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Abstract— The truncation error for a two-pass decoder is
analyzed in a problem of phonetic speech recognition for very de-
manding latency constraints (look-ahead length< 100ms) and
for applications where successive refinements of the hypotheses
are not allowed. This is done empirically in the framework of
hybrid MLP/HMM models. The ability of recurrent MLPs, as
a posteriori probability estimators, to model time variations is
also considered, and its interaction with the dynamic modeling
in the decoding phase is shown in the simulations.

I. I NTRODUCTION

In real-time applications conventional two-pass decoders
based on different flavors of the Viterbi algorithm [1], can
only be used in an approximate fashion. The approximation
lies in the need for incremental results that limits the length of
look-ahead, or equivalently requires the back-tracking phase to
be truncated to a certain number of frames. Truncation errorin
the Viterbi and Best-Path (BP) algorithms has been extensively
studied for convolutional codes in the area of speech coding
[2], [3]. There, given the relatively simple nature of the prob-
lem, error bounds could be found analytically and confirmed
empirically.

In speech recognition, few empirical studies dealing with
this problem can be found (e.g. [4], [5]). In [5] a system
based on incremental hypothesis correction was shown to
asymptotically reach the optimal MAP solution. These studies
are restricted to the (large vocabulary) word recognition case
and deal with look-ahead lengths of the order of 200ms.

The aim of the current study is to analyze the effect of
truncation errors at very low latencies (look-ahead< 100ms)
in phonetic recognition. In the application we have in mind [6]
the resulting phone string is fed into a rule system that in turns
creates articulatory parameters for a synthetic face. In this
conditions, and since the delay between the incoming speech
and the resulting face movements must be short, successive
refinement of the hypothesis is not allowed.

II. PROBLEM DEFINITION AND NOTATION

A. Speech production

The process of speech production could be seen as the one
of encoding a sequence of symbolsXM

1 = (x1, · · · , xM ) into
a sequence of statesSN

1 = (s1, · · · , sN ) with an associated
output sequenceUT

1 = (u1, · · · , uT ). In our oversimplified
description,XM

1 could represent phonemic intentions, or as in

our case phonetic classes,SN
1 are motivated by the dynamics

introduced by articulatory gestures that in turn generate the
speech signalUT

1 . Phonetic speech recognition is then the
process of recovering the right sequenceXM

1 on the base of
some featuresY N

1 = (y1, · · · , yN ) extracted fromUT
1 . When

the feature extraction procedure is assumed to be given, as
in the current study, the distinction betweenU andY is not
essential. Speech production is then a (stochastic) function of
the kind:P : X → Y . The natural choice for characterizing
this function is a Markov modelΘ where the statessi are
assumed to vary synchronously with the featuresyj , which
explains why we indicated the length ofS and Y with the
same symbolN . Besides ana priori term, Θ is then fully
specified by the distribution of state transition probabilities
aij = P (sj |si) and the distribution of data generation given a
certain statebi(Y k

h ) = P (Y k
h |si). Usually the dynamics of the

process are considered to be represented uniquely by theaij ,
being thebi(Y k

h ) static models (Y k
h ≡ yh). As the notation

indicates, we are interested in the case in which each state
influences the output at different time steps.

B. State to output probability estimators

Robinson [7] has shown how recurrent Multi Layer Per-
ceptrons (MLPs) can be efficient estimators for thea poste-
riori probabilitiesP (xi|Y

n
1 ). A particularly efficient training

scheme uses Back Propagation through time [8] with a cross
entropy error measure [9]. If the nonlinearity in the units
is in the tanh form, we can write for the state to output
probabilities:

P (Y k
h |xj) =

P (xj |Y
k
h )P (Y k

h )

P (xj)
≃

aj + 1

2

P (Y k
h )

P (xj)
(1)

Wherexj is a phonetic class andaj the activity at the output
node corresponding to that class.Y k

h is the sequence of feature
vectors spanning a window of time steps that depends on
the dynamic properties of the MLP. In the case of simple
feed-forward netsY k

h reduces to the current frame vector
yk, while for strict recurrent topologies,h = 1 and k is the
current frame. In [10] a mixture of time delayed and recurrent
connections was proposed. In this model the input layer
received contributions both from the past and the future frames
thanks to time delayed connections with possibly negative
delays. Str̈om showed that the network took advantage mostly
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Fig. 1. Trellis plot in different conditions: the continuous line shows the best Viterbi path over the whole observationsequence. The dashed and dashed-dotted
lines are obtained with a forward pass up to timesn+D andn+D′. Depending on the length of the backtracking phase, the solution at timen can differ
or coincide (open and filled squares respectively) with the standard Viterbi solution

from future contributions, as information about the past was
successfully coded by the recurrent connections.

C. Problem 1: Modeling dynamics

Given the probabilistic modelΘ, themaximum a posteriori
(MAP) solution to the speech recognition problem is the
sequenceXM

1 that maximizes

P (XM
1 |Y N

1 ,Θ) = P (x1, · · · , xM |y1, · · · , yN ,Θ)

A more pragmatic solution, provided by the Best-Path and
Viterbi algorithms, approximates the sum over all possible
state sequences, implicit in the formula above, with a max-
imum operation. Since in our modelXM

1 is fully determined
by SN

1 , the latter is equivalent to finding the sequenceSN
1

for which P (SN
1 |Y N

1 ,Θ) is maximum. This can be done
iteratively according to the formula

δt(j) = max
i

[δt−1(i)aij ]bj(yt)

Wherebj(yt) = P (yt|xj). In practice we substitute to the last
the estimate ofP (Y k

h |xj) given by Equation. 1. In the case of
recurrent MLPs,P (Y k

h |xj) = P (Y t
1 |xj) and the information

contained byδt−1(i) andbj(Y t
1 ) become widely overlapping.

As a result we can expect a reduction in effectiveness of the
Viterbi algorithm as compared to the case in which those two
terms were based on independent information.

D. Problem 2: Truncation in the Viterbi algorithm

When truncation is considered, the optimal solution at time
stepn is the statesn extracted from the sequenceSn+D

1 =
(s1, · · · , sn, · · · , sn+D) that maximizesP (Sn+D

1 |Y n+D
1 ,Θ),

whereD denotes the look-ahead length in time steps. The dif-
ference between the two approaches is exemplified in Figure 1.
The grid displays the states as a function of time (trellis).The
continuous line shows the Viterbi solution, while the dashed
and dashed-dotted lines refer to the best path obtained using
the partial information up tot = n + D and t = n + D′,
respectively. The Figure also shows a phenomenon that is
common in practice: the influence of an observation at timet1
over the result at timet2 decays with the distanceD = |t1−t2|.

Fig. 2. Two extreme examples of transition topologies. Left: the net defines
short time dependencies, at any time step any state is reachable. Right: long
time dependences, the state at timet is dependent on the state at timet+ n

for any value ofn

In the example the observations in the interval[n+D+1, n+D′]
influence the result at timen (open and filled squares), while
the ones in[n+D′+1, N ] don’t. As a result the truncated
solution will in general asymptotically approach the standard
Viterbi solution (filled square in this case) asD increases. The
valueD∗ at which the two solutions become indistinguishable
depends on the dynamic characteristics of the problem at hand,
that is on the time correlations inY and especially on those
imposed byΘ. Extreme examples of the last are shown in
Figure 2. On the left side the transition probabilities define
a network in which the maximum of the minimum lengths
of independent paths is 1: at every time step, any state in
the network can be reached. On the right side a network is
depicted in which the minimum length is the length of the
whole observation sequence (this corresponds for example to
sentence recognition with only two alternative hypothesis): at
any time step only one (or two) states are reachable depending
on the sentence. In the first case we can expectD∗ to be small,
while in the second much larger: evidence at the end of the
utterance could cause an hypothesis change that would affect
results in the beginning of that utterance.

III. C OMPUTERSIMULATION

Given the difficulty to derive an analytical solution to the
problems defined above, computer simulations were run in
order to empirically estimate their effect.
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A. Data

The experiments were performed on the Swedish Speech-
Dat corpus, containing recordings of 5000 speakers over the
telephone line. The official training and test sets defined in
SpeechDat and containing respectively 4500 and 500 speakers,
were used in the experiments. Mel frequency cepstrum features
were extracted at 10ms spaced frames. When using Gaussian
mixture models (GMMs), the delta and delta-delta coefficients
were computed on a window of 3 frames in both directions.
The GMM models were trained on the full corpus defined in
SpeechDat, while the training material for the neural networks
(MLPs), and the test material were restricted to the phoneti-
cally rich sentences (“s” codes). The training material forthe
MLPs was further divided into training and validation sets of
33062 and 500 utterances respectively. One problem with the
SpeechDat database, that is important when training the MLPs
and for testing at the frame level, is the unbalanced amount
of silence frames if compared with the amount of material
for any phonetic class. As the silence frames are mostly
concentrated in the beginning and end of each utterance, their
partial removal was facilitated.

B. Phonetic Transcriptions

Since the dataset lacks phonetic transcriptions, some pre-
processing was necessary. The time-aligned reference, nec-
essary for both training the MLP models and testing, was
obtained with forced alignment based on word level tran-
scriptions, a lexicon and context dependent Gaussian mixture
models (CDGMMs). This method is strongly dependent on
the quality of the lexicon: a poor lexicon (i.e. with limited
pronunciation variation) will force mistakes into the transcrip-
tions that are difficult to detect automatically. The solutions
ofter proposed to this problem aim at increasing the degreesof
freedom in the alignment network, giving to the alignment pro-
cess greater flexibility without affecting the effectiveness of the
method. This in general requires linguistic-phonetic resources,
that allow defining pronunciation variations based on rulesor a
lexicon. Given the unavailability of such resources, we adopted
a simple alignment network with optional silence or noise
between words. This method proved to be reasonably accurate,
but a more detailed inspection is required to guarantee the
quality of the result. To be noted here is the fact that this
reference will in general favor recognition methods based on
Viterbi decoding and Gaussian mixture models that were used
to obtain it.

C. Acoustic Models

As described above, the acoustic models used in this study
are Gaussian Mixture Models (GMMs) and Multy Layer
Perceptrons (MLPs). The first were used both in the data
processing phase, as already mentioned, and in the recognition
experiments as an example of static models, i.e. models that
don’t retain an internal representation of time variations. This
in spite of the use of dynamic features, the span of whose is
infact limited to a few frames. The GMMs were trained using
the procedure defined in the RefRec scripts [11], that produces

model # param. # hidd.u. # hidd.l. RMLP? f-by-f MAP
GMM 379050 - - - 35.4%
ANN 186050 800 2 no 31.5%
RNN1 185650 400 1 yes 49.6%
RNN2 541250 400 1 yes 54.2%

TABLE I

DETAILS ON THE ACOUSTICMODELS

a set of monophones and triphones of varying complexity.
The best models, consisting of a set of triphones with 32
Gaussian components (GCs) for each state, were used for
forced alignment, A set of monophones with 32 GCs per state
(GMM) was used for recognition.

The neural networks used in the experiments were a
feed-forward perceptron (ANN) and two recurrent perceptrons
(RNN1 andRNN2) trained as described in section II-B.

Details on the acoustic models are reported in Table I, which
shows the overall number of parameters, and, in the case of
perceptrons, the number of hidden layers and hidden units
and the dynamic characteristics. The last column reports the
frame correct rate when themaximum a posteriori class (MAP)
was selected frame-by-frame. This will be considered as a
baseline for Problem 1 where we are interested in the increase
in performance introduced by the Viterbi processing.

Note that the topology inANN was chosen in order to
obtain a network that could compare withRNN1 in terms of
complexity (number of free parameters).

D. Scoring method

The scoring method chosen for this study is frame-by-frame
correct rate simply computed as the ratio between number of
correctly classified and total number of frames. This method
was preferred to the more common minimum edit distance at
the symbolic level, because the application we have in mind
requires not only correct classification of the speech sounds,
but also correct segment alignment.

E. Implementation note

GMM training was performed using the HTK Toolkit [12].
The MLP training algorithm was implemented in the NICO
Toolkit [13], the two-pass algorithm, and the other tools
used in the experiments were implemented by the author.
All experiments were performed on a GNU-Linux platform
running on standard hardware (PC).

IV. RESULTS

Results are shown in Table II and Figure 3 for Problem 1
and Problem 2 respectively, and will be discussed separately.

A. Problem 1

Here the question is to verify whether probability estimators
that model time variations could benefit from the use of the
Viterbi decoder to the same extent as static models. As can
be seen in Table II, this is not the case for the recurrent
perceptrons. If the percentage of correct classification for
the GMMs has∼19% relative improvement, when using the
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decoder static dynamic
GMM ANN RNN1 RNN2

f-by-f MAP 35.4 31.5 49.6 54.2
Viterbi 42.1 32.8 50.7 55.3
rel. impr. 19% 4% 2% 2%

TABLE II

CORRECT FRAME RATE AND RELATIVE IMPROVEMENT

Viterbi decoder, this improvement is much lower in the case
of RNNs (∼2%). This seems to validate what intuitively
suggested in Section II-C, i.e. the information contained in
the recognition network, used in the Viterbi decoder, is not
independent from that learned by the perceptron weights.
However, the feed-forward perceptron (static model) shows
an improvement (∼4%) that is similar to what obtained
with dynamic models suggesting that the problem might lie
elsewhere.

Note that the Viterbi results in this case correspond to a
Viterbi decoder truncated to 30 frames (300ms). The goodness
of this approximation, already discussed in Section II-D, is
supported by [14].

B. Problem 2

Problem 2 aims at verifying how truncation in the Viterbi
decoder affects results in the case of phonetic speech recog-
nition. The results are shown in Figure 3, which displays
the frame correct rate as a function of the look-ahead length
used in the truncated Viterbi decoding. This in the case
of Gaussian models (vit-GMM) and for the two recurrent
perceptrons (vit-RNN1 andvit-RNN2). For completeness
the frame-by-frame MAP solutions are also reported in the
different cases as horizontal lines (map-GMM, map-RNN1 and
map-RNN2).

As the same GMM models and experiment settings devel-
oped by the author, have been used in [14] to test another
two-pass decoder, the results there obtained are reported as
a reference (dec-gmm, X marks). These closely agree with
our results, where the small differences are probably due to
the fact that the test material is in our case pushed into the
decoder as a continuous stream to avoid boundary effects.

The curves in Figure 3 show that both in the GMM and
RNN case, results are stable and equivalent to the standard
Viterbi, when the look-ahead, or truncation length, is greater
then 10 frames (100ms). For shorter lengths, the performance
drops, first slowly and then abruptly, even below the frame-
by-frame MAP solution. This behavior seems to depend more
strongly on the dynamic characteristics of the recognition
network, then on those of the probability estimators, although
the slope of the curve seems to be steeper in the RNN case.

V. CONCLUSIONS

The truncation error for a two-pass decoder has been shown
to be negligible for truncation lengths greater then 100ms
in the case of phonetic recognition. This both for Gaussian
mixture models (GMMs) and recurrent perceptrons (RNNs).
The advantage in using a two-pass decoder in the place of a
simple maximuma posteriori frame-by-frame decision, results
to be grater in the case of Gaussian probability estimators.
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Fig. 3. Degradation in recognition accuracy due to truncation error in the
Viterbi decoder. Thex-axis shows the look ahead length in number of frames
(10ms), while they-axis the percentage of correct frames.
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