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NOMENCLATURE

Member cross-sectional area 
A branch-node incidence matrix associated 
with the geometry transformation in global 
coordinates
The branch-node incidence matrix associated with 
a geometry transformation of the variable members 
Number of branches 
Number of displacement constraints 
2+2v 
2+4v

Modulus of elasticity 
Member forces
Horizontal forces at the joints 
A unit matrix
Member stiffness matrix or global unstructured 
stiffness matrix
The local member stiffness matrix for member m 
A structural global stiffness matrix associated 
with DC
A structural global stiffness matrix associated 
with FC
Length of member
The unknown variable matrix



n = Number of nodes or number of degrees of freedom
Nj = Number of joints
Nm = Number of members
{N} = The unknown variable matrix”1
{P} = The forces in global coordinates due to applied

joint loads or a vector of applied joint loads 
in global.coordinates 

{P'} = The applied joint loads in global coordinates
{Pg} = The applied member forces of the variable members 

in local coordinates 
{R> = The total member forces or the axial member

forces in global coordinates 
[S] = A structured global stiffness matrix
[T] = The transformation of displacement-rotation

matrices for the members
nj
[T] = A geometry transformation matrix
u = The unknown member distortions in global

coordinates
{u} = A vector of joint displacements in global

coordinates 
{u'} = Joint displacements
{U} = The member distortions due to discontinuities
v = Number of variable members
V = Vertical forces at the joints
{V} = The final member distortions in global

coordinates
{W} = A column matrix represents joint loads including

v ii



constrained values in global coordinates 
{Wj} = A column matrix represents applied joint loads in

global coordinates 
{W2} = An applied joint load due to the force constraint

in a variable member in global coordinates
[0] = A null matrix
T  = Axial stresses in members
A = Member displacements
{ot}, {£}, {Y}, { jx }  -  The resulting submatrices after

transformation

Superscripts : 
t,T = Matrix transposition 
* = Local coordinates values



GLOSSARY

Across Variable

Branch

Datum Node

Ideal Load

Ideal Member

A joint displacement in the structural 
model, it can be measured by using 
strain gauges and defined as a vector 
quantity between two nodes.
A line connecting two nodes in the net­
work graph. It represents a structural 
member. Associated with the branch is 
the member stiffness matrix relation­
ship.
The node in a network graph that repre­
sents the structural supports (i.e., 
zero displacement, it is called 
reference node or fixed node)
The applied load at the negative end of 
an ideal member in a DC system, it is a 
function of the displacement constrain­
ing value. In a FC system it is 
referred to as an applied member force. 
The magnitude represents the force 
constraints.
A member with an assumed stiffness con­
nected in series with a nullator used

ix



Joint

Member

Mesh/Loop

Node

Norator

Nullator

Through Variable =

Variable Member =

in a DC system.
It is defined as the connection of 
structural members and represented by 
the graph nodes.
It is defined as the structural member 
and is represented by the graph 
branches
If the starting and terminal nodes of a
set of branches are the same node, it
is called a mesh or a closed loop.
The points in a network graph at the 
junction of the branches.
It is an element that is connected in 
series between the negative end and the 
new node in a FC system. In terms of 
force and displacement, it is defined 
as a Norator (F,Q) .
Member used to indicate the constrained 
relationship between the positive and 
negative ends in a DC system. The 
stiffness of this member is undefined.
A member force in a structural model, 
it can be calculated from the strain 
gauges and defined as a vector 
quantity at a node.
It is a member with unknown properties; 
for truss it is the cross-sectional

x



area. On the network graph, it is 
shown as a clashed line. In unstruc­
tured global stiffness matrix is 
treated to be zero for variable member.
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ABSTRACT

TRUSS ANALYSIS USING 
SINGULAR IMBEDDING METHOD

by
THIEM JENNGAMKUL 

University of New Hampshire, December, 1983

In structural analysis and design of trussed
structures, the Singular Imbedding Method is applied and
formulated to handle joint displacement, member force, and 
member stress constraints. There are two structural 
systems, namely, a Displacement Constraining System (DC) 
and a Force Constraining System (FC) that are developed for 
constraining joint displacements and member forces, 
respectively. The formulation of this method is based upon 
three sets of equations; equilibrium conditions, 
compatibility relationships, and Hooke's law of material.

The final structural stiffness matrix equations are
constructed for the different types of constraints. The
unknown member areas are determined from the final 
structural stiffness matrix equations. The analysis 
limitations are presented and classified for a design
criterion. Example problems are presented to illustrate
the application of this analysis.

xv



CHAPTER 1

INTRODUCTION

1.1 Historical Review
The network topological technique is a method used

to analyze elastic structural systems utilizing concepts
similar to electrical circuit theory. This method was

(15,16)introduced by William R. Spillers, using network
analysis principles, to develop mathematical models of
truss problems. This mathematical analogy is convenient
for solutions using a digital computer. A method of
solution for an arbitrary truss is developed and written
in terms of three matrices : one that describes the
stiffness of the members; one that describes the loads on
the joints; and an incidence matrix that represents the
connectivity relations of the structure.

Network analysis of structures was developed by
William R. Spillers and Frank L. Di Maggiof*^ and by S.J.

(6,7,8)Fenves and F.H. Branin, Jr. Each investigated the
following two methods of a network analysis : the node and

* Number in parenthesis refers to literature cited in the 
Bibliography
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mesh methods which are similar to the displacement and
force methods of structural analysis, respectively.

Matrix methods can be used to analyze and design
statically indeterminate structures with specified
constraints (e.g., joint displacements, member forces or
member stresses). Initial values for structural
properties are assumed and then modified during each
iteration until a feasible solution, is reached.

To eliminate the long process of iteration as
previously described, the Singular Imbedding Method was
introduced in structural analysis (See Appendix C). This
approach was implemented for designing structures to meet
specified requirements, namely, joint displacements or 

(14)member forces. These requirements can be the constraints 
placed upon a problem by a designer or the limits 
specified by codes or other specifications.

1.2 Singular Imbedding Method
The Singular Imbedding Method was introduced by

E.B. Kozemchak and M.A. Murray-Lasso for computer-aided
(12)circuit design. This method is a direct solution for 

designing the circuit elements to meet a given set of 
node-pair voltages, branch currents, or driving point and 
transfer impedances. The undetermined element currents, 
node voltages, resistors and capacitors are selected as 
the variables in the formulation. The singular elements



3

are introduced and connected into a network to impose the 
desired constraints. A voltage forcing element (VFE) is 
used to constrain network voltages, and a current forcing 
element (CFE) is used to constrain network currents. A 
final nodal equation is established and the values for the 
variable elements are solved simultaneously.

To analyze structural problems, a
Network-Topological Formulation can be used. A network 
graph is used to represent the structural joints and 
members in a structural stiffness analysis. The graph 
nodes represent the structural joints and the graph 
branches correspond to the members. To extend the
analysis to handle joint displacement and member force
constraints DC (Displacement Constraining) and FC (Force 
Constraining) systems are developed. The systems when 
introduced into the analysis allows for the determination 
of member properties to achieve the structural performance 
specified by the constraints.

The following example will illustrate the 
procedure. Beginning with a structure with defined 
geometry and defined member properties for members a and b 
a displacement constraint is specified as shown in Figure 
(1a). A constraint is imposed that limits the free joint 
displacement in the x direction to have a magnitude of Ax. 
For the purpose of this example, member c is selected as 
the variable member. A DC system is introduced in place 
of member c as shown in Figure (1b). A stiffness analysis
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is performed with the DC system. From this, the joint 
displacements and member forces are determined. The 
member stiffness equation for member c is then used to 
determine the variable member property for member c. For 
a truss structure the variable can be the cross-sectional 
area or the modulus of elasticity. This procedure may 
produce a positive or negative value for the variable 
property. A positive value represents a feasible
solution. In other words if the magnitude of the 
variable property was used in the analysis the constraint 
would be satisfied. If the variable property is negative
it represents a non-practical solution. This means that 
the specified constraint can not be achieved. This would 
occur if the specified constraint could not be physically 
achieved with any value for the variable property. An 
example of this is, if the specified displacement 
constraint exceeded the displacement in the structure
without member c present as shown in Figure (1c). A 
possible way to achieve the constraint would be to 
prestress the variable member using the magnitude of the 
member force determined in the analysis and the determined 
value for the variable parameter. This type of solution
is referred to in this thesis as a non-practical solution. 
If it is physically impossible to achieve the constraint 
condition, the method leads to a non-feasible solution.
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/ / / / /

System

(a) Specified  Geometry (b) Constrained Structure

(c) Specified  Members

FIG.l I l lu s tr a te d  Example Of A DC Constraint

A force constraint is handled similar to the 
displacement constraint. The structure is specified as 
illustrated for the displacement constraint and selected 
member or members are designated as being constrained to a 
magnitude of force. An FC system is introduced in place 
of the constrained member or members and a stiffness
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analysis performed. The member stiffness equation is then 
used to determine a constrained member property. The 
equation is repeated for each constrained member. The 
results may be practical or non-practical solution as 
explained for the displacement constraint. Prestressing 
is required when the given loads do not develop the member 
force specified by the constraint.

1.3 Thesis Purpose
The purpose of this thesis is to formulate an 

analysis method to handle joint displacement, member 
force, and member stress constraints. The problems that 
are considered in this work are the design of elastic 
trusses. Two structural systems, a Displacement
Constraining System (DC) and a Force Constraining System 
(FC), are developed for constraining joint displacements 
and member forces, respectively. These systems are added 
into a network graph which causes the structural stiffness 
matrix to become singular (a matrix that can not be 
inverted). Therefore, this method is called the Singular 
Imbedding Method. The three sets of equations used by 
this method (for linear elastic trusses) are :

(a) Equilibrium; the summation of forces at each 
node is equal to zero.

(b) Compatibility; the summation of displacements 
in a closed loop is equal to zero.
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(c) Hooke's law; forces are associated with 
displacements as a function of the material properties in 
each member.

The final nodal equations are based upon these 
equations modified to handle the singularity and then 
solved simultaneously. The Singular Imbedding approach 
and the analysis limitations are investigated. The 
application of this analysis is shown by examples.



CHAPTER 2

EQUATIONS OF SINGULAR IMBEDDING ANALYSIS

2.1 Fundamentals Of Network Analysis
When a system is modeled as a network graph, the 

physical components of the system are superimposed on the 
network graph :

(i) The physical relationship of each component 
of the network graph depends upon the properties of a 
particular system being modeled, such as a truss, an 
electrical network, etc.

(ii) The interconnection of the components for the 
system is represented by the topology of the network, 
i.e., the interconnection between components.

Let us consider a network graph; the points are
called nodes and the lines are called branches. A branch
has two endpoints, each of which is a node. A node and a
branch are said to be incident with each other if the node
is an endpoint of the branch. In a structural problem, a
branch represents a structural member. Associated with
the branch is the member stiffness matrix relationship
which for a truss is in linear form. Therefore, a branch

(13)in the network graph is defined as a linear function. A

8



linear graph is a collection of branches, each of which 
can have a common point with another branch only at a 
node. The topology of a graph describes the
interconnection of the nodes. If the starting and
terminal nodes of a set of branches are the same node, it 
is called a mesh or a closed loop, as shown in Fig.2(a).

A directed graph is one in which each branch is
assigned a direction. A branch is oriented in the
direction from its initial node to its final node. The
initial node is defined to be positively incident on the 
branch and the final node negatively incident, as shown in 
Fig.2(b).

+

(a) Mesh (b) Directed Branch

FIG. 2 Network Graph

1 ,2 ,3

(a) (b)

FIG. 3 Network Graph For Truss Problem
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The incidence relationships between nodes and 
branches of a directed graph are specified by the 
branch-node incidence matrix. The elements of this matrix 
are defined as follows : a-jj = ( + 1,-1,0) if the i-branch
is (positively, negatively, not) incident on the j-node.
The size of this matrix is reduced by selecting one node
of a graph as a datum or reference node. In most
structures problem, all support nodes are taken as the 
datum point (as shown in Figure 3). For example, node 1 
in Fig.2(a) is selected as a datum node, the branch-node 
incidence matrix is given in Table 1.

Table 1

Branch-Node Incidence Matrix

^ \ N o d e
Brancn\.

1 2 3

A -1 0
B 1 -1
C 0 -1

*-A-'bx(n-l) “

-1 0 

1 - 1
0 -1

b = number of branches 
n = number of nodes
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Considering the network stiffness (or node) 
method, the two types of variables are an "across" 
variable, obeying the continuity law, and a "through" 
variable, obeying equilibrium. An across variable (a 
joint displacement in the structural model) can be 
measured by using strain gauges and defined as a vector 
quantity between two nodes. Similarly, a through variable 
(a member force in structural model) can be calculated 
from the strain gauges and defined as a vector quantity at 
a node.

x I

h- Axj

(4a) Deformation Of Bar i j

IAyj

Ax3
M

(1)
77777 77777

FIG. (4b) Jo in t Displacements Of Truss
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To begin the network problem, an arbitrary number 
is assigned to each node and branch of the graph. Figure 
(4a) depicts the deformation of bar ij, the elongation 
components of this bar in global coordinates are Ax 
(equals lj- I3) and Ay (equals l£- 14)* These elongations 
are defined in terms of the member distortions for member 
ij. The translations of nodes i and j are called the
joint displacements, i.e., Axi, Ayi, Axj and Ayj.

Let the unknown member distortions specified in 
global coordinates be denoted as u where u = { Ax,Ay}, u' 
is defined as the applied nondatum joint displacements. 
From Figure (4b), the vector u' of node 3 is represented 
by Ax3 and - Ay3. The induced member distortions are 
specified by the matrix equation :

{u} = CA]{u'} (2-1)

where
{u} = the unknown member distortions in global 

coordinates, (2bx1)
[A] = a branch-node incidence matrix associated with 

the geometry transformation in global 
coordinates, [2bx(2n-1)]

{u'}= the assigned non-datum joint displacements in 
global coordinates, [(2n—1)x13

The values of matrix [A] in Table 1 are the
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branch-node relationships. In a structural model, one 
node represents the displacements in x and y coordinates 
for a plane truss structure. Therefore, the values of 1, 
or -1, or 0 are associated with two joint displacements. 
From Equation (2-1), this relationship is applied to 
member ij in Figure (4a). Hence :

"Ax" = [1 -1] m  •

Axi
« *

«

^y .Ayi.

4

/ •

Axj
»

Ayj

Matrix {u'} must be defined in global coordinates 
before applying to Equation (2-1). The size of this
matrix is equal to the number of degrees of freedom, 
determined as a function of the number of branches and 
nodes in the structure.

A y ■I
h II

FIG. 5 Deformation Of A Part Of Truss
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Generally, it is possible to assign to each branch
discontinuity distortions (U) in addition to joint load 
induced member distortions (u) all distortions are in 
global coordinates. The discontinuity distortions are due 
to a movement of a support as shown in Figure 5, e.g., {U} 
is equal to { Ax", Ay"}« Therefore, the sum of the member 
applied and load induced vector quantities are now defined 
as :

where
{V} = the final member distortions in global 

coordinates, (2bx1)
{U> = the member distortions due to discontinuities, 

(2bx1)

From Equation (2-3), an example of this relationship is 
shown for member 3 in Figure 5, is :

{V} = {u} + {U} (2-3)

T{Ax',Ay'} (2-4)

where T{V} (Ax',Ay'}
{Ax, Ay }^as described for member ij in 
Figure (4a).

{u}
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Substituting Equation (2-1) into Equation (2-3) and 
assuming no discontinuities ({U} = {0}), yields :

{V} = [A]{u'} (2-5)

(a)

♦ ' P 
t / -

PX

(b)

(c)

tye

ly4

x6

(d)

FIG. 6 External And Internal Forces Of Truss

Figure 6. depicts the external and internal forces 
of a truss. The applied joint loads P' at nodes A, 5, and 
6 are P4X , P4y , Pgx , Pgy , Pgx , and Pgy as shown in Figure
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(6a). Let P be a force due to an applied load in member 3
shown in Figure (6b). This force can be shown as Px and Py 
in global coordinates. For member 4 and member 5, there 
are member forces similar to member 3» i.e., PX4 , Py4 » Px6 
, and Py6 > as shown in Figure (6c). Due to Equation (39) 
from reference No. 6 (through variables having the 
relationship) :

where
{P'} = the applied joint loads in global coordinates, 

[(2n-1)x1]
{P} = member forces in global coordinates due to 

applied joint loads, (2bx1)

The summation of all member forces may be defined as :

where
{R} = the total member forces in global coordinates, 

(2bx1)
{p} = the member induced forces in global coordinates 

(e.g., thermal, member misfit), (2bx1)

(P'l = C At 3 {P} (2-6)

(RJ = (P) + (p> (2-7)
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The total member forces for member 3 in Figure 
(6d) can be shown by Equation (2-7) to be :

T T T
{“ Rx4>“ rx6» RytJ = f " px » -P y  » Px > Py } + {~Px+> P34.» I^6 » Py6)

(2-8)

But the sum of the member induced forces at every 
joint is zero (See Appendix B). Hence

CAt]{p} = 0 (2-9)

Premultiplying Equation (2-7) by [At], yields :

[At]{R} = [At]{P} + CAt]{p} (2-10)

Substituting Equations (2-6) and (2-9) into Equation
(2-10), one obtains :

(P'l = [At]{R} (2-11)

The physical properties of the elements 
constituting the branches are expressed by :

(R) = C K ]{V } (2-12)

where
[K] = A diagonal matrix in global coordinates which
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represents the physical properties of the 
branches and is referred to as the 
unstructured member stiffness matrix, (bxb) 
An example of matrix [K] is shown in Figure 
(3b). Let the global unstructured member 
stiffness matrices of member 1, 2, and 3 be 
ki2 , kjj, and respectively. Hence :

[K]
lq2 0 0
0 k13 0
0 0 k33

Premultiplying Equation (2-12) by [A ], yields :

[At]{R} = CAt][K]{V} (2-13)

Substituting Equations (2-5) and (2-11) into Equation 
(2-13), one obtains :

or
IP'> = [A ][K][A]{u'} -1
tu'} = [S] (P'}

(2-14a)
(2-14b)

where
CS] = [A"][K][A]

Therefore, the total branch vector quantities {V} 
and {R} can be solved simultaneously in terms of the
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applied joint loads in global coordinates as :

{V} = [ A l t s’]1 {P'} (2-15a)
— 1

{R} = [K][A][S] {P'} (2-15b)

To represent the characteristics of a structural 
problem, a network model is developed to represent the 
structural system as shown in Table 2. The difference 
between a network model and a structural model is that the 
network variables are scalar quantities and the structural 
variables are vector quantities.

Table 2

Simulation Of Network Model To Structural Model

Network Model Structural Model
a) An "across11 variable 

obeys the mesh law :

SMesh distortions in a loop=0
b) A "through" variable 

obeys Kirchoff's node 
law :

2 Currents at any joint = 0
c) The physical properties 

of the elements cons­
tituting the branch are :

{R} = CK3 {V}

a) A joint displacement 
obeys the compatibility 
relationships :

^Displacements in a loop=0
b) A force obeys the 

equilibrium conditions :

£ Forces at the joints = 0
c) Hooke's law of materials 

are :

(FJ = [K]{A}
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A fundamental theory of network graph theory as
applied to structural engineering uses the 3 principle
conditions of analysis: equilibrium, compatibility, and
Hooke’s law of materials.

(a) Equilibrium Conditions; the summation of 
forces at each nodes must be in equilibrium. The sign 
convention of these forces are :

positive value is a force going into a node
negative value is a force going out a node

(b) Compatibility relationships; the summation of 
displacements in a loop defined in a network graph must be 
equal to zero. The sign convention of displacements 
depends upon the direction of a loop and a member 
direction within the loop. A loop direction is assigned 
either clockwise or counter-clockwise, e.g., from Figure 
(7a) a clockwise direction is AECA. If both a loop and a 
member direction are the same, the sign of the 
displacement is ’’Positive". If not, it is represented by 
"Negative".

(c) Hooke's law of material; forces are 
associated with displacements due to the properties of the 
material in each members in a linear manner.

Figure (7a) depicts a statically indeterminate 
truss as a pinned connected structure. The hinge supports 
are located at A and B. The applied joint load 
quantities, Pj -Pg , and displacement quantities, Xj-X^, 
are specified at joints C,D,E and F in global coordinates
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as shown in Figure (7a).

p2 » x 2  P f c , x4

777777

(7a) Forces And Displacements At The Jo in ts In Global Coordinates

Y

FIG. (7b) Forces And Displacements For Member m In Local Coordinates
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The forces and displacements for member m are
shown in Figure (7b) where m is an arbitrary number
(1,2,3....) designating a member of a structure. A
stiffness matrix for member m is written in local
coordinates as :

EA/L 0 -EA/L 0
[K]„ = 0 0 0 0 (2-16)

-EA/L 0 EA/L 0
0 0 0 0

where
CK3 = the member stiffness matrix for member m inm

local coordinates 
E = modulus of elasticity
A = member cross-sectional area
L = length of member

The member distortions in global coordinates are 
designated by {V}. Generally, the member distortions for 
pinned connected structures are :

{V} = {U> + {u} = {U> + [A]{u'} (2-17a)

where
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{V} = total member distortions in global
coordinates (6xNm)

{U} = applied member distortions (due to
discontinuity) (3xNm)

{u} = member distortions due to applied loads in
global coordinates 

{u'J = joint displacements in global cordinates
(3xNj)

CA3 = branch-node incidence matrix, a value in this
matrix is associated with all values in 
global coordinates

The discontinuity member distortions {U} are assumed to be 
zero for the pinned connected structures investigated, 
Thus

{V} = {u} = [A](u'J (2-17b)

Using Equation (2-12), the load-deflection relationship, 
the axial member forces are :

{R} = [K]{V} = [K][A]{u'} (2-18)

where
{R> = the axial member forces in global coordinates
[K] = unstructured members stiffness matrix in

global coordinates
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CA] a branch-node incidence matrix associated
with the geometry transformation for the
entire structure

[u'3 = joint displacements for the entire structure 
in global coordinates, i.e., Xi to Xg

Under joint equilibrium conditions, the summation 
of the total member forces at a node is equal to the 
applied joint loads at that node. Therefore, for the 
complete system :

where
{P'} = applied joint loads in global coordinates,

i.e., PJ to Pg

Substituting Equation (2-18) into Equation (2-19), one 
obtains :

{P'J (2-19)

{P'J [At][K][A]{u'} (2-20a)
or {P'J [SHu'} (2-20b)

where
CS] CAt][K][A] structured global stiffness

matrix
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Solving for the joint displacements, Equation 
(2-20) becomes :

-1
{u'} = [S] {P'} (2-21)

Substituting Equation (2-21) into Equation (2-17b) and 
Equation (2-18) respectively, yields :

(VJ = CSJ1{P'} (2-22a)

-1
(R) = [K][A][S] {P'J (2-22b)

From Equations (2-21),(2-22a) and (2-22b), if the
joint loads and member properties of the structure are
known, the joint displacements, the member distortions,
and the axial member forces in global coordinates can be
determined. The member distortions {V} and the axial

* *member forces {R} can be converted to (V } and (R } in 
local coordinates by premultiplying by the coordinate 
transformation matrix [T], e.g., {R } = CT]{R} where {R*} 
= {Fj, F£, F3, F^} for member m in Figure (7b).

The analysis and design of statically 
indeterminate structures to meet specified requirements 
(i.e., joint displacements, member forces or member 
stresses) is handled by analyzing the system in an 
iterative method. The structural member properties (i.e., 
member area) are assumed in order to produce the member

1
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stiffness matrix, which is used in Equation (2-21) and
Equation (2-22), to satisfy the specified requirements.
A trial-and-error procedure is then performed until a
feasible solution is reached.

An analysis by the Singular Imbedding Method is
developed to eliminate this time consuming process. This 
procedure modifies the network graph by introducing two 
new systems into the analysis. A Displacement 
Constraining System (DC) is introduced to constrain joint
displacements and a Force Constraining System (FC) is 
established to constrain forces or stresses in the 
members. Using these systems member properties can be 
designated as variable. The role of these systems in the 
structural stiffness analysis is explained in the next 
section.

'2.2 Singular Systems
The DC (Displacement Constraining) and FC (Force 

Constraining) systems are associated with the network 
graph to constrain a structure. To graphically represent 
the force and displacement constraints such that only the 
proper equations in the analysis are adjusted, ideal 
members and ideal loads are used in the constraining 
system. These systems when added to the network graph 
enter a value of zero on the main diagonal of the 
structural stiffness matrix which causes the matrix to be
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singular (the zero value represents a member with zero 
stiffness). Thus the systems are referred to as singular 
systems.

The schematic of the DC is shown in Figure 8. 
Nodes i,j and k represent a structural network graph which 
are connected to branches a,b and c, respectively. To 
constrain the. displacement at joint k with a specified 
value relative to joint i, the DC system is applied 
parallel to member c and is connected between nodes i and 
k as shown in Figure (8a). Node i may be a fixed or free 
node depending upon the characteristics of the structure, 
e.g., a support condition is equivalent to a fixed or 
datum node, while joints in the structure are equivalent 
to free nodes.

N ullator member

— N ullator

Ideal load

Ideal member

(a) Displacement at jo in t  k constrained (b) Equivalent Representation

by Displacement Constraining System for DC Using N ullator

FIG. 8 DC SYSTEM

From a conceptual point of a view, the DC element
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can be represented by the following structural components. 
It consists of a nullator, an ideal member, and an ideal 
joint load. These components are connected as shown in 
Figure (8b) with the following physical meanings ;

1) a nullator is defined as a member which is used
to indicate the displacement constraint relationship
between nodes k and m in Figure (8b). The stiffness of 
the nullator member is equivalent to zero. Therefore, the 
force and displacement must be zero between node k and m. 
The displacement constraining values at node k are forced 
to be equal to those at node m (uk = um ). The nullator 
is connected to the joint whose displacement is
constrained.

2) an ideal member must be connected in series 
with a nullator. This member is used to hold the
displacement at node m which is related to node i by 
equilibrium and continuity laws.

3) an ideal joint load represents the applied load 
at node m as a function of the displacement constraining 
value ((Fk} = [K]{ukJ).

FIG. 9 DC System And A Part Of Network Graph
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For example, a part of a network graph is shown 
in Figure 9. with a DC system (members d and i) included. 
The unstructured structural stiffness matrix for this 
network graph is :

[K]

[Ka] 0 0
0 [Kb] 0
0 0 [Kc]
0 0
0 0

0 0 
0 0 
0 0 

0 [ Ki 3 0
0 0 [0]

(2-23)

where
[Ka],[Kb],[Kc]

[K,* ]

CKd]

the global stiffness matrices for 
members a,b,c (one of these members 
can be treated as variable) 
a global stiffness matrix for the 
ideal member
a global stiffness matrix for the 
nullator = [0]

thThe matrix in Equation (2-23) is singular due to the 5 
row and column being all zeros.

Similarly, the schematic of an FC is shown in 
Figure 10. To constrain a force in member c with a 
specified value, the FC system is applied in series with
I

member c toward node k, which is the negative end of the
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member. The positive or negative end of a member is 
expressed in terms of the member incidence as discussed in 
chapter 1.

Member force

— Norator
—  Norator member

Member force

(a) Member force in member c (b) Equivalent Representation

Constrained by Force for FC Using Norator
Constraining System

FIG. 10 FC SYSTEM

From Figure (10b), the FC system consists of a
norator and member force. A norator is connected in
series between the node k and the new node m, which must
be introduced between the negative end and the variable 
member c. The property of a norator allows a displacement 
and a force to occur in a member with a zero stiffness
relationship specified. Member c is the variable member 
in the FC system. The magnitude of the force constraint
is represented by the member force. Joint equilibrium at
joint m makes the force induced in member c equal to the
force constraint.

DC and FC systems were represented by the
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structural components as described. The characteristics 
of these two structural systems must obey the node and 
mesh laws of network analysis. Let us consider a part of 
a network graph which is connected to a DC and/or an FC 
system.

A part of a network graph is added to a DC system 
as shown in Figure 11. for illustration purposes.

N ullator

N ullator member (NM)

Ideal load (IL)

Ideal member (IM)

FIG. 11 Network Graph With DC System

A nullator specifies that the force and
displacement must be zero between nodes k and m. For a
plane truss problem the network equations for Figure 10.
are :
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(a) Equilibrium conditions

at node (k) + Hc = 0

Vb + vc r  0

at node (j) Ha -  Hb + Hd = 0

Va ~ vb + Vd = 0

at node (T) Ha + Hc + him - He
va + vc + VrM "  Ve

at node (m) him -  Hjl = 0

vim - vIL = 0

(b) Compatibility relationships :

Loop (T) Axc - A xim - Axnm =
0

or Axc - A xim = 0

where -

Axnm 0

Ayc -  AyIM -
Ay = NM 0

or 1<

AyIM 0

where

A% t  = 0

Loop (2) + Ax. -  b

IIx
°

<3 0

A^a + Ayh - Ay 0

>(2-24)
0
0

(2-25)

(c) Hooke's law
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Fa = Ka Aa

iiuP

" b A
F_ = K - i .c c c

fim = kim a i

(2-26)
►

From Equation (2-24) through Equation (2-26), it 
is clear that the nullator and nullators do not affect 
these equations. The ideal member affects all 3 equations 
due to its member stiffness. But the ideal load affects 
only the equilibrium conditions as a function of the 
displacement constraint.

A part of the network graph is added to a FC 
system as shown in Figure 12.

pMF (Member force)

-------- No ra tor

--------- Norator member (MF)

(m)<--- pMp (Member force)

FIG. 12 Network Graph With FC System
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The definition of a norator in terms of force and 
displacement will be defined as :

Norator (F,u) = Norator (a,b)

where F and u are represented by a, b as member force and 
member distortion, respectively. The values of a and b 
are arbitrary values which vary from 0 to infinity. In 
this thesis, a member distortion for a norator is defined 
as having a value zero. For a two dimensional network 
analysis the :

(a) Equilibrium conditions are :

at node Ha + Hc - He = 0

Va + V„ V - _ 0a c e
at node Ha + Hd - Hb = 0

va + Vd - vb = 0

at node ® Hc - hMF = 0

vc - VMF = 0

at node Hb +
hmf = 0

Vb + VMF = 0

(b) Compatibility relationships are :
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Loop (?) Axa + A xb -  A xmf -  A x c

Ax

1S3>»
<J+ iu_
<

' s law is :

Fa = Ka*Aa

Fb = W b

Fc = *cAc
fMf = % ' a mf

MF

AVMF

0
0

0
0

(2-28)

(2-29)

From Equation (2-27) through Equation (2-29), it 
is clear that the norator affects these equations due to a 
member force applied to the norator member which 
represents the force constraint.

2.3 Singular Structural Imbedding
In the Singular Imbedding Analysis, there are two 

different kinds of members in the problem, one is a 
defined member, the other is an undefined member or 
variable member. A defined member is a structural member 
whose characteristic properties of area, modulus of 
elasticity, and length are known or defined. A variable 
member is a member with an unknown cross-sectional area.
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The symbol for a variable member is a dashed line in a 

graph.
Recalling Figure (8b), member c is selected as a 

variable member, as shown in Figure (13b). The structural 
stiffness matrix is then developed with a DC system 
included.

(a) A ll Defined Members (b) Member c Is Variable Member

FIG. 13 Structural S t if fn e ss  Matrix For Adding DC

The displacement at node k is constrained relative to node 
i. The direction of the members a, b, c, i, and d are 
i-j,j-k,i-k,i-m, and m-k, respectively. The global member 
stiffness matrices for members a,b and c are [Ka ], [Kjj] 
and C K c]

The ideal member stiffness matrix has arbitrary 
values which are defined relative to the constrained
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displacement values. The formulation of this relationship 
is :

*pm fynxl) “ ^K1^(nxn) *uk *(nxl) ( 2 - 3 0 )

where
{Pin ) = an applied joint load at node m in global 

coordinates
[K..] = a global stiffness matrix for the ideal

member
{u'k } = a joint displacement at node k in global 

coordinates

By definition, the stiffness of the nullator [Kd] 
is equal to zero. The global unstructured stiffness 
matrix of the network graph after- adding the DC system, 
becomes :

[Ka ] 0 0 0 0
0 [Kb ] 0 0 0
0 0 [Kc] 0 0
0 0 0 [Ki 3 0
0 0 0 0 [0]

(2-31)
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[Km]

CKa 3
0
0
0
0

[Kb] 0 
0 0

0 0 
0 0 
0 0 (2-32)

0 [Kf] 0 
0 0 [0]

where
[Kn /  = an unstructured global stiffness matrix

with member c defined
[K ]k = an unstructured global stiffness matrix m

with zero stiffness for variable member c 
[0] = a nullator global stiffness matrix, (1x1)

Similarly, the structural stiffness matrix is 
developed for an FC system (Figure 14.). The norator 
allows a displacement and force to occur between nodes k 
and m. A norator element with zero stiffness is used to 
constrain a member force. The displacement between nodes 
k and m is not affected by the norator. In other words, a 
joint displacement at k equals the joint displacements at 
m. Therefore, the global member stiffness matrix of a 
norator is zero in the analysis.
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m

m

m

(a) A ll Defined Members (b) Member c Is Variable Member

FIG. 14 Structural S t if fn e s s  Matrix For Adding FC

The unstructured global stiffness, matrix including a 
norator element is :

[Rn]

[Ka] 0 0 0
0 [Kb] 0 0
0 0 [ Kc 3 0
0 0 0 [0]

(2-33a)

CKn 3

[Ka 3 0 0 0
0 [Kb 3 0 0
0 0 0 0
0 0 0 [0]

(2-33b)



40

where
[K ] 3 = an unstructured global stiffness matrixn

with defined member c
b[K ] = an unstructured global stiffness matrixn

using zero stiffness for the variable 
member c

[0] = a norator global stiffness matrix, (1x1)

From a conceptual point of a view, the FC system 
is represented as the elements and ideal loads between 
nodes i-k (Figure 14.). This system transfers the same 
magnitude as the member constrained force. The applied 
ideal loads at nodes k and ra are equal to the constrained 
forces. Hence

{P£ } = {PJJ, } = constrained forces (2-34)

In two dimensional analysis, the displacement 
constraint will occur in the x and y directions, which 
defines the maximum value of the DC member for one free 
node. The structural stiffness matrix of the problems can 
be described in terms of the unstructured form.
Therefore, adding DC and FC systems into the network 
graph, the unstructured stiffness matrices can be written 
in the general form as :
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tKh.i
0
0

0

CK]2 ,2 0

CK]3 ,3

( 2 - 3 5 a )

CK]n

where
[KJ,m

CK]n

CK]
CK],

1,1

2,2 

CK]3,3

CK] 1.1

CK] 3 ,3

(2-35b)

= a global stiffness matrix for a problem 
with DC's

= a global stiffness matrix for a problem 
with FC's

= stiffness submatrix for the defined members 
= stiffness submatrix for the variable 

members
= stiffness submatrix for the ideal members 

and nullators or norators

Singular Imbedding Analysis can be developed and 
tested for structural problems, e.g., planar trusses, 
planar frames etc. Examples of planar truss problems are 
shown in Figure 15. The statically indeterminate trusses 
are given as :

(a) A constrained displacement A x  with one variable 
member.
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(b) Two constrained displacements Ax and Ay with two 
variable members.

(c) A constrained force Q with one variable member.
A network graph including DC and FC systems are shown in 
Figures (15a, 15b, 15c)

Ax
Given

s«\ %

1.2,3

Network Graph Network Graph With DC

(a)

Given

Gi ven

Network Graph

(b)

Network Graph
(c)

1 ,2 ,3

■St,/

Network Graph With DC

\

Network Graph With FC

FIG. 15 Examples Of Planar Truss Problems
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2.4 Nodal Equations For DC and FC systems
In the last section, examples of the structural 

problems were demonstrated using a DC (Displacement 
Constraining) system and an FC (Force Constraining) 
system. Due to their physical properties, these systems 
will affect the unstructured stiffness matrix. After the 
DC and/or FC systems have been incorporated, Equation 
(2-20) is used to obtain the structured stiffness matrix 
[S]. To correct the singularity of the structured 
stiffness matrix, two techniques are used.

Substituting the value of [S3 for the general problem into 
Equation (2-20), one obtains :

Sll 3^2 • • • • • • 3 jj • • • Ŝ p ui Pi
S21 S22... ... S2j... S2n M2 H

• • •

spl sp2.................  Spn

•

Ui' " = < pp

sql sq2......... ........ Sqn ui pq

sml sm2 • • • Smi • • • smj * * * ^ ”n'L j
P'rm>• /

(2-36)

where
(u'} is a vector of joint displacements in global

coordinates
{P'J is a vector of applied joint loads in global
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coordinates

Suppose that the nullator is connected between 
nodes i and j. Since the nullator allows no displacements 
to occur in a particular global direction, u] and u' in 
that direction are constrained to be equal. The 
displacements for nodes i and j in that constrained 
direction can be written as u'̂  = uj = ujj Since there
is no relative displacement between joint i and joint j in 
the constrained direction, they can be treated as a single 
joint. To accomplish this the single joint must have the 
same stiffness as the combined stiffness of joints i and 
j. This is done by adding columns i and j in the 
structural stiffness matrix as follows :

S11 S12 
S21 s 22

. . .  (S11+ Sjj )

.*. (S2j + )2j
’In

2n

sml sm2 **• (smi+ smj ̂ **• Smn

u.
u„

u.

u n ̂ J

p i
p2

P'

P'm

(2-37)

The FC system is added into the problem to 
constrain member forces. From the network graph, the 
norator allows forces to transfer as constrained values.
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The nodal equations will be affected due to the
equilibrium of forces in the global x and y directions for 
2 dimensional problems. The nodal forces at p will be 
transfered to node q, and the summation of the forces in 
the global x and y coordinates remains in equilibrium. To 
accomplish this the rows of Equation (2-36), representing 
the equilibrium equations are added as follows :

S11 S12 ............ Sln
S21 s 22 ...........
• • •

<s p i + V  ( S P 2 + V  (V  v
• • •

sml sm2 smn

r y f

“ i
u2
•

4
• =

•

un
» *

n

P2

<Pp + Pq )

P'm

(2-38)

2.5 Variable Members In Problems
In a structural stiffness analysis, nodal 

equations are used to solve the problem. But in the 
Singular Imbedding Analysis, the nodal equations are 
divided into two parts. The first part includes the 
equations of the defined members and the DC or FC systems. 
The second part involves applied joint loads which are 
specified on the variable (undefined) members. The 
summation of these two parts is called the final nodal 
equations for the Singular Imbedding Analysis. Hence
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C S ] { U ' }  + [ A g ] { Pg } {P' } (2-39)

where
[S] = the structured stiffness matrix 
{u'J = joint displacements
[Ag] = the branch-node incidence matrix associated 

with a qeometry transformation of the 
variable members 

{Pg} = the member forces due to specified applied 
joint loads for the variable members in 
global coordinates 

{P'} = applied joint loads

Partitioning the matrices, Equation (2-39) becomes :

[[A*] j [S]J (P'J (2-40)
u

Equation (2-40) is a final nodal equation for the 
general problem. The application of Equation (2-40) 
depends upon the problem, e.g., planar trusses, planar 
frames. [S] and [Ag ] are the parametric matrices which 
define the type of problem. Similarly, {Pg } and {u'} are 
the parametric vectors which control the types of 
constraints, e.g., displacement constraints, force 
constraints. The types of constraints will be discussed 
in the next section.



CHAPTER 3

EQUALITY CONSTRAINTS

3.1 Types Of Constraints
Applying the Singular Imbedding Method to a 

structural problem, enables a variable to be used to 
design the member properties, (i.e., cross-sectional
area). To define the structure, a displacement or a
member force is constrained and the variable member
property is determined. If a displacement or a member 
force is equal to a desired value, it is referred to as an
"Equality Constraint". If it is restricted in a range of
values, it is referred to as an "Inequality Constraint".

In this chapter, planar trusses will be discussed 
with equality constraints. A member force constraint (or 
a member stress constraint) constrains the force in a 
selected member. A displacement constraint refers to 
joint displacements. Similarly, that joint of the
structure can be a joint of a defined member or a joint of
a variable member. Therefore, the behavior constraints 
such as member forces, stresses, and displacements or 
design constraints such as cross-sectional area can be 
imposed for defined members or variable members. The

47
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types of equality constraint problems investigated are :
(i) a joint displacement constraint
(ii) a member force constraint
(iii) a member stress constraint

These problems will be solved by using the final 
structural stiffness matrix equation. This equation 
depends upon the types of structural elements, (i.e., a 
Displacement Constraining system or a Force Constraining 
system) that are added into the network graph. Let us 
consider a truss with an applied load P as shown in Figure 
(16a). Member 3 is selected as a variable member. The 
network graph that represents this problem is shown in 
Figure (16b) .

L

P

(a) (b)

FIG. 16 Truss And Equivalent Of Network Graph

According to Equation (2-40), a final nodal 
equation for this problem is written in the form of
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submatrices as :

} (3-1)

where
[ A g ]  = the branch-node incidence matrix associated 

with a geometry transformation of member 3
[S]i24 = the global stiffness matrix for members 1, 2,

and 4
{Pg} = the member force of member 3 in global

coordinates
{U23} = joint displacements at nodes 2 and 3 in

global coordinates
{P23} = applied joint loads at nodes 2 and 3 in

global coordinates

Adding either a DC or an FC system into the 
network graph, Equation (3-1) will be affected and becomes 
a new equation which is called the final structural 
stiffness matrix equation. From the problem above, two 
cases of constraints are explained as :

Joint Displacement Constraint :
The displacement at joint 3 relative to joint 4 is 

constrained by an amount Ax. Therefore, a DC system is 
needed in the network graph as shown in Figure 17.

[ [ A 3 ] j [ S ] 124l JP3 
1 u23

(P'1 23
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FIG. 17 Adding DC To Constrain D isplacem ent/^

By adding a DC system into the network graph, the 
final structural stiffness matrix equation becomes :

’caJ]
[0] rs] P3 {P235 (3-2)

u235

where
[S ]

CO]

{u'235 } =

{p235 } =

the global stiffness matrix for members 1, 2, 
4, 5, and 6
the null matrix is added into the equation 
due to the addition of CS]g and CS]g from 
[S]i24in Equation (3-1)
joint displacements at nodes 2, 3, and 5 in 
global coordinates
applied joint loads at nodes 2, 3> and 5 in 
global coordinates
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From Equation (3-2), it is clear that a DC system 
affects the final nodal equation [Equation (3-1)] due to 
the inclusion of an ideal member (member 5), a nullator 
(member 6), joint displacements (at node 5), and applied 
joint loads (at node 5). Therefore, the final structural 
stiffness matrix equation is constructed.

Member Force Constraint :
The force in member 3 is constrained by an amount 

Q. Therefore, an FC system is added into the network 
graph as shown in Figure 18.

~ K D

FIG. 18 Adding FC To Constrain Member Force Q

By adding an FC system into the network graph, the 
final structural stiffness matrix equation becomes :

[0] [A5] t [S] 1245 p3
4[AJ] [0] [0] 4 A ..“235
l?5 .
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where
[A5 3 = the branch-node incidence matrix

associated with the geometry transformation 
for member 5

[S]i245 = the global stiffness matrix for members 1, 2, 
4, and 5

[0] = the null matrix is added into the equation to
balance submatrices due to the magnification 
of P3 , P5, and u235

{Pg > = the member force of member 5 in global
coordinates

{P5 } = applied joint loads at node 5 in global 
coordinates

From Equation (3-3), it is clear that an FC system 
affects the final nodal equation [Equation (3-1)] due to 
the inclusion of a norator (member 5) and applied joint 
loads (at node 5). Similarly, the final structural 
stiffness matrix equation is constructed.

Next, the method for solving the final structural 
stiffness matrix equations [Equation (3-2) or Equation
(3-3)] will be described, including examples of truss
problems.

3.2 Displacement Constraints
For a two dimensional problem, a displacement
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constraint for a free node can occur in either the x or y
direction, or in both x and y directions. The method of
Singular Imbedding approaches this by adding a DC
(Displacement Constraining) system into the network graph 
for each constrained degree of freedom. The procedure for
solving a displacement constrained problem will be
described as follows :

(a) The structural problem is represented by 
a network graph. The support conditions are represented 
as a fixed or a datum node. A variable member is
represented as a dashed line in the network graph. The
solid lines that connect nodes represents defined members
of the structure.

(b) A DC system is added between the
constrained nodes. Note : The datum node can be used as
one of the two constrained nodes. This enables a
displacement constraint to be specified relative to the 
ground.

For a planar truss problem, the solutions are 
controlled as shown in Table 3.
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Table 3

Displacement Constraints Controlling Condition

Condition Controlling Solutions

i on> Solution is determined
directly

ii v < c Solution is determined
directly

iii V > c Solution is in feasible
region

iv unknowns>equations Solution can not be
determined

where v = number of variable members
c = number of displacement, constraints

These conditions will classify the type of problem 
and solution. The method of calculation is based upon the 
direct stiffness matrix method. The general procedure of 
the singular imbedding approach can be demonstrated as 
follows :

(a) Generate the nodal equations for the 
network graph which does not contain a variable member, 
but includes the value of the displacement or force 
constraint that is associated with the structure (as
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described in chapter 2). Hence

[[At][Kn)][A]]{u'} = {W> (3-4)
where

[A] = a branch-node incidence matrix associated with
the geometry transformation in global 
coordinates

[Km] = a global stiffness matrix for the defined 
members and displacement constraint is 
defined in Equation (2-35a) 

tu'} = joint displacements in global coordinates 
{W} = a column matrix representing joint loads

including constrained values in global 
coordinates

(b) Applied member forces are added into the 
nodal equations due to variable members. This member 
force is designated as {Pg} in local coordinates which is 
transformed to global coordinates by [Ag], The matrix [î  
] is calculated by using a branch-node incidence matrix 
associated with the geometry transformation CT3 (as given 
in appendix A). Therefore, a variable member is included 
in the analysis explicitly. Hence

[[A1 ][Km ][A]]{u'} + [^3{Pg } = (W) (3-5)

Partitioning matrices, Equation (3-5) becomes
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[ Ag] ' [A ][Km][ A] 3(n+c)x(n+c+v)
u

{wW c ) x l  ( 3 ‘ 6)

(n+c+v)xl

Equation (3-6) is similar to Equation (3-2), but 
the null matrix has been inserted into matrix [A] instead 
of separated as in Equation (3-2).

(c) Equation (3-6) may be written as :

C C B 1 3 | [B2] ] gxb W bxl {W}axl (3-7)

where
[[Bjli CB2]] = CtAg]ICAt3CKm][A33

{M} = the unknown variable matrix Pg

u'
a = (n+c)
b = (n+c+v)

n = number of degrees of freedom
c = number of displacement constraints
v = number of variable members

Due to a DC element, the matrix [B2] will be 
reduced by the number of displacement constraints. From 
Equation (2-37), the property of the nullators affects 
the nodal equation by adding columns to the stiffness 
matrix. Therefore, by adding the column of matrix [I^] in 
Equation (3-7), one obtains :
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CCB^3i CB3]] ax(b«.c) * M̂ (̂b-c)xl = axl (3-8)

where
CB3] = the product of [ ] [ Km][A3 after adding 

columns

(d) For conditions (i) and (ii), the number of 
variable members is equal to or less than the number of 
constrained values, the final structural stiffness matrix 
equation will be solved by direct inversion. Therefore, 
Equation (3-8) becomes :

[I] [Mj {<*} (3-9)
M'

where

[I]
{<*}

mi;
Mo

a unit matrix, [(n+c)x(n+v)]
-1

( [ B 1 ] j [ B 3 ] )  {W}

a vector of member forces in variable members 
in local coordinates and joint displacements 
in global coordinates

(e) For condition (iii), the number of
variable members is greater than the number of constrained
values. The method which will be used for modifying
Equation (3-8) is the Gauss-Jordan method . After
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applying this method to Equation (3-8), the result will be

C C i ]! {/3} ] Mi

M 2
{<*} (3-10)

where
Cl]

{<*},{£}

a unit matrix, [(n+c)x(n+v-1)] 
the resulting submatrices after 
transformation

(f) For condition (iv), there are more
unknowns than the number of equations in Equation (3-9) or
Equation (3-10) so that the solutions can not be
determined. Therefore, the solutions of this type of
problem are designated as non-feasible solutions.

Example 1 is a one variable and one constraint 
plane truss problem which will explain the application of 
the Singular Imbedding Method for a type of displacement 
constraint.

Example 1 : The statically indeterminate truss is
shown in figure below. Determine the property 
of member 3 such that the displacement at 
joint 4 in the x-direction is 0.0328 inches.
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. 10" , 10" .
h +■--------- H

10"

x= 0.0328 1n

Design informations :
2Member properties are Aj = 0.887 in.
2A£ = 1 .030 in.

Modulus of elasticity is E = 10,000 ksi.
Member 3 is a variable member 
The constraint value uX4 = 0.0328 in.

Solution : Draw the network for this problem :

1 .2 ,3

(1)

1 .2 ,3

(1) (2)

Network Graph Adding Nullator To Constrain 
Displacement
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(a) The stiffness matrix of this problem 
is created by using Equation (2-35a). Hence

[K]m =

where
[Kj] =

CK2 ] =

[K4] =

From [K] = AE/L
for member assume A4 = 1 unit area

L4 = 10 </2* in.
Therefore

[K4] = 1x10,000 = [707.11]
10/5*

(b) All member forces are transferred 
to nodal forces by using branch-node incidence 
matrix.

EKi 3 0 0 0 0
0 [K2] 0 0 0
0 0 0 0 0
0 0 0 [K4] 0
0 0 0 0 [03

313.61 -313.61 
-313.61 313.61

~0 0 "

0 1030

[Arbitrary]
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node
brancnX^^

1,2,3 4 5

1 -1 0
2 -1 0
3 -1 0
4 0 -1
5 -1 1

[ At] -1  _1 -1  o -1  

0 0 0 - 1  1

Submatrices C C ] CK,,,3 CA3 equals to

-1 i 0 i-1~
0 i-1 1

(2x5)

CK1]2,2
CKo]2 J2,2 '10 !i

, . . . U

iCIC4 ]i,i i

“-1 !1
o"

:J4 0--
-i; 0

°! -1i---1---
-1 il 1

(5x5)
J (5x2)

CKi K2%,2
C K 4 ]l tl

(2x2)
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where
[Kx + K2 ] = 313.61 -313.61 + 0 0

-313.61 313.61 0 1030

r ~ 313.61 -313.61
-313.61 1343.61

Therefore

313.61 -313.61 i o
C[At][Kra][A]] = -313.61 1343.61 ' 0

0 0 I 707.11

Substituting [[A* 3 C Kjp ] [ A ] D into Equation (3-4), 
yields

[ [ A ^ C K m H A m u ' J  = {W}

r* r  m
313.61 -313.61 0 ux4 20

-313.61 1343.61 0 T ~ " -30
0 0 707.11 .u*5. 23.19

From Equation (2-30) P = (707.11)(0.0328)
= 23.19

(c) An applied member force is added 
into nodal equation.
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node
branch

From CA*] = (-1) cos 225 
sin 225

~1//2 ~

and U ‘](Pg> = pi//̂  
1/y?

hence, Equation (3-6) becomes

CEA| 3 | [A* H K ^ C A ] ] P
u'

{W}

1 /@  : 3 1 3 . 6 1  - 3 1 3 . 6 1 i
: i

1/J2 j - 3 1 3 . 6 1  1 3 4 3 . 6 1 5

0
0

1707.11

_ 3x| 
ux4 
uy4 

lux5.

20
- 3 0

2 3 . 1 9

(d) According to the property of a DC 
system, ux4 equals to u xg Equation (3-8) 
is shown as
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“ 142 -313.61 313.61“ r
p3x'_

142 1343.61 -313.61 •* 1̂ 4 «. = *<
0 0 707.11 °x45 J

(e) From this problem , CSV,

20 
-30 

23.19

1

nodal equation is solved by
---

---
1

O O
1

' p3x*' 5 . 8 6 2 9 2 7 "

0  1 0 - Uy4 * = < - 0 . 0 1 7 7 5 9  >

0  0  1 . ux45 0 . 0 3 2 7 9 5

(i)

From the force in member 3 is

or
CP' 3 = [KHu'J 
{p3x'> = CA3E/L 0][1/£ 1/^3 u,x4

Uy4

p3x* = 500 *3 (ux4+ uy4 } (ii)

Equation (i) and (ii) can be solved 
simultaneously, Hence

uX4 = 0.0328 in.
Uy4 = -0.0178 in.
A3 = . 0.779 i n 2.
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3.3 Force Constraints
The method of Singular Imbedding is approached by 

adding FC (Force Constraining) systems into the network 
graph. The procedure of adding FC systems into the
network graph is explained in chapter 2. The FC system is
applied at the negative end of the member which is the
constrained.

For a plane truss problem, the solutions are
controlled as shown in Table 4.

Table 4

Force Or Stress Constraints Controlling Conditions

Condition Controlling Solutions
i v ^ c Solution is determined

directly
ii v > 2 Solution is in the

feasible region
iii unknowns>equations Solution can not be

determined

where v = number of variable members
c = number of force or stress constraints
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Similar to the displacement constraint, the method 
of computation is based upon the stiffness method and 
network analysis. The Singular Imbedding Method is 
applied to a force constraint problem with the following 
general procedure :

(a) Generate the nodal equations for the defined 
members of the network graph. This equation will be in 
the form :

[[At][Kn][A]]{u'}

where
[A] = a branch-node incidence matrix associated with

the geometry transformation in global coordinates 
[Kn] = a global stiffness matrix for the defined members 

is shown in Equation (2-35b)
{u'J = joint displacements in global coordinates 
{Wj} = a column matrix of applied joint loads in global 

coordinates

(b) Applied member forces are inserted in the
nodal equation due to the force constraints. With each FC 
system, two vectors of applied forces are induced.
is a vector of the member forces which are transformed to 
applied joint loads in global coordinates and applied at 
the negative nodes of the variable members. A second

W. (3-11)
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vector is the transformation of {Px} which equals a vector 
of constraining forces in global coordinates and is
applied at the positive node of the norator. Therefore, 
variable members are included in the analysis explicitly 
as they are part of the FC system. Hence

[[A ][Kp][A]]{u'} CAj]{P1} (3-12a)

[AlHPj} {w 2j (3-12b)

Equation (3-12a) and (3—12b) are combined and partitioned 
into the following equation, which is similar to Equation 

(3-3) :

"[0] [A 3̂ ESX] “
m <■
pi b

- * 
wx -

CA|3 [0]
Mi

[0] u' .W2 . (3-13)

where
[a {] = [A|] = the branch-node incidence matrix 

associated with a geometrical 
transformation of the variable and 
ideal member, (2x1)

[SX]
[0]

= the new form of the global structural 
stiffness matrix which is combination of
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[S^] = [A^HKpHA] and a null matrix,
[(2+2v)x(2+2v)]

{Pj} = a vector of member forces consisting of 
variable and ideal members, (2vx1)

{u'} = joint displacements, [(2+2v)x1]
{Wj} = applied joint loads, (2x1) for each node, 

e.g., if the applied joint loads are 
applied at nodes a,b,...,z , {Wj} becomes

"wla
Wlb

{W2} = an applied joint load due to the force
constraint in a variable member in global 
coordinates, (2vx1) 

v = number of variable members

(c) Equation (3-13) may be written as :

[ I B ,  ] j [ Bg ] ] 4xe • fN}e x l  = t W ' Jdxl

[[B4] j [Bg]] = "[0] caJ] I S 1 ]“
[a |] [0] [0]

-1M)
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{N} the unknown variable matrix m
►

d 2+2v
e 2+4v

According to the assumption of the FC system, the
displacement of the norator members is equal to zero. 
From Equation (2-37), the properties of norators affect 
the nodal equation by removing columns associated with the 
zero displacement from the stiffness matrix. Therefore, 
the matrix [B5] will be reduced to :

[Bg] = the product of [A** ] [ 3 [ A] after adding 
the columns

According to Equation (2-39) and the equilibrium 
condition at the nodes (from the principle of network 
analysis), Equation (3-15) is reduced by the technique of 
adding rows. Hence :

(3-15)

where

CCBy] I [Bg]] 2x(2+2v){N' \2+2v)xl= {W"^xl (3-16)

where
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[By ]»CBg ],{N'} and {W"} are the new matrices after 
adding the appropriate rows.

(d) Equation (3-16) is modified by using the
Gauss-Jordan method. After applying this method, the
result will be obtained as :

[[i ]  i m i h

N2

{/} (3-17)

where
= a unit matrix, (2x2)
= a vector of member forces in variable 

N2J members and joint displacements 
= the resulting submatrices after 

transformation

(e) For conditions (i) and (ii), Equation (3-17) 
will be solved directly by the rules of these conditions. 
If there are more unknowns than the number of equations, 
the solutions can not be determined. This is designated 
as condition (iii), and classified as the non-feasible 
solutions.

A one variable and one constraint plane truss 
problem is shown by Example 2, which will explain the 
application of the Singular Imbedding Method with an FC 
system.



71

Example 2 : The statically indeterminate truss
is shown in figure below. Determine the
property of member 3 such that the force in
member 3 is + 5.851 kips.

b
10"

10"

Design informations : 
Member properties

10"

ll = 0.887
A2 = 1.030

Modulus of elasticity is E = 10,000
Member 3 is a variable member

The constrained value p3x<= ±5.851

. 2m .
in?
ksi.

kips,

Solution : Draw the network graph for this problem :

(1) (2) (1)

Network Graph Adding Norator To Constrain Force
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(a) The stiffness matrix of this problem 
is created by using Equation (2-35b). Hence

[Kip

[ K ! ] 0
0
0 0

[K2] 0
0 
0

0 0 
0 [0]

where
[Ki ] 313.61 -313.61

-313.61 313.61

[10, ] 0 0 
0 1030

(b) All member forces are transferred to 
be nodal forces by using branch-node incidence 
matrix.

^ \ n o d e
brancnx.

1,2,3 4 5

1 -1 0
2 -1 0
3 0 -1
4 -1 1
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[A*] -1 -1 0 -1  

0 0 - 1 1

Submatrices [[A ][Kn][A] equals to

■ 15 0: -1■u. m |
0 !-1 j 0

(2x4)

^ 2 , 2 i - 1  i o'i
!CK2 ]2,2 I - 1 ! o

j° j 0 1-1— .. J- — •-
! C0]2,2I _-i j 1_ (4x2)

(4x4)

[K1 + K2]2,2 ! 0 
 "o’  T  [ o ’] 2.2LI(2x2)

where
[Kj + K23 = " 313.61 -313.61" + 0 0

-313.61 313.61 0 1030

= " 313.61 -313.61~
-313.61 1343.61

Therefore

[[A ][Kn3[A]]
313.61 -313.61 ! 0 i 0

-313.61 1343.61 ! 0 i„ mtm m 0
0 0 : 0 0
0 0 j 0 0
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Substituting [[A 3CKn3CA3 into Equation (3-11), 
yields

[(Al][Kn][A]]{u'} Wi

3 1 3 . 6 1 - 3 1 3 . 6 1 0 o "

- 3 1 3 . 6 1 1 3 4 3 . 6 1 0 0

0 0 0 0

0 0 0 0

ux4 
Uy4
uy5

ux5

20
-30
0
0

(c) An applied member force is added into 
the nodal equation.

node
branch

node
.branch

From [A*] = (-1) cos 225 =
sin 225 1/̂ 2

Equation (3-13) is recalled

r* t 1 " ■

[0]
CAj]

[Aj]
[0]

!
I [0]

-a pl
u'

• *

* wil
w2

m ^
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where

{Pi}

[ A t H P 3x .>

[ a| h p 4 x .)

*3x'
P4x*V J

1/J2

142

142"
142

iP3x'>

{p4x'l

Hence

0 1 / J 2 5 313.611 -313.61 !  0 1 0

0 140 ! -313.61 1343.61 i  01 0

14(2 00 0 i  01 0

1# 00 0 10I 0

r3x'
P4x'

ux4
uy4

uy5
ux5

20
-30

4.137
4.137

(d) Due to the property of an FC system
u = u . and u . = u _ y4 y5x4 " wx5
and the equilibrium of the system, the process 
of adding columns 3 and 6, 4 and 5

adding rows 1 and 3, 2 and 4
are combined. Hence
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p3x*
"1 & \ 313.61 

1 1
-313.61 p4x* >

~ 24.137"

u f i ! -313.61 1343.61 ux45
Uy45

s. J

-25.863

(e) Switching columns 2 and 4, and 
using the Gauss-Jordan method this equation, 
yields :

'P3x-'
1 0 : 275.651651l

1
•4 uy45 > *

"20.753728'
►

(i)
0 1 j -0.378477 0 ux45 -0.030177

p4x‘

From problem 3x' = P;4xi : 5.851 kips.
By using these values, Equation (i) will 
be solved simultaneously. Hence

ux45 = 0.0328Y6 in.
Uy45 = -0.0177487 in.

To determine the property of member 3, the 
basic of stiffness method is recalled

or
CP'3 = CK]{u'}
{p3x} = E A3E/I- 0] [ 1 / &  1̂ 2] ux4

Uy4



P3x. = 500 A3(ux4+ uy4) (ii)

Substituting Equation (ii), yields 

A3 = 0.77357 it?.

3.4 Stress Constraints
This type of constraint problem is similar to the 

force constraint problem. According to the definition, 
stress is defined as equal to force per unit area. Hence, 
for an axial load :

= P/A (3-18)

Equation (3-18) may be written as :

P <T- A (3-19)

Considering Equation (3-19), one can transform a
stress value to a force value. From this conceptual point 
of view, a stress constrained value can be transformed to 
a force constrained value. Therefore, a stress 
constrained problem is equivalent to a force constrained 
problem.

The method of Singular Imbedding is applied to a
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stress constrained problem by adding an FC (Force
Constraining) system into the network graph. The general 
procedure of computation is the same as the force
constraint which is demonstrated in section 3.3 .

From Equation (3-12b), the matrix {W2) is a vector
of constraining forces. Therefore, Equation (3-19) is 
applied to Equation (3-12b). One obtains :

{W9} = [A*]{«wAm } (3-20)c  c m

where
<fm = stress constraint in member m
Am = a cross-sectional area of member m

In this thesis, the sign convention of forces and 
stresses are defined automatically by the coordinates. A 
free body diagram of a structure is drawn to locate member 
forces and directions. Therefore, the member forces or 
stresses are designated by tension or compression in the 
members.

Similarly, Example 3 is a two variables and two 
stresses constraint plane truss problem. The Singular 
Imbedding Method is applied to determine two unknowns 
member areas. The method for solving this problem is 
explained step by step.

Example 3 The statically indeterminate truss is



79

shown in figure below. Determine the properties 
of member 2 and member 3 such that the stresses 
in members 2 and 3 are +. 17.742 and + 7.55 ksi., 
respectively.

10" 10"

10

1LLLLLILUIL

Design informations :
2Member property = 0.887 in.

Modulus of elasticity is E = 10,000 ksi.
Member 2 and 3 are the variable members 
The constrained values = ± 17.742 ksi.

Q3x' = 7.550 ksi.

Solution : Draw the network graph for this problem :

////////,

(1) (2) (3):1 ! t
/

U W l U t t

(1)

Network Graph Adding Norator To Constrain Stresses
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(a) The stiffness matrix of this problem 
is created by using Equation (2-35b). Hence

CK3r

CKj] 0

0 0
0 0
0 0
0 0

0 0 0
0 0 0
0 0 0
0 [0] 0
0 0 [0]

where
[K-i ] 313.61 -313.61 

-313.61 313.61

(b) All member forces are transferred to 
be nodal forces by using branch-node incidence 
matrix.

\node
branches.

1,2,3 4 5 6

1 -1 0 0
2 0 -1 0
3 0 0 -1
4 -1 1 0
5 -1 0 1
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CA* ]

- 1 0 0 - 1  - 1

0 - 1 0 1 0  

0 0 - 1  0 1

Submatrices [[A 3CKn ]CA3 equals to

0 !- 0 1 — 1 • -1
 1—

1 | 0 ; 1 | 0

°r1 i °i 1
(3x5)

CK1]2,2!
:o,m1

IIJ— -1
: o !

[032 2: - ‘- J .

iCO]2,2

-1 0 0
0 -1 I 0

o i-1
-1 i!1 0
-1 o 1

(5x5) (5x3)

C*1 2̂,2 | 0
Y6]
0

2,2 !
. «4I

0 
0
C°i#2

-1 (3x3)

Therefore

[[A 3[Kn3[A33

3 1 3 - 6 1 - 3 1 3 . 6 1  !
i

0 0 0 o “

- 3 1 3 . 6 1 3 1 3 . 6 1  ; 0 0 0 0

0 0  ; 0 0
1

01 0

0
i

o  !i 0 0 : o 0

0 o  •i 0 0 '• o
1

0

0
i

0  ; 0 0 ! 0  1 
1

0

Substituting [ [ A*3[Kn3[ A]3 into Equation (3-11),
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yields

C[A][Kn][A]]{u'} Wi
o' "

" 313.61 -313.61 ! 0 1 0 :0t■ 0" "u x4 20
-313.61 313.61 | 0 11

0 1t
0 *1 0 _uy4 -30

0 0 ! 0 1 0 ! 0 1t 0
* u x5 ► *

0
>

0 0 i 0 0 ! 0 * 0 _”y5 0
0 0 :01 0 ! 01 0 u x6 0
0 0 ! 0 0 ! 0 0 0

(c) An applied member force is added into 
the nodal equation.

node
brancns,\

3 6

3 -1

node
branch

node
branch

node
branch

From [A*] = (-1) cos 225 - \ / § .

sin 225
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and CaJ] = (-1) cos(-90) - ’0 '
sin(-90) _1

Equation (3-13) is recalled

~co] [A3 ] to ]  caJ]  i [ S l r A  «

r . i _WL .
[ 0] [0] [ a \ ]  [0] j [0] u"

w -

II w2 *
[A\] [0] [0] [0] ~ ]  [0] . W3 .

where

{Pi >

P2x'

p4x'
p3x*

LP5x'J

[Al]{p5x^

e*|]{p3x.)

[ Ag ] { p4x*J

CA4 ]{P2x,}

142
J4?_
14?

14?. 
0 
1 

0 
1

{P5x.}

{V

{p4x*}

{p2x'}

Hence
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• 'p2x*'
P4x*

”0 0 0 ! 313.61 -313.61!0 0[0 0
! I !

XCOCL, 20
0 1 0 l / f i l  -313.61 313.61:0 OjO 0 _p5x' -30
0 0  1/ ^ 0 | 0 0 Jo 0! 0 0 4 ux4 k. = 5.339A31 1 1 1 t 1 4 >
0 0 1/4? 0 j 0 0 -0 0 | 0 0 uy4 5.339A3
0 0 0  0 ! 0 0 '0 0 ;o 0

! : 1 ux5 0
1

000000000

1 Uy5 17.742A2

ux6
3 *  ,

(d) Due to the property of an FC system

” x4 = ux5 = «x6 and uy4 = uy5 = uy6
and the equilibrium of the system, the process of
adding columns 5 and 7 and 9, 6 and 8 and 10
adding rows 1 and 3 and 5, 2 and 4 and 6
are combined. Hence :

"o 0 \ / $ . 1/£
1 1 1/£ i

313 .61

■313.61
■ 313.61

313.61

p2x'
p4x'
p3x‘

_P5x'
ux456

uy456

20+5.339A3 
■30+5.339A+17.742^2•9

(e) Switching columns and using the
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Gauss-Jordan method this equation yields,

1 0 
0 1

0 1 0 .7 0 7 0 8 8 0 .7 0 7 0 8 8  

■1 0 0.0015943 0.0015943

P3x'

Uy456

ux456

P5x'

p2x‘

p4x'

-7.070927+12.545434A2+7.55A3 
-0.0797168+0.0282867A,

(i)

From problem P3X» = Rjxi = 7.55OA3
and P2x. = P4xi = 17..742A2

By using these values, Equations (i) will be solved 
simultaneously. Hence

A 2 = -0.5636506-0.6OI8393A3 (ii)
(uy456- ux456 ) = -0.0797168-0.0282854A2 (iii)

From a member stiffness formula

CP']  = CK]{u'J

ux456' 

uy456j

or t P2xJ = L A2 E /  L 0 J L 0 — 1 J
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and {P3x.} = [A3E/L 0][1^ 1/^] fu^g
-

^456
Therefore

P2x* = -1000 A2uy456
and P3x« = 500 A 3(ux456 + u y45g)

Substituting these values into Equation (ii) and 
(iii), yields

A2 = -1.0299589 in?
A3 = 0.7748054 in?

Note : A2 is negative sign due to “Tension Member".



CHAPTER 4

ANALYSIS LIMITATIONS

4.1 Types Of Solutions
A method for solving different types of 

constraints was described in the previous chapter. A 
variable member with unknown member properties was used in 
the analysis, e.g., cross-sectional areas were determined. 
In this thesis, the method is developed and referred to as 
the Singular Imbedding Method. The method uses the 
structural stiffness equation to solve for the member 
forces in local coordinates and the joint displacements in 
global coordinates. From the member forces and joint 
displacements, an unknown member property is determined by 
using the member’s local stiffness relationship. The 
solutions of these problems may be separated into two 
categories :

(i) Feasible solutions under the imposed loads.
(ii) Non-feasible solutions under the imposed

loads.
The sign of the cross-sectional area obtained from 

the solution using the member stiffness equation 
designates whether the solution is practical or not.
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4.2 Feasible Solutions
The values of unknown variable members are solved 

by using the member’s local stiffness relationship and the 
joint displacements. Both positive and negative values 
for the cross-sectional area of variable members are 
found. The physical interpretation for each condition is 
discussed. Example 1 (chapter 3) is used to illustrate
the two categories.

p3x' = 5.86 kips

a3 = 0.779 2in.

ii'S’X
3 0.0328 in.

uy4 = -0.0178 in.

This type of solution may be classified as :
(i) A practical solution is a positive sign for

all variable members (cross-sectional area) represents 
this type of solution.

(ii) A non-practical solution or a prestressed
condition is represented by a negative sign for a variable 
member. In the physical meaning, structural members must 
be prestressed with either a tension or compression force 
before applying the external loads. Example 1 (chapter 3) 
is solved by changing :

(a) The constraint value uX4 from 0.1 to 5.0
inches.
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The solution of this problem is ;

P3x* = “1363.23 kips.
A3 = -0.3973 ir?.

ux4

uy4
5.0 in
1.8625 in

The deformed shape for this problem is shown in
Figure 19. The physical meaning of this solution is that
member (3) has a prestressed tensile force of 1363.23
kips. The external loads at node (5) in the x- and
y-directions are 20 and 30 kips, respectively. An 
additional tensile force in member (3) is required to meet 
the constraint condition. This force must be prestressed 
in member (3) before applying the external loads, which is 
not common in conventional construction. Although the
solutions can be determined by the Singular Imbedding 
Method, the results are considered non-practical.

s / . / s , /S V /. / .

10" 10"

a y

X
A  x= 5 .0  ini

FIG. 19 Deformation Shape
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Let us consider the prestressing condition, the 
deformation of this physical condition may be described by 
using superposition as shown in Figure 20.

© © ©

+

© © ©

(a) By P restressin g (b) By External Load

FIG. 20 Superposition Method Of Deformation

4.3 Non-Feasible Solutions
This type of solution is physically impossible. 

From a mathematical point of view, the solution may be 
represented by an "Infinity Value". In the physical 
condition, this phenomenon can be described by the 
statement, no matter how much force is prestressed in the 
variable member, the unknowns can not be solved to meet 
the specified requirements. Example 4 is an example of 
this type of solution.
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Example 4 : The statically determinate truss is shown
in figure below. Determine the property of 
member (4) such that the displacement at joint 
5 in the x-direction is 0.1 inches.

10"

5" _ L 5"

.(1) (21
10 > i

20

H  Ax= 0.1 in.

Design informations :
Member properties are Aj = A 2

a 3
Modulus of elasticity is E 
Member (4) is a variable member 
The constraint value u

A5 - 0.95 in. 
A6 = 1 .25 ir£ 
10,000 ksi

x5 = 0 . 1 m.

Solution : Applying the Singular Imbedding analysis,
one obtains a set of four equations and six 
unknowns. Thus, there is no solution. If any 
other member had been selected as variable, a 
practical solution may be obtained.



CHAPTER 5

DISCUSSIONS AND CONCLUSIONS

5.1 Discussions
In this thesis, the Singular Imbedding Method is 

used to analyze a truss with joint displacement, member 
force, and member stress constraints. It is modified from 
a network graph by adding pseudo systems, i.e., DC 
(Displacement Constraining) systems, and FC (Force 
Constraining) systems. A DC system is used to constrain 
joint displacements, and an FC system is used to constrain 
forces or stresses in members. The structural stiffness 
matrices is developed to include defined members and 
pseudo systems. This structural stiffness matrix 
developes a singular matrix which must be modified before 
analysis can be completed (a matrix that can not be 
inverted).

As described in chapter 3, the singularity is 
subsequently handled by adding selected rows or columns
of the matrix relating to the pseudo constraint systems. 
For a joint displacement constraint, the technique of 
adding the appropriate columns of the global structural 
stiffness matrix is developed. For a member force

92
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constraint problem a row and a column of the global 
structural stiffness matrix is added. In the case of a 
member stress it can be transformed into terms of a member 
force by its definition.

Generally, the analysis in this thesis is modified 
from the network method by adding the pseudo systems to 
avoid the usual iterative analysis. To analyze and design 
statically indeterminate structures with specified 
constraints, the initial member properties must be assumed 
in the network analysis. After that the results (i.e., 
joint displacements, member forces, and member stresses) 
will be determined and compared with a set of specified 
requirements, until a feasible solution is reached.

Network analysis methods for structural analysis 
is developed along the lines of the traditional stiffness 
matrix method. The node method of network analysis is 
basically the same as stiffness matrix method of 
structural analysis. The formulation and calculation are 
similar to each other. A branch-node incidence matrix [A] 
associated with a network analysis is conceptually the 
same as a member incidence matrix in the displacment 
method (e.g., {p'} = [A^ ][K][A]{u} ) as described in
chapter 1.

5.2 Conclusions
From chapters 2 and 3, the Singular Imbedding
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Analysis is considered to be a convenient method with 
which to analyze or design structures to meet specified 
requirements, (i.e., joint displacements, member forces or 
member stresses). This method is a direct method of 
solution which allows one to avoid using on iterative 
analysis. Therefore, it will reduce the computational 
time.

In the case of displacement constraints, the 
structure is confined by an amount of displacement at one 
joint relative to another joint. In other words, that 
joint can be moved within specified limits. Given the 
properties of certain parts of the structure (defined 
members) and designating other members as variable, the 
Singular Imbedding Method is used to analyze a structure. 
The unknowns of the variable members are determined from 
the final structural stiffness matrix equation. 
Therefore, the structural members are selected to meet the 
constraints of the problem.

For a force constraint, forces in selected members 
are constrained by a specified amount. There are several 
types of member forces that might be constrained :

(i) Temperature effects; the members of the 
structure are affected by temperature changes, in terms of 
elongation and shrinkage.

(ii) Member forces; a structural member is 
allowed to only develop a force within a range specified 
by the designer.
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Given the properties for the defined members in
the structure and using force constraints, the Singular 
Imbedding Method is used to analyze and determine the
properties of the variable members in the structure . 
Hence, the structural members are designed to meet the
constrained conditions.

For a stress constraint, a structural member is
limited by an amount of stress. A member stress can be
transformed into terms of a member force by its
definition. Therefore, the types of member stress
constraints are similar to member force constraints. The 
Singular Imbedding Method is used to analyze a structure
in the same way as for a force constraint problem.

The analysis limitations of the Singular Imbedding 
Method were described in chapter 4. In a design, only a
practical solution is desirable in designing a structure
to meet specified requirements. Therefore, the Singular 
Imbedding Analysis is an attractive method by which to 
design a structure. Given the properties for selected 
parts of the structure and allowing the rest of the 
structural members to be variable, the unknowns of 
structural members can be solved without iteration. One 
advantage of this method is that a direct solution can be 
found by the creation of a final structural stiffness 
matrix equation for each type of constraint condition.

The Singular Imbedding Method can be extended to 
handle other types of structures such as planar frames,
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space frames, grids, and space trusses. More over, the 
types of constraints can be extended to inequality 
constraints, e.g., a displacement or a member force 
constraint is restricted within a range. Using an
inequality constraint, an optimal solution can be 
obtained. For example, a statically indeterminate truss 
with all members treated as variable is considered as a 
displacement constrained problem. After .the Singular 
Imbedding Method is applied to this problem, the solution 
is in the form of unknown member areas within a feasible
region. If one minimum member area is known, the rest of
them can be calculated as the minimum criterion.
Therefore, these member areas will lead to an optimum 
truss design.



APPENDIX A

COORDINATE TRANSFORMATION

Let X^- Y^ are a local coordinate
Xq- Yq are a global coordinate

0 is an angle from global to local coordinates
The coordinated transformation matrix is :

[T]
cos® sin© 0 

-sin© cos© 0 
0 0 1

For plane trusses, this matrix is reduced to :

CT] cos© sin© 
-sin© cos©

97



APPENDIX B

ALGEBRAIC PROPERTIES OF NETWORKS

An arbitrary number is assigned to each mesh of 
the graph which is designated by {p'}. The operation 
[C]{p'} will then induce the assignment of a relate set of 
numbers to the branches according to the equation :

(p> = CC]{p'} (-1)

where
{p> = the set of derived branch quantities, (bx1) 
[C] = a branch mesh matrix, (bxm)
(pN} = an arbitrary number assigned to each mesh of

the graph, (mx1)

b = a number of branches
m = a number of meshes

The operation [At ]{p} will then induce the 
assignment of zero to the (non-datum) nodes since [A^][C] 
= 0. Thus
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[At]{p} = [At][C]{p'3 = 0{p'} = 0 (2)

In order to prove that [Â . ][C] = 0, it will
suffice to show that

(Ai = 0 for all i,j ( 3 )

where
Â  = i^ column of [A]
Cj = column of [ C]

A has nonzero elements only in those rows which 
correspond to branches incident on the i-th node. And C. 

has nonzero elements only in those rows that correspond to
XL

branches included in the j-th mesh. Therefore, if the i 
node is not incident on any of the branches in the j 
mesh, (A.,*, C j )  = 0.



APPENDIX C

DESIGN AID FOR FRAMED STRUCTURE:
SINGULAR IMBEDDING APPROACH^

The objective of this study is to use a technique 
called singular imbedding, proposed for the design of 
electrical circuits in structural design problems. The 
problems considered in this work are the design of elastic 
framed structures. Primary focus in using this technique 
will be the problem of designing structures to meet 
specified requirements, namely, joint displacements or 
member forces. These requirements can be either the 
constraints placed on a problem by a designer or the 
limits specified by codes or other specifications.

The singular imbedding approach is initiated by 
imposing singular elements representing constraints or 
limits placed upon the problem into the network graph 
representing a structure. If all members in the structure 
are specified, i.e., have known properties, placing 
singular elements on a network will lead to an 
inconsistency and no solution is possible. Selected 
members in the structure are labeled as variable members. 
These variable members will have their properties, namely,
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cross-sectional area and moment of inertia, designed 
according to the specified constraints. Member forces in 
the variable members are then considered as applied member 
forces explicitly added to the nodal equations.

The following procedures are performed in the 
singular imbedding approach :

1. The singular elements (or the constrained 
elements are added into the network and will cause the 
structural stiffness matrix to be singular) are imbedded 
and variable members designated in the network graph 
representing the structure;

2. The structural stiffness matrix is written for 
the specified members with the nullators (is defined as an 
element which allows only zero displacement and force to 
occur, and used to show the relationship between nodes) 
remove;

3. The loads representing the variable members are 
added to the nodal equations;

4. The nodal equations are appended with the set 
of constraint equations.

The constraint equations applied to structural 
design problems are developed as :

a) Joint Displacements - Let ug* , u£* , and u£* be 
the constrained values of the joint displacement 
components. The equality equation is :
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where
i is the joint at which displacements are 

constrained.
m is the component of the constrained displacement, 

the following inequality equation is :

ui ,m

or ui ,m

b) Member Forces - Let the values of the
it it jftconstraints be Pq , Pj , and for the member force

components. If the member considered is a variable 
member, the following equality equation applies :

where
g is the member in which member force is 

constrained.
m is the component of the constrained force.

For each inequality constraint, the equation is :

l.m > P1
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Pg.m < P2 <*b>

If the member considered is a defined member, the 
following equality equation applies for each equality 
constraint :

[ (kgg ) ( a g ) ]mu = Pq

where
kgg is the member stiffness submatrix written for 

member g, in member coordinates, 
ag is the g row of the branch-node incidence matrix 

of a graph.

For each inequality constraint, the following inequality 
equation is :

t ( k g g ) ( a g ) ^ U' >  ̂ ( 6 a )

or CCkggXagJ^u' « p2 (6b)

From Equations (1) to (6), constraints were 
presented both equality and inequality constraints. By 
adding these equalities and/or inequalities to the nodal 
equations, the specified constraints are explicitly 
included in the analysis. The general procedure of the



104

singular imbedding approach can now be described as 
follows :

of the structure which does not contain variable members 
as :

where Ag and Kg are written only for the defined members.

nodal equation by describing them as the unknown applied 
forces, Py . By adding these applied member forces to the 
nodal equations, the variable members are included in the 
analysis explicitly.
The nodal equations become :

1. Generate the nodal equations for that portion

[A0K0A0 ]tU' 1 {P'} (7)

2. Add member forces in variable members to the

[aJk q^ ] { u'} = {P'J - [aJ](p vj (8a)

adding AyPy to both sides, the equations are :

> {P'J (8b)

3. Add the constraint equations and/or 
inequalities to Equation (8b), yields
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■ t 1 tAv ■ Aq Ko Ao
* «

Pv_
t  *

» - 
\ \  .

(9)

where the added terms

D* 1 /*] I  ii} \  rePresen^s constraint
equations and/or inequalities

o i  9 J5 are partitioned matrices representing
coefficients of the unknown variables P and u',
respectively

. y is the vector of constant values of the
constraint equalities and/or inequalities.

Equation (9) is the final design equation inwhich 
the variable members are designed according to the
specified constraints. By solving this equation, the
force-displacement relations of the variable members are 
determined. From these relations, variable member
properties are calculated through the member stiffness 
equations for each member.

Note : Aq = Branch-node incidence matrix for the graph
of defined structural members 

Ay = Branch-node incidence matrix for the graph
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of variable structural members 
KO = Diagonal matrix of member stiffness matrices 

of structural members 
P = Vector of member forces
Pv = Vector of member forces in variable members
P' = Vector of joint loads
* = Constrained values
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