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Abstract—The truncation error for a two-pass decoder is our case phonetic classes) are motivated by the dynamics
analyzed in a problem of phonetic speech recognition for very de- introduced by articulatory gestures that in turn generhee t
manding latency constraints (look-ahead length< 100ms) and speech SignaUlT. Phonetic speech recognition is then the

for applications where successive refinements of the hypothese . .
are not allowed. This is done empirically in the framework of process of recovering the right sequen’ééff on the base of

hybrid MLP/HMM models. The ability of recurrent MLPs, as ~ Some feature§’ N = (y1,--- ,yn) extracted fromU{". When
a posteriori probability estimators, to model time variations is the feature extraction procedure is assumed to be given, as

also conside_red, and i'[§ interacti_on With.the d_ynamic modeling in the current study, the distinction betwe&nhandY is not
in the decoding phase is shown in the simulations. essential. Speech production is then a (stochastic) fumcti
the kind: P : X — Y. The natural choice for characterizing
. INTRODUCTION this function is a Markov mode® where the states; are
e?gsumed to vary synchronously with the featugeswhich
Igiexplains why we indicated the length &f and Y with the
Sgme symbolN. Besides ara priori term, © is then fully
specified by the distribution of state transition probaieii
a;; = P(s;|s;) and the distribution of data generation given a
certain staté,; (Y}*) = P(Y}¥|s;). Usually the dynamics of the
process are considered to be represented uniquely by;the
E%ing theb; (V}¥) static models {}* = y;,). As the notation
Indicates, we are interested in the case in which each state
éafluences the output at different time steps.

In real-time applications conventional two-pass decod
based on different flavors of the Viterbi algorithm [1], ca
only be used in an approximate fashion. The approximati
lies in the need for incremental results that limits the taraf
look-ahead, or equivalently requires the back-trackingsgtto
be truncated to a certain number of frames. Truncation @mror
the Viterbi and Best-Path (BP) algorithms has been extelysiv
studied for convolutional codes in the area of speech codi
[2], [3]. There, given the relatively simple nature of thelpr
lem, error bounds could be found analytically and confirm
empirically.

In speech recognition, few empirical studies dealing witB. State to output probability estimators
this problem can be found (e.g. [4], [5]). In [5] a system
based on incremental hypothesis correction was shown
asymptotically reach the optimal MAP solution. These stadi

ared rgstrlictg(:] tlo tEe r(llarg(jjel voce;]bula;ryr)] Woréj rec]f)gggiasec scheme uses Back Propagation through time [8] with a cross
and deal with look-ahead lengths of the order o ms. entropy error measure [9]. If the nonlinearity in the units

The am of the current study IS to analyze the effect % in the tanh form, we can write for the state to output
truncation errors at very low latencies (look-ahead 00ms)

Robinson [7] has shown how recurrent Multi Layer Per-
cté)ptrons (MLPs) can be efficient estimators for thposte-
riori probabilities P(x;|Y7*). A particularly efficient training

. . . o - probabilities:
in phonetic recognition. In the application we have in mif [
the resulting phone string is fed into a rule system thatingu A P(x;|YF)YP(YF)  a;+1 P(Y)F)
: . P(Yy|xj) = ~ Q)
creates articulatory parameters for a synthetic face. is th P(z) 2 P(x;)

conditions, and since the delay between the incoming spe
and the resulting face movements must be short, succes
refinement of the hypothesis is not allowed.

?I%erexj is a phonetic class ang; the activity at the output
node corresponding to that cla3§) is the sequence of feature
vectors spanning a window of time steps that depends on
the dynamic properties of the MLP. In the case of simple
i feed-forward netsY;* reduces to the current frame vector
A. Speech production yr, While for strict recurrent topologies, = 1 and k is the
The process of speech production could be seen as the ongent frame. In [10] a mixture of time delayed and recurren
of encoding a sequence of symbo{§” = (x1,--- ,x),) into  connections was proposed. In this model the input layer
a sequence of states’ = (s1,---,sy) with an associated received contributions both from the past and the futunmés
output sequenc&/{ = (uy,---,ur). In our oversimplified thanks to time delayed connections with possibly negative
description, X could represent phonemic intentions, or as idelays. Sttm showed that the network took advantage mostly

Il. PROBLEM DEFINITION AND NOTATION
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Fig. 1. Trellis plot in different conditions: the continumline shows the best Viterbi path over the whole observa@quence. The dashed and dashed-dotted
lines are obtained with a forward pass up to times D andn + D’. Depending on the length of the backtracking phase, theisolat timen can differ
or coincide (open and filled squares respectively) with taadard Viterbi solution

from future contributions, as information about the passwa

successfully coded by the recurrent connections. Q0 Q
C. Problem 1: Modeling dynamics T o O
Given the probabilistic modeb, the maximum a posteriori O—O - -

(MAP) solution to the speech recognition problem is the
sequenceX¥ that maximizes

M|y N
P(Xl |Y1 7@) = P(xlv T >$M|y1a L YN, @) Fig. 2. Two extreme examples of transition topologies. Léft het defines

. . . s‘g”ort time dependencies, at any time step any state is reachight: long
A more pragmatic solution, provided by the Best-Path anghe dependences, the state at titris dependent on the state at time- n

Viterbi algorithms, approximates the sum over all possibfer any value ofn

state sequences, implicit in the formula above, with a max-

imum operation. Since in our mod&lM is fully determined

by SV, the latter is equivalent to finding the sequerg® In the example the observations in the intervat D41, n+-D’|
for which P(SN|Y;N,0) is maximum. This can be doneinfluence the result at time (open and filled squares), while

iteratively according to the formula the ones in[n+ D'+ 1, N] don't. As a result the truncated
) _ solution will in general asymptotically approach the stamd
61(j) = mflx[‘st—l(z)aij]bj(yt) Viterbi solution (filled square in this case) asincreases. The

Whereb; (y,) = P(y.|z;). In practice we substitute to the IastvaIueD at which the two solutions become indistinguishable

the estimate oP(Y|,) given by Equation. 1. In the case Ofdepends on the dynamic characteristics of the problem a, han

recurrent MLPs,P(Y}|z;) = P(Y{|z;) and the information _that is on the time correlations iH and especially on those

contained bys,_ (i) andb; (Y;') become widely overlapping. imposed by©. Extreme examples of the last are shown in

As a result we can expect a reduction in effectiveness of tﬁlegure 2. C_)n thg left side th_e transition pro_bgbllltles defin
a_network in which the maximum of the minimum lengths

Viterbi algorithm as compared to the case in which those twq . ; . .
erbi algorl S par se In whi S V\g% independent paths is 1: at every time step, any state in

terms were based on independent information. the network can be reached. On the right side a network is
depicted in which the minimum length is the length of the

D. Problem 2: Truncation in the Viterbi algorithm whole observation sequence (this corresponds for exarople t
When truncation is considered, the optimal solution at timgentence recognition with only two alternative hypothesis

stepn is the states,, extracted from the sequen&®™” = any time step only one (or two) states are reachable depgndin

(51, ,8n, -+, Snip) that maximizesP(S7?T2|v"™P ©), on the sentence. In the first case we can exp&cdo be small,

where D denotes the look-ahead length in time steps. The dif+ile in the second much larger: evidence at the end of the
ference between the two approaches is exemplified in Figureutterance could cause an hypothesis change that would affec
The grid displays the states as a function of time (trelli$}e results in the beginning of that utterance.

continuous line shows the Viterbi solution, while the dakhe
and dashed-dotted lines refer to the best path obtained usin
the partial information up t¢ = n+ D andt = n + D/,
respectively. The Figure also shows a phenomenon that iSGiven the difficulty to derive an analytical solution to the
common in practice: the influence of an observation at time problems defined above, computer simulations were run in
over the result at time, decays with the distand® = |t; —t2|. order to empirically estimate their effect.

I1l. COMPUTERSIMULATION



A. Data model # param. # hidd.u. # hidd.l. RMLP? f-by-f MAP

GW 379050 - - - 35.4%
The experiments were performed on the Swedish Speech-ANN 186050 800 2 no 31.5%
Dat corpus, containing recordings of 5000 speakers over theR\N. 185258 488 1 yes 49-22"
telephone line. The official training and test sets defined in 24125 4 ! e >4.2%
SpeechDat and containing respectively 4500 and 500 speaker TABLE |
were used in the experiments. Mel frequency cepstrum fesitur DETAILS ON THE ACOUSTICMODELS

were extracted at 10ms spaced frames. When using Gaussian

mixture models (GMMs), the delta and delta-delta coeffisen

were computed on a window of 3 frames in both directions. set of monophones and triphones of varying complexity.
The GMM models were trained on the full corpus defined ilthe best models, consisting of a set of triphones with 32
SpeechDat, while the training material for the neural nekswo Gaussian components (GCs) for each state, were used for
(MLPs), and the test material were restricted to the phenefibrced alignment, A set of monophones with 32 GCs per state
cally rich sentences (“s” codes). The training materialtfter (GVM) was used for recognition.

MLPs was further divided into training and validation sets o The neural networks used in the experiments were a
33062 and 500 utterances respectively. One problem with tieed-forward perceptromANN) and two recurrent perceptrons
SpeechDat database, that is important when training thesMLERNN1 and RNN2) trained as described in section 1I-B.

and for testing at the frame level, is the unbalanced amountDetails on the acoustic models are reported in Table I, which
of silence frames if compared with the amount of materishows the overall number of parameters, and, in the case of
for any phonetic class. As the silence frames are mostgrceptrons, the number of hidden layers and hidden units
concentrated in the beginning and end of each utterande, tind the dynamic characteristics. The last column reposs th
partial removal was facilitated. frame correct rate when thmaximum a posteriori class (MAP)

was selected frame-by-frame. This will be considered as a
baseline for Problem 1 where we are interested in the inereas
in performance introduced by the Viterbi processing.

Since the dataset lacks phonetic transcriptions, some preNote that the topology iPANN was chosen in order to
processing was necessary. The time-aligned reference, ngistain a network that could compare wigNN1 in terms of
essary for both training the MLP models and testing, wasmplexity (number of free parameters).
obtained with forced alignment based on word level tran-
scriptions, a lexicon anq context dependent Gaussian reixty Scoring method
models (CDGMMSs). This method is strongly dependent on
the quality of the lexicon: a poor lexicon (i.e. with limited

B. Phonetic Transcriptions

The scoring method chosen for this study is frame-by-frame
pronunciation variation) will force mistakes into the tsarip- correct rate sn’_n.ply computed as the ratio between .number of
correctly classified and total number of frames. This method

tions that are difficult to detect automatically. The sauos terred 1o th - dit dist t
ofter proposed to this problem aim at increasing the deg)réesw"’lS preterred 1o thé more common minimum edit distance a

freedom in the alignment network, giving to the alignmert-pr the s_ymbolic level, because th_e_ application we have in mind
cess greater flexibility without affecting the effectiver®f the requires not only correct clz_iSS|f|cat|on of the speech ssund
method. This in general requires linguistic-phonetic tueses, but also correct segment alignment.

that allow defining pronunciation variations based on rolea

lexicon. Given the unavailability of such resources, wepaed E. Implementation note

a simple alignment network with optional silence or noise GMM training was performed using the HTK Toolkit [12].
between words. This method proved to be reasonably accurdtiee MLP training algorithm was implemented in the NICO
but a more detailed inspection is required to guarantee theolkit [13], the two-pass algorithm, and the other tools
quality of the result. To be noted here is the fact that thissed in the experiments were implemented by the author.
reference will in general favor recognition methods based @ll experiments were performed on a GNU-Linux platform
Viterbi decoding and Gaussian mixture models that were usehning on standard hardware (PC).

to obtain it.

IV. RESULTS

C. Acoustic Models Results are shown in Table Il and Figure 3 for Problem 1

As described above, the acoustic models used in this stua@ﬂld Problem 2 respectively, and will be discussed sepgratel

are Gaussian Mixture Models (GMMs) and Multy Layer

Perceptrons (MLPs). The first were used both in the dafa Problem1

processing phase, as already mentioned, and in the reirgnit Here the question is to verify whether probability estimato
experiments as an example of static models, i.e. models thi#t model time variations could benefit from the use of the
don't retain an internal representation of time variatioflsis Viterbi decoder to the same extent as static models. As can
in spite of the use of dynamic features, the span of whosebis seen in Table II, this is not the case for the recurrent
infact limited to a few frames. The GMMs were trained usingerceptrons. If the percentage of correct classification fo
the procedure defined in the RefRec scripts [11], that presluche GMMs has~19% relative improvement, when using the



decoder static dynamic SpeechDat results
GVW  ANN | RNN1  RNN2 60 T T
f-by-f MAP 354 315| 49.6 54.2
Viterbi 421 32.8| 50.7 55.3
rel. impr. 19% 4% 2% 2% 551 O
TABLE Il

CORRECT FRAME RATE AND RELATIVE IMPROVEMENT

al
o

Viterbi decoder, this improvement is much lower in the cas
of RNNs (~2%). This seems to validate what intuitively
suggested in Section II-C, i.e. the information contained i
the recognition network, used in the Viterbi decoder, is nc
independent from that learned by the perceptron weight

% correct frame
&

Vit-RNN2
Vit-RNN1
Vit-GMM

. map—-RNN2
However, the feed-forward perceptron (static model) show 35 map-RNN1 |
an improvement £4%) that is similar to what obtained -~ map-GMM
with dynamic models suggesting that the problem might lic 3, ‘ ‘ ‘ _* dec-GMM

L : . look-ahead, f 10
Note that the Viterbi results in this case correspond to a cok-ahead, frames (x10ms)

Viterbi decoder truncated to 30 frames (300ms). The go®ingsy. 3. Degradation in recognition accuracy due to trumeagrror in the

of this approximation, a|ready discussed in Section II-®, Viterbi decoder. Ther-axis shows the look ahead length in number of frames
supported by [14]. (20ms), while they-axis the percentage of correct frames.
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