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ABSTRACT

In this article we study the effect of truncation on the
performance of an open vector-at-a-time sequential sampling
procedure (Fﬁ), proposed by Bechhofer, Kiefer and Sobel, for
selecting the multinomial event which has the largest probability.
The performance of the truncated version (PR_) s compared to that
of the original basic procedure (P§)° The performance char-
acteristics studied include the probability of a correct selection,
the expected number of vector-observations (n) to terminate
sampling, and the variance of n. Both procedures guarantee the
specified probability of a correct selection. Exact results and
Monte Carlo sampling results are obtained. It is shown that P§
is far superior to P§ in terms of E{n} and Var{n}, particu-
larly when the event probabilities are equal.

The performance of PE is also compared to that of a closed
vector-at-a-time sequential sampling procedure proposed for the



same problem by Ramey and Alam; this procedure has heretofore been
claimed to be the best one for this problem. It is shown that
F%T is superior to the Ramey-Alam procedure for most of the

specifications of practical interest.

1. INTRODUCTION AND SUMMARY

Bechhofer, Kiefer and Sobel (1968) (B-K-S) proposed an open
vector-at-a-time sequential sampling procedure (Pg) for ranking
k > 2 Koopman-Darmois populations. As a special case, this pro-
cedure can be applied to a single k-category multinomial population
for selecting that one of the k 2 2 multinomial events which has
the largest probability. This multinomial selection problem was
first posed by Bechhofer, Elmaghraby and Morse (1959) (B-E-M) who
proposed a single-stage selection procedure for solving it. It was

proved in B-K-S that P; guaranteed a certain indifference-zone
probability requirement; for the multinomial this requirement
reduces to the same one that was adopted by B-E-M. It has been
proved that both procedures have the same so-called least-favorable
(LF-) configuration. Since both procedures guarantee the same
probability requirement and have the same LF-configuration, they
therefore can be regarded as comparable and in direct competition.
Their relative merits must then be judged based on their
performance characteristics.

Heretofore no quantitative assessment has been made of the

important performance characteristics of FE as applied to the
multinomial. In particular, there has been no study of the
achieved probability of a correct selection (P{CS!LF}) when the
probabilities p, (1 <1< k) arein the LF-configuration, or of
the distribution of the number of vector-observations (n) to
terminate experimentation, as a function of p= (p],pz,...,pk).
One purpose of the present article is to report on the results of

our study of such performance characteristics.



We have found that the achieved P{CS‘LF} of Pg always
exceeds its specified lower bound P* by a substantial amount. In
addition, the distribution of n s highly skewed to the right (as
might be expected for an open procedure) resuiting in a sizable
proportion of experiments which terminate with excessively large
(from a practical point of view) values of n; this latter
phenomenon results in large values of E{n‘g} and Var{nig}, par-
ticularly when all of the p, (1 <i ¢ k) are equal (or almost
equal). Although most of these undesirable characteristics are
direct consequences of the fact that the procedure is open, these
effects are magnified because of the P{cS} "overprotection.”

It was suggested in B-K-S that it would be possible to
truncate Pg in such a way as to maintain P{CS|LF} > P*. The
reason for truncating would be to decrease P{CS|LF} and at the
same time eliminate the excessively large n-values; E{n‘g} and
Var{n’g} would thereby be reduced, not only in the LF-configuration

but also uniformly in p. Our studies show that the concept of

truncating Pg has considerable merit. The main purpose of the
present article is to report on the E{nlg} results that we
obtained using that device.

We have carried out our studies in such a way that the
performance of the truncated procedure (P§T) can be compared
directly with that of the original untruncated procedure (Pg).
Our findings concerning the effects of truncation were startling,
showing P§_ to be far superior relative to Pg in terms of

E{nig} and Var{nig}, particularly when the p. (1 <1 <K)

are equal and k is large. (See Section 5.)

Some of our results were obtained by direct calculation; most
were obtained by Monte Carlo (MC) simulation. The techniques that
we used in these studies are described in detail in the Appendix.

We have also compared the results reported herein with those
obtained with another competing multinomial selection procedure due
to Ramey and Alam (1979) (R-A) for which they claimed a certain



optimality property. The properties of their procedure as well as
a history of the multinomial selection problem are described in
great detail in Bechhofer and Goldsman (1985) (B-G) which can be
regarded as a companion paper to the present one, and should be
read for background. In the present paper we show that in several
important respects F%T is superior to the R-A procedure.

2. THE BASIC BECHHOFER-KIEFER-SOBEL SEQUENTIAL RANKING PROCEDURE
(P;) FOR THE MULTINOMIAL
It is shown in B-K-S, Section 5.3.3, that their open

sequential ranking procedure (Pg) can be used for selecting the
multinomial event which has the largest single-trial event
probability when the indifference-zone approach is adopted with the

"distances" between these event probabilities p, (1 <i<k)
being measured in terms of the ratios of the probabilities. We
first describe their formulation of this selection problem, and
give the procedure that they proposed for solving it. Then we
discuss certain properties of the procedure.

In the sequel we denote the ordered values of the p,
(1 <1 <k) by Py < e P The goal of the experiment
is to select the event associated with Prk]* If that event is
selected, we say that a correct selection has been made. Prior to

the start of experimentation the experimenter specifies two
constants [6%,P*} with 1 < & <=, 1/k <P*< 1. These
constants are incorporated into the following indifference-zone

probability requirement:

P{Correct selection} > P* whenever pr, ;;p[k_]]e*. (2.1)

Consideration is restricted to procedures which guarantee (2.1).
The single-stage procedure of Bechhofer, Elmaghraby and Morse
(1959) who were the first to study this selection problem has been
shown to guarantee (2.1).



*

THE B-K-S PROCEDURE (PB)

PLK]
The open basic sequential ranking procedure (Pg) for the

multinomial distribution (m), described in Sections 5.1.3 and

FOR SELECTING THE EVENT ASSOCIATED WITH

5.3.3 of B-K-S, employs the following sampling rule, stopping rule
and terminal decision rule:

Sampling rule: Take observations (X]j""’xkj)

(j =1,2,...) one-at-a-time from 1. (2.2)
Stopping rule: After the mth observation (m = 1,2,...)
compute
k=1 (Yrem=Yr3Tm)
, =T (/%) LKImTLim (2.3)
i=1
- ©m :
where y;. = ij] Xij (1 gigk) and yrygp L -e- £ Y[ kIm
are the ordered values of the y,.. Stop sampling when,
for the first time,
z_ < (1-P*)/P*, (2.4)

n

Here n (a random variable) is the value of m at
termination.

Terminal decision rule: After stopping, select the event

associated with Y[kIn® If two or more events yield y; - (2.5)
values equal to Y[kIn® then select one of them at random.

Remark 2.1: It is proved in B-K-S, Section 6.1.1, (see also Levin
[1984]), that PE guarantees (2.1). It is also proved in Section
*

6.1.1 (see in addition, Section 12.5) that the P{CS} of Pa is
minimized subject to (2.1) when

P17 T Pre-11 " PLky O (2.6)

<i<k)

for Pg. Kesten and Morse (1959) had proved earlier that (2.6) is

also the LF-configuration for the single-stage multinomial

the so-called least-favorable configurations of the P; (1

selection procedure of B-E-M.

Remark 2.2: It is proved in B-K-S, Corollary 3.2.2, that when the
p; (12 < k) are in the LF-configuration, then



E{w[k]n} = P{CS,LF} (2.7)

where N[k]n = 1/(\+Zn), and the r.v, Zn is the value of (2.3)
for Pg at termination. This result makes it possible to estimate
P{CS\LF} with high precision using Monte Carlo (MC) sampling.
(See B-K-S, Section 12.6.4, and Sections 4.2 and 5 of the present
paper.)

Because of the discreteness of the An of (2.3), the proce-
dure Pg usually terminates with a strict inequality in (2.4)
resulting in so-called "undershoot.” When (2.1) holds, the
undershoot results in a larger achieved P{CStLF} than the
specified P*; this overprotection is purchased at the cost of a
larger-than-necessary E{n‘LF}. Not only does E{n‘LF} itself
increase but also the distribution of n increases stochastically
with the amount of overprotection, resulting in occasional
excessively large (from a practical point of view) values of n,
particularly for Pre] PO close to zero. (E{n‘g} assumes its
maximum when Pr1q * p[k].)

To illustrate the extreme skewness of the distribution of n,
we give in Table I two typical empirical distributions of n
obtained by MC sampling, each being based on 10,000 independent
replications. Both are for k=4, 6= 1.6, P* = 0.75; in the
first the P; (1 <1<4) arein the least favorable (LF-)
configuration Pr1] = Pr3] = p[4]/e* while in the second they
are in the equal-parameter (EP-) configuration Pr1] = P[aj The
n-values are grouped in class intervals of width 10.

We point out that the single-stage procedure of B-E-M requires

exactly 46 observations to guarantee (2.1) when k = 4, p*x = 0.75,
o* = 1.6. (See Table 4.1, p. 445 of Gibbons, Olkin and Sobel
(1977).) For the ungrouped data on which Table I is based, 21.36
percent of the n-values exceeded n = 46 in the LF-configuration
while 38.25 percent exceeded n = 46 in the EP-configuration; in
fact, 5.02 percent of the n-values exceeded 75 and 5.05 percent
exceeded 110 in the LF- and Ep-configurations, respectively. It



for

Empiric Distribution of n

Table 1

for P

B

obtained by Monte Carlo sampling
0.75, et = 1.6; LF- and EP-configurations
(Each distribution is based on 10,000 replications.)

k =4, P* =

Configuration Configuration
(LF) (EP) (LF) (EP)
(a,b) Proportion |Proportion (a,b) |Proportion }Proportion
of of of of
experiments|experiments experimentsjexperiments
terminating|terminating terminating|terminating
with with with with
{a<n<bl|{a<nsb) fa <n<bl|fa<ngb)
(1,10) 0.0645 0.0382 (181,190) 0.0000 0.0017
(11,20) 0.2516 0.1660 (191,200) 0.0001 0.0012
(21,30) 0.2196 0.1774 (201,210) -- 0.0011
(31,40) 0.1723 0.1540 (211,220) -- 0.0005
(41,50) 0.1061 0.1102 (221,230) -- 0.0005
(51,60) 0.0720 0.0917 (231,240) -- 0.0001
(61,70) 0.0433 0.0716 (241,250) -- 0.0001
(71,80) 0.0305 0.0519 (251,260) -- 0.0001
(81,90) 0.0156 0.0353 (261,270) -- 0.0002
(91,100) 0.0109 0.0314 (271,280) -- 0.0000
(101,110) 0.0064 0.0204 (281,290) -- 0.0004
(111,120) 0.0024 0.0153 (291,300) -- 0.0000
(121,130) 0.0017 0.0098 (301,310) -- 0.0000
(131,140) 0.0012 0.0076 (311,320) -- 0.0000
(141,150) 0.0013 0.0044 (321,330) -- 0.0000
(151,160) 0.0003 0.0045 (331,340) -- 0.0000
(161,170) 0.0001 0.0025 (341,350) -- 0.0000
(171,180) 0.0001 0.0017 (351,360) -- 0.0002




is thus seen that Pg can, with sizable probability, yield
n-values which are excessively large.

In Table 11 we provide estimates of E{nlLF}, Var{n‘LF},
E{n‘EP}, Var{n.EP} and p{csiu}, all of them calculated from the
ungrouped data on which Table I is based. The E{n} and P{CS‘LF}
estimates have very small standard errors since each is based on
10,000 replications. The first estimate of P{CS‘LF} is based on
the observed proportion of correct selections in the 10,000
replications while the second estimate (see Remark 2.2) is based on
wtk]n = (the observed average of the w[k]n in the same 10,000
replications). Both are unbiased estimates of P{CS‘LF}; however,
the second estimate has a much smaller standard error than the
first. We note that P{CS‘LF} js estimated as being approximately
0.785 which is much greater than the specified P* = 0.75.

The results cited above are typical of those that would be
obtained for Pg employed with “"modest” k, and g* and P* not
too close to unity. We point out that since the skewness of the
distribution of n increases as k increases for fixed [e*,P*}
and/or as o* and/or P* approaches unity for fixed k, all of
the undesirable effects noted above would then be greatly
magnified. It is these reasons that prompted us to study the
effect of truncating P;. This strategem is pursued in Section 3.
Corresponding results obtained with the untruncated and truncated
procedures are compared in Tables IIIA-VIIB.

Remark 2.3: We have pointed out that the single-stage procedure of
B-E-M requires exactly 46 observations to guarantee (2.1) when
k=4, o = 1.6, P* = 0,75, We have also seen from Table II that

E{nlLF} and E{n‘EP} for Py
respectively, for this same specification. These results might
*

suggest to the reader that little is to be gained by using PB

are approximately 34 and 47,

in place of the single-stage procedure of B-E-M. Such a conclusion
would, however, be unwarranted, the issues being more complicated
than they appear on the surface,



MC Estimate
and P{cs]LF} for P

Table 11

of E{niLF}, Var{n‘LF},

*

B when

E{n‘EP}, Var{nlEP}
k =4, Px = 0.75, o* = 1.6
)

(Each estimate is based on 10,000 replications.

Least-favorable configuration

Equal-parameter configuration

Estimate of 33.84 b Estimate of 46 .98
E{n|LF) (0.22)Y/ E{n|€P} (0.34)%/
Estimate of a7 Estimate of " .
Var{n‘LF} 3.58 Var{n’EP} 27.41
Estimate of P{CS‘LF} 0.7816
based on observed proportion of CS (0.0041)9/
Estimate of P{CSlLF} 0.7848
(0.0002)—/

based on w[k]n of (2.7)

é-/AH MC estimates are based on the ungrouped data which yielded the

empiric distribution of n

given in Table I.

E/The numbers in parentheses are the estimated standard errors of
the averages above them.



If the configuration of the p; (1 <1 < k) is very favorable

to the experimenter, then Fg always should be used, In fact, in
the most extreme configuration wherein p[k] =1 it is easy to see
that PE will require exactly

= P log 6* 2.8
n o (09{1;:*})/098 (2.8)

observations to terminate sampling; here [x]+ denotes the
smallest integer equal to or greater than x., For k =4,

* = 1.6, P* = 0.75 we find that n_. = 5. As the configuration
of the P; (1 i g k) becomes less and less favorable to the
experimenter, e.g., if Py = Prk-1] pEk]/e (1 <6 <o) with
6 » 1, then E{n’g} increases from n . = to E{n{EP} and at

the same time Var{n‘p} increases from zero to Var{niEP} with

the distribution of n becoming more and more skewed to the

right. Of course, the experimenter does not know the true
configuration of the P; (v <i < k). However, regardless of what
the ugknown values of the p, (1 <i < k) happen to be, truncation
of PB will always improve the performance of the procedure.

3. THE TRUNCATED BECHHOFER-KIEFER-SOBEL SEQUENTIAL RANKING

PROCEDURE (Pg ) FOR THE MULTINOMIAL
T
We now propose to modify PE by truncation, and to study the

performance characteristics of the resulting truncated procedure
which we shall refer to as Pg_. For P5. we employ the same
sampling and terminal decision rules, (2.2) and (2.5),
respectively, as for P* but replace (2.4) of the stopping rule of

R
P* by the following:
B

Stopping rule for ﬂgT: After the mth observation (m = 1,2,...)

compute Z of (2.3). Stop sampling when, for the first time,
either

10



1

z, < (1-p*)/p*

or (3.1)
n=ng,

whichever occurs first; here n (a random variable) is the value
of m at termination, and no(k;e*,P*) = ng (say) is predetermined
as the smallest integer that will guarantee (2.1) when P; is
used. T

The possibility of modifying P; by truncation was suggested
in B-K-S, Section 12.6.4.

4. DETERMINATION OF THE TRUNCATION INTEGER (no) FOR Pg

T

4.1 Exact Determination of "o

It is mentioned in B-K-S, Section 3.7(e), that sampling for
the multinomial using P; can be truncated at some predetermined
stage (if sampling has not terminated before that stage), and that
the exact P{CS‘E} of the truncated procedure can be evaluated
for any p by the enumeration of termination sequences. The
P{CS‘E} gf Pg is an increasing function of the truncation
integer for fixed k, {e*,P*} and given p. Thus for p satis-
fying (2.6) it is possible to determine no~ by trial andNerror.
We did this for (k;6*,P*)-values for which the resulting value of
Ny is "small." However, the enumeration process quickly gets out
of hand as k increases and/or as ©6* and/or P* approaches
unity. We next calculated P{CS'E} exactly using recursion
formulae (see the Appendix), and in this way we were able to
determine nO-va1ues for larger values of k and/or for o*
and/or P* closer to unity; the results obtained using the
recursion formulae were then checked against those obtained for
cases in which we used complete enumeration, and were found to be

in complete agreement.

4,2 Estimation of N Using MC Sampling
For larger values of k and/or for 6* and/or P* even
closer to unity we found it necessary to employ Monte Carlo (MC)
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simulation to estimate P{CS‘LF} and thereby ny; a sufficient
number of replications were carried out in order that the estimates
of P{CS‘LF} would have very small standard errors. These
estimates were then checked against the calculated exact results
obtained using the recursion formulae, and the two were found to be
in very close agreement (within the sampling error).
When using MC sampling to estimate the P{CS‘LF} achieved by

P§T we employed the estimate obtained by averaging the values of
the w[k]n since for any given number of replications this
estimate has a much smaller standard error than does the estimate
based on the observed proportion of correct selections (as can be
seen, e.g., in Table II). (In B-K-S, Section 14.1.1.1 and also
Section 18.3, this same technique was used for the normal means
selection problem when the populations have a common known
variance.) The resulting value of g (obtained by exact
calculations, or by MC sampling when exact calculations
were not feasible) was then employed with Pg_ for the
pi (1 £1<k) in the LF-configuration given by (2.6) and also
for the P; in the EP-configuration given by Pr1] = Pk The
outcomes obtained are summarized and discussed in Section 5.

5. THE PERFORMANCE OF PE COMPARED TO THAT OF Px.

B
T
In this section we report on the results of the studies

which we carried out to compare the performance of P§ and P§ .
The performance characteristics studied for Pg were P{CS|LF},
E{n'LF} and E{n}EP}; in addition max{niLF} and max{n|EP} for
t = 4000 replications were recorded. The characteristics studied
for PET employed with predetermined truncation integers n, were

P{CS]LF}, E{n|LF} and E{n|[EP}. Results were obtained for both
procedures with k = 2,3,4,5 and 10 (this being the range of most
practical interest), and all combinations of P* = 0.75, 0.90, 0.95
with o* = 3.0, 2.4, 2.0, 1.6 except P* = 0.95, 6* = 1.6; the
latter was omitted because of cost considerations. Ideally we
would have liked to have obtained results for P* and e* closer
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to unity but the cost of obtaining such information would have been
prohibitive. However, the results that we did obtain were
overwhelmingly convincing, and enabled us to draw definitive
conclusions. These results are summarized in Tables IIIA-B, IVA-B,
VA-B, VIA-B and VIIA-B for k = 2,3,4,5 and 10, respectively.

For every k, all results for P; were obtained by MC
sampling. Unless noted otherwise, all MC sampling data for Pg
are based on 4,000 replications each; the only exceptions here are
for k = 10, EP-configuration, where the results for (P*,e*) =
(0.75,1.6), (0.90,2.0), (0.90,1.6), (0.95,2.0) are based on 2,000
replications each. For k = 2 and 3, all data for P§ were
obtained by exact calculations as were some of those for k =4
(the exceptions being noted in Table VB); all of the remaining data
for P§ were obtained by MC sampling. In our tables the symbol
(x) placed to the left of a MC estimate means that the estimate is
based on x,000 replications.

We point out that the results given in Tables VA-B for
P* = 0,75, 6 = 1.6 are in close agreement with those given in
Tables I and 1I; the first are based on 4,000 independent
replications while the second are based on 10,000 independent
replications, the second being independent of the first.

The corresponding results for Pﬁ and P§ in each table
demonstrate the dramatic decreases in E{niEP} that can be
achieved by truncation, these improvements being particularly
substantial for P* and/or 6* approaching unity and k "large."

If we consider the difference Epg{n‘EP} - EP§ {n‘EP} as a function

T
of any one of the arguments (k,P*,6*), the other two arguments

remaining fixed, we find that the difference increases with
increasing k or P*, and with decreasing 6*, For example, for

k = 10 (Tables VIIA-B) and P* = 0.90 we have for o* = 3.0, 2.4,
2.0 and 1.6 with PE employing ng = 55, 98, 174 and 424, respec-
tively, that the corresponding E{n} differences are 38.25, 48.84,
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72.16 and 135.19. In the latter case a decrease in E{n‘EP} of
approximately 29 percent was achieved by truncation. Truncation
appears to offer only modest improvements in E{n‘LF}. However,
truncation forces max{n‘g}‘iAnO for all p. The practical gains
here can be substantial. For example, for k =10, P* = 0.90,

o* = 1.6 we see that max{n?LF} and max{n‘EP} for P; were
8387 and 1777 based on 4,000 and 2,000 replications, respectively,
0 " 424, These
large n-values are, of course, consequences of the extreme skewness
of the distributions of n (already noted for k = 4, P* = 0.75,
6* = 1.6 in Table 1). The evidence presented in Tables IIIA-VIIB

establishes the substantial superiority of PET over Pg.

both n-values being considerably larger than n

Note: The particular pairs {e*,P*] considered in the present
study were chosen to match those used by Ramey and Alam (1979). In
this way results obtained with Pp. could be compared directly
with the R-A results; this is done in Section 6.

6. THE PERFORMANCE OF P§T COMPARED TO THAT OF THE
RAMEY-ALAM PROCEDURE

Ramey and Alam (1979) (R-A) proposed a closed sequential
procedure for selecting that one of k 2 2 multinomial events which
has the largest probability. They provided tables of constants
((r,N)-values) necessary to implement their procedure in order that
it would guarantee (2.1) and at the same time minimize E{n‘LF}.
Based on the constants that they provided, Ramey and Alam concluded
that their procedure was "uniformly better” than all of the known
competing procedures in terms of minimizing E{n‘LF}. The reader
is referred to B-G (1985) for a description of the R-A and
competing procedures.

In the course of studying the performance of Pg we had
occasion to check the accuracy of the R-A constants and found quite
a few of them to be incorrect. In B-G (1985) we provided
corrected sets of constants for their procedure. Use of these new



and max{n‘LF}, max{nlEP} based on 4000 replications
{p*,6*} when k =2

Table IIIA
Estimated P{CS‘LF}, E{n‘LF}, E{n’EP}

for PE with selected

Untruncated procedure (P;)
LF-configuration EP-configuration
P* Y o*
max{n‘LF} Estd. Estd. max{n‘EP} Estd.
t = 4000 P{CS‘LF} E{n'LF} t = 4000 E{n'EP}

3.0 1 0.7500 1.00 1 1.00

(0) (0) (0)

2.4 24 0.8521 3.47 38 4.06
0.75 (0) (0.04) (0.05)
2.0 24 0.8000 3.60 30 4.04
(0) (0.04) (0.05)

1.6 45 0.8038 7.88 55 9,08

(0) (0.09) (0.11)

3.0 22 0.9000 3.21 24 3.97
(0) (0.03) (0.04)

2.4 51 0.9325 6.35 73 8.90

0.90 (0) (0.07) (0.11)
2.0 62 0.9412 10.63 138 16.02

(0) (0.11) (0.21)

1.6{ 143 0.9129 17.79 137 24.89
(0) (0.21) (0.30)

3.0 37 0.9643 5.55 59 8.84

(0) (0.05) (0.11)

0.95|2.4 84 0.9707 9.17 118 15.98
(0) (0.10) (0.20)

2.0 101 0.9697 14.14 179 25.08

(0) (0.15) (0.31)




Table IIIB
Exact P{CS‘LF}, E{n]LF} and E{n‘EP}
for PB_ with associated truncation number ng
and selected {P*,6*] when k =2

Truncated procedure (P§T)
LF-configuration EP-configuration
p* | o*] Truncation
number Exact Exact Exact
(ng) P{Cs |LF) E{n|LF} E{n‘EP}
3.0 1 0.7500 1.000 1.000
0.75 2.4 3 0.7914 2.415 2.500
2.0 5 0.7737 3.086 3.250
1.6 9 0.7559 6.145 6.469
3.0 23 0.9000 3.200 3.999
0.90 2.4 11 0.9113 5.806 7.102
2.0 15 0.9032 9.128 10.957
1.6 41 0.9006 17.098 21.705
3.0 11 0.9522 5.314 7.102
0.95{2.4 17 0.9548 8.586 11.696
2.0 27 0.9536 13.256 18.348
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Table IVA
Estimated P{CSILF}, E{n‘LF}, E{n‘EP}
and max{n‘LF}, max{n’EP} based on 4000 replications

for PE with selected {P*,e*} when k =3

Untruncated procedure (PE)
LF-configuration EP-configuration
P* e*
max{n'LF} Estd. Estd. max{n‘EP} Estd.
t = 4000 P{cleF} E{n]LF} t = 4000 E{n{EP}

3.0 3 0.8421 4,52 42 6.23
(0.0004) (0.05) (0.08)

2.4 45 0.8295 6.70 58 9.00
0.75 (0.0005) (0.07) (0.10)
2.0 72 0.8003 9.47 93 12.33
(0.0005) (0.10) (0.14)

1.6 102 0.7866 19.40 225 25.84
(0.0004) (0.22) (0.32)

3.0 51 0.9459 8.22 93 15.70
(0.0002) (0.09) (0.20)

2.4 61 0.9213 11.00 125 18.98
0.90 (0.0002) (0.11) (0.23)
2.0 92 0.9265 18.44 222 33.16
(0.0003) (0.19) (0.40)

1.6 247 0.9150 38.59 451 67.41
(0.0001) (0.39) (0.80)

3.0 54 0.9615 9.20 126 18.57
(0.0001) (0.09) (0.22)

0.95{2.4 70 0.9655 14.96 201 33.06
(0.0001) (0.14) (0.40)

2.0 160 0.9625 23.72 318 50.76
(0.0001) (0.24) (0.63)




Table IVB

Exact P{CS{LF}, E{n‘LF} and E{n‘EP}

for Pﬁ with associated truncation number ng
and selected {P*,6*} when k =3
Truncated procedure (P§T)
LF-configuration EP-configuration
p* | o*] Truncation
number Exact Exact Exact
(ng) P{CS|LF} E{n|LF) E{n|EP)
3.0 5 0.7574 3.482 3.852
0.75 2.4 8 0.7602 5.586 6.226
2.0 13 0.7512 8.181 9.273
1.6 32 0.7517 17.802 20.592
3.0 12 0.9029 7.206 9.394
0.90 2.4 22 0.9021 10.528 14.577
2.0 34 0.9016 17.341 23.801
1.6 83 0.9003 37.398 53.146
3.0 20 0.9505 8.970 13.932
0.95(2.4 31 0.9516 14.600 22.653
2.0 52 0.9508 23.159 36.625




Table VA
Estimated P{CS‘LF}, E{nlLF}, E{n‘EP}
and max{ntLF}, max{n‘EP} based on 4000 replications

for Pg with selected {P*,6*} when k =4

Untruncated procedufe (PE)
LF-configuration EP-configuration
p* e*
max{nlLF} Estd. Estd. max{n'EP} Estd.
t = 4000 P{CSILF} E{niLF} t = 4000 E{n]EP}

3.0 38 0.8034 5.81 53 8.55
(0.0008) (0.07) (0.11)

2.4 53 0.7986 9.22 94 13.30
0.75 (0.0006) (0.10) (0.16)
2.0 107 0.7966 15.44 127 21.91
(0.0005) (0.16) (0.25)

1.6 163 0.7850 34.35 324 48.03
(0.0004) (0.36) (0.54)

3.0 62 0.9342 10.75 131 22.43
(0.0004) (0.17) (0.28)

2.4 82 0.9269 16.84 231 33.26
0.90 (0.0003) (0.16) (0.38)
2.0 137 0.9214 26.58 3N 50.66
(0.0002) (0.27) (0.60)

1.6 255 0.9162 59.74 646 113.50
(0.0001) (0.56) (1.30)

3.0 61 0.9672 13.52 209 33.51
(0.0001) (0.12) (0.39)

0.95|2.4 107 0.9644 21.63 322 51.09
(0.0001) (0.20) (0.61)

2.0 181 0.9625 34.84 451 82.31
(0.0001) (0.33) (0.93)
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Table VB
Exact’ P{CS|LF}, E{n|LF} and E{n|EP]
for P§T with associated truncation number ng,
and selected {P*,6*} when k =4

Truncated procedure (P§T)
LF-configuration EP-configuration
p* Y a*| Truncation n
number Exactf Exact ExactT
(ng) P{CS|LF} E{n|LF} E{n|EP}
3.0 9 0.7517 5.029 5.973
0.75 2.4 15 0.7569 8.416 10.150
’ 2.0 24 0.7541 13.944 16,760
1.6 57 0.7522 31.499 38.020
(24)10.107)
3.0 19 0.9036 9,988 14.273
0.90 2.4 31 0.9022 16.053 23.231
772.0 53 0.9001 25.840 37.818
1.6 128 0.9007 59.11 88.41
(24) g70005) | (0.20) | (12)(0.34)
3.0 26 0.9513 13.070 20.90
0.9512.4 44 0.9507 20.789 34,03
2.0 75 0.9505 34,07 56.67
(36) (0 0003) | (0.10) | #H(0013)

TAH results are exact except where indicated by standard errors
for (P*,e*) = (0.75,1.6), (0.90,1.6) and (0.95,2,0), these
exceptions being estimated.
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Table VIA
Estimated P{CS‘LF}, E{n'LF}, E{n'EP}
and max{nlLF}, max{n‘EP} based on 4000 replications

for Pg with selected {P*,6*} when k =5
Untruncated procedure (P;)
LF-configuration EP-configuration
P* | o*
max{n,LF} Estd. Estd. max{n’EP} Estd.
t = 4000 P{CS*LF} E{n’LF} t = 4000 E{n‘EP}
3.0 50 0.8295 8.78 86 13.82
(0.0006) (0.09) (0.16)
2.4 85 0.8072 13.32 142 21.10
0.75 (0.0006) (0.13) (0.24)
2.0 118 0.7961 22.23 213 33.47
(0.0005) (0.23) (0.38)
1.6 243 0.7811 48.11 541 72.10
(0.0004) (0.48) (0.81)
3.0 85 0.9385 14.63 217 33.17
(0.0003) (0.15) (0.41)
2.4 105 0.9252 22.61 247 47.51
0.90 (0.0003) (0.22) (0.54)
2.0 181 0.9220 37.41 540 74.25
(0.0002) (0.36) (0.84)
1.6 452 0.9156 84.69 927 165.97
(0.0001) (0.79) (1.86)
3.0 90 0.9654 17.23 293 46.57
(0.0001) 0.16 (0.54)
0.95{2.4 130 0.9642 27.82 536 73.87
(0.0001) 0.25 (0.88)
2.0 242 0.9620 47 .07 657 115.07
(0.0001) (0.43) 1.32




Table VIB
Estimated P{CSlLF}, E{n‘LF} and E{n‘EP}
for P§ with associated truncation number n,

and selected {P*,0*} when k =5

Truncated procedure (P§T)
LF-configuration EP-configuration
p* Y a*! Truncation

number Estd. Estd. Estd.
(ng) p{cs|LF} | Efn|LF) £ {n|€P)

3.0 12 0.7621 7.62 9.14
(12)(5%0013)| (0.03) (12) (5703)

2.4 20 0.7520 | 12.11 14.93

075 (12)(9.0012)| (0.05) (12) (0.05)
2.0 35 0.7540 | 20.13 24.88
(24)(9-0008)| (0.06) (12) (0.09)

1.6 86 0.7512 | 45.68 57.16
(24) (5 0006)| (0.15) (12) (0723)

3.0 24 0.9030 | 13.29 19.23
(12)0%0010)| (0.06) (12) (0.06)

2.4 42 0.9025 | 21.41 32.39
0 90 (24) (5 0006)| (0.07) (12) (0:70)
2.0 7 0.9008 | 35.31 53.47

(24) 0%0005)| (0.12) (12) 10°18)

1.6] 176 0.9021 | 81.46 125.28
(12) 970006)| (0.39) (12) (0" 46)

3.0 34 0.9507 | 16.46 27.78
(24) (0.0005)| (0.05) (12) (0708)

0.95(2.4 53 0.9508 | 27.19 16.13
(12) (0 0006)| (0.13) (12) (913)

2.0 98 0.9506 | 45.07 77.31

(28) (070008)| (0.15) (12) (0724)
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Table VIIA
Estimated P{cleF}, E{n'LF}, E{n‘EP}
and max{n‘LF}, max{n‘EP} based on 4000 reph‘cations’r

for Py with selected {P*,6%} when k =10
Untruncated procedure (P;)
LF-configuration EP-configuration
P* 1 o*
max{n‘LF} Estd. Estd. max{n‘EP} Estd.
t = 4000 P{CS‘LF} E{n'LF} t = 4000 E{n‘EP}
3.0 112 0.8169 20.54 258 38.32
(0.0007) (0.21) (0.44)
2.4 175 0.8064 35.38 284 61.49
0.75 (0.0006) (0.33) (0.67)
2.0 253 0.7957 59.39 555 100.06
(0.0005) (0.57) (1.08)
1.6 604 0.7815 138.39 (2)1263 225,75
(0.0003) (1.24) (3.31)
3.0 161 0.9341 30.82 487 84.51
(0.0003) (0.29) (0.98)
2.4 244 0.9252 52.38 771 129.91
0.90 (0.0002) (0.48) (1.42)
2.0 463 0.9220 89.38 (2) 993 211.40
(0.0002) (0.81) (3.11)
1.6 887 0.9151 212.25 (2)1777 468.06
(0.0002) (1.83) (6.63)
3.0 178 0.9662 36.84 659 121.04
(0.0002) (0.32) (1.35)
0.95(2.4 253 0.9633 64.73 1239 192.61
(0.0001) (0.56) (2.10)
2.0 451 0.9614 109.38 (2)1804 305.88
(0.0001) (0.95) (4.71)

TAH results are based on t = 4000 replications except those for
the EP-configuration for (P*,6*) = (0.75,1.6), (0.90,2.0),
(0.90,1.6) and (0.95,2.0) which are based on 2,000 replications.



for P§

Table VIIB

Estimated P{CS]LF}, E{nlLF} and E{n'EP}

with associated truncation number "o
and selected {P*,0*} when k =

10

Truncated procedure (PgT)

LF-configuration

EP-configuration

P* { o*! Truncation

number Estd. Estd. Estd.
(ng) P{cS|LF} | E{n|LF) E{n|EP)

3.0 31 0.7539 | 18.73 24.46
(12)(070014)| (0.08) (4) (0013)

2.4 54 0.7535 | 32.03 42.36
075 (12)(9%0012)| (0.13) (4) (0.23)
2.0 9% 0.7520 | 55.16 72.91
(12) (5 %0011)| (0.24) (4) (0.a1)

1.6 24 0.7510 | 132.38 175.45
(20)(9%0007)| (0.45) (4)" (1507

3.0 55 0.9023 | 29.42 46.26
(12) g 0010)| (0.13) (4) (0l21)

2.4 98 0.9013 | 50.63 81.07
0.90 (16)(0.0008)| (0.20) (4) (0.38)
2.0 174 0.9020 | 86.68 139.24
(16) (9 0007)| (0.34) () 0.71)

1.6 a2a 0.9004 | 206.19 332.87
(32) (9 0004)| ~(0.56) (4)7 (1 78)

3.0 72 0.9517 | 36.19 64.03
(16)(0.0006)| (0.14) (4) (0.27)

0.95]2.4] 130 (16) 0-9509 | 61.98 ()110.11
(0.0005)] (0.24) (0.49)

2.0l 228 0.9507 | 105.76 191.84

(16)(90005) | (0.41) (4)

(0.85)

24
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sets of constants does not change the basic conclusions of Ramey
and Alam; in several respects their procedure appears to be the
best one proposed to that date for minimizing E{n‘LF}.

This corrected set of (r,N)-values has permitted us to make
fairer comparisons between the performance of Ps_ and that of
R-A. In the present section we show that in several important
respects FE is superior to the R-A procedure.

Tables VIII and IX which are for k =5 and k = 10,
respectively, give comparative data for results obtained with
PﬁT and the R-A procedure. The R-A results are abstracted from
Tables IVA and VA of B-G (1985) (these being based on the corrected
R-A (r,N)-values) while the PE results are abstracted from
Tables VIB and VIIB of the present article. Here, for each Kk,
E{ntLF} for P3_ is to be compared with E{n}LF} for R-A as a
function of {e*,P*}, and similarly, E{niEP} for pgT with
E{n‘EP} for R-A. The corresponding values of P{CSQLF} for the
two procedures also contain relevant information.

It is to be noted in Table VIII that in eight of the eleven
E{n{LF} comparisons, and in eight of the eleven E{n‘EP}
comparisons, P@T yields smaller E{n}-values than does R-A.

Similarly, in Table IX, in eight of the eleven E{n‘LF}

comparisons and in ten of the eleven E{n‘EP} comparisons, Ph

B
yields smaller E[n}-values than does R-A. We conjecture that T

P will improve relative to R-A in terms of g{n} for both the
LF- and EP- configurations as k increases and/or as P* and/or
g* approaches unity.

Remark 6.1: We point out that the E{n} results for PgT and
R-A are not completely comparable because they are not based on
exactly the same achieved P{CS‘LF}. It is possible to decrease
P{CS‘LF} for Fﬁ almost continuously by decreasing ng

(especially when the desired no(k;e*,P*) is large); however,
P{CStLF} for R-A decreases in more discrete steps as r or N of



Table VIII
P{CS‘LF}, E{n‘LF} and E{n‘EP}
for P§ with associated Ny and for R-A with
associated (r,N) for selected {[P*,e*} when k =5

LF-configuration Ep-configuration
no {(rN) [T efes|r} | Efn|LF) £ {n|€P}
p*x | o*| for | for
P | R-A | PR R-A | PE_ | R-A | PR R-A
BT BT BT BT
3.0 12 0.7621 7.62 9.14
* (2,5) 0.7544 6.66 8.76
2.4 20 0.7520 12.11 14.93
0.75 ° (3,6) 0.7683 12.65 15.58
2.0 35 0.7540 20.13 24.88
° (3,11) 0.7504 18.85 24.29
1.6 86 0.7512 45.68 57.16
’ (5,19) 0.7533 48.60 58.56
3.0 24 0.9030 13.29 19.23
° (3,8) 0.9046 12.58 19.95
2.4 42 0.9025 21.41 32.39
0.90 * (4,11) 0.9046 21.87 32.46
2.0 71 0.9008 35.31 53.47
: (5,18) 0.9093 37.76 56 .94
1.6 176 0.9021 81.46 125.28
* (7,36) 0.9016 84 .33 122.00
3.0 34 0.9507 16.46 27.78
: (4,10) 0.9573 17.37 29.80
0.95 o 4 58 0.9508 27.19 46 .13
* (5,15) 0.9577 29.05 48.16
2.0 98 0.9506 45.07 77.31
* (6,23) 0.9518 47.27 78.04




Table IX
P{CS{LF}, E{niLF} and E{n‘EP}
for PR. with associated ng» and for R-A with
associated (r,N) for selected {P*,6*} when k =10

Lf-configuration EP-configuration

ng |(rsN) P{Cs|LF} E{n| LF} E{n|EP}
P* | o*| for | for
*

P | R-A | PB

R-A PR R-A | Pg R-A

T T T

31 0.7539 18.73 24 .46
(3,6) 0.7803 20.04 27.21

54 0.7535 32.03 42.36
(3,10) 0.7605 32.22 44,66

96 0.7520 55.16 72.91
(4,14) 0.7626 58.62 76 .17

244 0.7510 132.38 175.45
(5,33) 0.7572 129.56 174.73

55 0.9023 29.42 46.26
(4,9) 0.9047 31.33 48.23

98 0.9013 50.63 81.07
(4,16) 0.9060 50.36 85.87

174 0.9020 86.68 139.24
(5,25) 0.9030 87.61 145,87

424 0.9004 206.19 332.87
(7,58) 0.9069 206.67 350.84

72 0.9517 36.19 64.03
(4,13) 0.9566 36.17 71.70

130 0.9509 61.98 110,11
(5,19) 0.9529 63.26 116.16

228 0.9507 105.76 191.84
(6,31) 0.9538 107.39 196.93

3.0

2.4
0.75

2.0

1.6

3.0

2.4
0.90

2.0

1.6

3.0

0.95 2.4

2.0
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(r,N) 1is decreased. Thus we see in Tables VIII and IX that it is
almost always the case that P{CS'LF} for R-A is greater than
P{CS‘LF} for P§T. This fact, of course, militates against R-A.
However, we still conjecture that even if P{CS‘LF} were the same
for both P§T and R-A, the former would yield uniformly smaller

values of E{n}LF} and E{nlEP} for large k and/or for P*
and/or e* close to unity. (For k =2, the R-A procedure can

never terminate after PE 2)
T

Remark 6.2: Use of P§T forces max{nlp} < ng. For the R-A
procedure, max{nlp}‘i k(N-1)+1. Typically ny << k(N-1)+1 which
js an additional virtue of PgT relative to R-A.

Remark 6.3: Based on limited calculations we have determined that
E{nlEP} for P§T is greater than E{n’EP} for the Bechhofer-
Kulkarni (1984) curtailed sampling procedure when k is
sufficiently large and/or P* and/or €* 1is sufficiently close to
unity. Thus we cannot claim that Ps_ has smaller E{nlg}
uniformly in p for all competing procedures when the above-noted

conditions on (k,P*,6*) obtain.

7. CONCLUDING REMARKS

We have demonstrated conclusively that PE is greatly superior
' 4

to Py in terms of E{n]g} and Var{nlg} uniformly in p, and
that the improvement is greatest when Pry] = Prk1 Both PET and
PE lead to very early termination for Prky ? 1. Since PgT is a
closed procedure it has great practical advantages over P;. Qur
results would appear to justify the calculation of extended tables
of nO(k,e*,P*) in order that Pj_ can be implemented over a
broader range of values of (k,0*,P*). It is recognized, of course,
that such calculations would be quite costly, particularly for

9* and/or P* close to unity.



We have also shown that P§ is superior to the R-A procedure
over a broad range of the practical (k,0*,P*)-values. We conjecture
that Pg will dominate the R-A procedure uniformly in P in terms
of E{n ]p} for k moderately large and P* or 6% close to unity.

APPENDIX
ITERATIVE METHOD OF CALCULATING EXACT VALUES OF P{CS|LF}, E{n|LF}
AND E{n|EP} FOR PET

For given (k,P*,e*,nO), we can calculate P{CS'LF}, E{n’LF},
and E{nlEP} for P§ . the LF-configuration is given by (2.6).
We wish to find the smallest value of n, such that P{CS*LF} > P*,
Consider the counts y]m’y2m""’ykm at stage m of samp-
ling (m = 1,2,...). P§T terminates sampling when either

- y -Yrs
E‘::]] (1/9*) [k]m [ﬂmi (1_p*)/p* or m = nO'
Define T(k,P*,e*,nO) = {(x],...,xk): For fixed (k,P*,e*,nO),
* . _ -
P{PBT terminates exactly when y = (x],...,xk)} > 0}, i.e.,
procedure termination occurs at the first m such that

* *
:Y’m € T(k,P »9 ’no)'
Example: Suppose that kK = 2, P* = 0,75, 6 = 2, Ny = 5. Then

y -y
F§T terminates sampling when (1/2) [23m =T ]m <1/3 or m= 5.
* . _
Thus PBT terminates when (y[Z]m’y[1]m> = (2,0) or (3,1) or (3,2).
Hence, T1(2,0.75,2,3) = {(0,2),(1,3),(2,0),(2,3),(3,1),(3,2)}- Note

that (3,0) ¢ T(+) since termination would have occurred at m = 2.

Define #(x], ..,xk) to be the number of distinct paths of
the sampling process {ym, =1,2,...} which lead to procedure
termination exactly when Y = (21""’2k)'

Example: Again suppose that k = 2, P* = 0.75, & = 2, ng = 5. Then

29

#(2,0) = 1 since only one path of the sampling process leads to termi-

nation exactly when (y‘m,y?m) = (2,0); viz., = (1,0), Yp = (2,0).
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It is obvious that

total number of number of paths to
$(Ly,00esly) = paths to - (Ry4+.0,2,) for which
(RAAEL PBT terminates en route

Example: Again, suppose that k = 2, P* = 0,75, o* = 2, Ny = 5.
We calculate #(3,1). Noting that PgT terminates [en route to
g = (3,11 if y, = (2,0), we have:
_ .4 number of paths
#3.1) = ) - Leeom (2,0) to (3,1)3#(2:0)

2
1

4 - (1 = 2.

Remark: #(%1,.0058) = 05 ¥V (2,000u8) ¢ T(4).

1t thus is clear that:

o 4 :) i %1 §2 2K

?(l LR ) = s e
IEREAE"
R.] gngcco,xk

j]=0 32;0 jkéo
(j"aOO'sjk) € T(')
k .
Visr (25734)
73y 5% dp s e s ey

Remark: By symmetry, #(x],...,xk) = #(any permutation of

Higseeendy) (D)

x],...,xk). Hence, we need only to calculate explicitly those

#(11""’1k)'5 such that (1],...,xk) e T(+) and

20 2 e 2 By

Remark: The #(xl""’xk)'s are to be calculated in an iterative

manner:

A. Initialize all #(e)'s to equal zero.

B. Using (1), left-lexicographically calculate those #(s)'s for
which (2q,...,8,) ¢ T(+) and 292 25 > «e0 > L4 [By the
above Remarks, we obtain (with no further calculations) all
other #(+)'s]; i.e.,



Calculate #(1,0,0,...,0) if (1,0,0,...,0) ¢
Calculate #(1,1,0,...,0) if (1,1,0,...,0) ¢

.

2 A
L ] L ]

L

*

Calculate #(1,1,1,...,1) if (1,1,1,...,1) ¢ T(e)
Calculate #(2,0,0,...,0) if (2,0,0,...,0) e T(e)
Calculate #(2,1,0,...,0) if (2,1,0,...,0) € T(+)
Calculate #(2,1,1,...,1) if (2,1,1,...,1) € T(+)
calculate #(2,2,0,...,0) if (2,2,0,...,0) ¢ T(e)

*
»

.

Calculate #(no,D,O,...,O) if (nO,O,O,...,O) e T(e).

This lexicographic order of calculation is necessary since the
computation of #(x],...,xk) involves all of the previous #(+)'s.
"On the fly" storage of the values of these previous #(e)'s
avoids recursive re-computation in (1).

Suppose that p is in the LF-configuration. Without loss of
generality, assume for the remainder of this section that
P e*pi, i=2,...,k; .., Py = Prk3- For all
(2],000,1‘() € T('), dEfine
- . -1
i{Xi: R—‘l = l_i, 1 = ],ooo,k}'
R(X.],...,X.k) .:..
0 otherwise

if 2 z_max{xz,...,lk}

R(x],...,xk) is simply the P{CSlZm = (11""’1k) e T(+)}.
Example: R(3,1) =1, R(1,3) = 0, R(5,1,5,5) = 1/3.

Letting p, = «.. = P =P (say) and denoting 6* by 6, we
have:
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k Js
Ples|LFy = 1 T e ] R(3y e esdi M3y seeend (D p;')
(j],-onyjk)CT(’) and
j‘zmax{jz,...,jk} (2)
. k .
_ ) . ) N 21=\31
- X E L 5: R(J"”"’\}k)#(J]"“QJk)e p
3 o Ik
(j];“’:jk)f-r(') and
j13max{j2,...,jk}

)

and
E{n‘LF} = 7 1.0 C
NP PR P
(j"a'O"jk)eT(')

. kg
RUCRNERIE

e el

. k .
K J z’: Jsj
= 2 z A z (z 31)#(31,"'93‘()9];)1 ! 1- (3)
J] 32 Jk 1‘1

(J" ""’jk)eT(.)

H

E{n‘EP} is obtained by setting 6 =1 and p = 1/k in equation

(3).
Example: let k = 3, Px = .75, o*

_ * .
3, ny = 5. Then PBT termi-

nates sampling if

(173 B2, (172 B0 ¢ qy3 orm = s,

* . . = . . .
Hence, PBT terminates if y[3]m—y[23m > 2 or m=5., This yields:

7(3,0.75,3,5) = {(11,12,13): (11,22,23) is a permutation of (2,0,0)
or (2,2,1) or (3,1,0) or (3,1,1) or (3,2,0)}.

Using (1), we calculate (1exicographically):

H

#(2,0,0) =1,
3

3
#(2,2,1) = (2’2,]) - (0.3, #(2:0,0) = (5 ,1)#(0,2,0) = 24,
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"
"

#(3'1 ;O) (3’?’0) - (],“2,0}#(29090) 29

P = (5.50) - (0.0, )#3:0.0) = (g1 0)#(3:0.1)

"

- (3] )#(2,0,0) = 10

£(3,2,0) = (3 5.0) = (g.1,0)3:1:0) = (7 0)#(2,0,0)

L]

- (3’% 0)#(0,2,0) = 4

]

Assuming py = 3/5 and p = p, =Py 1/5 then (2) yields

R(2,1,2)#(2,1,2)6%p°
34
p

P{CS|LF} = R(2,0,0)4(2,0,0)6%p?

o+

+ R(2,2,1)#(2,2,1)6%p° + R(3,0,1)#(3,0,1)8

. R3.1,00#(3,1,000%7 + R(3,1,1)#(3,1,1)6%°

b R(3,0,2)#(3,0,2)6%° + R(3,2,004(3,2,0)0%
- 0.7574.
Also, (3) yields:
_ 2 2 2 2
E{n}LF} = [24#(0,0,2)p° + 24#(0,2,0)p° + 2#(2,0,0)6"p"1]
v [58(1.2,2) 8% + 58(2,1,2)6%° + 54(2,2,1)6%"]
v [8#(0,1,3)p% + 4#(0,3,1)p" + 4#(1,0,3)ep"
v ap(1.3,0)0p% + 24(3,0,1)0%" + 48(3,1,0)6%"]
+ [5#(1,1,3)6p5 + 5#(1,3,1)ep5 + 5#(3,1,1)93p5]
s [5#(0,2,3)p° + 54(0,3,2)p° + 5#(2,0,3)%p°

v 54(2.3,0)6%° + 5#(3,0,2)6%p° + 54(3,2,0)6%p"]
- 3.4816.

Substituting p = 1/k = 1/3 and 6 =1 in the above expression, we
obtain E{niEP} = 3,8519.

Remarks concerning the computer work

Exact results: For many values of (k,P*,e*,nO), it was possible

to use certain efficient versions of (1), (2), and (3) in order to
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calculate exact values of P{CS‘LF}, E{ntLF}, and E{n’EP} for
P’T. These calculations were carried out on Purdue University's
VAX network and on IBM 3081 and 4341 computers at Cornell.

Monte Carlo results: This work was carried out on Cornell's IBM

machines and on CDC 6500 and 6600 computers at Purdue. The random
variates we used were generated from the IMSL (1982) subroutines
GGUBS or GGMTN.
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