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Abstract

Let U be a matrix chosen randomly, with respect to Haar measure, from the
unitary group U(d). For any k ≤ d, and any k × k submatrix Uk of U, we express
the average value of |Tr(Uk)|2n as a sum over partitions of n with at most k rows
whose terms count certain standard and semistandard Young tableaux. We combine
our formula with a variant of the Colour-Flavour Transformation of lattice gauge
theory to give a combinatorial expansion of an interesting family of unitary matrix
integrals. In addition, we give a simple combinatorial derivation of the moments
of a single entry of a random unitary matrix, and hence deduce that the rescaled
entries converge in moments to standard complex Gaussians. Our main tool is the
Weingarten function for the unitary group.

1 Introduction and Statement of the Main Theorem

Consider the unitary group U(d) as a probability space under normalized Haar measure
dU . Given a random variable X : U(d) → C, its expected value is defined to be

EU(d)(X) =

∫

U(d)

XdU.

When studying a random variable X, one often wishes to know its moments

EU(d)(X
mX

n
),

since in many situations the moments of X uniquely determine its distribution. X is
called a polynomial random variable if it is polynomial in the entries of U, i.e. if there is
a polynomial f ∈ C[x11, . . . , xdd] such that

X(U) = f(u11, . . . , udd)
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for all U ∈ U(d). If X is a polynomial random variable, then

EU(d)(X
mX

n
) = 0 if m 6= n,

(see [1]), so knowledge of the moments of X reduces to knowledge of the quantities

EU(d)(|X|2n).

It has recently been shown that certain polynomial random variables on the unitary
group encode interesting combinatorial information via their moments. For a random
matrix U ∈ U(d), write its characteristic polynomial as

det(U − zI) = (−1)d

d
∑

j=0

(−1)j Scj(U)zd−j .

Scj(U) is called the j-th secular coefficient of U. In particular,

Sc1(U) = Tr(U)

Scd(U) = det(U).

The combinatorial significance of the secular coefficients of a random Haar-distributed
unitary matrix is that their moments enumerate magic squares. It is shown in [2] that for
jn ≤ d,

EU(d)(| Scj(U)|2n) = Hn(j),

where Hn(j) is the number of n × n matrices whose entries are nonnegative integers and
whose rows and columns all sum to j.

For the Sc1(U) = Tr(U), this reduces to the fact that for n ≤ d, EU(d)(|Tr(U)|2n) = n!,
the number of n × n permutation matrices. The natural question of what happens when
the condition n ≤ d is removed was answered by Rains in [6], where it was proved that
for any d and n

EU(d)(|Tr(U)|2n) =
∑

λ`n,`(λ)≤d

(fλ)2,

where the sum is over all partitions λ of n and f λ denotes the number of Standard Young
Tableaux of shape λ. The significance of this result is that, by the RSK correspondence,
∑

λ`n,`(λ)≤d(f
λ)2 is the number f(n, d) of permutations in the symmetric group Sn having

no increasing subsequence of length greater than d. Thus Rains’s result is equivalent to
the remarkable fact that the exponential generating series for f(n, d) has a “closed form”
as an integral over the unitary group U(d) :

∞
∑

n=0

f(n, d)

n!

zn

n!
=

∫

U(d)

e
√

z Tr(U+U∗)dU.

The elegant method of proof employed in [2], [6] consists of two main ingredients:
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• The secular coefficients of U are the elementary symmetric functions applied to the
eigenvalues of U.

• The elementary symmetric functions can be written as linear combinations of Schur
functions, which are the irreducible characters of the unitary group and thus satisfy
orthogonality relations.

In this paper we will study polynomial random variables on U(d) that are not sym-
metric functions of the eigenvalues. For example, suppose that we are given a random
matrix U ∈ U(d), and we want to calculate the moments of a single entry of U

EU(d)(|uij|2n)

(note that since the permutation matrices are in U(d) and Haar measure is unitary in-
variant, all entries of U are equidistributed). More generally, for a positive integer k with
1 ≤ k ≤ d, let Uk denote the k×k upper left corner of U. We could ask about the moments
of the matrix Uk

EU(d)(|Tr(Uk)|2n)

(again, since the permutation matrices are in U(d), the traces of any two k×k submatrices
of U are equidistributed). The methods used in [6], [2] will not work in this situation,
since we are no longer dealing with the eigenvalues of a unitary matrix, but rather the
eigenvalues of one of its submatrices, so that Schur orthogonality is not directly applicable.
However, quite surprisingly, there is a combinatorial formula for these moments that
maintains the structure of that for the full matrix case.

Theorem 1. Let U be a matrix chosen randomly with respect to Haar measure from the
unitary group U(d), and let Uk be its k × k upper left corner. We have

EU(d)(|Tr(Uk)|2n) =
∑

λ`n,`(λ)≤k

(fλ)2 sλ(1
k)

sλ(1d)
.

Equivalently, for any z ∈ C we have

∫

U(d)

e
√

z Tr(Uk+U∗

k
)dU =

∞
∑

n=0

(

∑

λ`n,`(λ)≤k

(fλ)2

n!

sλ(1
k)

sλ(1d)

)

zn

n!
.

Here, for a positive integer r, sλ(1
r) denotes the number of Semistandard Young

Tableaux on the shape λ with entries from the set [r] = {1, . . . , r}. The notation sλ(1
r) is

shorthand for the value of the Schur function sλ obtained by setting the first r variables
equal to 1 and making the remaining variables 0.

Note that we recover Rains’s result by setting k = d in Theorem 1.
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2 Applications of the Main Theorem

Before proving Theorem 1, we will give two applications. First we use the Colour-Flavour
Transformation of lattice gauge theory to give another formulation of Theorem 1, which
gives a combinatorial expansion for an interesting type of matrix integral. Then we use
Theorem 1 to give simple combinatorial proofs of known probabalistic results regarding the
moments and limiting distribution of the individual entries of a random unitary matrix.

The matrix Uk is called the kth truncation of U. Truncations of random unitary matri-
ces have been the subject of several recent articles (see [3], [5], [8]). Interest in truncations
of random unitary matrices stems from their relation to the physics of quantum chaotic
scattering [8].

Truncations of random unitary matrices are closely related to the so-called Colour-
Flavour Transformation (CFT) from physics introduced in [11]. As explained in [10], the
CFT trades an integration over a “colour” gauge group for an integration over a certain
supersymmetric coset space, or “flavour” space. The physical terminology comes from
lattice gauge theory. There are several versions of the CFT, see [3] for details. The one
that we will use can be formulated mathematically as follows (see [3], [10]). Let k ≤ d,
and let X, Y ∈ Cd×k be constant matrices. Then

∫

U(d)

eTr(Y ∗UX+X∗U∗Y )dU =

∫

U(k)

eTr(X∗XV ∗+V Y ∗Y ) det(V Y ∗X)k−ddV.

This variant of the CFT shows a certain recursive property of integration on the
unitary group. In [10], the interesting observation was made that the integral on the
left does not change if we replace the unitary group U(d) with the special unitary group
SU(d) provided k < d :

∫

U(d)

eTr(Y ∗UX+X∗U∗Y )dU =

∫

SU(d)

eTr(Y ∗UX+X∗U∗Y )dU, k < d.

Now let x be a nonnegative real number and take X(x) = Y (x) ∈ Cd×k to be the

matrix with x
1
4 along the main diagonal and 0’s elsewhere. Then

Y (x)∗UX(x) =
√

xUk

X(x)∗U∗Y (x) =
√

xU∗
k

V Y (x)∗X(x) =
√

xV.

Thus applying the CFT yields

Corollary 2.1. Let k, d be positive integers with k ≤ d, and let x be a nonnegative real
number. Define

f(n, d, k) :=
∑

λ`n,`(λ)≤k

(fλ)2

n!

sλ(1
k)

sλ(1d)
.
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The exponential generating series for f(n, d, k) has two different closed forms, one as an
integral over U(d) and one as an integral over U(k) :

∞
∑

n=0

f(n, d, k)
xn

n!
=

∫

U(d)

e
√

xTr(Uk+U∗

k
) = x

k(k−d)
2

∫

U(k)

e
√

xTr(V +V ∗) det(V )k−ddV.

Also, in the range k < d, we have a third closed form as an integral over the group SU(d):

∞
∑

n=0

f(n, d, k)
xn

n!
=

∫

SU(d)

e
√

xTr(Uk+U∗

k
)dU.

We remarked in the Introduction that the extreme case k = d of Theorem 1 is Rains’s
result, and is of relevance to the longest increasing subsequence problem. The other
extreme k = 1 is also of interest, since this corresponds to the computation of the moments
of a single entry of a random unitary matrix.

Corollary 2.2. In the special case k = 1, we have

EU(d)(|uij|2n) =
n!

d(d + 1) . . . (d + n − 1)
=

(

d + n − 1

n

)−1

.

Proof. For k = 1 the only contribution to the sum is made by the single partition whose
diagram is a row of n boxes. Thus we have

∫

U(d)

|uij|2ndU =
1

sn(1d)
.

The generalized hook length formula asserts that

sλ(1
d) =

∏

�∈λ

d + c(�)

h(�)
,

where c(�) is the content of the box, and h(�) is its hook length (see [9]). For the single
row partition of n, this gives

sn(1d) =
d(d + 1) . . . (d + n − 1)

n!
,

and the result follows.

Explicitly knowing the moments of uij makes it easy to determine its limiting distri-
bution. Recall that if x, y are Gaussian random variables with mean 0 and variance 1/2,
then the random variable z = x + iy is called a standard complex Gaussian.

Corollary 2.3. As d → ∞, the random variable
√

duij converges in moments to a stan-
dard complex Gaussian random variable.
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Proof. It is well-known (see for instance [5]) that the moments of a standard complex
Gaussian z are given by

E(zmzn) = δmnn!.

Corollary 1.2 shows that

EU(d)((
√

duij)
m(

√
duij)

n) = δmn

dnn!

d(d + 1) . . . (d + n − 1)

= δmn

n!

(1)(1 + 1
d
) . . . (1 + n−1

d
)

→ δmnn!.

3 The Weingarten Function

In order to prove Theorem 1, one needs to connect unitary expectations to symmetric
function theory by some method other than applying symmetric functions to eigenvalues.
This can be done using the Weingarten function introduced in [1], which is a powerful tool
for computing the moments of polynomial random variables on the unitary group. The
Weingarten function has already been used in free probability theory to prove asymptotic
freeness results for random unitary matrices (see the recent book [4] for a clear account
of this).

For any positive integers d and n, define a function Wg(d, n, ·) : Sn → Q by

Wg(d, n, σ) :=
1

n!2

∑

λ`n, `(λ)≤d

(fλ)2

sλ(1d)
χλ(σ),

where χλ is the irreducible character of Sn labelled by λ.
The following integration formula was proved in [1].

Theorem 2. Let i, j, i′, j ′ : [n] → [d] be any functions. Then

∫

U(d)

ui(1)j(1) . . . ui(n)j(n)ui′(1)j′(1) . . . ui′(n)j′(n)dU

=
∑

σ,τ∈Sn

δi(1)i′(σ(1)) . . . δi(n)i′(σ(n))δj(1)j′(τ(1)) . . . δj(n)j′(τ(n)) Wg(d, n, τσ−1),

where δ is the Kronecker delta.

We can succinctly express the moments of Tr(Uk) in terms of the Weingarten function
as follows:
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Lemma 1. For any positive integers n and k, where 1 ≤ k ≤ d, we have

EU(d)(|Tr(Uk)|2n) = n!
∑

α

(

n

α

)

∑

σ∈Sα

Wg(d, n, σ),

where the outer sum runs over all weak k-part compositions α of n, and the inner sum
runs over all permutations in the Young subgroup Sα of Sn.

Proof. This is really just a calculation. We expand

|Tr(Uk)|2n = |u11 + · · ·+ ukk|2n

= (u11 + · · · + ukk)
n(u11 + · · ·+ ukk)

n

=
∑

α

∑

β

(

n

α

)(

n

β

)

uαuβ,

where we are summing over all pairs of weak k-part compositions of n, α = (a1, . . . , ak)
and β = (b1, . . . , bk). We are using multi-index notation,

(

n

α

)

=

(

n

a1, . . . , ak

)

uα = ua1
11 . . . uak

kk
(

n

β

)

=

(

n

b1, . . . , bk

)

uβ = ub1
11 . . . ubk

kk

Hence

EU(d)(|Tr(Uk)|2n) =
∑

α

∑

β

(

n

α

)(

n

β

)

EU(d)(u
αuβ).

We will use the Weingarten integration formula to evaluate the expectation EU(d)(u
αuβ)

for a fixed pair of compositions α, β. Implicitly define coordinate functions iα, jα, iβ, jβ :
[n] → [d] by setting

∫

U(d)

uiα(1)jα(1) . . . uiα(n)jα(n)uiβ(1)jβ(1) . . . uiβ(n)jβ(n)dU

:=

∫

U(d)

ua1
11 . . . uak

kku
b1
11 . . . ubk

kkdU

= EU(d)(u
αuβ).

Applying the Weingarten integration formula, we have

EU(d)(u
αuβ)

=
∑

σ,τ∈Sn

δiα(1)iβ(σ(1)) . . . δiα(n)iβ(σ(n))δjα(1)jβ(τ(1)) . . . δjα(n)jβ(τ(n)) Wg(d, n, τσ−1).
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Since we are only taking entries from the diagonal, we have iα = jα and iβ = jβ. Moreover,
the level sets of these functions are easy to read off:

i−1
α (1) = [1, a1]

i−1
α (2) = [a1 + 1, a1 + a2]

...

i−1
α (k) = [n − ak + 1, n]

and

i−1
β (1) = [1, b1]

i−1
β (2) = [b1 + 1, b1 + b2]

...

i−1
β (k) = [n − bk + 1, n]

Hence

a1
∏

r=1

δiα(r)iβ(σ(r)) =
a1
∏

r=1

δ1iβ(σ(r))

a1+a2
∏

r=a1+1

δiα(r)iβ(σ(r)) =

a1+a2
∏

r=a1+1

δ2iβ(σ(r))

...
n

∏

r=n−ak+1

δiα(r)iβ(σ(r)) =
n

∏

r=n−ak+1

δkiβ(σ(r)),

Thus in order for the product

δiα(1)iβ(σ(1)) . . . δiα(n)iβ(σ(n))

to be nonzero, we see that σ must bijectively map the interval [1, a1] onto the interval
[1, b1], and σ must also bijectively map the interval [a1 + 1, a1 + a2] onto the interval
[b1 + 1, b1 + b2], etc. Similarly, in order for the product

δjα(1)jβ(τ(1)) . . . δjα(n)jβ(τ(n))

to be nonzero, we see that τ must bijectively map the interval [1, a1] onto the interval
[1, b1], and τ must also bijectively map the interval [a1 + 1, a1 + a2] onto the interval
[b1 + 1, b1 + b2], etc. Thus we see that the expectation EU(d)(u

αuβ) is zero unless:

• α = β, i.e. these two are the same weak k-part composition of n,
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• σ, τ are both in the Young subgroup Sα, i.e. the subgroup of permutations in Sn

that permute the first a1 symbols amongst themselves, the next a2 symbols amongst
themselves, etc.

Thus

EU(d)(|Tr(Uk)|2n) =
∑

α

(

n

α

)2

EU(d)(u
αuα)

=
∑

α

(

n

α

)2
∑

σ,τ∈Sα

Wg(d, n, τσ−1)

=
∑

α

(

n

α

)2

α!
∑

σ∈Sα

Wg(d, n, σ)

= n!
∑

α

(

n

α

)

∑

σ∈Sα

Wg(d, n, σ)

4 Proof of the Main Theorem

We are now in a position to prove Theorem 1.

Proof. We work with the sum on the right hand side of Lemma 1. Plugging in the
definition of the Weingarten function, we have

n!
∑

α

(

n

α

)

∑

σ∈Sα

Wg(d, n, σ) = n!
∑

α

(

n

α

)

∑

σ∈Sα

1

n!2

∑

λ`n, `(λ)≤d

(fλ)2

sλ(1d)
χλ(σ).

Changing order of summation, this becomes

∑

λ`n, `(λ)≤d

(fλ)2 1

sλ(1d)

∑

α

1

α!

∑

σ∈Sα

χλ(σ) =
∑

λ`n, `(λ)≤d

(fλ)2 1

sλ(1d)

∑

α

〈1, χλ〉Sα
,

where the inner product 〈·, ·〉Sα
is the averaged dot product on the space CF (Sα) of

complex-valued class functions on the group Sα. Note that this sum may be written as

∑

λ`n, `(λ)≤d

(fλ)2 1

sλ(1d)

∑

α

〈1, χλ ↓Sn

Sα
〉Sα

,

where χλ ↓Sn

Sα
is the restriction of the irreducible character χλ of Sn to the subgroup Sα.

Now, the function which is identically 1 is the character of the trivial representation of
Sα. Thus we may apply Frobenius reciprocity (see for instance [7]);

〈1, χλ ↓Sn

Sα
〉Sα

= 〈1 ↑Sn

Sα
, χλ〉Sn

,
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where 1 ↑Sn

Sα
is the induction of the trivial character of Sα to Sn.

The final step in the proof relies on the characteristic map chn : CF (Sn) → Λn, where
Λn is the inner product space of degree n symmetric functions equipped with the Hall
inner product 〈·, ·〉Λn (see [7] or [9]). The characteristic function is an isometry, and has
the following important properties:

chn(1 ↑Sn

Sα
) = hα

chn(χλ) = sλ,

where hα is the complete homogeneous symmetric function indexed by α, and sλ is the
Schur function indexed by λ. Thus we have

〈1 ↑Sn

Sα
, χλ〉Sn

= 〈chn(1 ↑Sn

Sα
), chn(χλ)〉Sn

= 〈hα, sλ〉Λn.

It is well-known that the Schur functions constitute an orthonormal basis for Λn, and
that the coordinates of the complete homogeneous symmetric functions with respect to
the basis of Schur functions are the Kostka numbers (see [9]). That is,

hα =
∑

µ`n

Kµαsµ,

where the Kostka number Kµα is by definition the number of semistandard Young tableaux
on the diagram of µ with content vector α. Thus,

〈hα, sλ〉Λn =
∑

µ`n

Kµα〈sµ, sλ〉Λn = Kλ,α.

Thus we have

∑

λ`n, `(λ)≤d

(fλ)2 1

sλ(1d)

∑

α

〈1, χλ〉Sα
=

∑

λ`n, `(λ)≤d

(fλ)2 1

sλ(1d)

∑

α

Kλα

=
∑

λ`n, `(λ)≤d

(fλ)2 sλ(1
k)

sλ(1d)
,

where the last equality follows from the fact that, by definition,
∑

α

Kλα = sλ(1
k),

since the sum runs over all weak k-part compositions of n.
Finally, we remark that if λ is a partition of n with `(λ) > k, then sλ(1

k) = 0. Hence,

∑

λ`n, `(λ)≤d

(fλ)2 sλ(1
k)

sλ(1d)
=

∑

λ`n, `(λ)≤k

(fλ)2 sλ(1
k)

sλ(1d)
,

which proves our theorem.
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5 Conclusion

The results in this paper arose from the author’s attempts to evaluate known unitary
integrals via the Weingarten function. It was observed that with the Weingarten method
one gets information about related integrals where the matrices in the integrand are
truncated with no extra work.

The notion of Weingarten function has been defined for the orthogonal and symplectic
groups O(d) and Sp(d), and similar expansion formulas have been proved for expectations
of polynomial random variables on these groups [1]. There are also versions of the Colour-
Flavour transformation for the orthogonal and symplectic groups (indeed, the Colour-
Flavour transformations are all intimately related to Howe duality, see [12]). Thus there
are likely analogues of Theorem 1 for truncations of random orthogonal and symplectic
matrices.

6 Acknowledgements

I am grateful to Roland Speicher and Jamie Mingo for helpful discussions, and to Richard
Stanley for encouraging comments.

References
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