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$EVWUDFW� Until now, no third gradient theory has been proposed to describe the homogenized energy associ-

ated with a microscopic structure. In this paper, we prove that this is possible using pantographic-type struc-

tures. Their deformation energies involve combinations of nodal displacements having the form of second-

order or third-order finite differences. We establish the K-convergence of these energies to second and third

gradient functionals. Some mechanical examples are provided so as to illustrate the special features of these

homogenized models.

.H\ :RUGV� Second gradient theory, third gradient theory, homogenization, K-convergence, finite differences,

modular truss beam, pantograph

�� ,1752'8&7,21

A formalized theory for constitutive equations in continuum mechanics was first developed

by Noll [1] (in particular papers 8 and 35). In the framework of the aforementioned

axiomatization it was proven by Eringen [2] and Gurtin [3] that ï if Cauchy materials are

considered ï the second principle of thermodynamics does not allow for any dependence of

stress tensor on the second gradient of placement so that ï in order to formulate a purely

mechanical model in which constitutive equations involve such a second gradient ï the

new concept of interstitial working has to be introduced [4]. Enlarging the scope of the

considered models, it has been possible to include the second gradient of placement in the set

of admissible independent variables for constitutive equations also by adding at the same time

further kinematical descriptors (e.g. directors modelling the microstructure or temperature)

for the state of material particles as done, for example, in [5], [6] and [7].

However, another equivalent formalization of continuum mechanics, based on the

principle of virtual power and stemming from the dòAlembert concept of mechanics, is

possible (for a modern description of such a point of view see, for instance, [8] and [9]).

www.sagepublications.com
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52 J.-J. ALIBERT ET AL.

Following the classification formalized by Germain [10], the mechanical material

behaviour of bodies can be characterized by the expression of internal (deformation) energy

in terms of the displacement gradients. Cauchy three-dimensional (3D) materials coincide

with first gradient materials; their deformation is described by, and their deformation energy

depends on, the first gradient of displacement only.

The deformation energy of VHFRQG JUDGLHQW �' PDWHULDOV, instead, depends also on the

second gradient of displacement. Let us call �+x, the symmetric part of the gradient ux of
the displacement x and �+x, =@ ux � �+x, its skew part. We say that a second gradient

3D material is LQFRPSOHWH if its internal energy depends only on ux and u�+x,. These

materials are also called ñ�' PDWHULDOV ZLWK FRXSOH VWUHVVHV ò (cf [5] and [11]): PLFURURWDWLRQV

in these bodies are modelled by introducing in the constitutive equations the aforementioned

dependence on u�+x,. Such a modelling assumption has been subsequently improved by

introducing microstructural kinematical descriptors (for more details see, for example, [6]

and [12]).

Incomplete second gradient materials have been studied for a long time. The precursor

of incomplete second gradient models is the HODVWLFD introduced by Euler, Bernoulli and

Navier at the beginning of the eighteenth century: it is a one-dimensional (1D) model in

which: (i) the attitude of the beam sections is kinematically described by the gradient of the

vertical displacement field; (ii) the contact couple depends on the second derivative of the

vertical displacement; (iii) the deformation energy depends on the gradient of the attitude and

therefore on the second gradient of displacement.

Another example of a 1D model in which higher-order derivatives of displacement must

be introduced is given by the theory of Vlasov (see, for example, [13], [14] and [15])

describing the twist of thin-walled beams. In Vlasovòs homogenized model the phenomenon

at the micro-level to be accounted for is the ZDUSLQJ of beam sections and the corresponding

deformation energy is shown to depend on the first and second gradients of the twist angle.

The first (incomplete) second gradient 3D model is due to E. Cosserat and F. Cosserat (at

the beginning of the nineteenth century): in [16] the deformation energy explicitly depends on

u�+x,. More recently, incomplete second gradient materials have been introduced to model

granular solids; for more details and for further references, see [17]. Complete 3D models

have been introduced for describing capillary phenomena [18], [19]. These have begun to be

extensively used in the theory of damage and plasticity (see [20], [21], [22] and [23]) as they

provide a more accurate description of transition zones (e.g. of shear bands [24]) and, from a

mathematical point of view, they lead to regularized well-posed problems. The regularizing

properties of second gradient models are also exploited in the description of the mechanical

behaviour of elastic crystals (see, for instance, [25]).

Complete and incomplete second gradient materials have fundamentally different

behaviours. While, in incomplete models, boundary conditions fix the displacement and the

rotation �+x, (or their dual quantities of force and moment), in complete models one also

has to fix �+x, or its dual quantity called double force [10] to which not all mechanicians

are accustomed. Indeed, the only widely used double contact action is Vlasovòs bimoment

(see, for example, [15] and [26]) needed for describing the external action at the extremities

of thin-walled twisted tubes.

It is remarkable that the mathematically established relationships between 1D or two-

dimensional (2D) second gradient models and Cauchy materials have been investigated only

when the dependence of deformation energy on the second gradient of displacement can

http://mms.sagepub.com
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be related, at the micro-level, to variations of attitude. Indeed, the limit analysis 3Dï1D

or 2Dï1D of plates or beams leads only to such types of second gradient model. Is there

any fundamental physical reason for this? In our opinion, this is probably due to the desire

to remain in a standard framework. For more details about these rigorous results, we cite

[27], [28], [29], [30], [31], [32] and [33]. In technical theories of beams, which supply

the mechanical grounds for the aforementioned mathematical results, the macro-models are

related to micro-models using several identification procedures; for an extensive historical

discussion we refer to Benvenuto [34], who traces back to Maxwell and de Saint-Venant

[35] the first of these analyses. That which seems to be more encompassing is based on

LGHQWLILFDWLRQ LQ H[SHQGHG SRZHU ; one postulates a macroscopic and a microscopic model,

a kinematic correspondence between the two deformations and assumes that the power

expended in corresponding motions coincides. In this way one obtains, in terms of micro

properties of the beam, the coefficients of the macro constitutive equations, the form of which

has been postulated at the beginning (see, in particular, for trussmodular beams [36] and [37]).

The very nature of this procedure shows how the properties of the macro model, in general,

are not REWDLQHG as a result of the homogenization process but are, instead, assumed D SULRUL.

Here we present a microscopic model which leads to the simplest macroscopic second

gradient model: the 1D planar beam already studied by Casal [19]. The structure we consider,

i.e. the pantographic structure, is simple and the reader may have already experimented with

it when handling a corkscrew. We assume that the considered pantograph is made of a very

large number O of small modules and we study its limit behaviour when O tends to infinity.

In other words, we study the homogenized model for the pantograph. The computation of

the equilibrium state is straightforward and we prove rigorously, using the technique of �-
convergence, that the homogenized model is really a second gradient model (section 3).

Considering different equilibrium situations, we recall in section 4.1 the principal features

of this model and we obtain an evident and self-explanatory interpretation for its special

features, in particular for the notion of double force.

Even though the general properties of third gradient materials have been studied by

Mindlin and Tiersten [5] and Dillon and Perzyna [38], to our knowledge no homogenized

third gradient model has been recognized as necessary for describing the behaviour of a truss

structure. To find such a structure is a problem closely related to the previous problem.

Indeed, once one has obtained a complete second gradient body, it is relatively easy to

construct a third gradient body. We do this and describe a structure, based on the pantograph,

which we call the Warren-type pantographic structure. Its homogenized energy is rigorously

proven to correspond to the bending of a third gradient beam. This beam has an unusual

behaviour which we describe briefly in section 4.2.

As the theorems and proofs are quite similar in both cases, we have decided to group

them in a single theorem (section 3). This states that, for any L � 3, a quadratic functional
of finite differences of order L converges to a quadratic functional of the Lth derivative. This
convergence is proven in the sense of �-convergence with respect to the weak* topology

of measures. In this way, our result does not depend on the choice of any interpolation of

displacements which have physical meaning at nodes only. We identify the external forces

which are admissible for the considered structure; it is a class of distributions of order Lwhich
contains, in particular, any distribution of order L � 4. For instance, for a second gradient

beam (L @ 5), the derivative of a Dirac distribution is admissible. This corresponds to the

notion of punctual double force [10].

http://mms.sagepub.com


54 J.-J. ALIBERT ET AL.

In the mathematical literature, the problem of rigorous proof of convergence from refined

models to homogenized models is widely addressed. The results we present in this paper are

close to those found in [28], [39, [40] and [41].

�� 75866 %($06:,7+ 3$172*5$3+,& 68%6758&785(6

In this section, we develop the mechanical heuristic considerations leading us to formulate

the mathematical problem to be solved in the subsequent section. We introduce a modular

pantographic structure and a Warren-type pantographic structure. We describe these at a

micro-level as a truss constituted by Euler beams and find the deformation energy for it in

terms of displacements of a finite set of nodes. The obtained expression is strongly suggestive

from a mechanical point of view. Indeed, it has induced us to conjecture the following. If the

dimension of the structure module dimension tends to zero and the number of beams tends

to infinity, a macro model can be introduced in which (i) the displacements of the nodes are

characterized by a (suitably regular) field and (ii) the deformation energy depends on second

or third derivatives of thus introduced displacement field.

This conjecture, although mechanically well grounded, needs a mathematical proof. For

a discussion on the relationship between the discrete and the homogenized models we refer

to [27] and [28].

���� 7KH SDQWRJUDSK

Let us consider a plane modular structure the module of which is constructed as shown in

Figure 1.

We consider inextensible but flexible beams and refer to these by their endpoints. We call

a structure made by two such beams +#J � %J.4, and +%J � #J.4 ,, connected by a pivot at their
common centre $J , the Jth module. We consider the simplest possible geometry assuming

that +%J � #J � #J.4 � %J.4, is a square.
The periodic structure (shown in Figure 2) made by O such modules, the size of which is

O�4, is called the pantographic structure. The Jth module is connected to the J�4th module by

two pivots at #J and %J . We assume that external forces and external constraints are applied

at nodes $J only. Thus we need to express the deformation energy of the structure in terms of

the displacement of the nodes$J . We study the behaviour of the structure in the framework of

linear elasticity. The deformation energy of an inextensible but flexible beam depends only

on its transverse displacement. This energy is proportional to the square of the curvature. The

computation of the equilibrium energy of a beam of length A and flexural stiffness ,, subject
to given transverse displacements B, C at the endpoints and D at the centre is standard [14]. It
reads

plq

;
?
=

A]

3

,

5
[%+Y,gY> [+3, @ B� [

�
A

5

�
@ C� [+A, @ D

<
@
> @

9,

A6
+B� 5D. C,5�
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)LJXUH �� 0RGXOH RI WKH SDQWRJUDSK�

The length of all considered beams is A @
s
5O�4. We assume that all beams +#J � %J.4 ,

(or +%J � #J.4,) have the same flexural stiffness denoted by ,.
G (or ,�

G ).

Let us fix some notations adapted to the considered geometry. In the orthonormal basis

+Y� Z,, Y is the direction of the vector $J$J.4 (see Figure 2). We denote by x+., the

displacement of a generic node. with respect to an unstressed reference configuration and

by +W+.,� X+.,, its components in the basis +Y� Z,. Then the transverse displacement for

the beam +#J � %J.4, is +W� X,�
s
5 while it is +W. X,�

s
5 for the beam +%J � #J.4,.

The equilibrium energy of each beam of the structure is then given by

& +#J � %J.4, @ ,.O6 ^+W� X,+#J , . +W� X,+%J.4 ,� 5+W� X,+$J ,`
5

& +%J � #J.4, @ ,�O6 ^+W. X,+#J.4, . +W. X,+%J ,� 5+W. X,+$J ,`
5

(1)

where ,	 @
�
6�5

s
5
�
,	

G . As beams are not extensible, the displacement of nodes #J and

%J is determined by the displacement of nodes $J and $J�4 . We have for all J @ 5� � � � � O:

5W+#J , @ +W. X,+$J , . +W� X,+$J�4 ,

5X+#J , @ +X. W,+$J , . +X� W,+$J�4 ,

http://mms.sagepub.com
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)LJXUH �� 7KH SDQWRJUDSKLF VWUXFWXUH�

5W+%J , @ +W� X,+$J , . +W. X,+$J�4 ,

5X+%J , @ +X� W,+$J , . +X. W,+$J�4 ,� (2)

Substituting Equations (2) into (1) we obtain for J @ 5� � � � � O� 4:

& +#J � %J.4 , @
,.

O

�

O5 ++W� X, +$J�4 , . +W� X, +$J.4,� 5 +W� X, +$J ,,
�5

�

& +%J � #J.4 , @
,�

O

�

O5 ++W. X, +$J�4 , . +W. X, +$J.4,� 5 +W. X, +$J ,,
�5

� (3)

We note that, due to our preceding assumptions, the endpoints %4� #4� %O.4 and #O.4 are

free. We conclude that the first and the last two beams are undeformed. Their flexural energy

vanishes so that the expression for the total deformation energy of the pantographic structure

is

& @
O�4
[

J@5

+& +#J � %J.4, . & +%J � #J.4,, � (4)

In the previous equations the reader can recognize the finite difference expressions for the

second-order derivatives of W � X and W . X. Therefore we can expect that, in the 1D

beam model for a pantographic structure, the deformation energy is a quadratic functional

of these derivatives. This statement is substantiated mathematically in section 3. Indeed

we establish that the homogenized continuum model for the pantographic structure has the

following deformation energy:

H @

4
]

3

%

,.

�

g5

gY5
+W� X,

�5

. ,�

�

g5

gY5
+W. X,

�5
&

gY� (5)

In section 4.1 we discuss the mechanical implications of the model.

Let us determine the set of QHXWUDO displacements of the structure, i.e. displacements

associated with the vanishing deformation energy. It is a four-dimensional vector space (in

http://mms.sagepub.com
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)LJXUH �� 7KH SDQWRJUDSKLF WUXVV VWUXFWXUH�

such a circumstance one says that the structure has four degrees of freedom). Indeed, the

structure is statically determined when the displacements of nodes $4 and $5 are prescribed.

This can easily be checked by noting that no rigid displacement is allowed by applied

constraints and that the number of constraint equations (9O) coincides with the degrees of

freedom of constituting elements. The neutral set is generated by three rigid displacements

and the uniform extension (W+$J , @ J� X+$J , @ 3).
We finally establish that a pantographic structure can be realized using a truss (i.e. a

structure made only with extensible bars connected only through endpoints). Indeed each

beam can be replaced by a shed truss; consider the modular truss, the module of which

is presented in Figure 3 where all bars are inextensible except for bars
�
%J. 4

5

� %J.4

�
and�

#J. 4

5

� #J.4

�
. If their extensible rigidities are chosen to be 7,.O5 and 7,�O5 respectively,

then the deformation energy of the considered truss is again given by Equation (4).

���� :DUUHQ�W\SH SDQWRJUDSKLF VWUXFWXUH

Let us now consider a Warren-type structure in which all upper bars are replaced by a unique

pantographic structure. We study a plane modular structure, the module of which is shown

in Figure 4.

Thismodule is based on a pantographicmodule as described in the preceding sectionwith

the addition of four inextensible bars
�
$J � $J. 4

5

�
,
�
$J. 4

5

� "J

�
,
�
$J. 4

5

� "J.4

�
and +"J � "J.4 ,.
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)LJXUH �� 7KH :DUUHQ�W\SH SDQWRJUDSKLF PRGXOH�

For the sake of simplicity, we assume that all flexible beams have the same flexural rigidity,

,. @ ,� @ ,O5. We consider the simplest possible geometry assuming that
��$
"J$J @

��$
#J%J

and
������$
#J.4$J. 4

5

@ 4
5

��$
#J%J . The periodic structure made by O � 4 such modules, the size of

which is O�4, is called the Warren-type pantographic structure. The Jth module is connected

to the J� 4th module by pivots at #J , %J and "J � The first two modules are reinforced by two

inextensible bars connecting the nodes "4$4 and "5$5 (see Figure 5).

We assume that external forces and external constraints are applied at nodes"J only. Thus

we need to express the deformation energy of the structure in terms of the displacement of

these nodes.

We use same notations as in the preceding section. Equations (2) are still valid. As the

bars are not extensible, we have for all J @ 4� � � � � O. 4

W+"J , @ W+"4,� (6)

The displacement of node $J. 4

5

is determined by those of "J and "J.4 : for all J @ 4� � � � � O
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)LJXUH �� 7KH :DUUHQ�W\SH SDQWRJUDSKLF VWUXFWXUH�

W+$J. 4

5

, @ W+"4,� X+"J.4, . X+"J ,� (7)

X+$J. 4

5

, @
4

5
+X+"J.4, . X+"J ,, � (8)

We also have, for all J @ 4� � � � � O

W+$J , @ W+$J. 4

5

,� (9)

Moreover, in the first two modules, due to the added reinforcing bars

X+$4, @ X+"4,� X+$5, @ X+"5,� (10)

As the bars are not extensible, the deformation energy of the structure is concentrated in the

substructure coincidingwith a pantographic structure analogous to that studied in the previous

section. This substructure is only subjected to constraints (9) and (10); the displacement of

nodes $4� $5 and the displacement components W+$J , (J @ 6� � � � O � 4) are assigned. At

equilibrium, W+$J , and X+$J , minimize the energy

5,O
O�5[

J@5

k
+W+$J�4 ,� 5W+$J , . W+$J.4,,

5
. +X+$J�4 ,� 5X+$J , . X+$J.4,,

5
l

under the constraints (9) and (10). Thus we have

X+$J , @ X+"4, . +J� 4, +X+"5,� X+"4,, (11)

and the equilibrium deformation energy reduces to

' @ 5,O
O�5[

J@5

�
O5

�
W+$J� 4

5

,� 5W+$J. 4

5

, . W+$J. 6

5

,
��5

�

Using Equation (7) we obtain
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' @ 5,O�4

O�5[

J@5

�
O6 +X +"J.5,� 6X +"J.4 , . 6X +"J ,� X +"J�4 ,,

�5
� (12)

Here we can recognize the finite difference expression for the third-order derivatives

of deflection and we expect that the 1D beam model for such a structure is described by a

deformation energy which is a quadratic functional of this derivative. Indeed we establish,

in section 3, that the homogenized continuum model for this structure has the following

deformation energy:

I @

4]

3

5,

�
g6X

gY6

�5

gY� (13)

In section 4.2 we discuss the mechanical implications of the model.

The set of QHXWUDO displacements of the structure is again a four-dimensional vector

space. Indeed, the structure is statically determined when the displacement of node "4 and

the displacement components X+"5,� X+"6, are imposed. This can easily be checked by

considering that no rigid displacement is allowed by applied constraints and that the number

of constraint equations coincides with the degrees of freedom of constituting elements. The

neutral set is generated by three rigid displacements and the uniform flexion (X+"J , @
J 5� W+"J , @ 3).

The remark at the end of the previous section shows that the Warren-type pantographic

structure can also be regarded as a truss modular beam.

�� +202*(1,=$7,21 2) 3$172*5$3+,& 6758&785(6� 0$7+(0$7,&$/
5(68/76

In this section we prove that the sequence of discrete models (parameterized by O in

the previous section) for pantographic structures does converge to a continuous model

generalizing Euleròs HODVWLFD in the sense of De Giorgiòs �-convergence (see [42], [43] and
[44]). Thus, we establish a correspondence between the homogenized model and every

element of the sequence of discretemodels; when O is suitably large the deformation energy in

the limit model (corresponding to a fixed external action) is close to the corresponding energy

for the discrete systems. The �-convergence, although involving rather abstract functional

analysis concepts, supplies a convergence criterion having a clear mechanical basis.

���� 0DWKHPDWLFDO IRUPXODWLRQ

When a periodic structure is made of a large number O of modules, it is natural to study the

limit behaviour as O tends to infinity. This is the homogenization procedure. We first need

a functional framework in which we can define the displacement fields of the considered

structures for all O, as well as their continuous limits. A displacement field for the pantograph

or for the Warren-type structure (i.e. the displacement of each node $J or "J ) can clearly be

identified with a vector valued function +W� X, defined at points J�O for J @ 4 � � � O. In order
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to obtain a functional framework which does not depend on O one could extend this function
over the whole interval ^3� 4` by considering, for instance, a piecewise linear extension or

a piecewise constant extension [45]. Such extensions have no physical meaning and may

influence the results. This is the reason why we prefer to associate to each component W
or X (let us call it V) of the discrete displacement field, the discrete measure VwO where

wO =@ O�4
SO

J@4 n J�O and n J�O denotes the Dirac mass concentrated at point J�O. Our

problem is then naturally set in the space P of bounded Borel measures on the interval

^3� 4`.
For any positive integer L, let us denote by "L

O the set of those functions V defined wO

almost everywhere (i.e. at points J�O, for J @ 4 � � � O) which satisfy

V

�
J

O

�
@ 3� J @ 4� � � � � L � (14)

We also denote by) L
MFG U the set of those functions in the usual Sobolev space) L +3� 4,which

satisfies V+3, @ V3+3, @ � � � @ V+L�4, +3, @ 3. It is a Hilbert space endowed with the norm:

mmVmm)n
ohi w

@ +
U 4

3
V+L, +Y,

5
gY,4�5. We denote by +) L

MFG U ,
3 its topological dual space and by k�� �l

the corresponding duality bracket. Note that, so that no confusion arises, we also denote by

k�� �l the distribution bracket.
For any function of one of these spaces, we define the ñfinite differentiation operatorò%O

by setting

%O V+Y, =@

�
O
�
V+Y,� V

�
Y� 4

O

��
li Y � 4

O
�

OV+Y, li Y � 4
O
�

(15)

and the operators of higher-order % Q
O by setting %3

O V =@ V and, for every positive integer Q,
% Q

O V =@ %O% Q�4
O V.

Using these notations, the deformation energies & or ' (given by Equations (4) or (12))

of a pantograph or of a Warren-type pantographic structure can be written as

& @ ,.4

O

O[

J@4

�
%5

O +W� X,

�
J

O

��5

. ,�
4

O

O[

J@4

�
%5

O +W. X,

�
J

O

��5

' @ 5,
4

O

O[

J@4

�
%6

O +X,

�
J

O

��5

�

Then the convergence of the total energy of a pantograph or of a Warren-type

pantographic structure can easily be deduced from the convergence in P of the general

functional:

&L
O +v, =@

4
O

SO
J@4

��
%L

O +V,
�

J
O

��5 � GO
�

J
O

�
V
�

J
O

��
li v @ VwO zlwk V 5 "L

O

.4 rwkhuzlvh�
(16)
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Here GO is defined wO almost everywhere and corresponds to a component of external forces.

To deal with these external forces, we need to introduce the operators * LO by setting for every

function G defined wO a.e.:

*O G

�
J

O

�
=@

4

O

O[

K@J

G

�
K

O

�
(17)

* 3O G =@ G, and * L.4
O G =@ *O * LO G. Then, for every V 5 "L

O , we have

4

O

O[

J@4

G

�
J

O

�
V

�
J

O

�
@

4

O

O[

J@4

* LO G

�
J

O

�
%L

O V

�
J

O

�
� (18)

Note that this equality holds also for V 5 $4

D +3� 4` and O large enough.

Using the Riesz representation theorem, for every G 5 ) L
MFG U

3, there exists a unique

W 5 ) L
MFG U such that, for any V 5 ) L

MFG U

k G � Vl @
4]

3

W+L, +Y, V+L, +Y,gY

By setting * L G =@ W+L, we define an operator * L from ) L
MFG U

3 on to -5+3� 4, (when L @ 4 we

simply denote it by * ). For any V 5 ) L
MFG U , we have

k G � Vl @
4]

3

* L G +Y, V+L, +Y,gY� (19)

Note that mm G mm)n
ohi w

3 @ mm* L G mm-5+3�4, .
With these notations, our convergence result is:

7KHRUHP � $VVXPH WKDW WKH VHTXHQFH + GO wO , FRQYHUJHV ZHDNO\ WR VRPH G LQ +) L
MFG U ,

3 DQG

olp
O$4

4

O

O[

J@4

����*
L
O GO

�
J

O

�����
5

@

4]

3

��* L G +Y,
��5 gY� (20)

7KHQ WKH VHTXHQFH RI IXQFWLRQDOV +& L
O , ��FRQYHUJHV WR WKH IXQFWLRQDO &

L GHILQHG E\

& L +v, =@

4U
3

�
V+L, +Y,

�5
gY� k G � Vl li v @ VgY zlwk V 5 ) L

MFG U

.4 rwkhuzlvh�

(21)

0RUH SUHFLVHO\� IRU WKH ZHDN WRSRORJ\ RI P� WKH IROORZLQJ WKUHH VWDWHPHQWV KROG�

�L� ,I +vO , LV D VHTXHQFH LQ P VXFK WKDW +& L
O +vO ,, LV ERXQGHG� WKHQ +vO , LV UHODWLYHO\ FRPSDFW�

�LL� 0RUHRYHU� IRU DQ\ VHTXHQFH +vO , FRQYHUJLQJ WR v� WKH IROORZLQJ ORZHU�ERXQG LQHTXDOLW\ KROGV�

olp lqi
O�$4

& L
O +vO , � & L +v,� (22)
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�LLL� &RQYHUVHO\� IRU HYHU\ v LQ P� WKHUH H[LVWV D VHTXHQFH +vO , FRQYHUJLQJ WR v DQG VDWLVI\LQJ

WKH XSSHU�ERXQG LQHTXDOLW\�

olp vxs
O�$4

& L
O +vO , � & L +v,� (23)

The �-convergence is the mathematical notion which corresponds to the intuitive notion

of convergence of state equations. It implies in particular the convergence of equilibrium

solutions. Indeed (cf [46]) the following holds:

&RUROODU\ � Let vO be the minimizer of & L
O then any weak* limit of the sequence +vO ,

minimizes & L .

���� 3URRI RI WKHRUHP �

We start this section with two auxiliary lemmas.

/HPPD � �L� )RU HYHU\ LQWHJHU L � 3 DQG HYHU\ V 5 "L
O � WKH IROORZLQJ LQHTXDOLW\ KROGV

vxs
K@4���O

����V
�
K

O

�����
5

� 4

O

O[

J@4

����%
L
O V

�
J

O

�����
5

� (24)

�LL� )RU HYHU\ � 5 $4

D +3� 4`� WKH IROORZLQJ LQHTXDOLW\ KROGV

4

O

O[

J@4

����%
L
O �

�
J

O

�����
5

�
4]

3

���+L, +Y,
��5 gY� (25)

�LLL� ,I +VO wO , FRQYHUJHV WR v LQ P WKHQ % L
O VO wO FRQYHUJHV WR WKH LWK GHULYDWLYH RI v LQ WKH

VHQVH RI GLVWULEXWLRQV RQ +3� 4,�

3URRI� Let L 3 � 3. As % L 3

O V+ 4
O
, @ 3, for K @ 4� � � � � O, we have

% L 3

O V

�
K

O

�
@

4

O

K[

J@4

% L 3.4
O V

�
J

O

�
�

Hence

����%
L 3

O V

�
K

O

�����
5

� 4

O

O[

J@4

����%
L 3.4
O V

�
J

O

�����
5

(26)

and taking the sum over K

4

O

O[

J@4

����%
L 3

O V

�
J

O

�����
5

� 4

O

O[

J@4

����%
L 3.4
O V

�
J

O

�����
5

�

This last inequality, together with Equation (26) in the case L 3 @ 3, leads to assertion (i).
Now let � 5 $4

D +3� 4`, by the Jensen inequality, we have
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4]

3

m%O�+Y,m5gY �
4]

3

O

Y]

Y� 4

q

m�3+U,m5gUgY @
4]

3

O

5
7

4]

3

4^U�U. 4

q
` +Y,gY

6
8 m�3+U,m5gU

which gives

4]

3

m%O�+Y,m5gY �
4]

3

m�3+Y,m5gY�

As the operator %O and the differentiation operator commute, a simple induction argument

leads, for any positive integer L 3, to

4]

3

m% L 3

O �+Y,m5gY �
4]

3

m�+L 3, +Y,m5gY� (27)

Again, the Jensen inequality implies

4

O

O[

J@4

����%O�

�
J

O

�����
5

@
4

O

O[

J@4

�������
O

l
q]

l�4

q

�3+Y,gY

�������

5

�
4]

3

m�3+Y,m5gY�

To prove Equation (25), we use the last inequality with � @ % L�4
O �:

4

O

O[

J@4

����%
L
O �

�
J

O

�����
5

�
4]

3

% L�4
O �3+Y,m5gY�

Now applying inequality (27) with � @ � 3 and L 3 @ L� 4, we obtain

4]

3

% L�4
O �3+Y,m5gY �

4]

3

�+L, +Y,m5gY�

which completes the proof of assertion (ii).

Let us consider a sequence +VO wO , converging to v in P. Letting � 5 $4

D +3� 4,, we
have

olp
O$4

4

O

O[

J@4

% L
O VO

�
J

O

�
�

�
J

O

�
� kv+L, � �l

@ olp
O$4

+�4,L
4

O

O[

J@4

VO

�
J

O

�
% L

O �

�
J� L

O

�
� +�4,L kv� �+L, l

@ +�4,L olp
O$4

%
4

O

O[

J@4

VO

�
J

O

��
% L

O �

�
J� L

O

�
� �+L,

�
J

O

��&
�
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Since vxsJ

��% L
O �+

J�L
O
,� �+L,

�
J
O

��� tends to zero as O tends to infinity, the last limit converges

to zero. Assertion (iii) is proved. �

The following lemma collects some preliminary results for operators * LO .

/HPPD � )RU DQ\ � 5 $4

D ^3� 4`� ZH KDYH

olp
O$4

4

O

O[

J@4

����*
L
O �

�
J

O

�
� * L�

�
J

O

�����
5

@ 3� (28)

/HW + GO wO , EH D VHTXHQFH FRQYHUJLQJ WR G ZHDNO\ LQ ) L
MFG U

3
DQG VDWLVI\LQJ

olp
O$4

4

O

O[

J@4

����*
L
O GO

�
J

O

�����
5

@

4]

3

��* L G +Y,
��5 gY� (29)

7KHQ� IRU DQ\ � 5 $4

D +3� 4`� ZH KDYH

olp
O$4

4

O

O[

J@4

* LO GO

�
J

O

�
�

�
J

O

�
@

4]

3

* L G +Y,�+Y,gY� (30)

3URRI� For a regular function �, *�+Y, coincides with the integral
U 4

Y
�+U,gU. Then, for

some constant $, we have

vxs
J

����*O�
�
J

O

�
� *�

�
J

O

����� �
$

O
� (31)

which proves Equation (28) in the particular case of L @ 4. On the other hand, for all �
defined wO a.e.,

vxs
J

����*O�
�
J

O

����� � vxs
J

�����
�
J

O

����� � (32)

Applying inequality (32) to h� @ * LO �� * L� and inequality (31) to h� @ * L +�,, we obtain

vxs
J

����*
L.4
O �

�
J

O

�
� * L.4�

�
J

O

�����

� vxs
J

����*O +*
L
O �� * L�,

�
J

O

�����. vxs
J

����*O +*
L�

�
J

O

�
� *+* L�,

�
J

O

�����

� vxs
J

����*
L
O �

�
J

O

�
� * L�

�
J

O

�����.
$

O
�

Proof of Equation (28) is then obtained by an induction argument.

Letting � 5 $4

D +3� 4` such that � @ �+L, , we have
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4

O

O[

J@4

* LO GO

�
J

O

�
�+L,

�
J

O

�
�

4]

3

* L G +Y,�+L, +Y,gY

@
4

O

O[

J@4

* LO GO

�
J

O

�
% L

O �

�
J

O

�
�

4]

3

* L G +Y,�+L, +Y,gY

� 4

O

O[

J@4

* LO GO

�
J

O

��
% L

O �

�
J

O

�
� �+L,

�
J

O

��

@ k GO wO � G� �l � 4

O

O[

J@4

* LO GO

�
J

O

��
% L

O �

�
J

O

�
� �+L,

�
J

O

��
�

These last two terms tend to zero since + GO wO , converges weakly to G, the quantity
4
O

S O
J@4 m* LO GO + J

O
,m5 is bounded and the function % L

O � � �+L, converges uniformly to zero.

Hence, Equation (30) is proved. �

3URRI RI WKHRUHP ��

(i) 5HODWLYH FRPSDFWQHVV. Let +VO wO , be a sequence of bounded energy. Using the Cauchyï

Schwarz inequality and Equation (18), we have

4

O

O[

J@4

GO

�
J

O

�
VO

�
J

O

�
@

4

O

O[

J@4

* LO GO

�
J

O

�
% L

O VO

�
J

O

�

�
#
4

O

O[

J@4

����*
L
O GO +

J

O
,

����
5
$ 4

5
#
4

O

O[

J@4

����%
L
O VO

�
J

O

�����
5
$ 4

5

� (33)

Then the boundedness of & L
O +VO wO , and

4
O

SO
J@4 m* LO GO

�
J
O

�
m5 imply that

4

O

O[

J@4

����%
L
O VO

�
J

O

�����
5

� .5

for some constant.. Lemma 1(i) implies that VO is uniformly bounded by.. So is the total

variation of the measure VO wO . Then the sequence +VO wO , is relatively compact with respect

to the weak* topology ofP.

(ii) /RZHU ERXQG. Let +VO wO , be a sequence of bounded energy converging to some v inP
and consider � 5 $4

D ^3� 4`. Using Lemma 2, we can write

mkv��+L, lm5 @ olp
O$4

�����
4

O

O[

J@4

VO

�
J

O

�
�+L,

�
J

O

������

5

@ olp
O$4

�����
4

O

O[

J@4

% L
O VO

�
J

O

�
* LO �

+L,

�
J

O

������

5
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� olp lqi
O$4

#
4

O

O[

J@4

����%
L
O VO

�
J

O

�����
5
$#

4

O

O[

J@4

����*
L
O �

+L,

�
J

O

�����
5
$

� olp lqi
O$4

#
4

O

O[

J@4

����%
L
O VO

�
J

O

�����
5
$ 4]

3

m�+Y,m5gY�

This last inequality implies the existence of a unique V 5 ) L
MFG U such that v @ VgY. Moreover,

it implies that

olp lqi
O$4

#
4

O

O[

J@4

����%
L
O VO

�
J

O

�����
5
$

�
4]

3

mV+L, +Y,m5gY� (34)

For any � � 3, let '� 5 $4

D +3� 4, be such that
U 4

3
m* L G +Y,� '�+Y,m5gY � �5. We have

������
k G � Vl �

4]

3

'�+Y,V
+L, +Y,gY

������
@

������

4]

3

+* L G� '�,+Y,V
+L, +Y,gY

������
� �.� (35)

Moreover, by Lemma 1(iii), we have

olp
O$4

������

4]

3

'�+Y,V
+L, +Y,gY� 4

O

O[

J@4

'�

�
J

O

�
% L

O VO

�
J

O

�������
@ 3� (36)

and by Lemma 2

olp vxs
O$4

#
4

O

O[

J@4

�
* LO GO

�
J

O

�
� '�

�
J

O

��
% L

O VO

�
J

O

�$5

� .5 olp vxs
O$4

4

O

O[

J@4

����*
L
O GO

�
J

O

�
� '�

�
J

O

�����
5

� .5 olp vxs
O$4

4

O

O[

J@4

����*
L
O GO

�
J

O

�����
5

� 5* LO GO

�
J

O

�
'�

�
J

O

�
.

����'�

�
J

O

�����
5

� .5

4]

3

���* L G +Y,
��5 � 5* L G +Y,'�+Y, . m'�+Y,m5

�
gY

� .5

4]

3

��* L G +Y,� '�+Y,
��5 gY � .5�5� (37)

As � is arbitrary, collecting Equations (35), (36) and (37) gives
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olp
O$4

4

O

O[

J@4

GO

�
J

O

�
VO

�
J

O

�
@ olp

O$4

4

O

O[

J@4

* LO GO

�
J

O

�
% L

O VO

�
J

O

�
@ k G� Vl (38)

which, together with Equation (34), proves the lower-bound inequality.

(iii) 8SSHU ERXQG. Now consider v 5 P such that & L +v, �4. Then there exists V 5 ) L
MFG U

such that v @ VgY. Using a density argument we can assume that V belongs to$4

D +3� 4`. For
O large enough, let us define VO 5 "L

O by setting, for all J 5 i4� � � � � Oj, VO
�

J
O

�
=@ V

�
J
O

�
.

Clearly VO wO converges inP to VgY. Since GO wO converges to G in ) L
MFG U

3
, we have

olp
O$4

4

O

O[

J@4

GO

�
J

O

�
VO

�
J

O

�
@ k G � Vl� (39)

Moreover, using Lemma 1(ii), we have

olp vxs
O$4

4

O

O[

J@4

����%
L
O VO

�
J

O

�����
5

�
4]

3

��V+L, +Y,
��5 gY� (40)

The upper-bound inequality results from Equations (39) and (40). �

�� 0(&+$1,&6 2) +,*+(5 *5$',(17 %($06

For the considered pantographic structures, we have established mathematically the validity

of the continuous models introduced by functionals (13) and (5). In this section we briefly

discuss the mechanical properties of such limit models paralleling the treatment developed in

[47]. Some new boundary conditions have to be given for determining uniquely the solution

of the corresponding EulerïLagrange equations. We interpret these in terms of the underlying

discrete models, double (or triple) forces, which can be hardly understood in the context of

homogenized models. We find easily a microscopic counterpart and their physical meaning

is clarified.

���� 6HFRQG JUDGLHQW EHDPV

Let us call pantographic beam the homogenized model for the pantographic structure. Its

reference unstressed configuration is a straight segment of length one. Owing to Theorem 1

we can write its deformation energy in the following form

H+W� X, @ k

5

4]

3

�
+W 33,

5 � 5lW 33X 33 . +X 33,
5
�
gY (41)

where W� X correspond respectively to the axial displacement and deflection, k =@ 5+,. .
,�, is a positive parameter and l =@ +,��,.,+,..,�,�4 satisfies mlm � 4. Moreover,

the beam is clamped at Y @ 3; the displacement +W� X, and its first derivative +W 3� X 3, vanish
at that point.
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Clearly, as the energy depends on the second gradient of the displacement, this is a 1D

model of a second gradient material body. The fact that no classical elastic term (involving

the first derivatives of the displacement) appears in the energy is due to our choice of a very

particular structure ï the pantograph. It could have been easy to get such terms by adding

extensible bars linking nodes $J , $J.4 . The term +X%,5 describes the standard bending

behaviour of the beam while the terms involving W% are less usual; these were first studied

by Casal [19] (see also [20]). Our example of the homogenized pantographic beam gives a

possible microscopic interpretation for Casalòs second gradient extensible beam.

We start considering the case l @ 3 where axial deformation and deflection are

uncoupled and we focus on purely axial displacements (X @ 3). The beam is statically

determined due to the boundary conditions

W+3, @ 3� W 3+3, @ 3� (42)

([DPSOH �� Let us assume that the beam is subjected to a continuous linear density of

external axial forces G and a concentrated axial force ' at endpoint Y @ 4. At equilibrium,

the displacement field minimizes

4]

3

�
k

5
+W 33,

5 � G W

�
gY� 'W+4, (43)

under the constraints (42). Then it satisfies

kW 3333 @ G on +3� 4,� W+3, @ W 3+3, @ 3� W%+4, @ 3� �kW 333+4, @ '�

If we assume that ' @ 3 and that G is vanishing in, say, +4�5� 4, and G � 3 elsewhere, then

the solution W satisfies W � 3 and W 3 is a positive constant in +4�5� 4,. Let us interpret this
situation by considering the original pantograph; its nodes J � O�5 are submitted to external

forces G +J�O,, the pantograph is extended and has the peculiar property that this extension

propagates in the free part J � O�5 of the pantograph. If G @ 3 and ' is non-vanishing then

the constitutive relation for contact forces and the extensible displacement field are quite

different from the classical extensible bar. Indeed we find that axial contact forces fix the

third derivative of the displacement field; moreover, the displacement is a cubic function

while it is linear in the classical case.

([DPSOH �. Let us assume now that the pantograph is only subject to two opposite axial

forces O( and �O( applied respectively at nodes $O and $O�4 . The resulting force and the

moment of this ñpair of forcesò (or, to avoid confusion, of this GRXEOH IRUFH [10] or GRXEOH

WUDFWLRQ [19]) vanish. However, this double force has a great influence upon the equilibrium

state. It expends work on any variation of the distance $O�4$O . The extension of the last

pantographic module tends to propagate in the whole pantograph and is only limited by the

clamping constraints at the other endpoint. The correspondence with the homogenized point

of view is clear. The applied forces converge in the sense of Theorem 1 to the distribution of

order one�(n 3

4 and the equilibrium displacement field of the homogenized beamminimizes
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4]

3

k +W 33,
5
gY�(W 3+4, (44)

under the constraints (42). Then it satisfies

kW 3333 @ 3 on +3� 4,� W+3, @ W 3+3, @ 3� W 333+4, @ 3� kW%+4, @ (

the solution of which is W+Y, @ (Y5�5k. This example enlightens the physical meaning of

the unusual boundary condition kW%+4, @ (which naturally appears in any second gradient

theory [10]. It becomes clear why, in such a boundary condition, ( is called a ñdouble forceò.

In the case l 9@ 3 the axial deformation and the deflection are coupled but the equilibrium

state is still easy to compute. Let us reconsider Example 2 in this case.

([DPSOH �. l 9@ 3 and the pantograph is still only subject to two opposite traction forces
O( and�O( applied respectively at nodes$O and$O�4 . The equilibrium displacement field

+W� X, of the homogenized beam minimizes

k

5

4]

3

�
+W 33,

5 � 5lW 33X 33 . +X 33,
5
�
gY�(W 3+4, (45)

under the constraints W+3, @ W 3+3, @ X+3, @ X 3+3, @ 3. Then we have

X+Y,

l
@ W+Y, @

(Y 5

5+4� l5,
on +3� 4,� (46)

The double force applied at endpoint Y @ 4 is able to bend and extend the beam even if the

applied resultant force and moment vanish.

���� 7KLUG JUDGLHQW EHDPV

Let us now consider a Warren-type pantographic structure of length one. The associated

homogenized beam is inextensible (W @ 3), its reference unstressed configuration is a straight
segment of length one and, as a consequence of Theorem 1, its deformation energy has the

following form

H+W� X, @ k

5

4]

3

+X 333,
5
gY (47)

where X corresponds the deflection, and k =@ 7, is a positive parameter. Moreover, as we

have assumed that the beam is clamped at Y @ 3, the displacement and its first two derivatives

vanish at this point (X+3, @ X 3+3, @ X%+3, @ 3). This is a 1D model of a third gradient

material body.

([DPSOH �� Let us assume that the pantographic Warren-type structure is subject either

to a single transverse force ' at node "O or to two transverse forces O(, �O( at nodes "O ,

"O�4 or to three transverse forces O5)��5O5)� O5) at nodes "O , "O�4 � "O�5 , or eventually
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to the sum of these different actions. ' is a shear force which tends to displace the endpoint

Z of the structure while ( is a couple which tends to rotate this extremity. ) could be called

either triple force or double couple; it tends to curve the extremity of the structure. From the

point of view of the homogenized beam, one has to minimize

k

5

4]

3

+X 333,
5
gY� 'X+4,�(X 3+4,�)X 33+4, (48)

under the constraint X+3, @ X 3+3, @ X 33+3, @ 3. The corresponding EulerïLagrange

equation is a sixth-order differential equation which, together with the boundary conditions,

reads

�kX+9, @ 3 on +3� 4,�

X+3, @ X 3+3, @ X 33+3, @ 3� (49)

kW 333+4, @ )��kW+7,+4, @ (� kW+8,+4, @ '�

) is a special feature of third gradient models. It represents a new kind of contact action.

Note that at the other endpoint the kinematic dual condition X 33+3, @ 3 fixes locally the

curvature of the beam.

([DPSOH �� Let us assume that only the first nodes J � O�5 of the pantographic Warren-

type structure are subject to transverse external forces G +J�O,, where G is a given continuous

function vanishing on +4�5� 4). From the point of view of the homogenized beam, one has

to solve the following differential equation:

�kX+9, @ G on +3� 4,�

X+3, @ X 3+3, @ X 33+3, @ 3� (50)

W+6,+4, @ W+7,+4, @ W+8,+4, @ 3�

We note that the free part Y � 4�5 of the beam has a constant, generally non-vanishing,

curvature.

$FNQRZOHGJPHQWV� 7KLV UHVHDUFK ZDV SDUWO\ VXSSRUWHG E\ YLVLWLQJ JUDQWV IURP ERWK WKH 8QLYHUVLWp GH 7RXORQ HW GX 9DU DQG
WKH 8QLYHUVLWj GL 5RPD /D 6DSLHQ]D�
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