cardinality of the constellation diagram, g is the radius

of the hypersphere search area that is centered at the vector

R, and S is the vector that has the highest probability

of being transmitted. The latter is found by finding the

minimum Euclidean distance from all the possible vector

combinations which take place inside the multi-dimensional

hypersphere searching area. In other words, by using a SD

we can detect the received signal by estimating the truncated

portion of every TOFDM symbol, enabling recovery of the

intended signal. In addition, the SD tests a subset of the

all possible combinations of transmitted symbols, which

means it enjoys improved computational efficiency over a

ML detector, which compares the received symbol with the

all possible combinations of the transmitted TOFDM symbols.

B. The BER Analysis

The TOFDM system is tested using 10 subcarriers, QPSK

modulation and with different values of truncation factor γ =
0.9, 0.8, 0.7 and 0.6, for different values of oversampling. A

smaller value of γ allows the system to transmit fewer samples

and give a higher spectral efficiency. Two oversampling values

(1 and 4) are used in these simulations, where higher values

of oversampling will result in lower levels of aliasing, as

described in [15], leading to better bit error rate results.

Figures 5 and 6 show the error performance for different

values of , without and with truncation, respectively. The

power penalty, defined as Eb/No difference between OFDM

Fig. 5. BER for TOFDM system with no oversampling.

Fig. 6. BER for TOFDM system with oversampling factor = 4.

and TOFDM systems, is measured at BER=10−3 in Fig. 7. It

should be noted that by truncating 20% of samples, TOFDM

shows identical performance as OFDM. With further samples

truncation up to 30%, therefore higher interference, 1 dB

power penalty is observed. In terms of improved spectral

efficiency, such power penalty may be tolerated. The figure

also demonstrates the effect of oversampling on power penalty.

For high truncation factors such as 0.9 and 0.8, the over-

sampling has no clear effect. For lower truncation factors,

therefore higher interference, the power penalty is reduced

with the increase of oversampling factors due to improved

signal resolutions.



Fig. 7. Eb/No difference between OFDM and TOFDM systems.

V. CONCLUSION

In this paper, a modified version of the OFDM signal is

proposed by truncating the OFDM symbols in time. The new

signal is termed truncated OFDM (TOFDM). A mathematical

representation of the signal is presented and TOFDM charac-

teristics are compared to those of SEFDM and FTN signals.

Error performance is studied in AWGN channels for different

values of truncation and oversampling factors. The reported

results show that TOFDM saves bandwidth by sending partial

information, yet allows detection with a small deterioration of

error rates.
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