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Abstract. We give axioms for a class of ordered structures, called trun-
cated ordered abelian groups (TOAG’s) carrying an addition. TOAG’s
come naturally from ordered abelian groups with a 0 and a +, but the
addition of a TOAG is not necessarily even a cancellative semigroup. The
main examples are initial segments [0, τ ] of an ordered abelian group,
with a truncation of the addition. We prove that any model of these
axioms (i.e. a truncated ordered abelian group) is an initial segment of
an ordered abelian group. We define Presburger TOAG’s, and give a cri-
terion for a TOAG to be a Presburger TOAG, and for two Presburger
TOAG’s to be elementarily equivalent, proving analogues of classical
results on Presburger arithmetic. Their main interest for us comes from
the model theory of certain local rings which are quotients of valuation
rings valued in a truncation [0, a] of the ordered group Z or more general
ordered abelian groups, via a study of these truncations without reference
to the ambient ordered abelian group. The results are used essentially
in a forthcoming paper (D’Aquino and Macintyre, The model theory of
residue rings of models of Peano Arithmetic: The prime power case, 2021,
arXiv:2102.00295) in the solution of a problem of Zilber about the logical
complexity of quotient rings, by principal ideals, of nonstandard models
of Peano arithmetic.
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1. Introduction

The model theory of ordered abelian groups is well understood, and highly
relevant for the model theory of Henselian valued fields (and, less directly,
for nonstandard models of arithmetic). The ring of p-adic integers is easier to
understand logically than the theory of the class of all its finite quotients. The
latter is interpretable in the former, but some vital issues of definability get
obscured. The finite quotients are local rings, valued in a truncation [0, a] of
the ordered group Z.

For a direct study of these local rings (and for some associated semilocal
rings) a direct study of the truncations is needed, not merely in Z but in more
general ordered abelian groups.

This paper is a component of two pieces of research, one by D’Aquino and
Macintyre [1,2], and one by Derakhshan and Macintyre [4]. The common theme
is the model theory of local rings V/(α), where V is a Henselian valuation
domain, and α is a nonzero nonunit of V . If v : V → P is the valuation of
V , with P the semigroup of non-negative elements of the value group Γ of the
fraction field K of V , v induces a “truncated valuation” from V/(α) onto the
segment [0, v(α)] of P defined by

v(x + (α)) =

{
v(x) v(x) < v(α),
v(α) v(x) ≥ v(α).

The segment [0, v(α)] inherits from Γ an ordering ≤, with 0 as least element
and v(α) as greatest element. From our assumption on α, v(α) �= 0.

Next, [0, v(α)] gets a truncated semi-group structure as follows. Let ⊕ be
the addition on Γ. Define, for γ1, γ2 ∈ [0, v(α)]

γ1 + γ2 = min(γ1 ⊕ γ2, v(α)).

The basic laws are

v(x + y) ≥ min(v(x), v(y)),
v(xy) = min(v(α), v(x) + v(y)).

Ideas connected to this, but much more sophisticated, appear in the work of
Hiranouchi [7,8].

Forgetting the valuation in the preceding, we have an ordered abelian
group Γ, with order ≤, addition ⊕, subtraction �, zero 0, and a distinguished
element τ > 0 (where τ = v(α) in the preceding). By the above, we can define
a “truncated addition” + on [0, τ ]. This can be done for any ordered abelian
group Γ.

We give a natural first-order set of axioms in the language {≤, 0, τ,+}
for a class of linear orders, that we call truncated ordered abelian groups
(TOAG’s), as well as analogues of classical results on Presburger arithmetic,
namely on Presburger TOAG’s. The main examples are the truncations [0, a]
arising from ordered abelian groups Γ as above, equipped with a truncated
addition and semi-group structure.
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We prove that any TOAG is an initial segment of an ordered abelian
group. We give a criterion for a TOAG to be a Presburger TOAG, and for two
Presburger TOAG’s to be elementarily equivalent.

These results play an essential role in [2] in the solution of a problem
of Zilber on the logical complexity of quotient rings, by principal ideals, of
models of Peano arithmetic (PA). The problem asks about the interpretability
of arithmetic in M/kM where k ∈ M and M a nonstandard model of PA. This
itself can be solved easily in the negative, but in [2] a much more substantial
analysis is given of definability in the structures M/kM.

Our work naturally applies to the study of definability in quotient rings
of valuation rings and their value semi-groups which are TOAG’s, without ref-
erence to the ambient ordered abelian group (which is not necessarily assumed
to be Z). A natural example is the class of all finite quotients of the ring of
p-adic integers and related local and semi-local rings.

2. Truncated ordered abelian groups and their algebra

In this section we give the intended axioms in the language {≤, 0, τ,+}. We
shall verify that they hold in the structures [0, τ ] with the truncated addition
+ defined as above that are got from abelian groups Γ with order ≤, addition
⊕, subtraction �, zero 0, and a distinguished element τ > 0.

Recall that the addition + is defined by

γ1 + γ2 = min(γ1 ⊕ γ2, τ)

for γ1, γ2 ∈ [0, τ ]. Let P denote the semigroup of non-negative elements of Γ.

2.1. Obvious axioms

The following are obvious, via immediate calculations in P .

Axiom 1. Addition + is commutative.

Axiom 2. x + 0 = x.

Axiom 3. x + τ = τ .

Axiom 4. If x1 ≤ y1 and x2 ≤ y2 then x1 + x2 ≤ y1 + y2.

2.2. Less obvious axioms

Axiom 5. Addition + is associative.

Verification. Suppose x, y, z in [0, τ ].

Case 1 x ⊕ y ⊕ z ≤ τ . Then

x + (y + z) = x + (y ⊕ z) = x ⊕ (y ⊕ z)

= (x ⊕ y) ⊕ z = (x + y) + z.

Case 2 x ⊕ y ⊕ z > τ .

Subcase 1 y ⊕ z ≥ τ and x ⊕ y ≥ τ .
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Then

x + (y + z) = x + τ = τ,

and

(x + y) + z = τ + z = τ.

Subcase 2 y ⊕ z < τ and x ⊕ y ≥ τ .
Then

x + (y + z) = x + (y ⊕ z) = min(x ⊕ (y ⊕ z), τ)

= min((x ⊕ y) ⊕ z, τ) = τ,

and

(x + y) + z = τ + z = τ.

Subcase 3 y ⊕ z ≥ τ and x ⊕ y < τ .
Then

x + (y + z) = x + τ = τ,

and

(x + y) + z = (x ⊕ y) + z = min((x ⊕ y) ⊕ z, τ) = min(x ⊕ (y ⊕ z), τ) = τ.

Subcase 4 y ⊕ z < τ and x ⊕ y < τ .
Now

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z,

and so

x ⊕ (y + z) = (x + y) ⊕ z,

hence

min(x ⊕ (y + z), τ) = min((x + y) ⊕ z, τ),

thus

x + (y + z) = (x + y) + z.

2.3. Axioms concerning cancellation

Axiom 6. If x + y = x + z < τ , then y = z.

Verification. x ⊕ y = x + y and x ⊕ z = x + z in this case, so use cancellation
in P .

Axiom 7. If x ≤ y < τ , then there is a unique z with x + z = y.

Verification. Immediate from definition and the fact that P is the non-negative
part of Γ.

Notation. We write y .− x for the z in the above.

Axiom 8. There are (in general, many) z in [0, τ ], for x in [0, τ ], so that x+z =
τ , and there is a minimal one to be denoted τ .− x.

Verification. Obvious by working in P and taking τ .− x = τ − x.
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Note that τ .− τ = 0.

Axiom 9. τ .− (τ .− x) = x.

Verification. For x < τ ,

τ .− (τ .− x) = τ − (τ − x).

For x = τ ,

τ .− (τ .− x) = τ .− 0 = τ = x.

2.4. Crucial axioms

There now follows a series of axioms which are basic in what follows. It is not
clear to us what are the dependencies between these axioms over the preceding
nine.

Axiom 10. Suppose 0 ≤ x, y < τ and x + y = τ . Then

y .− (τ .− x) = x .− (τ .− y).

Verification. Both are equal to (x ⊕ y) � τ .
Before getting to the remaining axioms, we prove some useful lemmas

without using Axiom 10.

Lemma 2.1. Suppose 0 ≤ y ≤ z < τ . Then τ .− z ≤ τ .− y.

Proof. We have that

y + (τ .− y) = τ

and

z + (τ .− z) = τ.

If (τ .− z) > (τ .− y), then (Axiom 8)

z + (τ .− y) < τ,

so

y + (τ .− y) < τ,

contradiction. �

Lemma 2.2. Suppose x, y < τ . Then τ .− x = τ .− y implies x = y.

Proof. Assume τ .− x = τ .− y. Then

τ .− (τ .− x) = τ .− (τ .− y),

so (Axiom 9) x = y. �

Corollary 2.3. If x < y < τ . Then τ .− y < τ .− x.

Proof. By Lemma 2.1, τ .−y ≤ τ .−x. If τ .−y = τ .−x, then applying Lemma 2.2
we get x = y. �
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2.5. A miscellany of other axioms

In the course of proving Associativity in Theorem 3.2 we need various axioms
about +, .−, and τ . Each of these axioms is true (and with a trivial proof) in
the [0, τ ] coming from the ordered abelian group Γ with ⊕, so it is natural to
use them. One may hope to deduce them from the axioms listed already, but
we have not succeeded in doing so. Thus we settle for quite a long list of “ad
hoc” axioms, which we now consider in the order in which they occur in the
proof of Associativity in Subsection 3.5.

Axiom 11. Assume y + z < τ , x + (y + z) = τ , and y + x < τ . Then

x .− (τ .− (y + z)) = z .− (τ .− (x + y)).

Note. By Axiom 5 we may safely write x+y +z for x+(y +z) and (x+y)+z
and will do so henceforward.

Verification. In all that follows, we construe x, y, z, τ as in the [0, τ ] in

(P,≤P ,⊕)

the non-negative part of an ordered abelian group Γ, where ≤ is identified with
≤P (the restriction of ≤ to P ), and + with the truncation of ⊕. Then

x ⊕ y ⊕ z = τ ⊕ ε,

for some ε in P .
Now y ⊕ z < τ and y ⊕ x < τ , so

x ⊕ y ⊕ z < 2τ,

so ε < τ .
Let μ = τ − (y + z) and δ = τ − (x + y). Then x = μ + ε, hence

x .− (τ .− (y + z)) = ε,

and z = δ + ε, so

z .− (τ .− (x + y)) = ε,

giving the verification.
The subsequent verifications are at the same level of difficulty.

Axiom 12. Assume y + z < τ , x + y + z = τ , y + x = τ , and

z + (y .− (τ .− x)) < τ.

Then

z + (y .− (τ .− x)) = x .− (τ .− (y + z)).

Verification. (Convention: Any time we write A .− B we assume A ≥ B). We
have

x ⊕ y ⊕ z = τ ⊕ ε

for some ε ∈ P , and

y ⊕ x = τ ⊕ γ
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for some γ ∈ P . Now

x ⊕ y ⊕ z < 2τ,

so ε < τ , and

y ⊕ z < 2τ,

so γ < τ .
Let μ = τ − (y + x). Then x = μ ⊕ ε, so

x .− (τ .− (y + z)) = ε,

whereas

z + (y .− (τ .− x)) = z + (y − (τ − x)) = x + y + z − τ = ε.

Axiom 13. Assume y + x = τ and y + z < τ . Then z + (y .− (τ .− x)) < τ .

Verification. Let y ⊕ x = τ ⊕ ε, where 0 ≤ ε < τ . Then

y .− (τ .− x) = ε.

and

z ⊕ ε = z ⊕ ((y ⊕ x) � τ) = (x ⊕ y ⊕ z) � τ < τ,

since x < τ and y + z < τ .

Axiom 14. Assume y + z = y + x = τ and z + (y .− (τ .− x)) < τ . Then

x + (y .− (τ .− z)) = (x .− (τ .− y)) + z.

Verification. Let y ⊕ z = τ ⊕ ε and y ⊕ x = τ ⊕ δ, with 0 ≤ ε, δ < τ . Then

y .− (τ .− z)) = ε,

x .− (τ .− y) = δ,

y ⊕ z ⊕ δ = τ ⊕ ε ⊕ δ,

and

y ⊕ x ⊕ ε = τ ⊕ ε ⊕ δ,

so x + ε = z + δ as required.

Axiom 15. Assume y + z = τ , y + x = τ , and x + (y .− (τ .− z)) = τ . Then
z + (y .− (τ .− x)) = τ .

Verification. Let y ⊕ z = τ ⊕ δ and y ⊕ x = τ ⊕ ε as before. Then

y .− (τ .− z)) = δ,

and

y .− (τ .− x)) = ε.

We have

x ⊕ (y � (τ � z)) = (x ⊕ y ⊕ z) � τ,

since

x + (y .− (τ .− z)) = τ,
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and

x ⊕ y ⊕ z ≥ 2τ.

Now

z ⊕ (y � (τ � x)) = (x ⊕ y ⊕ z) � τ,

so

z + (y .− (τ .− x)) = τ,

since x ⊕ y ⊕ z ≥ 2τ .

Axiom 16. Assume

y + z = y + x = x + (y .− (τ .− z)) = τ.

Then

(y .− (τ .− x)) .− (τ .− z) = (y .− (τ .− z)) .− (τ .− x).

Verification.

(y .− (τ .− x)) .− (τ .− z) = ((y ⊕ x) � τ) � (τ � z)

= (x ⊕ y ⊕ z) � (2τ) = ((y ⊕ z) � τ) � (τ � x)

= (y .− (τ .− z)) .− (τ .− x).

3. Truncated ordered abelian groups and ordered abelian
groups

Definition 3.1. A truncated ordered abelian group (TOAG) is a linear order
which is an L = {≤, 0, τ,+}-structure [0, τ ] with an operation + satisfying
Axioms 1–16.

Theorem 3.2. Let [0, τ ] be a truncated ordered abelian group with operation +
and order ≤. Then there is an ordered abelian group Γ, under an operation
⊕ and an order ≤Γ, with P the semigroup of non-negative elements, and an
element τP of P so that [0, τ ] with + and ≤ is isomorphic to [0, τP ] with the
addition and order induced by ⊕ and ≤Γ on [0, τP ].

Proof. We begin by constructing P , and then we laboriously verify that it has
the required properties.

3.1. Construction

P is ω× [0, τ), where ω is the set of finite ordinals k under ordinal addition (+)
and order (≤). [0, τ) has the order induced from [0, τ ]. We denote the elements
of P by 〈a, b〉, where a ∈ ω, b ∈ [0, τ).

P is lexicographically ordered with respect to the two orderings just spec-
ified. Let ≤P be the lexicographic order.

Let 0 = 〈0, 0〉 ∈ P , the least element of P . Let τP = 〈1, 0〉 ∈ P . We have
[0, τP ) = {0} × [0, τ), giving natural order isomorphisms [0, τP ) ∼= [0, τ) and
[0, τP ] ∼= [0, τ ].

Now we define ⊕ on P .
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3.2. The Case 1/Case 2 distinction for 〈y, z〉 ∈ [0, τ )2

This comes up all the time in what follows, and the axioms from Axiom 10 on
relate to it.

Case 1 y + z < τ

Case 2 y + z = τ

Note that both are symmetric in y and z and are complements of each
other.

The main point is that Case 2 is equivalent to both y ≥ τ .−z and z ≥ τ .−y.
Moreover Axiom 10 implies that in Case 2

y .− (τ .− z) = z .− (τ .− y).

3.3. Defining ⊕
We define 〈k, y〉 ⊕ 〈l, z〉 to be

〈k + l, y + z〉

if 〈y, z〉 in Case 1, and

〈k + l + 1, y .− (τ .− z)〉

if 〈y, z〉 in Case 2.

Lemma 3.3. ⊕ is commutative, with 0 as neutral element.

Proof. Let 〈k, y〉, 〈l, z〉 ∈ P .

Case 1. If 〈y, z〉 in Case 1 (and so then is 〈z, y〉). Then

〈k, y〉 ⊕ 〈l, z〉 = 〈k + l, y + z〉
= 〈l + k, z + y〉 = 〈l, z〉 ⊕ 〈k, y〉.

Case 2. If 〈y, z〉 in Case 2 (again symmetric). Then

〈k, y〉 ⊕ 〈l, z〉 = 〈k + l + 1, y .− (τ .− z)〉
= 〈l + k + 1, z .− (τ .− y)〉,

by Axiom 10.
If y = 0 we are in Case 1 so

〈k, y〉 ⊕ 〈l, z〉 = 〈k + l, z〉,

so if k = 0, this is equal to 〈0, z〉.
This completes the proof in all the cases. �
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3.4. ≤P and ⊕
Lemma 3.4. If 〈k, x〉 ≤P 〈l, y〉 and 〈m, z〉 ≤P 〈n,w〉, then

〈k, x〉 ⊕ 〈m, z〉 ≤ 〈l, y〉 ⊕ 〈n,w〉.
Proof. There are four cases:

a) (x, z) and (y, w) both in Case 1.
b) (x, z) in Case 1, (y, w) in Case 2.
c) (x, z) in Case 2, (y, w) in Case 1.
d) (x, z) in Case 2, (y, w) in Case 2.

Now suppose the hypothesis of the lemma, i.e. k ≤ l, x ≤ y,m ≤ n, and
z ≤ w.
a) 〈k, x〉 ⊕ 〈m, z〉 = 〈k + m,x + z〉 and

〈l, y〉 ⊕ 〈n,w〉 = 〈l + n, y + w〉,
and the required inequality follows from the four inequalities of the hypothesis
and Axioms 1–10.
b) 〈k, x〉 ⊕ 〈m, z〉 = 〈k + m,x + z〉, and

〈l, y〉 ⊕ 〈n,w〉 = 〈l + n + 1, y .− (τ .− w)〉,
and the required inequality follows since k + m ≤ l + n + 1.
c) 〈k, x〉 ⊕ 〈m, z〉 = 〈k + m + 1, x .− (τ .− z)〉, and

〈l, y〉 ⊕ 〈n,w〉 = 〈l + n, y + w〉.
But since y ≥ x, and w ≥ z, we have y + w = τ , contradiction. This case does
not occur.
d) 〈k, x〉 ⊕ 〈m, z〉 = 〈k + m + 1, x .− (τ .− z)〉, and

〈l, y〉 ⊕ 〈n,w〉 = 〈l + n + 1, y .− (τ .− w)〉.
But now x ≤ y, and (by Lemma 2.3)

τ .− z ≥ τ .− w,

so

x .− (τ .− z) ≤ y − (τ .− z) ≤ y − (τ .− w) = y .− (τ .− w)

(we are in Case 2), giving the result. �

3.5. Associativity

Verifying this is the most tedious task of all. We can profit a bit from having
already proved commutativity. We need to prove:

(1) 〈k, x〉 ⊕ (〈l, y〉 ⊕ 〈m, z〉) =
(2) (〈k, x〉 ⊕ 〈l, y〉) ⊕ 〈m, z〉 =
(3) 〈m, z〉 ⊕ (〈l, y〉 ⊕ 〈k, x〉).

So we should calculate (1) via, firstly the Case distinction for (y, z), and then
the Case distinction for x and right-hand coordinate of

〈l, y〉 ⊕ 〈m, z〉.
We then do the same for (3), switching x and z.
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The simplest situation for (1) is:

Situation 1. (y, z) in Case 1 and then right-hand coordinate of

〈l, y〉 ⊕ 〈m, z〉
is in Case 1 with x.

So calculation gives

y + z + x < τ

and value of (1) is

〈k + l + m,x + y + z〉.
This is exactly the same as we get from (3) assuming (y, x) in Case 1, and so
is z with right-hand coordinate of

〈l, y〉 ⊕ 〈k, x〉,
and so we verify one instance of associativity, when

x + y + z < τ.

Situation 2. (y, z) in Case 1, and x in Case 2 with right-hand coordinate of

〈l, y〉 ⊕ 〈m, z〉.
So y + z < τ but x + (y + z) = τ . Then value of (1) is

〈k + l + m + 1, x .− (τ .− (y + z))〉.
(Bear in mind that x .− (τ .− (y + z)) = (y + z) .− (τ .− x)).

With the same assumptions on x, y, z we try to calculate the value of (3),
i.e. of

〈m, z〉 ⊕ (〈l, y〉 ⊕ 〈k, x〉).
From the preceding we have y + z < τ and x + (y + z) = τ .

Now we try to calculate 〈l, y〉 ⊕ 〈k, x〉.
Subcase 1. y + x < τ .

Then

〈l, y〉 ⊕ 〈k, x〉 = 〈l + k, y + x〉
and since x + (y + z) = τ we have z + (x + y) = τ , whence Case 2 for z and
y + x, whence

〈m, z〉 ⊕ (〈l, y〉 ⊕ 〈k, x〉)
= 〈m + l + k + 1, z .− (τ .− (x + y))〉.

Now, Axiom 11 gives that if x + y + z = τ , y + z < τ , and y + x < τ , then

x .− (τ .− (y + z)) = z .− (τ .− (x + y)),

so we have (1) = (3) in this subcase.
Subcase 2. y + x = τ .
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Then

〈l, y〉 ⊕ 〈k, x〉 = 〈l + k + 1, x .− (τ .− y)〉
= 〈l + k + 1, y .− (τ .− x)〉.

Subcase 2.1. z + (y .− (τ .− x)) < τ .
So (3) is

〈m + l + k + 1, z + (y .− (τ .− x))〉,
and by Axiom 12 we have (1) = (3) in this subcase.

Subcase 2.2. z + (y .− (τ .− x)) = τ .
By Axiom 13 this is impossible.

Situation 3. (y, z) in Case 2, and x in Case 1 with right-hand coordinate of
〈l, y〉 ⊕ 〈m, z〉.

So y + z = τ , whence

〈l, y〉 ⊕ 〈m, z〉 = 〈l + m + 1, y .− (τ .− z)〉
= 〈l + m + 1, z .− (τ .− y)〉.

Then x + ((y .− (τ .− z)) < τ , and so

〈k, x〉 ⊕ (〈l, y〉 ⊕ 〈m, z〉) = 〈k + l + m + 1, x + (y .− (τ .− z))〉
which equals the value of (1).

With the same assumptions on x, y, z we try to compute (3). The as-
sumptions are y + z = τ and x + (y .− (τ .− z)) < τ .

Subcase 1. y + x < τ .
Then 〈l, y〉 ⊕ 〈k, x〉 = 〈l + k, y + x〉.

Subcase 1.1. z + (y + x) < τ .
This is impossible, since y + z = τ is assumed.

Subcase 1.2. z + (y + x) = τ .
So (3) equals

〈k + l + m + 1, z .− (τ .− (y + x))〉 = 〈k + l + m + 1, (y + x) .− (τ .− z)〉.
which equals (1) by Axiom 11.

Subcase 2. y + x = τ .
Then

〈l, y〉 ⊕ 〈k, x〉 = 〈l + k + 1, y .− (τ .− x)〉
= 〈l + k + 1, x .− (τ .− y)〉.

Subcase 2.1. z + (y .− (τ .− x)) < τ .
So (3) equals

〈k + l + m + 1, (x .− (τ .− y)) + z〉
= 〈k + l + m + 1, (y .− (τ .− x)) + z〉

which equals (1) by Axiom 14.

Subcase 2.2. z + (y .− (τ .− x)) = τ .
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But this together with the assumptions of the situation contradicts Axiom
15. So it does not occur.

Situation 4. (y, z) in Case 2 and x in Case 2 with right-hand coordinate of
〈l, y〉 ⊕ 〈m, z〉.

So y + z = τ whence

〈l, y〉 ⊕ 〈m, z〉 = 〈l + m + 1, y .− (τ .− z)〉
= 〈l + m + 1, z .− (τ .− y)〉.

Then

x + (y .− (τ .− z)) = τ,

so

〈k, x〉 ⊕ (〈l, y〉 ⊕ 〈m, z〉) = 〈k + l + m + 2, x .− (τ .− (y .− (τ .− z)))〉
= 〈k + l + m + 2, (y .− (τ .− z)) .− (τ .− x)〉,

giving the value of (1).
With the same assumptions on (x, y, z), we try to compute (3).
The assumptions are y + z = τ and x + (y .− (τ .− z)) = τ .

Subcase 1. y + x < τ .
But this is inconsistent with Axiom 6 since x + (y .− (τ .− z)) = τ .

Subcase 2. y + x = τ .
So

〈l, y〉 ⊕ 〈k, x〉 = 〈l + k + 1, y .− (τ .− x)〉
= 〈l + k + 1, x .− (τ .− y)〉.

Subcase 2.1. z + (y .− (τ .− x)) < τ .
This is inconsistent by Axiom 15, since

x + (y .− (τ .− z)) = τ.

Subcase 2.2. z + (y .− (τ .− x)) = τ .
Then (3) equals

〈k + l + m + 2, (y .− (τ .− x)) .− (τ .− z)〉
and by Axiom 16 this equals

〈k + l + m + 2, (y .− (τ .− z)) .− (τ .− x)〉
so (1) = (3).

This concludes the proof that ⊕ is associative.
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3.6. Cancellation

In the preceding we have established that (P,≤P ,⊕) is a commutative ordered
monoid with 0 as least element. In Lemma 3.4 (in Section 3.4) we show (en
passant) that

〈k, x〉 ≤ 〈k, x〉 ⊕ 〈l, y〉
for any 〈k, x〉, 〈l, y〉.

It remains to prove cancellation or relative complementation, namely:

Lemma 3.5. If 〈k, x〉 ≤ 〈l, y〉 then there exists 〈m, z〉 with

〈k, x〉 ⊕ 〈m, z〉 = 〈l, y〉.

Proof. Assume 〈k, x〉 ≤ 〈l, y〉. Then k ≤ l. If k = l, then x ≤ y. So take m = 0
and z = y .− x.

If, however, k < l, there are two cases.

Case I. x ≤ y. In this case, we take m = l − k > 0 and z = y .− x, and we are
done.

Case II. y < x.
We shall be concerned with Case II for the rest of the proof. We need

〈m, z〉 such that

〈l, y〉 = 〈k, x〉 ⊕ 〈m, z〉,
and as usual the Case 1/Case 2 distinction (for Case II) on x, z intervenes.
But now z is the unknown, with x, y given.

Suppose z can be found in Case 1. So x + z < τ , and then y = x + z, so
y ≥ x, contradicting our assumption.

Thus z can be found, if at all, only in Case 2, and then

y = x .− (τ .− z) = z .− (τ .− x),

so τ .− z = x .− y.
So z = τ .− (x .− y). What about m? We want

〈l, y〉 = 〈k + m + 1, x .− (τ .− z)〉,
so we need only

l = k + m + 1,

so m = (l − k) − 1 ≥ 0. �

This completes the proof of Theorem 3.2. �

Remark 3.6. We are going to use Theorem 3.2 only for discretely ordered
TOAG’s, in fact only the [0, τ ] coming from models of Presburger arithmetic.
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3.7. Presburger truncated ordered abelian groups

In our applications we take Presburger arithmetic (cf. [9]) to be formulated in
the language of ordered groups with a distinguished constant 1 (to denote the
least positive element). We generally drop the distinction between the group
Γ and its non-negative part.

Note that 0 �= 1 in models of Presburger.
We now consider Presburger truncated ordered abelian groups, i.e. trun-

cated ordered abelian groups of the form [0, τ ] with distinguished element 1,
the least positive element (we do not insist that 1 < τ), which are truncations
of models of Presburger.

Theorem 3.7. A truncated ordered abelian group [0, τ ] with least positive ele-
ment 1 is a Presburger truncated ordered abelian group if and only if it satisfies
the following conditions:
(1) [0, τ ] is discretely ordered and every positive element is a successor,
(2) For each positive integer n and each x in [0, τ ] there is a y in [0, τ ] and

an integer m < n such that

x = ny + m = (y + · · · + y)︸ ︷︷ ︸
n times

+ (1 + · · · + 1)︸ ︷︷ ︸
m times

.

Note. If m = 0 in Z, then by definition we have that m = 0 in [0, τ ].

Proof. Necessity is clear from the axioms of Presburger.
For sufficiency, we argue as follows. Suppose [0, τ ] satisfies Conditions (1)

and (2) (and has a distinguished least positive element 1). Build P as in the
proof of Theorem 3.2. Clearly 1 is the least positive element of P and P is
discretely ordered. Let 〈k, x〉 be a nonzero element of P , so k ∈ {0, 1, 2, . . . }
and x ∈ [0, τ). If x �= 0,

〈k, x〉 = 〈k, x .− 1〉 + 〈0, 1〉,
so 〈k, x〉 is a successor. If x = 0, and k �= 0, 〈k, x〉 is the successor of 〈k−1, τ−1〉.

So P is discretely ordered, and every positive element is a successor.
To get the Euclidean division results, fix a positive integer n and some

〈k, x〉 in P . Let k = na + b, for non-negative integers a, b with b < n.
Now

〈k, x〉 = 〈k, 0〉 ⊕ 〈0, x〉 = 〈na, 0〉 ⊕ 〈b, 0〉 ⊕ 〈0, x〉,
and

〈na, 0〉 = 〈a, 0〉 ⊕ · · · ⊕ 〈a, 0〉︸ ︷︷ ︸
n times

.

Also, if b > 0,

〈b, 0〉 = 〈1, 0〉 ⊕ · · · ⊕ 〈1, 0〉︸ ︷︷ ︸
b times

and

〈1, 0〉 = 〈0, τ − 1〉 + 〈0, 1〉,
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and if 1 < τ (other case trivial)

τ − 1 = nc + d,

for some c ∈ [0, τ − 1], and 0 ≤ d < n (with usual conventions about multipli-
cation by m). Note that 〈0, 1〉 is the least positive element in P and when we
add it to 〈0, τ − 1〉 we are in Case 2.

Finally, 〈0, x〉 is also of the form nγ + δ, with 0 ≤ δ < n via Condition 2
for [0, τ ].

Thus 〈k, x〉 is congruent “modulo” n to an integer less than n, and we
are done. �

4. Elementary equivalence of Presburger truncated ordered
abelian groups

In this section we address the question of when [0, τ ] ∼= [0, μ] holds if both
are Presburger truncated ordered abelian groups. We shall give a criterion for
this.

Clearly the answer comes, by Theorem 3.7, from an answer to the ques-
tion: what are the pure 1-types for Presburger arithmetic? The answer to this is
well-known [9]. Namely, the pure 1-type of an element x in P , the non-negative
part of a model of Presburger, is determined by

(A) Whether or not x ∈ {0, 1, 2, . . . },
(B) The remainder of x modulo n for each positive integer n.

Theorem 4.1. The elementary theory of a Presburger truncated ordered abelian
group [0, τ ] is determined by the Presburger 1-type of τ − 1 (the penultimate
element of [0, τ ]), i.e. by
(A) Whether or not τ − 1 ∈ {0, 1, 2, . . . },
(B) The congruence class of τ − 1 modulo n for each positive integer n.
Moreover, any Presburger 1-type can occur for some truncated ordered abelian
group [0, τ ].

Proof. Immediate from the preceding. �

5. An proof suggested by the Referee

We are grateful to the anonymous referee for valuable comments and remarks,
for making a connection of our work to work of Rieger [10,11,12] on cyclically
ordered abelian groups, and for outlining an alternative proof of the existence
of the group in Theorem 3.2 using Rieger’s results.

However, in our Theorem 3.2 the TOAG is an initial segment of the group
we construct. This does not seem obvious via Rieger. The referee also stated
the relevance of the paper by Richard Ball [3] to our work.

Our objective had been to find explicit and computable axioms that
would capture exactly the truncations of ordered abelian groups that arise
from quotients of valuation rings.
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Although this alternative construction is not explicit as ours and does not
involve axioms, bringing the ideas and results of Rieger on circular orders into
the repertoire of model theory of local rings may well be productive. Rieger’s
work has been used in [6].

We give the referee’s argument below. In this proof, instead of doing
the construction in one step as we do, one first defines a cyclically ordered
(c.o.) group on a TOAG and then constructs the unwound of this c.o. group.
Applying Rieger, one can get a totally ordered group. If one takes the positive
part of the unwound, one recovers our set P .

Let ([0, τ),+, 0,≤) be a model of Axioms 1–16. Let b, c ∈ [0, τ). Then
define a new operation +̃ as follows.

b+̃c =

{
b + c if b + c < τ,

b .− (τ .− c) b + c = τ.

(This represents cases 1 and 2 that we distinguished in Subsection 3.2).
Let R be a ternary relation on ([0, τ), <) defined by R(x, y, z) if x < y < z

or y < z < x or z < x < y. Then ([0, τ), R, +̃, 0) is a cyclically ordered (c.o.)
group. Indeed since + is commutative (Axiom 1), +̃ is also commutative. It
can be easily checked that R is compatible with +̃. For z ∈ [0, τ), define
−z := τ .− z. By Axiom 9, τ .− (τ .− z) = z and so z+̃(τ .− z) = 0. By the proof
of associativity in Subsection 3.5, +̃ is associative (this can also be checked
directly—however in our proofs in Subsection 3.5 we prepare for the greater
complexities to be met in the proof of the main embedding theorem).

For Rieger’s notion of unwound and his result see [10,11,12] and [5, pp.
61–65]. Let us establish the following parallel between the construction of the
unwound of a c.o. group and our construction in Section 3.1. It is convenient to
follow the notation in Giraudet, Leloup and Lucas [6]. Set H = ([0, τ), R, +̃, 0).
In Section 3.1, we had P = ω × [0, τ).

In [6, Definition 2.2], the unwound is defined as uw(H) = Z × H, where
the order ≤R is defined by

(m, c) ≤R (m′, c′) ⇔ m < m′ or (m = m′ and (c = 0 or R(0, c, c′))),

and the group operation is defined by

(m, c) + (m′, c′)

=

{
(m + m′, c+̃c′) if c = 0 or c′ = 0 or R(0, c, c+̃c′),
(m + m′ + 1, c+̃c′) if c �= 0 and c+̃c′ = 0 or R(0, c+̃c′, c).

The set of (m,m′), where m,m′ > 0 corresponds to our P and (in the notation
of [6]), zH := (1, 0) corresponds to our τP .

By Rieger’s theorem [10,11,12] (stated also in [5, pp. 61–65] and [6, Theo-
rem 2.3]), one has uw(H)/〈zH〉 ∼= H. This gives the construction of the group.
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