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Truncations in the Method of Intermediate
Problems for Lower Bounds to Eigenvalues

Norman W. Bazley and David W. Fox '

(February 10, 1961)

Two new procedures are developed for determining lower bounds to the eigenvalues of

linear operators,
ators in separable Hilbert space.
of matrix problems,

The methods are based on the theory of semibounded self-adjoint oper-
Computation of the lower bounds is reduced to the solution
The procedures have immediate application in the estimation of

cigenvalues and eigenveetors of differential operators appearing in guantum mechanies.

1. Introduction

In this paper we give two new procedures for
determining lower bounds to eigenvalues of semi-
bounded, self-adjoint operators. These procedures,
while phrased in the language of Hilbert space,
result in useful computational methods for the esti-
mation of eigenvalues and eigenveetors of differential
operators oceurring in elassical and quantum me-
chanies.  Our procedures are based on the method
of intermediate problems,

[ntermediate problems, as introduced by A. Wein-
stein [7].7 give lower bounds by changing the bound-
ary conditions of differential operators. By relaxing
the |:(}|1|1<|au“\' conditions he obtains a solvable base
problem that gives rough lower bounds to the eigen-
values.  He then links the base problem to the given
problem by a sequence of intermedinte problems
which can be solved in terms of the base problem
and which improve the lower bounds.

Years ago H. Weyl [8] pointed out that rough
lower bounds can also be obtained by changing the
operator.  This fact was used by N. Aronszajn [1]
to construet intermediate problems for those cases
in which a base problem can be obtained by neglect-
ing a positive term in the operator. In the same
paper Aronszajn systematized the method of inter-
mediate problems for completely continuous oper-
ators in Hilbert space. As Arvonszajn points out,
the solution of the intermediate problems in his
formulation requires the determination of the poles
and zeros of a meromorphic function usually given
as an infinite sum,

Recently H. F. Weinberger showed that it is
possible to overcome the prineipal difficulties that
arise in the intermediate problems of Weinsteint,
Weinberger’s result, which is a special case of his
more general theory [6], gives lower bounds to the
eigenvalues by the computation of the zeros of a
polvnomial.

[n this paper we first sketch Aronszajn’s method
of intermediate problems for changes in the operator.
Our presentation allows for the presence of continu-
r].-\.mn]i-.-Ll I'hysies Laboratory, The Johns Hopkins University, Silver SBpring,
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| ous spectra and is in a form suitable for application
to many quantum mechanical problems. In the
second section we show how it is possible to modify
the method so that lower bounds can be obtained by
clementary caleulations.  These results give formu-
las parallel to some of those of Weinberger [6]. A
feature of our procedure is that it can be used to
caleulate lower bounds to the energy levels of most
atomic systems.  The last section extends another
method of one of the authors [2].

Part of the work presented here was started while
the authors were in the Institute for Fluid Dynamics
and Applied Mathematies, University of Maryland,
and was summarized in [3].

2. Method of Intermediate Problems

Let us suppose that #is aseparable Hilbert space
with the inner product () and that A is a self-
adjoint operator with domain 7, in 2 We will
assume A is bounded below and that the first part
of its spectrum is discrete. The eigenvalues and
eigenvectors in this part of the spectrum will be
denoted by N, and wu,(»=1, 2, . . .) respectively;
the first limit point of the spectrum will be called
M.. Thus we have
(p=1, (1)

Au,—Nu,=0, D e

and

MM S

(2)
Suppose further that A can be written as the sum
of two operators,
. A’ R
A=A A", (3)
where A" is a self-adjoint operator with a known
spectral resolution £ and A’ is symmetric and
positive.  The domains of A" and A’ are denoted by
7% and &, respectively, so that &,=%.,n%y.
The positivity of A’ is expressed by

(4)

(A'wu)>0
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for every u in the domain of A’.  Finally we assume
that the first part of the spectrum of A" is discrete,
and, listed in inereasing order, the eigenvalues are

ML (5)
The corresponding eigenfunctions are uf, ul,
Since A"< A, it follows® [4, p. 214] that
N<N,  (=1,2,...)
and
A =X, (6)
These inequalities go back to H. Weyl [8]. Thus

the known eigenvalues of A° give rough lower bounds
for the initial eigenvalues of A. For this reason the
operator A" is called a base operator and the eigen-
value problem for A" is called a base problem.

The procedure of intermediate problems links the
base operator A° to the given operator A by a sequence
{A*} of intermediate operators.  These operators sat-
isfy thu imequalities

A< AP AR <A, (k=120 00 (7)
and consequently their eigenvalues give intermediate
lower bounds to those of A.

In order to define these intermediate operators,
we introduce an auxiliary Hilbert space #7'. 7"
just the completion of %/, in the norm generated
by the inner product [u,2] defined by

[u,0]=(A"uw). (3)
For simplicity we will assume that
definite; the indefinite case requires only a slight
extension of the theory. Let {p;} be a linearly inde-
pendent set of veetors in %, ; note that since A’
is positive definite the sequence {A’p,} is also linearly

A’ is positive

independent. Define P* to be the projection in 7"
on the span %% of the first £ elements of {p,}. For an
arbitrary vector v in . #”, P* is given by

Py= L [, plbisps, (9)

i, j=1

where the constants by are the elements of the

matrix inverse to that with the elements (A’p;, p)).

Since the subspaces % are increasing with I; 1e.,

S e, (k=1,2,..),  (10)

the corresponding projections satisfy the inequali-
ties,

=P P, (11)

where [ is the identity operatorin #”. We now

form the operator A’P*, which is well defined on

v ra7 o
3 49< 4 means =0 20, and (AMmu) < (Anu) for every win =2 4.

7+ For an arbitrary veetorwin &, A" Pfwis given

A'Phw= Z (w,A'p )b ;A py,

i, =1

by (le==llo2 e

In the form given on the right in eq (12) A’P"* has
an obvious extension to all of 7 and there itisa
svmmetrie completely continuous operator. Hence-
forward we will regard A’P* as thus extended.
1t follows from eq (11) that in 7 the operators
AP gatisfy ‘the inequalities,
()le)[ﬂg‘l f]')i'+l S ‘l .l‘

=1, 2" = ) (13)

The intermediate operators A* are now defined by

AY—AV AP, (k=1,2,. ..); (14)
ke is called the order of the intermediate operator.
Sinee the operators AP* are symmetric and bounded,
it follows [5, p. 301] that the operators A* are self-
adjoint and have the same domain as A"  And
moreover, since A’P* is for cach k& a completely
continuous operator, each of the operators A* has
exactly the same limit points in its speetrum as does
A [5, p. 367]. From eq (13) it follows directly that

AV AR AR < A, (=12 )
These inequalities are just those stated in (7), and
they show that the operators A* defined by eq (14)
are in fact intermediate operators, This means that
in the initial discrete part of the spectra the eigen-
values satisfy the inequalities

NIMSNHLN, (»=1,2,...5), (15)
where the superseripts on the eigenvalues indieate
the order of the intermediate operator to which
they belong.

We now turn to the problem of determining the
eigenvalues and eigenvectors of the intermediate
operators A*  We will confine our attention to
those eigenvalues which lie below the first limit point
AL common to all operators A%

m = o} . k

The eigenvalue equation for A*,

Afy—Au=0, (16)
can be written in a more useful form by using the
defining eq (14) for A*. This gives

A®u—ru=—A"Pu, (17)
and by using eq (12) we obtain
k
Ay—wu=— >3 (u,A'p)b,A'p,. (18)

i, =1

For convenience we designate the quantities 3737,
(u,A’p)b; by @y, so that the equations to be -’-mlls—
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fied become

3
Au—rNu= —Zajrl’;nh (19)
J=1
and
K
Z;ct,fp_.,-,;l ‘pi)=(u,A'p,), (l=1,2, .. ..&), {20)

If w is to be an eigenvector corresponding to a
value N which is not in the spectrum of A" then u
may be written

5
u=—2>) a, A’ p;, (21)
i=1
where 2, is the resolvent operator for A°,
The eqs (20) become
Lct (py 1A p, Alp )= (I=1,2 s ). {22)

=

All of the a's eannot vanish if % is to be nontrivial;
therefore A must be such that the determinental
equation

(gt A py, A'p))|=0 (23)

is satisfied,

Equations (22) have solutions for each value X that
is not in the H]J{’(Illllll of A° and that satisfies eq (23).
The number of solutions corresponding to each such
root i2 just the nullity of the coefficient matrix and,
according to eq (21), these solutions give the cigen-
vectors of A" associated with that root.  These
eigenvectors are clearly linearly independent since
) is one-to-one on _#.

For each value N that is an eigenvalue of the
operator A° say )\'.f_. the procedure is somewhat
(lil"l'm'unt-. Let 7 be the characteristic subspace
of A° at the ecigenvalue Al.  Suppose that it is
q])|11||<-1| by the eigenveetors (o, v, . . ., 0, ). Itis
clear that if u is an cigenvector of A* corresponding
to A}, then in addition to the eq (19) and (20) the
further restrictions,

&

> a(A'p0,)=0, (i=k+1,k+2 J k1) (24)
=

must be satisfied.  1f we assume that eq (24) are
satisfied, u is given by

k k=41
IHZ_Z‘: a;i’e’;g.'l’p;—l :] ity ( d)
= J=k

where by {y we mean the restriction of the resolvent

operator for A’ to the part of our Hilbert space

orthogonal to .#e. The eqs (20) become

i , Il
Z oy ( Pyt f')?\',!"i'f’.h "1’}’r)+ \"‘1 CY}(J‘_;_;;,"I’_P;):“,
=1 =31

(= R

S56066—61

(26) | ately
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These, together with eq (24), determine the constants
a;. The necessary and sufficient condition for the
existence of nontrivial solutions is the vanishing of
the determinant of the coefficients; i.e.,
(jjjjl_ L);\":‘-i;!"_.l’.-‘-i’}uf) : (F._J-'kl ‘-1!1l'if)
(!I.". N
(A'py, vi-2) i ()

Let ug assume that (27) holds; that is, that A} is an
eigenvalue of A* as well as of ‘l". The ¢ cigenveetors
of A% cor.respmu‘ling to Al are then determined in the
following way: The eqs ( 24) and (26) have linearly
nulvpemiont solutions {af, af, . . al), (o=
12 n), where n is the nullity of the coeflicient
matrix (hsplln ed in (27). By (25) these give rise
to n veetors 7 that are eigenvectors of A* for the
value N, These are also linearly independent, for if
(', are constants such at 2,7, (Lus=0, then by the
expression (25) for #” we must have

i
3t “( ) Z ('
T
o=1
But since 2} is a one-to-one operator on the orthog-

onal complement of . 7, eq (28) implies the separate
statements,

k

25

J=FF1

Z( Zcrf A'p,

=1

(r: 'P_i = (}-

(28)

:"__I‘(uz_{l' ) [}J ), jil('?il(’agrj) Ca=h

(29)

The linear independence of the vectors A’p, and of
the vectors o, imply that

n
Z(rﬂ'a;_'“r (-‘I 1;2:‘ 2 ':"f" { 'Ilr)'
o=1
But since the vectors {af, @% ..., af.;} are

linearly independent, each of the constants €, must

vanish, and thus the veetors ue are linearly inde-
pendent,

As we observed previously, the part of the
spectrum of A" that lies below Al is discrete.  The

cigenvalues there are completely determined from
eqs (23) and (27), and the eigenvectors are found
from corresponding solutions of the lincar equations.
These eigenvalues give intermediate lower bounds
to those in the first part of the spectrum of .

For the sake of completeness and later use, we
sketeh a proofl of convergence of the eigenvalues of
the intermediate problems. The conditions that we
use are those stated by Aronszajn [1]. We assume
that A" and A have completely continuous inverses,
thni A’ is bounded relative to A", and that the set

{pi} is complete in 77", For convenience we will
assume that A is }]()-«Ill\l‘ definite; the modifications
for A" bounded below are hl].llj__‘_’lllf(ll ward.

The purpose of the proof is to show that the inverse
operators converge uniformly to A~ From this
the convergence of the eigenvalues follows immedi-
[5, p. 372].



Since the inverse operators (A%)~! form a decreas-
ing sequence of symmetrie operators bounded below
by A7' the sequence converges strongly to some
symmetric operator [5, p. 263]. The strong con-
vergence to A7 is guaranteed by the inequalities
that hold for any ¢in . #

t

[[(A%) T — A1 ]8
<|I(A°)~t—AY B[] ([(A®) 1 —A,E),  (30)
and
([((AH ' — A, 2L [(T=PY AT, ([—P" A ']
H(A(AD T, (AY )., (81).

The first of these inequalities follows by using the
Schwarz inequality in the form generated by (A*)~
A" and then using the fact that (A%)'<(A%)~L
The second is obtained by writing (A%)~'—A-1=
(A (T—P" A7, and then using the Schwarz
inequality in the form generated by A’. The first
factor on the right in (31) vanishes with inereasing
k since the set {p,} is comrplete in #”. The second
remains bounded sinee A’ is bounded relative to A°
The strong convergence of (A*)~! to A~'is thus in-
sured. However, since each operator (A*)~" as well
as A7 is completely continuous and symmetrie, the
monotonic strong convergence implies uniform con-
vergeney by an easily proved analog of Dini's
theorem.

Remark: We observe that if the span of the
veetors [ pgli_; contains some eigenvectors {'”'”v Us,

; ul} of A, (7<k), then A*=2A on the span of
these w's so that Mo Ny, - ., A, are eigenvalues of
AF as well as A, and they have the corresponding
eigenvectors u,, u,, , Uy, respectively. In-
vestigations based on thig property lead to state-
ments of the following type:

Tueorem: Let A be an operator with a purely
point speetrum and let A, be an eigenvalue of A that
18 less than A2 then there exists an intermediate
problem (of sufficiently high order) which has
N=X; and wf=w for p=12. . . . ;v

3. Truncation of the Base Operator

The principal difficulties in the computation of
approximating eigenvalues and eigenvectors by the
method just deseribed arise from the fact that the
resolvent operator Ry for the base problem rarely
is known in cloged form. In most cases it can be
expressed only by use of infinite sums or integrals;
i.e., in our cases by

i
2 (—’;'a}'?i L +J
¥ L:n—

p=1

r” W

=
ft\u 7= )\

We overcome this difficulty by changing the base
problem so that it has a simple resolvent and still
provides lower bounds by the method of inter-
mediate problems. These bounds are computed
from equations identical with those given earlier ex-

cept that the resolvent is expressed by a finite sum
with a remainder in closed form,

Let us assume that A has infinitely many eigen-
values less than e (the modifications for the cases
in which there are only a finite number will be im-

mediate).  Define the truncated operators A™° by the
equations
A =AEH N (I—EY), (i=1.2,....1Y,, (82)

and denote the corresponding resolutions of the
identity by £ It is clear that each operator A*"
is bounded and symmetrie, has the eigenvalues and
eigenvectors NJ, ug for v=1,2, . . ., i, and also has
}\” p as an {'lg(!mahw of infinite multiplicity. The
resolutions of the identity may be written down im-

mediately. They are
B NN .
pio— 4 T+1 G 2
{ ‘+1<?\} (i=1,2,...). (33)

An operator A" is called a truncation of A° of order 7.
These operators satisfy the fundamental inequalities

AR <A 040, (i=1,2,...), (34)
since from the spectral theorem it follows that
(A 10— A%y Ay =(AY, 2—?\”.1)‘[ d(Ey, ) > 0.

for each w in # and that

([4*10—11’-"]1;.,4&):‘] A=A, DA (Eu,u) >0
}‘Ii]ﬂ_[‘1

for each u in & .
The new intermediate operators
AL0 are defined by

AL* bhased on

Atk A$.0_1 A’ Pk ik {

AMF= AL AP k=12, ...). (36)

These are bounded, symmetric, and are monotoni-

cally increasing in 7 and k;i.e.,
AVEC AR AR A,

(Lk=12, .. .), @7)

and
AV AV AL AT< A, (tk=1.2; s
(38)

The montonicity in the first index follows from (34)
and in the second index from (13). The inequalities
(37) and (38) imply the parallel inequalities for the
corresponding eigenvalues,

e il
, o =12,...), (39)

ALESAEIR ),
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where by A * we mean the »th eigenvalue of A%

Since A and A differ by a completely con-
tinuous operator, the limit point N, persists and
is the only limit point of the spectrum of the inter-
mediate operator A" as the order kol the operator
is inereased [5, p. 367]. Further, the inequalities
(39) show that for any & there are at most 7 eigen-
values of A"* less than A}, ,.

The spectrum of each operator A** can be deter-
mined easily by the usual procedure for intermediate
problems.  The eigenvalue equation for A%* s
stated by

A Fu—x =0,

or equivalently (in the notation of the preceding
section)

Ay —

I
ES _Z ﬂ'}"'i’pn

j=1i
"
Z_{ a(p, A’ p)=(u,A'p),

If w is an eigenvector corresponding to a value A
that is not in the spectrum of A" then u may be
writlen

I3

Uu=—> a;R; A'p,, (40)
j=1
where Ry is the resolvent operator of A" We

note here that for any vector » in %, Ry is given
by the closed expression,
», ) u',':l-

v sl ] s i
hhﬂ_,:l t\ﬂ_k + ‘:'III_A v Z(

=1
(41)
The eqs (22) become
b
Z QJ(PJ_FHJ;\ ‘-1’}”}' “i’]?;) = “: (‘IF_ 1 :2a T ;'I)
i=1
(42)

As a consequence, the necessary and sufficient condi-
tion for such a X to be an eigenvalue is that it be a
root of the equation

|(py+RL A'p,, A%p))|=0. (43)
The multiplicity of each such eigenvalue is the nullity
of the coeflicient matrix of eq (42). The eigen-
veetors of A“F are determined from the solutions
of eq (42) by eq (40).

Now suppose that A is an eigenvalue of A% that
is less than A, and that the characteristic sub-
space ) of ALY corresponding to N} is spanned by
if| Tas - = 5 Bt

If % is to be an eigenvector of

AN eorresponding to ), then w» is given by the
equation

k ” f:-l—_l‘
—23a, Ry A'p— 25 oy, (44)
=1 S

where the constants a; must satisfy the equations

£
Z‘,a (pitIn A’ p;,A'p,)

+-—:>k;| @y (0s-1,A'p;)- (r=1,2,..., k) (45)
and
k
(r=k+1,k+2,...,k+1). (46)

_ZI‘, ay(A'p =0,

T

The linear independence of the eigenvectors arising
from linearly independent sets of @'s may be demon-
strated as in the preceding seetion.

The multiplicity of A} as an eigenvalue of A" is
thus just the nullity of the matrix

(py-Band’p,A'p,) (.*). “.1 p)

NS W

(AD,,9:-2) 0

We have found all of the ecigenvalues of A™* that
are not equal to Ny, The complete continuity of
A’P* implies that N}y, the only limit point of the
spectrum of A" remains as the only limit point of
the spectrum of A"* Thus the total spectrum of
A% ag determined.  The spectral subspace of A%
associated with Ay, is just the orthogonal comple.
ment of the span of all the eigenvectors already
determined for the values of X not equal to N,
Thus, as stated at the beginning of this section,
the method of truncation justifies the replacement
of the base problem resolvent by a suitable approx-
imation in closed form. The necessary computa-
tions can be carried out by routine techniques.
The convergence of the eigenvalues of the trun-
cated intermediate operator A™* to those of A* can
be shown under the assumption that A° and A have
completely continuous inverses. We demonstrate
the uniform convergence of (A“*)~' to (A% for
each fixed £. For convenience we will assume that

A° is positive definite. First we note that the
operators (A")~! converge in norm to (A%~ as ¢
becomes infinite. This follows directly from the

spectral theorem, for we have
(4= n-amy,
and

(1’11'“) 11’}[': J;\ﬂ B ”l'[,‘i]

Ay -0
= f NIdES
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so that

: S s il
AN-1— 111,!; e T [ ——
(@ =@0=| (5

Consequently we have

s ) 4E3
i+1

10491 (449 ][ < g

111

(48)

Since Ny becomes infinite with 7, the norm con-
vergence of (A%") " is eclear. This implies that
(A“F)=t converges in norm to (A%~ The proof
cgoes as follows.  We start from the simple identity

Atk A= 410 A0
From this it follows immediately that

AVH (AR~ 1— (ALY -1 4= A" (A") 1 — (A" 0)~1]A°

and thus

(Aﬁ-)—l_ (Af,k) —1 :(‘,1f,ﬁ:) —1 41,0

[{"IL‘ -1 ( 1' o —IJ iti( F) (49)
By writing (A*)71A40 a8 T— (A TTA'PE it is evi-
dent that (A%*)72A% is an operator that can be
. o [ : 1
bounded independently of i since |[/(A H}_]”SF
1
Since A°(A*)""is also bounded for each fixed £, the
convergence in norm of (A%~ to (AF)7' follows
directly from (48) and (49).

The uniform convergence of (A"~ to (A%)~!
and that of (A%)~! to A™" demonstrated in section 2
are sufficient to insure that the eigenvalues of A"F
converge to those of A as i and & become large.

4. Truncation by Choice of Elements

In this section we discuss an extension of another
plOLD(llll(' [2] for truneating the resolvent 7, that
appears in section 2. This can be accomplished by
choosing the elements p, in suitable ways instead of
Lh.mgmw the base problem operator as has been
done in previous sections.

We assume that the vectors [ py, ps,

. prt which
determine A* have been chosen so that

N
‘-1’;,1,-:21 Bul, G=1,2, .. ., k) (50)
That is, it is assumed that each of quantities

A'p(i=1, 2, ..., k) can be expressed in terms of a
finite number N of eigenvectors of A°.  The number
N will of course depend on k. The quantities
(LA'p,A'py) which appear in section 2 will have
the simple expressions

Hdvf

(h‘M‘ P4 A Pi ) Z hll " (’-}1)

and thus are effectively truneated by the choice of
elements (50). The computations for the eigen-
values and eigenvectors may be carried out directly
from the equations of section 2.

In the present case, however, it is simpler to
proceed directly. We have already shown that the
expression A*u can be written

Axy— ~1“u—|—2, (2, A%y by A%y,

ij=1

where, as before, the quantities b, are the elements
of the matrix inverse to that having (A’p.p,) as
elements.  Using (50) this expression becomes

A= /-"-Uif_l_z Z {u ’uv)ﬁ{r uld,f#u (:]2)

Li=1 p=1

We can now obtain all of the eigenvalues and eigen-
vectors of A by inspection.  First consider those
vectors in 40 that are orthogonal to every eigen-
vector of A" If u ig such a vector, then (52) shows
that A*u—Xu=A%—Nu. Clearly no such a vector
can be an eigenvector of A*  Further, if # is an
eigenvector u) of A” with an eigenvalue X! and is
not used in the sums in (50), then by (52) we have
ARl —N0u0 = A"ud —N0u%=0. Hence each such
veetor 18 an eigenveetor of A* with the same eigen-
value as for A%,

It remains to consider those vectors u which
are linear combinations of the vectors w)(v=1,
2, .. ., N) used in the sums in (50). There are

exactly N linearly independent vectors of this kind
that arve eigenvectors of A*  These are determined
as follows.  We write # as

N
U= Yy,

=1

and insert  this in  the eigenvalue equation
A*u—Au=0, where A* is given by (52). The
linear independence of the vectors «9 leads to the
equivalent algebraie system,

N
Z Y Z ﬁwbafgﬂ—'_(xl

= iy j=1

N)é, ) =0,

(v=1,2,..., N). (53)

Consequently the determination of the intermediate
cigenvalues and eigenvectors depends only on the
solution of a matrix eigenvalue problem.

This procedure can be especially useful when the
operator A’ is a multiplicative operator, as for
example in the spheriodal wave equation.® In the
prolate case the eigenvalue equation is stated by

Au— =0,

| The numerical applieations in this and other cases are presently being earried
out by W, Biirseh-Supan,
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i which A s the essentially self-adjoint operator

given by

d (1— i m?

i 2 T 2,
Au= 3 x?) i + H—I—r ru

on the set of all functions continuous on [—1. +1]
that are twice continuously tliﬂ'm'vlm.lblv on
(—1, ++1) and for which Au belongs to ##(—1, F1).
Here m 1s a non-negative integer and ¢ is a real
constant. A base operator is obtained by omitting
the positive teem A’=c%?*. The solutions of the base
problem are associated Legendre functions. The
choice p;=ul=Pry;; and the recursion relation,

(n—m~+1)Ppy+(n+ m)Pr w1

J.])m
2n+1

allow one to express A’p; as a linear combination of
u o, uoy, ul, uiy, and ulp. Other examples of
this sort can be found easily,
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