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Abstract:  

Many engineering structures are subjected to dynamic excitation, which may lead to undesirable 

vibrations. The multiple natural frequency bounds in truss optimization problems can improve 

dynamic behaviour of structures. However, shape and size variables with frequency bounds are 

challenging due to its characteristic, which is non-linear, non-convex, and implicit with respect to the 

design variables. As the main contribution, this work proposes an improved version of a recently 

proposed Symbiotic Organisms Search (SOS) called an Improved SOS (ISOS) to tackle the above-

mentioned challenges. The main motivation is to improve the exploitative behaviour of SOS since this 

algorithm significantly promotes exploration which is a good mechanism to avoid local solution, yet it 

negatively impacts the accuracy of solutions (exploitation) as a consequence. The feasibility and 

effectiveness of ISOS is studied with six benchmark planar/space trusses and thirty functions 

extracted from the CEC2014 test suite, and the results are compared with other meta-heuristics. The 

experimental results show that ISOS is more reliable and efficient as compared to the basis SOS 

algorithm and other state-of-the-art algorithms.  
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1. Introduction  

The optimal engineering truss subjected to dynamic behaviour is a challenging area of study that has 

been an active research area. Thus, optimal truss design subjected to frequency bounds has seen much 

consideration in the past decades. natural frequencies of a truss are really useful considerations to 

improve the dynamic behaviour of the truss (Pholdee and Bureerat, 2014; Savsani et al. 2017). 

Therefore, natural frequencies of the truss should be constrained to avoid resonance with an external 

excitation. In addition, engineering structures should be as light as possible. On the other hand, mass 

minimization conflicts with frequency bounds and increases complexity in truss optimization. As 

such, an efficient optimization method is required to design the trusses subjected to fundamental 

frequency constraints and continuous efforts are put by researchers in this aspect.  

Size optimization, shape optimization, and topology optimization are fundament types of truss 

optimization. In size optimization, the final goal is to obtain the best bar sections, whereas shape 

optimization works to search the best nodal positions of predefine nodes of the truss structure. The 

effect of shape and sizing on objective function and constraints are in conflict. Therefore, 

simultaneous shape and sizing with natural frequency bounds adds further complexity and often lead 

to divergence. Several researchers have been using different optimization algorithms, yet this research 

area has not been fully investigated so far.  

Truss optimization with frequency bound was firstly addressed by Bellagamba and Yang (1981) since 

proposal many scholars have been investigating further into this research area. Lin et al. (1982) 

presented a bi-factor algorithm. Grandhi and Venkayya (1988) and Wang et al. (2004) tested an 

optimality criterion (OC). Wei et al. (2005) presented a niche genetic hybrid algorithm (NGHA). 

Particle swarm optimization (PSO; Kennedy and Eberhart, 1995) tested by Gomes (2011). Kaveh and 

Zolghadr (2011) used a charged system search (CSS; Kaveh and Talatahari, 2010) and enhanced CSS. 

Wei et al. (2011) applied a parallel genetic algorithm (GA). Kaveh and Zolghadr (2012) addressed a 

hybridized CSS and a big bang-big crunch (CSS-BBBC). Miguel and Miguel (2012) tested a harmony 

search (HS; Geem et al., 2001) and a firefly algorithm (FA). Kaveh and Zolghadr (2014a) utilized a 

democratic PSO (DPSO). Kaveh and Zolghadr (2014b) investigated nine recent optimization 

algorithms. Pholdee and Bureerat (2014) investigated twenty-four advanced algorithms. Zuo et al. 

(2014) applied a hybrid OC-GA. Khatibinia and Naseralavi (2014) presented an orthogonal multi-

gravitational search algorithm (GSA). Kaveh and Mahdavi (2014) studied a colliding-bodies 

optimization (CBO). Tejani et al. (2016b) suggested a modified sub-population teaching-learning-

based optimization (MS-TLBO) and Farshchin et al. (2016) used Multi-Class TLBO (MC-TLBO) for 

trusses subjected to frequency bounds. Kaveh and Zolghadr (2017) used tug of war optimization 

(TWO), whereas Kaveh and Ilchi Ghazaan (2017) used vibrating particles system (VPS). On the other 
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hand, truss subjected to both static and dynamic bounds has been investigated by few scholars (Xu et 

al., 2003; Kaveh and Zolghadr, 2013; Savsani et al., 2016; 2017).  

In the second test, thirty benchmark functions extracted from the CEC2014 test suite are solved using 

the proposed technique and the results are compared with state-of-the-art algorithms. The comparative 

algorithms are selected from different categories as follows: Invasive Weed Optimization (IWO) 

(Mehrabian and Lucas, 2006), Biogeography-Based Optimization (BBO) (Simon, 2008), GSA 

(Rashedi et al., 2009), Hunting Search (HuS) (Oftadeh et al., 2010), Bat Algorithm (BA) (Yang, 

2010), and Water Wave Optimization (WWO) (Zheng, 2014).  

All these studies proved the efficacy of stochastic optimization algorithms in handling a large number 

of difficulties when solving structure design problems. According to the No Free Lunch theorem in 

the field of optimization, however, there is no algorithm to solve all optimization problems. This 

means that a new adapted algorithm has potential to solve a group of problems (e.g. structures design) 

better than the current algorithms while they still perform equal considering all optimization 

problems. This motivated our attempts to improve the performance of the recently proposed symbiotic 

organisms search (SOS) algorithm and adapt it better for structure design problems.   

Cheng and Prayogo (2014) proposed the SOS algorithm works on cooperating behaviour among 

species in the society. SOS simulates symbiotic living behaviours. SOS is a population-based method, 

where species of the society is assumed to be a population. SOS has been equipped with a minimum 

number of controlling parameters: population size and number of generations. This makes this 

algorithm more convenient to use compare to GA which requires mutation, crossover, selection rate 

etc., PSO which needs inertia weight, social, and cognitive parameters, and HS which should be tested 

with setting harmony memory rate, pitch adjusting rate, and improvisation rate (Cheng et al., 2015; 

Tejani et al., 2016a).    

The SOS algorithm has been applied to a large number of constrained and unconstrained problems 

and proved to be a very competitive algorithm (Cheng and Prayogo, 2014; Cheng et al., 2015). In 

2015, Cheng et al. proposed a discrete version of SOS to optimize multiple-resources levelling 

problems. Capability of SOS in truss optimization is still under research, although Cheng and Prayogo 

(2014) and Tejani et al. (2016a) have investigated SOS for some structural optimization problems. 

Another interesting work in the literature has been conducted by Tran et al. (2015), in which a multi-

objective SOS was proposed and applied to multiple work shifts problems in construction projects. As 

another improvement, Tejani et al. (2016a) introduced an adaptive search mechanism called Adaptive 

benefit factor (ABF) in the mutualism phase of SOS. Adaptive versions of SOS were called as a SOS-

ABF1 incorporates ABF1 and BF2, a SOS-ABF2 incorporates BF1 and ABF2, and a SOS-ABF1&2 

incorporates ABF1 and ABF2. These motivated our attempt to improve the performance of SOS.  
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Regardless of the successful application of SOS, this algorithm estimates the global optimum of a 

given problem in three phases: the mutualism phase, commensalism phase, and parasitism phase.  

In the parasitism phase, parasite vector is produced by a fusion of host design variables and randomly 

generated variables, therefore this phase works mainly in order to improve exploitation capabilities of 

the search process. The highly heuristic nature of the phase leads solution to jump into non-visited 

regions (exploration) and permits local search of visited regions (exploitation) as well. However, the 

exploitation capability of this phase is considerably low as compared to exploratory capability. Thus, 

the acceptance rate of new solution obtained by the parasitism phase reduces rapidly with function 

evaluations (FEs) or number of generations. This action consumes a large number of unused FEs later 

in the parasitism phase. Moreover, it seems that the literature lacks efficient methods to improve 

exploration to improve the convergence speed and exploitation. Also, adaptive mechanisms are 

required to balance exploration and exploitation since either of these will not guarantee the success of 

SOS. In other works, a propose balance of these two phases is essential to avoid local solutions and 

find an accurate estimation of the global optimum for a given optimization problem. To alleviate these 

drawbacks, an improved SOS (ISOS) algorithm is equipped with an improved parasitism phase to 

boosts exploitation capability of the algorithm.  

This study intends to devise a method to establish a good balance between exploration and 

exploitation of the search space using SOS. In addition, several considerations are made in the paper 

to solve structure design problems using ISOS.  

2. The symbiotic organisms search algorithm  

The SOS algorithm, proposed by Cheng and Prayogo (2014), is a simple and powerful meta-heuristic. 

SOS works on the biological dependency seen among organisms in the nature. Some organisms live 

together because they are reliant on other species for survival and food. The reliance between two 

discrete organisms is known as symbiotic. In this context, mutualism, commensalism, and parasitism 

are the most common symbiotic relations found in the nature. An interdependency between two 

different species benefits to each other is called mutualism. A relationship between two different 

species benefits to one of them without affecting other is called commensalism. Whereas, a 

relationship between two different species benefits to one of them with aggressively harm another is 

called parasitism.  

SOS starts with a randomly generated population, where the system has ‘n’ number of organisms 

(population size) in the ecosystem. In the next stage, the population is updated in each generation „g‟ 

by „the mutualism phase‟, „the commensalism phase‟, and „the parasitism phase‟ respectively. 

Moreover, updated solution in each phase is accepted only if it has better objective value. These steps 

are repeated until a termination criterion is satisfied. In this optimization method, the better solution 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

can be achieved the symbiotic relations between the current solution and either of other random 

solution and the best solution from population.  

The detailed description of all three phases and modification of SOS is explained in the subsequent 

sections:  

2.1 The mutualism phase  

A relationship between two organisms of different species results in individual benefits of the 

symbiotic interaction is called mutualism. The symbiotic interaction between bee and flower is a 

classic example of this phenomenon. Bees fly from one flower to another and collect nectar that is 

produced into honey. This activity also benefits to result in the formation of seeds as the bee acts as 

the vehicle to move pollen for plant. In this way, this symbiotic association benefits both individuals 

from the exchange. Therefore, this relationship is called a mutually beneficial symbiotic (Cheng and 

Prayogo, 2014).  

In the mutualism phase, the design vector (Xi) of the organism „i‟ (i.e. population) interacts with 

another design vector (Xk) of a randomly selected organism „k‟ of the ecosystem (where k ≠ i). The 

interaction between these organisms results in a mutualistic relationship, which improves individual 

functional values of the organisms in the ecosystem. Therefore, new organisms are governed by a 

Mutual Vector (MV) and Benefit Factors (BF1 and BF2). The mutual vector (the average of two 

organisms) signifies the mutual connection between organisms „Xi‟ and „Xk‟ (Equation 3). The benefit 

factors are decided by a heuristic step and so it is decided randomly with equal probability as either 1 

or 2 (Equations 4 and 5). Therefore, the benefit factors signify two conditions where organisms „Xi‟ 

and „Xk‟ benefit partially or fully from the interaction respectively. The organism with the best 

functional value is considered as the best organism (Xbest) of the ecosystem. In this phase, organisms 

„Xi‟ and „Xk‟ also interact with the best organism. Therefore, this phase keeps a good balance between 

exploitation and exploitation of the search space. The organisms are updated only if their new 

functional value . (  
  )     (  

  )/ is fitter than existing. The mathematical formulation of the new 

populations is given in Equations 1 and 2.  

  
           (            )       (1) 

  
           (            )      (2) 

   
     

 
         (3) 

BF1 = 1 + round [rand]        (4) 

BF2 = 1 + round [rand]        (5) 
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Where,            k is a randomly selected population;        (       )  rand is a random 

number;      ,   -.  

2.2 The commensalism phase  

A relationship establishes by an organism with another organism of different species is beneficial to 

the species itself but have no influence to the other organism such symbiotic interaction is called 

commensalism. The commensalism relationship between the remora fish and sharks is a classic 

example of this phenomenon (Cheng and Prayogo, 2014). The remora fish rides shark to get food or 

other benefits. On the other hand, the shark is neither damaging nor benefiting by the remora fish.  

In this phase, the design vector (Xi) of the organism „i‟ (i.e. population) interacts with another design 

vector (Xk) of a randomly selected organism „k‟ of the ecosystem (where k ≠ i). The interaction 

between these organisms results in a commensalism relationship, which improves the functional value 

of the organism „i‟. However, the organism „k‟ has neither benefits nor loss from the relationship. 

Moreover, the organism „Xi‟ also interacts with the best organism of the ecosystem. The organism is 

updated only if its new functional value,  (  
  ) is fitter than existing. Therefore, this phase keeps a 

good exploitation promising region near the best organism of the search space and works to improve 

convergence speed of the algorithm. Mathematical formulation of new population is given in 

Equation 6.  

  
          (    )  (        )       (6) 

Where,            k is a randomly selected population;        (       )  rand is a random 

number in the range [–1, 1].  

2.3 The parasitism phase  

A relationship establishes by an organism with another organism of different species either benefit or 

harms the other organism such symbiotic interaction is called parasitism. The symbiotic interaction 

between plasmodium parasite, and anopheles mosquito is an example of this phenomenon. The 

anopheles mosquito passes the plasmodium parasite between human hosts. The parasite thrives and 

breeds inside the human body, as a result the human host suffers disease. If the human host fits to 

fight with the parasite, he will benefit immunity from the parasite and the parasite will no longer be 

able to live in that ecosystem otherwise the human host may die. In this way, this symbiotic 

association benefit or harm other organism from the exchange (Cheng and Prayogo, 2014).  

In this phase, the design vector (Xi) of the organism „i‟ (i.e. population) is assumed to be the 

anopheles mosquito. The anopheles mosquito produces an artificial parasite called Parasite_Vector. 

Parasite vector is produced by changing values of some randomly selected design variables of the 

organism „Xi‟, the randomly selected design variables are modified using a random generated number 
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within its bounds. Therefore, Parasite_vector is a fusion of design variables of the organism „i‟ and 

randomly generated design variables. The design vector (Xk) of a randomly selected organism „k‟ of 

the ecosystem (where k ≠ i) works as a human host to the parasite vector. The interaction between 

these organisms results in a parasitism relationship. If parasite vector has better functional value than 

functional value of organism „k‟, the parasite will kill organism „k‟ and acquire its position in the 

ecosystem. If the functional value of organism „k‟ is better, organism „k‟ will have immunity from the 

parasite and the parasite will die. Therefore, the parasitism phase improves the exploration and 

exploitation of the search space as parasite vector is generated by a fusion of host design variables and 

randomly generated variables. Schematic diagram of SOS and its variants is shown in Figure 1. The 

figure signifies various stages of the proposed algorithms like initialization, mutualism phase, 

commensalism phase, parasitism phase, and termination criteria. The detail pseudo code to generate 

the parasite vector of ith population is given as follows: 

Parasite_Vector =   
   

 for j=1:m do /* j is design variable /*  
 Generate a random number (rj) /* rj is 0 or 1 /* 
  if rj = 0 then  

                                   (         )  
 end if  
end for  

/* If parasite vector is fitter than the organism ‘k’, parasite will kill organism ‘k’ and acquire its 
position in the ecosystem. /*  
if  (               )   (  ) then /* ‘k’ is a randomly selected population, k ≠ i /* 
                    
end if  

3. Improvements in the SOS algorithm  

In the parasitism phase of the basic SOS algorithm, parasite vector is produced by a fusion of host 

design variables and randomly generated variables, therefore this phase works mainly to improve 

exploitation capabilities of the search process. Exploration is the process of finding non-visited 

regions of a search space, whereas exploitation refines visited regions with a local search. Mere 

exploration reduces the precision of the optimization algorithm but improves its capacity to avoid 

local solutions.  

On the other hand, a high level of exploitation improves the existent population in order to find 

accurate solutions. Therefore, the effectiveness of an optimization algorithm to search a global 

optimal solution highly depends on its ability to set a good balance between the exploitation and the 

exploration of the search space. The stochastic components in the parasitism phase mainly focuses 

search to jump into non-visited regions and also allows local search of visited regions. In this way, 

this phase has an additional characteristic to avoid local optima trap and maintains diversity of the 

population. However, exploitation capability of this phase is considerable low as compared to 
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exploration capability. As exploitation contributes to speed up the convergence rate of an optimization 

algorithm. Whereas exploitation oriented algorithm can have but at additional computational cost. 

The main reason for this improvement is that the parasitism phase is good at exploration but poor at 

exploitation because of its search mechanism. In SOS, the acceptance rate of new solution obtained by 

the parasitism phase reduces rapidly with FEs. As the exploration is over focused in SOS and many 

FEs are wasted for some inferior results in the parasitism phase. This investigation is mainly focused 

on improving the local search procedure to accelerate exploitation of local search without declining 

global exploration capability of the algorithm. Thus, the parasitism phase of the basic SOS is changed 

to improved parasitism phase to improve the convergence ability and set a good balance between 

exploration and exploitation.  

The new search mechanism encourages exploration during the first q % of FEmax and exploitation 

during remaining FEs, where q is a parasitism parameter and it depends on acceptance rate of the 

improved parasite vector obtained by the parasitism phase. In this way, the proposed improvement 

boosts exploitation capability of the algorithm. On the other hand, the modification of SOS is still 

under research. These aspects encouraged us to propose ISOS and to test its effect on truss design.  

Improved_Parasite_Vector =   
   

if FEs < (q % of FEmax) then     /* q is the parasitism parameter;   ,     -   /* 

                                         (         ) /* j is a randomly selected 
variable /* 

     

  for j=1:m do  
  Generate a random number (rj)  /* rj is 0 or 1 /* 
   if rand[0,1] < 0.5 then  

                                             (         ) 

  end if  
 end for 

end if 
/* If improved parasite vector is fitter than the organism ‘k’, parasite will kill organism ‘k’ and 
acquire its place. /*  
if  (                        )   (  ) then /* ‘k’ is a randomly selected population, k ≠ i /* 
                             
end if 

The following sections investigate the efficiency of SOS and ISOS with respect to the truss 

optimization problems.  

4. The formulation of the design problem 

The goal of the design optimization of truss is mass minimization by considering frequency bounds. 

Therefore, the mass of truss (neglect lumped masses at nodes) is the objective function, whereas nodal 

coordinates and bar sections are the design variables. The formulation of the problem can be done 

mathematically as follows:  
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       *   +          *          +        *          +   (7) 

                            

 ( )  ∑       

 

   

 

               

  ( )       
        

  ( )       
      

  ( )    
         

    

  ( )    
         

    

                           

Where,                signify the sectional area, density, and length of the bar ‘i’ respectively.    

presents nodal coordinate (        ) of node ‘j’.           are ‘qth’ and ‘rth’ natural frequencies 

respectively. The superscripts, „max’ and „min’ signify the maximum and minimum permissible 

bounds respectively. The finite element method is applied to calculate fundamental Eigen values and 

natural frequencies the truss.  

The objective function is penalized to handle frequency bounds. There is no penalty for non-violation 

of the bounds; otherwise, the penalty function is considered as follows (Kaveh and Zolghadr, 2013): 

           ( )  {
 ( )                            

 ( )                                  
      (8) 

         (      )     ∑(     )     |  
|     

   |

  
   |     |  

|     
   |

  
   |  (9) 

The parameters    and    are selected by considering their nature. In this investigation, values of    

and    are set as 3 by investigating its effect. Schematic diagram of construction of the truss 

optimization problem is shown in Figure 2.  

5. Truss problems and discussions  

Six distinct trusses (Figures 3 and 4) of shape and sizing with multiple natural frequency bounds are 

considered to evaluate feasibility and validity of ISOS. The trusses are designed with continuous 

sections. The results obtained are compared with the previous results obtained using OC, GA, FA, 

TLBO, CBO, CSS, SOS, TWO, VPS, etc. The results and discussions of the test problems are 

explained in the following sections:  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.1 The 10-bar truss 

The 10-bar truss is shown in Figure 3 (A). This truss has been examined by several researchers (Table 

2). The design parameters are given in Table 1. Sizing with ten continuous design variables is 

considered for this truss. Moreover, a lumped mass of 454.0 kg is added at all free nodes (nodes 1–4) 

as presented in Figure 3 (A).  

In this section, ISOS is investigated to test its effects on size optimization by considering population 

size and FEmax as 20 and 4000 respectively. Graphical representation of the accepted solutions‟ counts 

in the parasitism phase of SOS and the improved parasitism phase of ISOS are presented in the 

Figures 5 and 6 respectively. It is observed from the Figure 5 that the acceptance rate of new solutions 

obtained in the parasitism is at the maximum level in the early stages and gradually approaches to 

zero nearly at 50 % of FEmax. Thus, q is assumed as 50 % of FEmax for ISOS in all the problems. ISOS 

works as per the original parasitism phase during first 50 % of FEmax and it works as per the improved 

parasitism phase for the remaining FEs. It can be observed from the Figure 6 that the acceptance of 

the acceptance rate of new solutions obtained in the improved parasitism phase of ISOS is improved 

significantly compared to the parasitism of SOS.  

Table 2 highlights size variables, best mass, mean mass, standard deviation (STD) of mass, FEs, and 

frequency responses obtained for 100 runs. The results show that SOS and ISOS find the best mass of 

525.2789 and 524.7341 kg respectively. The results show that SOS and ISOS give better results as 

compared to related results stated in the literature. Moreover, ISOS ranks first among considered 

meta-heuristics. Therefore, the results of ISOS are compared with the results of the other meta-

heuristics. The mass benefit for ISOS is 18.0159, 13.2459, 10.4059, 7.2159, 4.5159, 10.2559, 6.5459, 

4.3559, 10.9959, 7.4019, 7.3169, 7.4959, 6.0359, 0.5448, 0.1933, 0.0948, and 0.5361 kg as compared 

to those obtained from the NHGA, PSO, NHPGA, CSS, enhanced CSS, HS, FA, CSS-BBBC, hybrid 

OC-GA, TLBO, MC-TLBO, TWO, VPS, SOS, SOS-ABF1, SOS-ABF2, and SOS-ABF1&2 

algorithms respectively.  

SOS and ISOS give mean mass as 531.4033 and 530.0286 kg respectively. Moreover, ISOS gives best 

mean mass among the considered algorithms except SOS-ABF1, SOS-ABF2, and SOS-ABF1&2. The 

results show that SOS and its variants give better mean mass as compared to related results stated in 

the literature. The mean mass benefit for ISOS is 10.8614, 6.3614, 8.5014, 7.6514, 5.0414, 5.0904, 

3.2034, 5.5214, 5.6114, and 1.3747 kg as compared to those obtained from the PSO, CSS, enhanced 

CSS, HS, FA, TLBO, MC-TLBO, TWO, VPS, and SOS algorithms respectively.  

SOS and ISOS give STD of mass as 4.2243 and 3.4763 respectively. It can be seen from the results 

that that ISOS gives better result as STD of mass with SOS. It should be noticed that maximum 

number of FEs used in the proposed algorithm is fairly small as compared to the HS, FA, hybrid OC-

GA, TLBO, MC-TLBO, and VPS algorithms. This study indicates that the results of SOS and its 
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variants are more reliable and superior as compared to the other results reported in the literature. 

Moreover, it is found from the results that ISOS is more efficient than SOS.  

5.2 The 37-bar truss  

The 37-bar truss, simply supported bridge, is depicted in Figure 3 (B). Wang et al. (2004) initially 

considered this truss and later it was investigated by many researchers (Table 3). Table 1 presents 

design parameters for this problem. A lumped mass of 10 kg is attached at all free nodes of the lower 

chord. The lower chord bars are assumed to have a fixed rectangular sections of 0.4 cm2, whereas the 

remaining bars are clustered into fourteen groups by considering structure symmetry about the middle 

vertical plane. Upper nodes can shift vertically by considering structural symmetry, whereas the lower 

nodes are fixed. Therefore, this problem has fourteen sizing and five shape variables.  

In this study, ISOS is tested by considering population size and FEmax as 20 and 4000 respectively. 

The obtained results are presented in Table 3. It can be seen from the results that SOS and ISOS give 

the best mass for 4000 FEs as 360.8658 and 360.7432 kg respectively. The results show that TLBO 

gives better results as compared to related results stated in the literature. However, maximum number 

of FEs used in the proposed algorithm is fairly small as compared to the PSO, HS, FA, CBO, DPSO, 

TLBO, MC-TLBO, and VPS algorithms.  

SOS and ISOS give mean mass as 364.8521 and 363.3978 kg respectively. The SOS and ISOS 

algorithms give STD of mass as 4.2278 and 2.6642 respectively. It can be seen from the results that 

that ISOS gives better result as mean and STD of mass among the proposed algorithm for 4000 FEs. 

Moreover, it is also observed that ISOS is more efficient than SOS.   

5.3 The 72-bar truss  

Figure 4 presents the third benchmark truss. This truss was investigated by many scholars (Table 4) as 

a large-scale, sizing problem. The design considerations are summarized in Table 1. The bars are 

grouped into sixteen by seeing symmetry as reported in the previous study. A lumped mass of 2770 

kg is added at all top nodes (nodes 1–4) as shown in Figure 4.  

In this problem, the ISOS is tested by considering population size and FEmax as 20 and 4000 

respectively. From the results shown in Table 4, the best mass achieved by SOS and ISOS are 

325.5585 and 325.0682 kg respectively. The results show that ISOS presents better results as 

compared to related results stated in the literature (except results for CBO and SOS-ABF2). However, 

it observed that maximum number of FEs used by the CBO, TLBO, MC-TLBO, and VPS algorithms 

is significantly higher as compared to the proposed algorithm. Moreover, ISOS performs better among 

considered meta-heuristics for 4000 FEs. Therefore, we compared the results of ISOS with the results 

of the other meta-heuristics. The results signify that the mass benefit for SOS-ABF2 is 3.7458, 

3.3248, 2.4388, 2.4998, 2.5068, 3.7618, 2.5808, 0.4903, 0.0178, 0.1635 and 0.1635 kg compared to 
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those obtained from the CSS, enhanced CSS, CSS-BBBC, TLBO, MC-TLBO, TWO, VPS, SOS, 

SOS-ABF1, and SOS-ABF1&2 algorithms respectively.  

The results signify that SOS and ISOS give mean mass as 331.1228 and 329.4699 kg respectively. 

SOS and ISOS give STD of mass as 4.2278 and 2.6642 respectively. It can be seen from the results 

that that ISOS gives best result as mean and STD of mass among the proposed algorithm for 4000 

FEs. This study indicates that the results of ISOS is more reliable and proficient as compared to the 

results of the other meta-heuristics.  

5.4 The 52-bar truss 

The 52-bar dome truss is selected as the fourth problem, shown in Figure 3 (C). This problem was 

first studied by Lin et al. (1982) and followed by several others (Table 5) for sizing and shape 

optimization. Table 1 illustrations design considerations. A lumped mass of 50 kg is attached at all 

free nodes. The bars are linked into eight groups by considering symmetry about the z-axis, whereas 

the free nodes can shift ±2 m in each direction of the vertical plane in to keep the dome symmetric.  

In this study, ISOS is used by considering population size and FEmax as 20 and 4000 respectively. 

Table 5 presents the results of the considered algorithms with other optimization methods. The results 

indicate that SOS and ISOS propose trusses with the optimum mass of 195.4969 and 194.7483 kg 

respectively. TLBO and MC-TLBO rank first among the considered meta-heuristics respectively. 

However, it observed that maximum number of FEs used by TLBO, and MC-TLBO is 3.75 time 

higher as compared to the proposed algorithm. Moreover, ISOS ranks second among considered 

algorithms. The mass benefit for ISOS is 103.2517, 41.2977, 33.6327, 10.4887, 2.5887, 20.1917, 

2.7817, 2.5607, 0.6027, 0.7486, 0.0606, 0.4247, and 3.5147 kg compared to those obtained from the 

bi-factor algorithm, NGHA, PSO, CSS, enhanced CSS, HS, FA, CSS-BBBC, DPSO, SOS, SOS-

ABF1, SOS-ABF2, and SOS-ABF1&2 algorithms respectively.  

The results signify that SOS and ISOS give mean mass as 214.6676 and 207.5498 kg respectively. 

The results indicate that ISOS gives better mean mass as compared to other algorithms stated in the 

literature except the results of the enhanced CSS, DPSO, TLBO and MC-TLBO algorithms. However, 

maximum number of FEs used in the proposed algorithm is fairly small as compared to the PSO, HS, 

FA, DPSO, TLBO, and MC-TLBO algorithms. SOS and ISOS give STD as 15.1499 and 8.7354 

respectively. It can be seen from the results that that SOS-ABF1 gives better result as STD of mass as 

compared SOS. This study indicates that the results of SOS and ISOS are more reliable and proficient 

as compared to the results of the other considered meta-heuristics. Moreover, ISOS performs more 

efficiently as compared to SOS.   

5.5 The 120-bar truss  
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Figure 3 (D) presents the fifth benchmark. This 3-D dome truss was initially optimized by Kaveh and 

Zolghadr (2012) for size optimization. The design considerations are tabulated in Table 1. A lumped 

mass is added as 3000 kg at node 1, 500 kg at nodes 2 to 13, and 100 kg at the rest of the free nodes. 

The bars are grouped into seven by assuming symmetry about the z-axis.  

In this test, ISOS is used population size and FEmax as 20 and 4000 respectively. Table 6 presents the 

obtained results using the proposed algorithm and other meta-heuristics. The results present that SOS 

and ISOS give the trusses with the best mass of 8713.3030 and 8710.0620 kg respectively. The results 

show that SOS and ISOS give better results as compared to related results stated in the literature. 

Moreover, ISOS ranks first among considered meta-heuristics. ISOS gives mass benefit as 494.448, 

336.278, 179.0683, 461.868, 180.418, 178.678, 3.241, 2.048, 0.268, and 6.885 kg compared to those 

obtained from the CSS, CSS-BBBC, CBO, PSO, DPSO, VPS, SOS, SOS-ABF1, SOS-ABF2, and 

SOS-ABF1&2 algorithms respectively.  

Mean mass for SOS and ISOS are of 8735.3452 and 8728.5951 kg respectively. Moreover, ISOS 

gives better mean mass among the considered algorithm except SOS-ABF1 and SOS-ABF2. The 

mean mass benefit for ISOS is 162.65890, 523.24490, 167.39490, 167.44490, 6.75010, and 62.10100 

kg as compared to those obtained from the CBO, PSO, DPSO, VPS, SOS, and SOS-ABF1&2 

algorithms respectively. It is seen clearly that the ISOS gives better mean mass as compared to related 

results stated in the literature.   

SOS and ISOS give STD of mass as 17.9011 and 14.2296 respectively. CBO and DPSO stand first 

and second respectively in terms of STD of mass. Moreover, it is noticed that maximum number of 

FEs used in the proposed algorithm is fairly small as compared to the CBO, PSO, DPSO, and VPS 

algorithms. This study indicates that the results of ISOS is more reliable and proficient as compared to 

the results of the literature.  

5.6 The 200-bar truss  

The sixth benchmark truss, illustrated in Figure 3 (E), is considered as a large-scale, sizing problem. 

Table 1 presents design considerations for this problem. A lumped mass of 100 kg is added at all top 

nodes (nodes 1–5), whereas all bars are grouped into twenty-nine by seeing symmetry of the structure.  

SOS and its variants are considered with population size and FEmax as 20 and 10000 respectively. 

Table 7 presents the comparative results. The best masses for SOS and ISOS are 2180.3210 and 

2169.4590 kg respectively. The results show that SOS and ISOS give better results as compared to 

similar results reported in the literature (except the results of TLBO, MC-TLBO, SOS-ABF1, and 

SOS-ABF2). However, it observed that maximum number of FEs used by TLBO, and MC-TLBO is 

2.3 times higher as compared to the proposed algorithm. The table shows that ISOS gives mass 
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benefit of 90.401, 129.151, 33.753, 19.621, 10.862, and 38.4290 kg as compared to those obtained 

from the CSS, CSS-BBBC, CBO, 2D-CBO, SOS, and SOS-ABF1&2 algorithms respectively.  

The results show that SOS and ISOS give the mean mass of 2303.3034 and 2244.6372 kg 

respectively. ISOS gives better mean mass than SOS for 10000 FEs. SOS and ISOS give STD of mass 

as 83.5897 and 43.4808 respectively. It can be seen from the results that that ISOS gives better result 

as STD of mass than SOS for 10000 FEs. This study specifies that the results of ISOS are more 

reliable and proficient as compared to the results of the literature.  

Result summary of SOS and ISOS is presented in Table 8. It can be seen from the summary table, 

ISOS outperforms SOS for all of the truss optimization problems in terms best mass, mean mass, and 

STD of mass respectively.  

6. The thirty benchmark functions of the CEC2014  

In this section, the thirty benchmark functions proposed in the CEC2014 special session on single 

objective real-parameter numerical optimization (Liang et al., 2014) are used to demonstrate 

effectiveness of the proposed algorithms. The benchmark functions are summarized in Table 9 and are 

divided into four categories: unimodal functions (f1–f3), multimodal functions (f4–f16), hybrid 

functions (f17–f22), and composition functions (f23–f30). For results verification, the comparison is 

made between 10 different optimization algorithms (IWO, BBO, GSA, HuS, BA, WWO, SOS, and 

ISOS). In this study, 30-dimensional functions are used with search ranges as [-100, 100]. Population 

size is considered as 50 and FEmax are taken as 150000 for proposed algorithm whereas q is assumed 

to be 50. All results are collected from 60 independent runs on each test function.   

Comparative mean and STD of fitness values over the 60 runs are presented in Tables 10 and 11 

respectively. Statistical tests are essential to check significance improvements by a proposed method 

over existing methods. Thus, the Friedman rank test on the results of ISOS, SOS, and other state-of-

the-art algorithms. The test is performed on the minimum and STD of functional values obtained. The 

tables also present the rank sum of the algorithms over the test functions for median value. The results 

signify that ISOS and WWO performs best for unimodal functions, WWO gives best results for 

multimodal functions and hybrid functions, and ISOS ranks first for composition functions among the 

considered algorithms. Moreover, ISOS ranks better compared to SOS for unimodal, multimodal, 

hybrid, and composition functions.  

The overall performance of ISOS is second best among the considered algorithms whereas WWO 

performs the best on the benchmark functions of unimodal, multimodal, hybrid, and composition 

functions. These results confirm the merits of the proposed algorithms once more. 

7. Conclusion  
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In this study, the SOS and improve SOS algorithms are proposed to design optimum planar and space 

trusses subjected to multiple natural frequency bounds. The improved parasite vector is proposed in 

the basic SOS algorithm in order to improve exploitation ability of SOS in the search process. This 

mechanism aims to achieve better control of the exploration and exploitation. The effectiveness of the 

proposed algorithm is investigated on six widely used truss problems of sizing and shape 

optimization. In addition, three unimodal functions, thirteen multimodal functions, six hybrid 

functions, and eight composition functions of the CEC2014 are also investigated. Design variables 

such as nodal coordinates and cross-sectional areas are of extensively diverse characteristics, and their 

simultaneous use often leads to divergence. In addition, the implicit relationship between the 

frequencies and design variables induces more complexity.  

This study compared performance of ISOS with the original SOS and other meta-heuristics such as 

NHGA, NHPGA, CSS, enhanced CSS, HS, FA, CSS-BBBC, OC, GA, hybrid OC-GA, CBO, 2D-

CBO, PSO, DPSO, TLBO, and MC-TLBO. It was observed that in all the problems, ISOS has a better 

capability for obtaining results based on the best mass, mean mass, and STD of mass as compared to 

the results of SOS. Another finding was high exploration capability during the initial function 

evaluations and high exploitation during the last function evaluations, which plays a significant role in 

global exploration and exploitation of the search space. Both ISOS and SOS outperformed the current 

approaches, yet the superiority of ISOS were more substantial on the majority of case studies. In order 

to evaluate the performance of the proposed algorithms in benchmark functions, the results of SOS 

and ISOS are compared with the results of the IWO, BBO, GSA, HuS, BA, and WWO algorithms for 

the thirty benchmark functions proposed in the CEC2014 competition. Overall, ISOS has a better or 

competitive for obtaining results based on the mean and SD of functional values obtained over the 

stated runs as compared to SOS. A possible direction for future work would be to extend the proposed 

approaches to investigate simultaneously the size, shape, and topology optimization of truss 

structures. 
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Table 1. Design considerations of the test problems  

 The 10-bar truss The 37-bar truss The 72-bar truss The 52-bar truss The 120-bar truss The 200-bar truss 

Design variables               
               

                
              

              

               
                           

Bounds 

          

           

         

        

        

      

          

        

               

             

          

         

          

           

         

Size variables    ,        -        ,    -        ,        -        ,    -        ,       -        ,      -     

Shape variables -    ,     -   - ±2 m - - 

Density              ⁄             ⁄             ⁄             ⁄                ⁄             ⁄  

Modules of elasticity                                                                                       
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Wei et 

al. 

(2005) 

Gomes 

(2011) 

Wei at al. 

(2011) 

Kaveh and Zolghadr 

(2011) 

Miguel and Miguel 

(2012) 

Kaveh and 

Zolghadr 

(2012) 

Zuo et 

al. 

(2014) 

Farshchin et al. 

(2016) 

Kaveh and 

Zolghadr 

(2017) 

Kaveh and 

Ilchi 

Ghazaan 

(2017) 

Tejani et al. (2016a) 

Proposed 

work 

Design 

variable 
NHGA PSO NHPGA CSS 

enhanced 

CSS 
HS FA 

CSS-

BBBC 

hybrid 

OC-GA 
TLBO 

MC-

TLBO 
TWO VPS SOS 

SOS-

ABF1 

SOS-

ABF2 

SOS-

ABF1&2 
ISOS 

A1 42.234 37.712 36.630 38.811 39.569 34.282 36.198 35.274 37.284 36.0171 35.8507 34.544 35.1471 35.3794 34.4523 35.3013 36.4206 35.2654 

A2 18.555 9.959 13.043 9.0307 16.740 15.653 14.030 15.463 9.445 15.0926 14.8424 15.148 14.6668 14.8826 14.9767 14.8119 14.3010 14.6803 

A3 38.851 40.265 34.229 37.099 34.361 37.641 34.754 32.11 35.051 35.1797 35.5768 37.088 35.6889 35.7321 36.1675 34.9522 34.1835 34.4273 

A4 11.222 16.788 15.289 18.479 12.994 16.058 14.900 14.065 19.262 14.8551 14.9305 14.813 15.0929 14.3069 14.6638 14.9436 15.5395 14.9605 

A5 4.783 11.576 0.645 4.479 0.645 1.069 0.645 0.645 2.783 0.6495 0.645 0.646 0.645 0.6450 0.6680 0.6450 0.6450 0.6450 

A6 4.451 3.955 4.8472 4.205 4.802 4.740 4.672 4.880 5.450 4.6192 4.6249 4.613 4.6221 4.7142 4.5484 4.5828 4.6247 4.5927 

A7 21.049 25.308 22.140 20.842 26.182 22.505 23.467 24.046 19.041 24.2147 23.9816 24.373 23.5552 24.1569 23.9613 23.5712 22.2793 23.3417 

A8 20.949 21.613 27.983 23.023 21.260 24.603 25.508 24.340 27.939 23.8069 24.2358 23.72 24.468 23.6047 23.4914 23.5602 24.8589 23.8236 

A9 10.257 11.576 15.034 13.763 11.766 12.867 12.707 13.343 14.950 12.9309 12.6977 12.318 12.7198 12.1590 12.0449 11.9314 12.9163 12.8497 

A10 14.342 11.186 10.216 11.414 11.392 12.099 12.351 13.543 10.361 12.3585 12.3319 12.618 12.6845 12.0061 12.4632 13.0401 11.8151 12.5321 

Mass 

(kg) 
542.75 537.98 535.14 531.95 529.25 534.99 531.28 529.09 535.73 532.136 532.051 532.23 530.77 525.2789 524.9274 524.8289 525.2702 524.7341 

   (Hz) 7.008 7.000 7.0003 7.000 7.000 7.0028 7.0002 7.000 7.0007 7.0001 7.0000 7.0000 7.0000 7.0005 7.0001 7.0003 7.0007 7.0001 

   (Hz) 18.148 17.786 16.080 17.442 16.238 16.7429 16.1640 16.119 17.030 16.1777 16.1837 16.1599 16.1599 16.2484 16.2437 16.1997 16.2072 16.1703 

   (Hz) 20.000 20.000 20.002 20.031 20.000 20.0548 20.0029 20.075 20.156 20.0001 20.0001 20.000 20.0000 19.9999 20.0064 20.0022 19.9996 20.0024 

FEs - 2000 - 4000 4000 20000 5000 4000 8000 10000 10000 - 30000 4000 4000 4000 4000 4000 

Mean - 540.89 - 536.39 538.53 537.68 535.07 - - 535.119 533.232 535.55 535.64 531.4033 528.6291 528.5501 528.7075 530.0286 

STD 4.864 6.84 - 3.32 5.97 2.49 3.64 - - 3.219 2.179 3.24 2.55 4.2243 3.4999 2.9827 2.8779 3.4763 
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Wang 

et al. 

(2004) 

Wei et 

al. 

(2005) 

Gomes 

(2011) 

Wei at 

al. 

(2011) 

Kaveh and Zolghadr 

(2011) 

Miguel and Miguel 

(2012) 

Kaveh 

and 

Mahdavi 

(2014) 

Kaveh 

and 

Zolghadr 

(2014a) 

Farshchin et al. 

(2016) 

Kaveh 

and 

Zolghadr 

(2017) 

Kaveh 

and Ilchi 

Ghazaan 

(2017) 

Tejani et al. (2016a) 

Proposed 

work 

Design 

variable 
OC GA PSO NHPGA CSS 

enhanced 

CSS 
HS FA CBO DPSO TLBO 

MC-

TLBO 
TWO VPS SOS 

SOS-

ABF1 

SOS-

ABF2 

SOS-

ABF1&2 
ISOS 

y3,y19 1.2086 1.1998 0.9637 1.09693 0.8726 1.0289 0.8415 0.9392 0.9562 0.9482 0.9639 0.9830 1.0039 0.9042 0.9598 0.9168 0.9413 0.9060 0.9257 

y5,y17 1.5788 1.6553 1.3978 1.45558 1.2129 1.3868 1.2409 1.3270 1.3236 1.3439 1.3551 1.3803 1.3531 1.2850 1.3867 1.2980 1.3393 1.2665 1.3188 

y7,y15 1.6719 1.9652 1.5929 1.59539 1.3826 1.5893 1.4464 1.5063 1.5037 1.5043 1.5338 1.5645 1.5339 1.5017 1.5698 1.4777 1.5434 1.4834 1.4274 

y9,y13 1.7703 2.0737 1.8812 1.76551 1.4706 1.6405 1.5334 1.6086 1.6318 1.6350 1.6367 1.6871 1.6768 1.6509 1.6687 1.6046 1.6744 1.6004 1.5806 

y11 1.8502 2.3050 2.0856 1.87413 1.5683 1.6835 1.5971 1.6679 1.6987 1.7182 1.7052 1.7590 1.7728 1.7277 1.7203 1.6596 1.7571 1.6397 1.6548 

A1,A27 3.2508 2.8932 2.6797 2.62463 2.9082 3.4484 3.2031 2.9838 2.7472 2.6208 2.9055 2.9913 2.8892 3.1306 2.9038 2.8448 2.9344 3.3609 2.6549 

A2,A26 1.2364 1.1201 1.1568 1.0000 1.0212 1.5045 1.1107 1.1098 1.0132 1.0397 1.0012 1.0005 1.0949 1.0023 1.0163 1.0785 1.0256 1.0203 1.0383 

A3,A24 1.0000 1.0000 2.3476 1.00176 1.0363 1.0039 1.1871 1.0091 1.0052 1.0464 1.0001 1.0042 1.0213 1.0001 1.0033 1.0000 1.0095 1.0169 1.0000 

A4,A25 2.5386 1.8655 1.7182 2.07586 3.9147 2.5533 3.3281 2.5955 2.5054 2.7163 2.5598 2.5958 2.6776 2.5883 3.1940 2.8906 2.5838 2.6772 3.0083 

A5,A23 1.3714 1.5962 1.2751 1.22071 1.0025 1.0868 1.4057 1.2610 1.1809 1.0252 1.2523 1.2139 1.1981 1.1119 1.0109 1.0335 1.1569 1.0166 1.0024 

A6,A21 1.3681 1.2642 1.4819 1.48922 1.2167 1.3382 1.0883 1.1975 1.2603 1.5081 1.2141 1.1423 1.1387 1.2599 1.5877 1.2119 1.2548 1.2244 1.4499 

A7,A22 2.4290 1.8254 4.6850 2.30847 2.7146 3.1626 2.1881 2.4264 2.7090 2.3750 2.3851 2.3170 2.6537 2.6743 2.4104 3.1886 2.5104 2.7056 3.1724 

A8,A20 1.6522 2.0009 1.1246 1.43236 1.2663 2.2664 1.2223 1.3588 1.4023 1.4498 1.3881 1.5100 1.4171 1.3961 1.3864 1.3435 1.4626 1.5535 1.2661 

A9,A18 1.8257 1.9526 2.1214 1.64678 1.8006 1.2668 1.7033 1.4771 1.4661 1.4499 1.5235 1.5172 1.3934 1.5036 1.6276 1.7247 1.5245 1.4833 1.4659 

A10,A27 2.3022 1.9705 3.8600 2.87072 4.0274 1.7518 3.1885 2.5648 2.6107 2.5327 2.6065 2.2722 2.7741 2.4441 2.3594 2.6980 2.4586 2.4032 2.9013 

A11,A17 1.3103 1.8294 2.9817 1.50405 1.3364 2.7789 1.0100 1.1295 1.1764 1.2358 1.1378 1.2112 1.2759 1.2977 1.0293 1.1401 1.1888 1.0000 1.1537 

A12,A15 1.4067 1.2358 1.2021 1.31328 1.0548 1.4209 1.4074 1.3199 1.3767 1.3528 1.3078 1.2739 1.2776 1.3619 1.3721 1.2840 1.3765 1.4982 1.3465 

A13,A16 2.1896 1.4049 1.2563 2.32277 2.8116 1.0100 2.8499 2.9217 2.6809 2.9144 2.6205 2.4934 2.1666 2.3500 2.0673 2.3044 2.2341 2.7480 2.6850 

A14 1.0000 1.0000 3.3276 1.04258 1.1702 2.2919 1.0269 1.0004 1.0064 1.0085 1.0003 1.0000 1.0099 1.0000 1.0000 1.0000 1.0007 1.0072 1.0000 

Mass(kg) 366.50 368.84 377.20 363.032 362.84 362.38 361.50 360.05 359.9239 360.40 359.88 359.966 360.27 359.94 360.8658 360.4260 359.9050 360.5007 360.7432 

f1 (Hz) 20.0850 20.0013 20.0001 20.0819 20.0000 20.0028 20.0037 20.0024 20.0031 20.0194 20.0001 20.0001 20.0279 20.0002 20.0366 20.0230 20.0052 20.0023 20.0119 

f2 (Hz) 42.0743 40.0305 40.0003 40.0961 40.0693 40.0155 40.0050 40.0019 40.0060 40.0113 40.0005 40.0005 40.0146 40.0005 40.0007 40.0394 40.0048 40.0363 40.0964 

f3 (Hz) 62.9383 60.0000 60.0001 60.0321 60.6982 61.2798 60.0082 60.0043 60.0033 60.0082 60.0066 60.0066 60.0946 60.0000 60.0138 60.0339 60.0077 60.0065 60.0066 

FEs - - 12500 - 4000 4000 20000 5000 6000 6000 12000 12000 - 30000 4000 4000 4000 4000 4000 

Mean - - 381.2 - 366.77 365.75 362.04 360.37 360.4463 362.21 360.803 360.839 363.75 360.23 364.8521 363.3662 363.0816 363.6336 363.3978 

STD - 9.0325 4.26 - 3.742 3.461 0.52 0.26 0.35655 1.68 0.633 0.496 2.48 0.22 2.9650 2.1704 1.8304 2.0771 1.5675 

 

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TTable 4. Optimal design parameters for the 72-bar truss, where size variables are in cm2  

 Kaveh and Zolghadr 

(2011) 

Kaveh and Zolghadr 

(2012) 

Kaveh and Mahdavi 

(2014) 

Farshchin et al. (2016) Kaveh and Zolghadr 

(2017) 

Kaveh and Ilchi 

Ghazaan (2017) 
Tejani et al. (2016a) 

Proposed 

work 

Design 

variable 
CSS 

enhanced 

CSS 
CSS-BBBC CBO TLBO MC-TLBO TWO VPS SOS 

SOS-

ABF1 

SOS-

ABF2 

SOS-

ABF1&2 
ISOS 

A1–A4 2.528 2.522 2.854 3.3699 3.5491 3.4188 3.380  3.5017 3.6957 4.1820 3.6273 3.8745 3.3563 

A5–A12 8.704 9.109 8.301 7.3428 7.9676 7.9263 8.086 7.9340 7.1779 7.8990 7.9416 7.6185 7.8726 

A13–A16 0.645 0.648 0.645 0.6468 0.6450 0.6450 0.647 0.6450 0.6450 0.6450 0.6460 0.6450 0.6450 

A17–A18 0.645 0.645 0.645 0.6457 0.6450 0.6450 0.646 0.6450 0.6569 0.6450 0.6450 0.6957 0.6450 

A19–A22 8.283 7.946 8.202 8.0056 8.1532 8.0143 8.89 8.0215 7.7017 8.0149 7.5653 8.4112 8.5798 

A23–A30 7.888 7.703 7.043 8.0185 7.9667 7.9603 8.136 7.9826 7.9509 8.1772 8.0171 7.7833 7.6566 

A31–A34 0.645 0.647 0.645 0.6458 0.6450 0.6450 0.654 0.6450 0.6450 0.6450 0.6714 0.6450 0.7417 

A35–A36 0.645 0.6456 0.645 0.6457 0.6450 0.6450 0.647 0.6450 0.6450 0.6450 0.6450 0.6450 0.6450 

A37–A40 14.666 13.465 16.328 12.4585 12.9272 12.7903 13.097 12.8175 12.3994 12.4516 13.4781 12.0976 13.0864 

A41–A48 6.793 8.250 8.299 8.1211 8.1226 8.1013 8.101 8.1129 8.6121 7.7290 7.6531 7.7086 8.0764 

A49–A52 0.645 0.645 0.645 0.6460 0.6452 0.6450 0.663 0.6450 0.6450 0.6525 0.6450 0.6450 0.6450 

A53–A54 0.645 0.646 0.645 0.6459 0.6450 0.6473 0.646 0.6450 0.6450 0.6450 0.6450 0.6450 0.6937 

A55–A58 16.464 18.368 15.048 17.3636 17.0524 17.4615 16.483 17.3362 17.4827 16.8203 16.6583 16.9516 16.2517 

A59–A66 8.809 7.053 8.268 8.3371 8.0618 8.1304 7.873 8.1010 8.1502 7.9846 8.1609 8.7289 8.1703 

A67–A70 0.645 0.645 0.645 0.6460 0.6450 0.6450 0.651 0.6450 0.6740 0.6742 0.6450 0.6450 0.6450 

A71–A72 0.645 0.646 0.645 0.6476 0.6450 0.6451 0.657 0.6450 0.6550 0.6450 0.6450 0.6450 0.6450 

Mass (kg) 328.814 328.393 327.507 324.7552 327.568 327.5750 328.83 327.649 325.5585 325.086 324.6897 325.2317 325.0682 

f1 (Hz) 4.000 4.000 4.000 4.0000 4.000 4.000 4.000 4.000 4.0023 4.0045 4.0013 4.0016 4.0000 

f3 (Hz) 6.006 6.004 6.004 6.0000 6.000 6.000 6.000 6.000 6.0020 6.0019 6.0002 6.0003 6.0008 

FEs 4000 4000 4000 6000 15000 15000 - 30000 4000 4000 4000 4000 4000 

Mean 337.70 335.77 - 330.4154 328.684 327.6930 336.1 327.670 331.1228 328.6582 328.4621 334.9979 329.4699 

STD 5.42 7.20 - 7.7063 0.73 0.1250 5.8 0.018 4.2278 2.7948 2.4600 6.0566 2.6642 
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TTable 5. Optimal design parameters for the 52-bar truss, where size variables are in cm2 and shape variables are in m 

 
Lin et al. 

(1982) 

Wei et al. 

(2005) 

Gomes 

(2011) 

Kaveh and Zolghadr 

(2011) 

Miguel and Miguel 

(2012) 

Kaveh and 

Zolghadr 

(2012) 

Kaveh and 

Zolghadr 

(2014a) 

Farshchin et al. 

(2016) 

Kaveh and 

Zolghadr 

(2017) 

Tejani et al. (2016a) 

Proposed 

work 

Design 

variable 

Bi-factor 

algorithm 
NGHA PSO CSS 

enhanced 

CSS 
HS FA CSS-BBBC DPSO TLBO 

MC-

TLBO 
TWO SOS 

SOS-

ABF1 

SOS-

ABF2 

SOS-

ABF1&2 
ISOS 

zA 4.3201 5.8851 5.5344 5.2716 6.1590 4.7374 6.4332 5.331 6.1123 6.0026 5.9531 6.012  5.7624 5.9650 6.0120 5.8950 6.1631 

xB 1.3153 1.7623 2.0885 1.5909 2.2609 1.5643 2.2208 2.134 2.2343 2.2626 2.2908 1.598 2.3239 2.3240 2.4250 2.4237 2.4224 

zB 4.1740 4.4091 3.9283 3.7093 3.9154 3.7413 3.9202 3.719 3.8321 3.7452 3.7037 4.287 3.7379 3.7002 3.7000 3.7030 3.8086 

xF 2.9169 3.4406 4.0255 3.5595 4.0836 3.4882 4.0296 3.935 4.0316 3.9854 3.9660 3.641 3.9842 3.9636 4.0201 3.9926 4.1080 

zF 3.2676 3.1874 2.4575 2.5757 2.5106 2.6274 2.5200 2.500 2.5036 2.5000 2.5001 2.888 2.5121 2.5000 2.5000 2.5000 2.5018 

A1–A4 1.00 1.0000 0.3696 1.0464 1.0335 1.0085 1.0050 1.0000 1.0001 1.0000 1.0002 2.1245 1.0988 1.0000 1.0000 1.0000 1.0074 

A5–A8 1.33 2.1417 4.1912 1.7295 1.0960 1.4999 1.3823 1.3056 1.1397 1.1210 1.0962 1.1341 1.0031 1.1797 1.0000 1.0000 1.0003 

A9–A16 1.58 1.4858 1.5123 1.6507 1.2449 1.3948 1.2295 1.4230 1.2263 1.2113 1.2252 1.187 1.1956 1.2109 1.1280 1.0000 1.1982 

A17–A20 1.00 1.4018 1.5620 1.5059 1.2358 1.3462 1.2662 1.3851 1.3335 1.4486 1.4555 1.318 1.4563 1.4800 1.4466 1.5759 1.2787 

A21–A28 1.71 1.911 1.9154 1.7210 1.4078 1.6776 1.4478 1.4226 1.4161 1.4156 1.4172 1.3637 1.3773 1.3977 1.4298 1.4046 1.4421 

A29–A36 1.54 1.0109 1.1315 1.0020 1.0022 1.3704 1.0000 1.0000 1.0001 1.0000 1.0003 1.0299 1.0055 1.0229 1.0032 1.0000 1.0000 

A37–A44 2.65 1.4693 1.8233 1.7415 1.6024 1.4137 1.5728 1.5562 1.5750 1.5434 1.6204 1.3479 1.7397 1.6747 1.7686 1.6494 1.4886 

A45–A52 2.87 2.1411 1.0904 1.2555 1.4596 1.9378 1.4153 1.4485 1.4357 1.4034 1.3296 1.4446 1.3084 1.3033 1.2770 1.5664 1.4990 

Mass 

(kg) 
298.0 236.046 228.381 205.237 197.337 214.94 197.53 197.309 195.351 193.185 193.185 194.25 195.4969 194.8089 195.1730 198.2630 194.7483 

f1 (Hz) 15.22 12.81 12.751 9.246 11.849 12.2222 11.3119 12.987 11.315 11.4613 11.5924 9.265 12.7144 11.8992 12.2594 12.8140 12.5459 

f2 (Hz) 29.28 28.65 28.649 28.648 28.649 28.6577 28.6529 28.648 28.648 28.6480 28.6480 28.667 28.6540 28.6478 28.6576 28.7301 28.6518 

FEs - - 11270 4000 4000 20000 10000 4000 6000 15000 15000 - 4000 4000 4000 4000 4000 

Mean - - 234.3 213.101 205.617 229.88 212.80 - 198.71 200.300 197.876 214.25 214.6676 210.7033 211.5683 224.5050 207.5498 

STD - 37.462 5.22 7.391 6.924 12.44 17.98 - 13.85 15.4816 5.7905 12.64 15.1499 11.8339 12.7871 17.8552 8.7354 
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TTable 6. Optimal design parameters for the 120-bar truss, where size variables are in cm2  

 Kaveh and Zolghadr (2012) Kaveh and Mahdavi (2014) Kaveh and Zolghadr (2014a) Kaveh and Ilchi Ghazaan (2017) Tejani et al. (2016a) Proposed work 

Group no. CSS CSS-BBBC CBO PSO DPSO VPS SOS SOS-ABF1 SOS-ABF2 SOS-ABF1&2 ISOS 

G1 21.710 17.478 19.6917 23.494 19.607 19.6836 19.5203 19.5449 19.5715 19.3806 19.6662 

G2 40.862 49.076 41.1421 32.976 41.290 40.9581 40.8482 40.9483 39.8327 40.4230 39.8539 

G3 9.048 12.365 11.1550 11.492 11.136 11.3325 10.3225 10.4482 10.5879 11.1095 10.6127 

G4 19.673 21.979 21.3207 24.839 21.025 21.5387 20.9277 21.0465 21.2194 21.2086 21.2901 

G5 8.336 11.190 9.8330 9.964 10.060 9.8867 9.6554 9.5043 10.0571 9.9200 9.7911 

G6 16.120 12.590 12.8520 12.039 12.758 12.7116 12.1127 11.9362 11.8322 11.3161 11.7899 

G7 18.976 13.585 15.1602 14.249 15.414 14.9330 15.0313 14.9424 14.7503 14.7820 14.7437 

Mass (kg) 9204.51 9046.34 8889.1303 9171.93 8890.48 8888.74 8713.3030 8712.1100 8710.3300 8716.9470 8710.0620 

f1 (Hz) 9.002 9.000 9.0000 9.0000 9.0001 9.0000 9.0009 9.0011 9.0006 9.0012 9.0001 

f2 (Hz) 11.002 11.007 11.0000 11.0000 11.0007 11.0000 11.0005 11.0003 11.0002 11.0023 10.9998 

FEs 4000 4000 6000 6000 6000 30000 4000 4000 4000 4000 4000 

Mean - - 8891.2540 9251.84 8895.99 8896.04 8735.3452 8727.4267 8725.3075 8790.6961 8728.5951 

STD - - 1.7926 89.38 4.26 6.65 17.9011 16.5503 10.6402 55.7294 14.2296 
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TTable 7. Optimal design parameters for the 200-bar truss, where size variables are in cm2  

  
Kaveh and Zolghadr 

(2012) 

Kaveh and Mahdavi 

(2015) 

Farshchin et al. (2016) Tejani et al. (2016a) Proposed 

work 

Group 

no. 
Bars CSS 

CSS-

BBBC 
CBO 2D-CBO 

TLBO MC-

TLBO 
SOS 

SOS-

ABF1 

SOS-

ABF2 

SOS-

ABF1&2 
ISOS 

G1 1,2,3,4 1.2439 0.2934 0.3268 0.4460 0.3030 0.3067 0.4781 0.2822 0.3058 0.3845 0.3072 

G2 5,8,11,14,17 1.1438 0.5561 0.4502 0.4556 0.4479 0.4450 0.4481 0.5014 0.5196 0.8524 0.5075 

G3 19,20,21,22,23,24 0.3769 0.2952 0.1000 0.1519 0.1001 0.1000 0.1049 0.1071 0.1000 0.1130 0.1001 

G4 18,25,56,63,94,101,132,139,170,177 0.1494 0.1970 0.1000 0.1000 0.1000 0.1001 0.1045 0.1002 0.1092 0.1000 0.1000 

G5 26,29,32,35,38 0.4835 0.8340 0.7125 0.4723 0.5124 0.5077 0.4875 0.5277 0.5238 0.5084 0.5893 

G6 6,7,9,10,12,13,15,16,27,28,30,31,33,34,36,37 0.8103 0.6455 0.8029 0.7543 0.8205 0.8241 0.9353 0.8248 0.7956 0.8885 0.8328 

G7 39,40,41,42 0.4364 0.1770 0.1028 0.1024 0.1000 0.1001 0.1200 0.1300 0.1003 0.1000 0.1431 

G8 43,46,49,52,55 1.4554 1.4796 1.4877 1.4924 1.4499 1.4367 1.3236 1.4016 1.3119 1.2170 1.3600 

G9 57,58,59,60,61,62 1.0103 0.4497 0.1000 0.1000 0.1001 0.1000 0.1015 0.1000 0.1056 0.1356 0.1039 

G10 64,67,70,73,76 2.1382 1.4556 1.0998 1.6060 1.5955 1.5787 1.4827 1.4657 1.6178 1.5477 1.5114 

G11 44,45,47,48,50,51,53,54,65,66,68,69,71,72,74,75 0.8583 1.2238 0.8766 1.2098 1.1556 1.1587 1.1384 1.1327 1.1954 1.0568 1.3568 

G12 77,78,79,80 1.2718 0.2739 0.1229 0.1061 0.1242 0.1000 0.1020 0.1196 0.1615 0.4552 0.1024 

G13 81,84,87,90,93 3.0807 1.9174 2.9058 3.0909 2.9753 2.9573 2.9943 3.0262 2.9102 3.4433 2.9024 

G14 95,96,97,98,99,100 0.2677 0.1170 0.1000 0.7916 0.1000 0.1000 0.1562 0.2527 0.1134 0.1000 0.1000 

G15 102,105,108,111,114 4.2403 3.5535 3.9952 3.6095 3.2553 3.2569 3.4330 3.3267 3.5156 3.6060 3.4120 

G16 82,83,85,86,88,89,91,92,103,104,106,107,109,110,112,113 2.0098 1.3360 1.7175 1.4999 1.5762 1.5733 1.6816 1.5963 1.6227 1.4460 1.4819 

G17 115,116,117,118 1.5956 0.6289 0.1000 0.1000 0.2680 0.2675 0.1026 0.2417 0.3687 0.1893 0.2587 

G18 119,122,125,128,131 6.2338 4.8335 5.9423 5.2951 5.0692 5.0867 5.0739 4.8557 4.6196 5.1791 4.8291 

G19 133,134,135,136,137,138 2.5793 0.6062 0.1102 0.1000 0.1000 0.1004 0.1068 0.1001 0.1543 0.2666 0.1499 

G20 140,143,146,149,152 3.0520 5.4393 5.8959 4.5288 5.4281 5.4551 6.0176 5.4975 5.6545 5.8750 5.5090 

G21 120,121,123,124,126,127,129,130,141,142,144,145,147,148,150,151 1.8121 1.8435 2.1858 2.2178 2.0942 2.0998 2.0340 2.0829 2.2106 2.5624 2.2221 

G22 153,154,155,156 1.2986 0.8955 0.5249 0.7571 0.6985 0.7156 0.6595 0.8522 0.6688 0.7535 0.6113 

G23 157,160,163,166,169 5.8810 8.1759 7.2676 7.7999 7.6663 7.6425 6.9003 7.5480 7.4241 7.9706 7.3398 

G24 171,172,173,174,175,176 0.2324 0.3209 0.1278 0.3506 0.1008 0.1049 0.2020 0.1279 0.1187 0.3324 0.1559 

G25 178,181,184,187,190 7.7536 10.98 7.8865 7.8943 7.9899 7.9352 6.8356 7.6278 7.5955 7.3386 8.6301 

G26 158,159,161,162,164,165,167,168,179,180,182,183,185,186,188,189 2.6871 2.9489 2.8407 2.8097 2.8084 2.8262 2.6644 3.0233 2.7572 3.0958 2.8245 

G27 191,192,193,194 12.5094 10.5243 11.7849 10.4220 10.4661 10.4388 12.1430 10.3024 11.1467 9.1512 10.8563 

G28 195,197,198,200 29.5704 20.4271 22.7014 21.2576 21.2466 21.2125 22.2484 21.4034 21.4328 20.7230 20.9142 

G29 196,199 8.2910 19.0983 7.8840 11.9061 10.7340 10.8347 8.9378 10.4810 9.8690 12.1258 10.5305 

Mass  2259.86 2298.61 2203.212 2189.08 2156.541 2156.639 2180.3210 2164.8840 2165.8010 2207.8880 2169.4590 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T(kg) 

f1 (Hz)  5.000 5.010 5.0010 5.0016 5.0000 5.0000 5.0001 5.0001 5.0000 5.0000 5.0000 

f2 (Hz)  15.961 12.911 12.5247 13.3868 12.2171 12.2306 13.4306 12.1388 12.3327 13.3064 12.4477 

f3 (Hz)  16.407 15.416 15.1845 15.1981 15.0380 15.0259 15.2645 15.1284 15.1454 15.5397 15.2332 

FEs  10000 10000 10000 10000 23000 23000 10000 10000 10000 10000 10000 

Mean  - - 2481.492 2308.443 2157.547 2157.447 2303.3034 2186.5744 2187.2517 2405.3479 2244.6372 

STD  - - 250.8259 132.5148 1.545 0.528 83.5897 15.2711 16.9436 128.1578 43.4808 
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TTable 8. Result summery of truss problems  

Test problem Algorithm Best mass Worse mass Mean mass STD FEs 

The 10-bar truss SOS 525.2789 543.0061 531.4033 4.2243 4000 

 ISOS 524.7341 537.8942 530.0286 3.4763 4000 

The 37-bar truss SOS 360.8658 378.3619 364.8521 2.9650 4000 

 ISOS 360.7432 368.5105 363.3978 1.5675 4000 

The 72-bar truss SOS 325.5585 349.0252 331.1228 4.2278 4000 

 ISOS 325.0682 336.9062 329.4699 2.6642 4000 

The 52-bar truss SOS 195.4969 258.2653 214.6676 15.1499 4000 

 ISOS 194.7483 241.7603 207.5498 8.7354 4000 

The 120-bar truss SOS 8713.3030 8791.5830 8735.3452 17.9011 4000 

 ISOS 8710.0620 8770.8110 8728.5951 14.2296 4000 

The 200-bar truss SOS 2180.3210 2580.6030 2303.3034 83.5897 10000 

 ISOS 2169.4590 2349.7180 2244.6372 43.4808 10000 
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TTable 9. The CEC2014 benchmark functions 

Test function optimum Test function optimum 

f1: Rotated high conditioned elliptic function 100 f16: Shifted and rotated Expanded Scaffer׳s f6 function 1600 

f2: Rotated bent cigar function 200 f17: Hybrid function1 (f9, f8 ,f1) 1700 

f3: Rotated discus function 300 f18: Hybrid function2 (f2, f12, f8) 1800 

f4: Shifted and rotated Rosenbrock function 400 f19: Hybrid function3 (f7, f6, f4, f14) 1900 

f5: Shifted and rotated Ackley׳s function 500 f20: Hybrid function4 (f12, f3, f13, f8) 2000 

f6: Shifted and rotated Weierstrass function 600 f21: Hybrid function5 (f14, f12, f4, f9, f1) 2100 

f7: Shifted and rotated Griewank׳s function 700 f22: Hybrid function6 (f10, f11, f13, f9, f5) 2200 

f8: Shifted Rastrigin function 800 f23: Composition function1 (f4, f1, f2, f3, f1) 2300 

f9: Shifted and rotated Rastrigin׳s function 900 f24: Composition function2 (f10, f9, f14) 2400 

f10: Shifted Schwefel function 1000 f25: Composition function3 (f11, f9, f1) 2500 

f11: Shifted and rotated Schwefel׳s function 1100 f26: Composition function4 (f11, f13, f1, f6, f7) 2600 

f12: Shifted and rotated Katsuura function 1200 f27: Composition function5 (f14, f9, f11, f6, f1) 2700 

f13: Shifted and rotated HappyCat function 1300 f28: Composition function6 (f15, f13, f11, f16, f1) 2800 

f14: Shifted and rotated HGBat function 1400 f29: Composition function7 (f17, f18, f9) 2900 

f15: Shifted and rotated Expanded Griewank׳s plus Rosenbrock׳s function 1500 f30: Composition function8 (f20, f21, f22) 3000 
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Function WWO BA Hus GSA BBO IWO SOS ISOS 

f1 628064.7331 316593399.3261 5555804.7723 14413625.1299 27262607.1812 1463430.6695 1026753.8150 982235.8503 

f2 330.4397 25714756385.1935 10068.1285 8771.2239 4012004.0764 17672.1722 213.1503 205.2755 

f3 526.8209 72001.7161 502.0203 45384.2492 13100.3120 8167.4657 938.9390 779.0035 

Friedman value of f1–f3 6 24 11 17 20 15 9 6 

Friedman rank of f1–f3 1 8 4 6 7 5 3 1 

f4 417.0105 3697.5439 506.9362 676.4360 538.7936 500.3255 468.2918 459.8026 

f5 519.9999 520.9716 520.7029 519.9990 520.1556 520.0140 520.5639 520.3440 

f6 605.9873 636.3693 623.0650 619.5872 613.9623 602.2138 610.8746 610.4609 

f7 700.0037 910.6678 700.0407 700.0001 701.0283 700.0337 700.0161 700.0156 

f8 801.1436 1070.3076 940.1063 800.4991 877.4573 843.7475 852.1217 814.7215 

f9 961.0930 1250.0944 1011.9988 1059.7399 951.4286 946.0714 970.5093 954.3446 

f10 1581.5778 6426.1095 2253.5001 4392.2443 1002.1744 2565.2591 2107.2343 1156.5243 

f11 3349.4633 8152.1644 3302.9108 5099.2681 3247.3542 2887.3064 4017.4845 2882.3048 

f12 1200.0995 1202.5771 1200.1870 1200.0011 1200.2257 1200.0355 1200.6611 1200.2345 

f13 1300.2617 1304.0199 1300.3921 1300.2972 1300.5091 1300.2789 1300.4233 1300.3774 

f14 1400.2169 1473.1361 1400.2377 1400.2540 1400.4439 1400.2360 1400.3309 1400.2711 

f15 1503.2828 194533.2621 1517.0308 1503.2887 1514.6242 1503.6932 1517.6988 1510.6991 

f16 1610.4351 1612.9981 1611.7074 1613.6691 1609.9125 1610.4324 1610.6564 1609.2194 

Friedman value of f4–f16 31 103 71 55 60 38 68 42 

Friedman rank of f4–f16 1 8 7 4 5 2 6 3 

f17 26618.6801 4641277.7674 198099.0415 578588.7550 4299306.6650 86437.0037 143235.1725 176709.8548 

f18 2026.3758 121880897.9466 3780.5580 2289.6856 28418.2340 5787.0752 8320.0810 5689.7268 

f19 1907.7291 2004.9297 1931.0413 1995.2919 1928.4718 1907.9130 1923.3954 1907.7915 

f20 5363.8611 19356.8922 38657.3368 22421.9064 31411.1843 2992.6053 5770.2949 6983.0969 

f21 38673.7809 1095231.5294 60455.7923 170612.9594 485593.2936 39074.3102 68597.8240 91120.6969 

f22 2481.9864 3134.0717 3072.5807 3161.1458 2722.8879 2346.3986 2496.3689 2475.0983 

Friedman value of f17–f22 9 44 31 35 38 14 24 21 

Friedman rank of f17–f22 1 8 5 6 7 2 4 3 

f23 2615.3339 2589.2348 2616.4306 2563.8030 2617.4563 2615.3912 2615.2440 2615.2440 

f24 2631.3935 2601.3984 2658.1593 2600.0628 2635.3078 2617.7220 2600.0069 2600.0066 

f25 2708.1025 2706.4776 2725.1243 2700.2992 2711.6826 2704.7821 2700.0000 2700.0000 
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f27 3092.5281 3320.5881 4965.1704 3719.8566 3397.2649 3080.5244 3266.2256 3242.6389 

f28 3888.1193 4534.8709 5415.1985 5281.7471 3801.1221 3692.6907 3846.7017 3768.4085 

f29 4094.1268 4611072.2249 2078150.7960 52153.5350 149151.6886 16399.9243 1723986.6548 573330.0771 

f30 5652.2988 198139.5111 16723.0281 19137.7225 16205.1664 9196.3092 5940.8351 5376.7276 

Friedman value of f23–f30 28 43 59 39 46 25 28 20 

Friedman rank of f23–f30 3 6 8 5 7 2 3 1 

         Overall Friedman value  74 214 172 146 164 92 129 89 

Overall Friedman rank  1 8 7 5 6 3 4 2 
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Function WWO BA Hus GSA BBO IWO SOS ISOS 

f1 244526.8140 104690309.2627 2620084.7953 13187933.1609 16720012.8760 571747.0082 732930.2258 705470.8598 

f2 202.2221 7553596375.4800 6012.6897 2903.3044 1549219.3214 8673.4818 20.2822 17.1804 

f3 184.6450 17548.6717 540.6109 10432.6453 12764.8742 2692.8884 527.5818 623.8666 

f4 36.3636 1973.8532 36.6181 51.5149 38.3545 28.7968 31.7519 35.7188 

f5 0.0007 0.0481 0.0783 0.0006 0.0422 0.0038 0.0801 0.0667 

f6 2.6204 1.5591 2.1784 1.8319 2.3542 1.1219 2.5681 2.3958 

f7 0.0063 32.3193 0.0556 0.0010 0.0264 0.0121 0.0214 0.0183 

f8 2.3361 25.6476 12.7304 0.2063 20.6917 10.1117 12.3208 3.3488 

f9 11.0977 44.1294 25.9919 17.4329 11.4372 11.3933 24.0796 13.4374 

f10 361.6122 518.6548 433.1531 360.9861 0.6800 380.0190 344.1052 40.8420 

f11 289.2180 362.2389 465.5429 567.3467 511.5523 447.7160 835.0838 454.0984 

f12 0.0561 0.3339 0.0777 0.0010 0.0562 0.0148 0.1833 0.0573 

f13 0.0641 0.5483 0.0650 0.0665 0.1061 0.0650 0.0864 0.0710 

f14 0.0441 13.9463 0.0474 0.0423 0.1992 0.1191 0.1296 0.0512 

f15 0.7753 140338.9490 3.2695 0.7297 4.2976 0.8484 3.7981 3.7171 

f16 0.4667 0.1904 0.7249 0.3428 0.5923 0.6144 0.6059 0.7314 

f17 12403.5374 1789909.2516 160518.8631 219949.3460 4192494.2708 68473.6644 159023.3392 164458.2001 

f18 125.1962 100285357.3457 2246.5148 377.9286 19674.9440 3690.0554 10313.3555 5150.4892 

f19 1.3780 20.3164 33.1485 34.3190 27.6885 1.6545 26.6142 1.7869 

f20 3177.0847 10283.6255 8492.7252 13860.3564 17604.9005 700.4102 3295.2452 3393.2462 

f21 35555.5716 750680.8765 42428.1036 65285.4119 334571.5390 23011.1766 80093.3096 107774.8931 

f22 142.8952 205.4095 267.2685 250.0137 234.4393 73.3907 151.5147 145.4101 

f23 0.1447 128.3564 0.8448 64.5044 1.3178 0.0795 0.0000 0.0000 

f24 6.8854 1.1996 12.4866 0.0171 5.9741 10.7664 0.0013 0.0015 

f25 2.0009 14.9765 6.2686 1.3194 3.0104 0.8076 0.0000 0.0000 

f26 0.0650 0.5372 35.3282 0.0054 22.0234 0.0543 0.0862 0.0955 

f27 59.0084 64.6177 682.5243 350.5128 63.5282 35.0337 146.2996 136.2682 

f28 360.7000 592.9149 461.3382 715.2876 93.3415 41.2055 190.1300 126.6216 

f29 359.5639 2830613.7427 7704687.2363 378105.7595 1114430.5187 5140.1597 3468336.1382 2146439.0984 

f30 738.0508 91057.1920 6582.6405 18411.7936 6076.3255 2078.6364 3248.5105 1107.0801 
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Figures 

 

Figure 1. Schematic diagram of the SOS algorithm  
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Figure 2. Schematic diagram of the truss optimization problem 
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Figure 3. Test problems: (A) The 10-bar truss, (B) The 37-bar truss, (C) The 52-bar truss, (D) The 120-bar truss and 

(E) The 200-bar truss 
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Figure 4. Test problem: The 72-bar truss 
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Figure 5. Accepted solution‟ count in the modified parasitism phase of SOS 

 

Figure 6. Accepted solution‟ count in the improved parasitism phase of ISOS 

 

0

2

4

6

8

10

12

1
0
0

3
0
0

5
0
0

7
0
0

9
0
0

1
1
0

0

1
3
0

0

1
5
0

0

1
7
0

0

1
9
0

0

2
1
0

0

2
3
0

0

2
5
0

0

2
7
0

0

2
9
0

0

3
1
0

0

3
3
0

0

3
5
0

0

3
7
0

0

3
9
0

0

A
cc

e
p
te

d
 s

o
lu

ti
o

n
s'

 c
o

u
n
t 

in
 t

h
e
 

p
a

ra
si

ti
sm

 p
h

a
se

Function evaluations 

10-bar truss

0

0.5

1

1.5

2

2.5

2
1
0

0

2
2
0

0

2
3
0

0

2
4
0

0

2
5
0

0

2
6
0

0

2
7
0

0

2
8
0

0

2
9
0

0

3
0
0

0

3
1
0

0

3
2
0

0

3
3
0

0

3
4
0

0

3
5
0

0

3
6
0

0

3
7
0

0

3
8
0

0

3
9
0

0

4
0
0

0

A
cc

e
p
te

d
 s

o
lu

ti
o
n
s'

 c
o
u
n
t 

in
 t

h
e
 

p
a
ra

si
ti

sm
 p

h
a
se

Function evaluations 

10-bar truss



 

Accepted Manuscript

Truss optimization with natural frequency bounds using improved
symbiotic organisms search

Ghanshyam G. Tejani , Vimal J. Savsani , Vivek K. Patel ,
Seyedali Mirjalili

PII: S0950-7051(17)30584-1
DOI: 10.1016/j.knosys.2017.12.012
Reference: KNOSYS 4148

To appear in: Knowledge-Based Systems

Received date: 28 June 2017
Revised date: 20 October 2017
Accepted date: 9 December 2017

Please cite this article as: Ghanshyam G. Tejani , Vimal J. Savsani , Vivek K. Patel ,
Seyedali Mirjalili , Truss optimization with natural frequency bounds using improved symbiotic
organisms search, Knowledge-Based Systems (2017), doi: 10.1016/j.knosys.2017.12.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.knosys.2017.12.012
https://doi.org/10.1016/j.knosys.2017.12.012

