
Trust-aware Recommender Systems

Paolo Massa
IRST/FBK

Via Sommarive 18
Povo (TN), Italy
massa@itc.it

Paolo Avesani
IRST/FBK

Via Sommarive 18
Povo (TN), Italy
avesani@itc.it

ABSTRACT
Recommender Systems based on Collaborative Filtering sug-
gest to users items they might like. However due to data
sparsity of the input ratings matrix, the step of finding sim-
ilar users often fails. We propose to replace this step with
the use of a trust metric, an algorithm able to propagate
trust over the trust network and to estimate a trust weight
that can be used in place of the similarity weight. An empir-
ical evaluation on Epinions.com dataset shows that Recom-
mender Systems that make use of trust information are the
most effective in term of accuracy while preserving a good
coverage. This is especially evident on users who provided
few ratings.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
filtering

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Recommender Systems (RS) [10] have the goal of suggest-

ing to every user the items that might be of interest for her.
In particular, RSs based on Collaborative Filtering (CF) [1]
rely on the opinions expressed by the other users. In fact
CF tries to automatically finds users similar to the active
one and recommends to her the items liked by these similar
users. This simple intuition is effective in generating rec-
ommendations and widely used [10]. However RSs based on
CF suffer some inherent weaknesses that are intrinsic in the
process of finding similar users. In fact, the process of com-
paring two users with the goal of computing their similarity
involves comparing the ratings they provided to items. And
in order to be comparable, it is needed that the two users
rated at least some items in common. However in a typical
domain, for example in the domain of movies or books, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’07, October 19–20, 2007, Minneapolis, Minnesota, USA.
Copyright 2007 ACM 978-1-59593-730-8/07/0010 ...$5.00.

number of items is very large (in the order of the millions)
while the number of items rated by every single user is in
general small (in the order of dozens or less). This means
that it is very unlikely two random users have rated any
items in common and hence they are not comparable. An-
other important and underconsidered weakness is related to
the fact that RS can be easily attacked by creating ad hoc
user profiles with the goal of being considered as similar to
the target user and influence the recommendations she gets.

In order to overcome these weaknesses, we propose to
exploit trust information explicitly expressed by the users.
Users are allowed to state how much they consider every
other user trustworthy that, in the context of RSs, is related
to how much they consider the ratings provided by a certain
user as valuable and relevant. This additional information
(trust statements) can be organized in a trust network and
a trust metric can be used to predict the trustworthiness of
other users as well (for example, friends of friends). The
idea here is to not search for similar users as CF does but
to search for trustable users by exploiting trust propaga-
tion over the trust network. The items appreciated by these
users are then recommended to the active user. We call this
technique, Trust-aware Recommender System.

While in other papers we explored portions of this process,
the goal of this paper is to present a complete evaluation of
Trust-aware Recommender System, by comparing different
algorithms, ranging from traditional CF ones to algorithms
that utilise only trust information with different trust met-
rics, from algorithms that combine both trust and similarity
to baseline algorithms. The empirical evaluation is carried
on a real world, large dataset. We have also evaluated the
different algorithms against views over the dataset (for ex-
ample only on users or items satisfying a certain condition)
in order to hightlight the relative performances of the differ-
ent algorithms.

The paper is structured as follows. Section 2 presents in
more details the motivations for our proposal while Section 3
actually describes the proposal, focusing on the concept of
trust, introducing the proposed architecture of Trust-aware
Recommender Systems and commenting on related works.
Section 4 is devoted to the experiments in which we com-
pared different algorithms and the experimental results are
then summarized and discussed in Section 5. Section 6 con-
cludes the paper.

2. MOTIVATIONS
Recommender Systems are a technique able to cope with

the Information Overload problem. Information Overload

refers to the fact that, for example, there are too many
books, movies or songs to be able to experience all of them
and make an informed decision about which ones we should
read, watch or listen to. RSs suggest to every user few items
she might like. Collaborative Filtering is a RS technique
that exploits a simple intuition: items appreciated by people
similar to someone will also be appreciated by that person.
While Content-based RSs require a description of the con-
tent of the items, Collaborative Filtering has the advantage
to rely just on the opinions provided by the users expressing
how much they like a certain item in the form of a rating.
Based on these ratings, the CF system is able to find users
with a similar rating pattern and then to recommend the
items appreciated by these similar users. In this sense, it
does not matter what the items are (movies, songs, scien-
tific papers, jokes,. . .) since the technique considers only
the ratings of the users and so the technique can be applied
in every domain and does not require editors to describe the
content of the items.

The typical input of CF is represented as a matrix of rat-
ings, in which the users are the rows, the items the column
and the values in the cells represent the rating expressed by a
user about an item. The CF algorithm can be divided in two
steps. The first step is the similarity assessment and consists
into comparing the ratings provided by a pair of users (rows
in the matrix) in order to compute their similarity. The
most used and effective technique for the similarity assess-
ment is to compute the Pearson correlation coefficient [1].
The second step is the actual rating prediction and consists
into predicting the rating the active user would give to a cer-
tain item. The predicted rating is the weighted sum of the
ratings given by other user to that item, where the weights
are the similarity coefficient of the active user with the other
users. In this way the rating expressed by a very similar user
has a larger influence on the rating predicted for the active
user. The formula for the second step is the following

pa,i = ra +

Pk

u=1
wa,u(ru,i − ru)

Pk

u=1
wa,u

(1)

where pa,i represents the predicted rating what active user
a would possibly provide for item i, ru is the average of the
rating provided by user u, wa,u is the user similarity weight
of a and u as computed in first step and k is the number of
users whose ratings to item i are considered in the weighted
sum (called neighbours).

According to Equation 1, a user can be considered as
neighbour for the active user only if it is possible to compute
the similarity weight of her and the active user. In this sense
the first step is very important in order to be able to gen-
erate recommendations. Two users can be compared with a
correlation coefficient only if they have rated in common at
least few items. Since the items can be millions (think for
example, of all the books ever written or of all the movies
ever filmed), it is often the case that a user has provided a
rating only about a tiny percentage of the items. This re-
sults in a high sparsity of the ratings matrix and no overlap
between the ratings provided by two random users. As a
consequence it is often not possible to compute the similar-
ity between two users. Data sparsity causes the first serious
weakness of Collaborative Filtering.

This weakness is especially evident on cold start users,
users who provided few ratings, for instance users who just

started using the system. For these users, CF tends to fail in
generating recommendations since it is not able to compare
them with other users and to find possible neighbours. This
is a relevant weakness since it is especially important to
provide good recommendations to these users in order to
give them incentives to keep using the system and provide
more ratings. Moreover, as we will see in the following, they
tend to be a significant portion of the users.

Even when it is possible to compute a similarity weight,
because of data sparsity, this is often derived from few over-
lapping ratings and it is hence a noisy and unreliable value.
This results in unaccurate ratings predictions.

The last weakness we briefly comment about here is re-
lated to attacks to Recommender Systems [8]. The simplest
attack is the copy-profile attack: the attacker can copy the
ratings of target user and fool the system into thinking that
the attacker is in fact the most similar user to target user.
In this way every additional item the attacker rates highly
will probably be recommended to the target user.

These weaknesses are described in more detail in [5]. We
describe in next section how our proposal alleviates these
weaknesses.

3. OUR PROPOSAL: TRUST-AWARE REC-
OMMENDER SYSTEMS

In this section we summarize our proposal that has been
already presented elsewhere [5]. We start by introducing
basic concepts about trust networks and trust metrics. We
then present the logical architecture of Trust-aware Recom-
mender Systems. We conclude this section by comparing
our proposal with related work in literature.

3.1 Trust networks and trust metrics
In decentralized environments where everyone is free to

create content and there is no centralized quality control
entity, evaluating the quality of this content becomes an im-
portant issue. This situation can be observed in online com-
munities (for example, slashdot.org in which millions of users
posts news and comments daily), in peer-to-peer networks
(where peers can enter corrupted items), or in marketplace
sites (such as eBay.com, where users can create “fake” auc-
tions) [4]. On these environments, it is often a good strategy
to delegate the quality assessment task to users themselves.
The system can ask the users to rate other users: in this
way, a user can express her level of trust in another user
she has interacted with, i.e. issue a trust statement such as
“I, Alice, trust Bob as 0.8 in [0,1]”. The system can then
aggregate all the trust statements in a single trust networks
representing the relationships between users.

Trust metrics are algorithms whose goal is to predict,
based on the trust network, the trustworthiness of“unknown”
users, i.e. users in which a certain user didn’t express a
trust statement. Their aim is to reduce social complexity
by suggesting how much an unknown user is trustworthy.
There are many different trust metrics [2, 11, 6, 9]. An im-
portant classification of trust metrics is in global and local
ones [6]. Local trust metrics take into account the very per-
sonal and subjective views of the users and predict different
values of trust in other users for every single user. Instead
global trust metrics predict a global “reputation” value that
approximates how the community as a whole considers a
certain user. In this way, they don’t take into account the

subjective opinions of each user but average them across
standardized global values. PageRank [9], for example, is a
global trust metric.

In the next section we will see how trust metrics can play
a role in the context of Recommender Systems, essentially
we propose them for replacing or integrating the users’ sim-
ilarity assessment of step 1.

3.2 Architecture of TaRS
In this section we present the architecture of our pro-

posed solution: Trust-aware Recommender Systems. Fig-
ure 1 shows the different modules (black boxes) as well as
input and output matrices of each of them (white boxes).
There are two input information: the trust matrix (repre-
senting all the community trust statements) and the ratings
matrix (representing all the ratings given by users to items).
The output is a matrix of predicted ratings that users would
assign to items. The difference with respect to traditional
CF systems is the additional input matrix of trust state-
ments. The two logical steps of CF remain the same. The
first step finds neighbours and the second step predicts rat-
ings based on a weighted sum of the ratings given by neigh-
bours to items. The key difference is in how neighbours are
identified and how their weights are computed. The weight
wa,i in Equation 1 can be derived from the user similarity
assessment (as in traditional CF) or with the use of a trust
metric. In fact in our proposed architecture for the first
step there are two possible modules able to produce these
weights: Trust Metric module or Similarity Metric mod-
ule. They produce respectively the Estimated Trust matrix
and the User Similarity matrix: in both, row i contains the
neighbours of user i and the cell of column j represents a
weight in [0, 1] about how much user j is relevant for user
i (trustable or similar). This is the weight wa,i in Equa-
tion 1 and represents how much ratings by user i should be
taken into account when predicting ratings for user a (second
step). A more detailed explanation of the architecture can
be found in [5]. In Section 4 we are going to present experi-
ments we have run with different instantiations of the differ-
ent modules. For the Trust Metric module we have tested
a local and a global trust metric. As local trust metric we
have chosen MoleTrust [6], a depth-first graph walking algo-
rithm with a tunable trust propagation horizon that allows
us to control the distance to which trust is propagated. As
global trust metric we have chosen PageRank [9], probably
the most used global trust metric. For the Similarity Metric
module we have chosen the Pearson Correlation Coefficient
since it is the one that is reported to be performed best
in [1]. About the Rating Predictor module (second step),
we experimented with selecting only weights from the Esti-
mated Trust matrix or the User Similarity matrix and with
combining them. For comparison purposes, we have also run
simple and baseline algorithms that we will describe in next
section.

Now we briefly comment on how our proposal alleviates
the before mentioned weaknesses. Due to the propagation
of trust over the social network it is possible to compute the
trust weight in more users than if user similarity was used
and hence the problem of data sparsity is reduced. This is
especially evident on cold start users. In fact, users with
just one expressed trust statement can benefit from ratings
provided by trusted users, and users trusted by them, and
accordingly recommendations are computable even if they

Figure 1: Trust-Aware Recommender System Ar-

chitecture.

have provided very few ratings. Just providing a trust state-
ment is hence an effective way of bootstrapping RSs for new
users. While neighbours chosen according to the similarity
computed on few overlapping ratings might be not the best
predictors, this is not the case with users explicitly indicated
as trusted by the active user. Attacks are addressed by a
trust-aware technique given that the fake identities used for
the attacks are not trusted explicitly by the active users (and
by the users she trusts). Thus the ratings they have intro-
duced in order to game the system are not considered and
do not affect the recommendations generated for the active
user. A more detailed description of weaknesses and how
Trust-aware RSs alleviates them is in [5].

3.3 Related work
There have been some proposals to use trust information

in the context of Recommender Systems. We report here
the most significant ones.

In a paper titled “Trust in recommender systems” [7],
O’Donovan and Smyth propose algorithms for computing
Profile Level Trust and Item Level Trust. Profile Level Trust
is the percentage of correct recommendations that this pro-
ducer has contributed. Item level trust is a profile level trust
that depends on a specific item. As also reviewers note, this
quantity represents more a “competence” measure and in
fact reflects a sort of global similarity value. While in their
work trust values are derived from ratings (of the Movie-
lens dataset), in our proposal trust statements are explicitly
expressed by users.

The PhD thesis of Ziegler [11] concentrates on RSs from
different points of research. About the integration of trust,
he proposes a solution very similar to ours, i.e neighbours
formation by means of trust network analysis. He has de-
signed a local trust metric, Appleseed [11], that computes
the top-M nearest trust neighbours for every user. He has
evaluated algorithms against a dataset derived from All-
Consuming (http://allconsuming.net), a community of 3400
book readers, with 9300 ratings and 4300 trust statements.
Only positive trust statements are available. Ziegler found
that hybrid approaches (using taxonomies of books and hence
based on content-based features of books) outperforms the
trust-based one which outperforms purely content-based one.
Performances on users who provided fewer than five ratings
were not studied.

Golbeck’s PhD thesis [2] focus on trust in web-based social
networks, how it can be computed, and how it can be used in
applications. She deployed an online Recommender System,
FilmTrust (http://trust.mindswap.org/filmTrust/) in which
users can rate films and write reviews and they can also ex-

press trust statements in other users based on how much
they trust their friends about movies ratings. Trust state-
ments in FilmTrust are weighted: users could express their
trust in other user on a ten level basis. Golbeck designed a
trust metric called TidalTrust [2] working in a breadth-first
fashion similarly to MoleTrust but without a tunable trust
propagation horizon. Even if on a dataset of just 300 mem-
bers, it is interesting to note that her findings are similar to
ours that will be reported in the next section.

4. EMPIRICAL VALIDATION
In this Section we present experiments we have conducted

for evaluating the performances of Trust-aware Recommender
Systems. In particular we compare different instantiations
of the modules of our proposed architecture (see Figure 1),
so that the evaluated systems range from simple algorithms
used as baselines to purely Collaborative Filtering ones, from
systems using only trust metrics, both global and local, to
systems that combine estimated trust and user similarity
information. First we describe the dataset used and intro-
duce the evaluation strategy we followed, then we present
the actual experiments results.

4.1 Epinions.com Dataset
The dataset we used in our experiments is derived from

the Epinions.com Web site. Epinions is a consumers opin-
ion site where users can review items (such as cars, books,
movies, software, . . .) and also assign them numeric ratings
in the range 1 (min) to 5 (max). Users can also express their
Web of Trust, i.e. reviewers whose reviews and ratings they
have consistently found to be valuable and their Block list,
i.e. a list of authors whose reviews they find consistently of-
fensive, inaccurate, or not valuable 1. Inserting a user in the
Web of Trust equals to issuing a trust statement of value 1
in her while inserting her in the Block List equals to issuing
a trust statement of value 0 in her. Intermediate values such
as 0.7 are not expressible on Epinions.

In order to collect the dataset, we wrote a crawler that
recorded ratings and trust statements issued by a user and
then moved to users trusted by that users and recursively did
the same. Note however that the block list is kept private in
Epinions in order to let users express more freely so it is not
available in our dataset. Our dataset consists of 49, 290 users
who rated a total of 139, 738 different items at least once.
The total number of reviews is 664, 824. The total number of
issued trust statements is 487, 181. Rating matrix sparsity
is defined as the percentage of empty cells in the matrix
users × items and in the case of the collected dataset is
99.99135%. The mean number of created reviews is 13.49
with a standard deviation of 34.16. It is interesting to have a
look at what we have called “cold start users”. They are the
large majority of users. For example, 26,037 users expressed
less than 5 reviews and represent 52.82% of the population.
The mean number of users in the Web of Trust (friends) is
9.88 with a standard deviation of 32.85. Another interesting
point is the distribution of ratings. In our dataset, 45% of
the ratings are 5 (best), 29% are 4, 11% are 3, 8% are 2 and
7% are 1 (worst). The mean rating is hence 3.99. Note that
almost half of the ratings are a 5, i.e. the maximum possible
value.

1This definition is from the Epinions.com Web of Trust FAQ
(http://www.epinions.com/help/faq/?show=faq wot)

The characteristics we briefly described are very different
from those of the Movielens dataset2, the most commonly
used dataset for RSs evaluation. In particular, in Movielens
dataset all the users are guaranteed to have voted at least 20
items while in Epinions more than half of them have voted
less than 5 items (cold start users). This also means the
sparsity is much higher in Epinions and so finding overlap-
ping on provided ratings between users and hence possible
neighbours (step 1 of CF) is even harder. While on Epinions
most of the rating values are 5 and 4, in Movielens all the dif-
ferent values are more balanced. This affects how different
algorithms perform as we will see in the following sections.

4.2 Evaluation measures
The most used technique for evaluating Recommender

Systems is based on leave-one-out. Leave-one-out is an of-
fline technique that can be run on a previously acquired
dataset and involves hiding one rating and then trying to
predict it with a certain algorithm. The predicted rating
is then compared with the real rating and the difference in
absolute value is the prediction error. The procedure is re-
peated for all the ratings and an average of all the errors is
computed, the Mean Absolute Error (MAE) [3].

A first problem with MAE is that it weighs every error
in the prediction of a rating in the same way. For example,
let us suppose that our dataset contains only 101 users: one
user provided 300 ratings while all the remaining 100 users
provided just 3 ratings each. We call the first user a “heavy
rater” and the other users “cold start users”. In this way our
dataset contains 600 ratings. The leave-one-out methodol-
ogy consists in hiding these 600 ratings one by one and then
trying to predict them. Typically CF works well for users
who already provided a lot of ratings and poorly on users
who provided few ratings. A probable situation is that the
error over the predictions of the heavy rater is small while
the error over the predictions of the cold start users is high.
However in computing the Mean Absolute Error, the heavy
raters weigh just as much as all the other users since she pro-
vided a very large number of ratings. This does not reflect
the real situation in which actually there is one user that is
probably satisfied with the prediction error (the heavy rater)
and 300 users who are not satisfied (the cold start users).
For this reason, the first additional measure we introduce is
Mean Absolute User Error (MAUE). The idea is straightfor-
ward: we first compute the Mean Absolute Error for every
single user independently and then we average all the Mean
Absolute Errors related to every single user. In this way,
every user has the same weight in the Mean Absolute User
Error computation. This is really important since Epinions
dataset contains a large share of cold start users.

Another important measure that is often not reported and
studied in evaluation of RSs is coverage. Herlocker et al.
in their solid review of Recommender Systems evaluation
techniques [3] underline how it is important to go “beyond
accuracy” in evaluating RSs and count coverage as one step
in this direction but also note how few works have investi-
gated it. Coverage simply refers to the fraction of ratings
for which, after being hidden, the RS algorythm is able to
produce a predicted rating. It might in fact be the case
that some RS techniques are not able to predict the rating

2Distributed by Grouplens group at the
University of Minnesota and available at
http://www.cs.umn.edu/Research/GroupLens/

a user would give to an item. Again we believe that cov-
erage was understudied by many research efforts because in
Movielens, the most used dataset for evaluation of RSs, the
coverage over ratings tends to be close to 100%. This is due
to the fact that all the users are guaranteed to have voted at
least 20 items and that there are some items that are rated
by almost every user. Instead on a very sparse dataset that
contains a large portion of cold start users and of items rated
just by one user, coverage becomes an important issue since
many of the ratings become hardly predictable. While the
percentage of predictable ratings (ratings coverage) is an im-
portant measure, it suffers the same problem we highlighted
earlier for Mean Absolute Error, it weighs heavy raters more.
Following the same argument as before, we introduce also
the users coverage, defined as the portion of users for which
the RS is able to predict at least one rating.

A possibility given by a very large dataset of ratings is to
study performances of different RS techniques on different
portions of the input data (called “views”). It is possible for
example to compute MAE or Users coverage only on ratings
given by users or items which satisfy a certain condition.
The views we are going to report results about in this paper
are the following: cold start users, who provided from 1 to
4 ratings; heavy raters, who provided more than 10 ratings;
opinionated users, who provided more than 4 ratings and
whose standard deviation is greater than 1.5; black sheep,
users who provided more than 4 ratings and for which the
average distance of their rating on item i with respect to
mean rating of item i is greater than 1; niche items, which
received less than 5 ratings; controversial items, which re-
ceived ratings whose standard deviation is greater than 1.5.
We introduced these views because they are better able to
capture the relative merits of the different algorithms in dif-
ferent situations and to better represent their weaknesses
and strengths.

4.3 Results of the Experiments
Every different instantiation of the Trust-aware Recom-

mender System architecture is evaluated with regard to the
measures we have defined (MAE, MAUE, ratings coverage,
users coverage), also focusing the analysis on the different
views previously introduced, such as, for example, cold start
users and controversial items. In the following we discuss the
experiments’ results which are condensed in Table 1 and 2.
Figure 2 and 3 presents graphically just one of the measures
reported in the tables, precisely the row labeled“Cold users”
(i.e. MAE and ratings coverage on predictions for cold start
users and MAUE and users coverage) in order to give the
reader a visual grasp of the relative benefits of the different
techniques.

4.3.1 Simple algorithms seem very effective
As a first step in our analysis we tried a very simple al-

gorithm that returns always 5 as the predicted rating a user
would give to an item. We call this algorithm Always5. This
trivial algorithm is not meaningful from a RS point of view
since, for instance, it does not allow to differentiate and pri-
oritize the different items. However it allowed us to start ex-
ploring which MAE a simple algorithm would achieve. The
MAE over all the ratings is 1.008. This result is not too
bad, especially if we compare it with more complex algo-
rithms as we will do in the following. Another trivial algo-
rithm that predicts as rating the mean of the ratings pro-

vided by one user is very effective as well achieving a MAE
of 0.9243. The reason for such good performances is that
in our dataset most of the rating values are in fact 5 and
this is a notable difference with respect to other datasets,
for instance MovieLens, on which these trivial algorithms
work very badly. But in our case we have two very sim-
ple and not personalized algorithms that seem to performs
enough well. This fact suggested to us that just presenting
the Mean Absolute Error over all the ratings is not a use-
ful way to compare different algorithms. We introduced the
evaluations views explained in Section 4.2 in order to have
an evaluation technique better able to capture the relative
merits of the different algorithms in different situations and
to better represent their weaknesses and strengths. In fact
on the controversial items view for instance, these trivial
algorithms perform very badly.

4.3.2 Collaborative Filtering outperformed by sim-
ple average

Another trivial algorithm is the one that predicts as a
rating for a certain item the unweighted average of all the
ratings given to that item by all the users but the active user.
It is a non-personalized technique that is like assigning 1 as
similarity or trust weight to all the users in the second step
of CF (Equation 1 with wa,i always equal to 1). For this
reason we call it TrustAll. To our surprise, TrustAll outper-
formed standard Collaborative Filtering algorithms, achiev-
ing a MAE of 0.821 (against 0.843 of standard CF). On the
other hand, on MovieLens dataset, we observe the expected
result: MAE of CF is 0.730 while MAE of TrustAll is 0.815.
Moreover, the number of predictable Epinions ratings (the
coverage) is 51.28% for CF and 88.20% for TrustAll, while on
Movielens ratings they are both close to 100%. The reason
for these important differences is in the datasets. The Epin-
ions dataset contains mostly 5 as rating value and most of
the users provided few ratings (cold start users). We believe
these facts, not observed in other RS datasets, allowed us
to study certain characteristics of RS algorithms that were
previously unexplored. The problem with CF in our dataset
is that the Pearson correlation coefficient (similarity weight
output of the first step of CF) is often not computable be-
cause of data sparsity and hence only the ratings of a small
percentage of the other users can be utilized when gener-
ating a recommendation for the active user. Since there is
not too much variance in rating values (most of them are
5), an unweighted average is usually close to the real value.
On cold start users, the balance is even more for TrustAll.
The coverage of CF on cold start users is only 3.22% while
the coverage of TrustAll is 92.92% and the MAE of CF is
1.094 while the MAE of TrustAll in 0.856. Note that in the
real-world Epinions dataset, cold start users make up more
than 50% of total users. In fact for a cold start user the
first step of CF fails almost always since it is very unlikely
to find other users which have rated the same few items
and hence the similarity weight is not computable. How-
ever these results are not totally dismissive of CF, in fact,
on controversial items, CF outperforms TrustAll (MAE of
1.515 against 1.741). In this case, CF is able to just consider
the opinions of like minded users and hence to overcome the
performances of TrustAll, a technique that, not being per-
sonalized, achieves greater error. This means that when it
is really important to find the like-minded neighbours CF
is needed and effective. Also note that the error over rat-

Mean Absolute Error / Ratings Coverage

Views Algorithms
CF MT1 MT2 MT3 TrustAll

All 0.843
51.28%

0.832
28.33%

0.846
60.47%

0.829
74.37%

0.821
88.20%

Cold
users

1.094
3.22%

0.674
11.05%

0.833
25.02%

0.854
41.74%

0.856
92.92%

Heavy
raters

0.850
57.45%

0.873
30.85%

0.869
64.82%

0.846
77.81%

0.845
92.92%

Contr.
items

1.515
45.42%

1.425
25.09%

1.618
60.64%

1.687
81.01%

1.741
100.0%

Niche
items

0.822
12.18%

0.734
8.32%

0.806
24.32%

0.828
20.43%

0.829
55.39%

Opin.
users

1.200
50%

1.020
23.32%

1.102
57.31%

1.096
74.24%

1.105
92.80%

Black
sheep

1.235
55.74%

1.152
23.66%

1.238
59.21%

1.242
76.32%

1.255
97.03%

Table 1: Accuracy and coverage measures on rat-

ings, for different RS algorithms on different views.

ings received by controversial items is greater than the error
over all the ratings, meaning that it is harder to predict the
correct ratings for these items.

4.3.3 Trusted users are good predictors
In this subsection we start comparing performances of RS

algorithms that use only trust information (top box in Fig-
ure 1) with standard CF (bottom box). We start by using
only the users explictly trusted by the active user, i.e. not
propatagating trust or setting the propagation horizon at 1
for the local Trust Metric MoleTrust. We call this algorithm
MT1. In general, RSs based on trust propagation work bet-
ter with cold start users. They don’t use the (few) ratings
information for deriving a similarity measure to be used as
weight for that user, but use the trust information explic-
itly provided by the user. In this way, even for a user with
just one friend, it is possible that her friend has rated the
items she rated and hence a prediction is possible. It is also
possibly the case that that friend has tastes very similar to
the current user and hence the error is small. In fact, the
MAE of MT1 over cold start users is 0.674 while the MAE
of CF is, as already discussed, 1.094. The difference in error
is very high and particulary relevant since it is important for
a RS to be able to provide personalized recommendations as
soon as possible to users who have not yet provided many
ratings so that these users appreciate the system and keep
using it, providing more ratings. Moreover cold start users
are a very large portion of the users in our dataset.

Let us now compare performances of CF and MT1 over
all the ratings. The MAUE achieved by MT1 and CF is
respectively 0.790 and 0.938. About prediction coverage,
while CF is able to predict more ratings than MT1 (ratings
coverage is 51.28% vs. 28.33%), MT1 is able to generate at
least a prediction for more users (users coverage is 46.64% vs.
40.78%). Summarizing, MT1 is able to predict fewer ratings
than CF but the predictions are spread more equally over all
the users (which can then be at least partially satisfied) and,
about errors, CF performs much worse than MT1 when we
consider the error achieved over every single user in the same
way and not depending on the ratings she provided. These

Mean Absolute User Error / Users Coverage

Views Algorithms
CF MT1 MT2 MT3 TrustAll

All 0.938
40.78%

0.790
46.64%

0.856
59.75%

0.844
66.31%

0.843
98.57%

Cold
users

1.173
2.89%

0.674
17.49%

0.820
30.61%

0.854
42.49%

0.872
96.63%

Heavy
raters

0.903
86.08%

0.834
79.78%

0.861
88.42%

0.834
89.42%

0.820
100.00%

Contr.
items

1.503
15.76%

1.326
11.74%

1.571
21.66%

1.650
27.85%

1.727
37.16%

Niche
items

0.854
10.77%

0.671
10.27%

0.808
20.73%

0.843
32.83%

0.848
52.04%

Opin.
users

1.316
61.20%

0.938
60.74%

1.090
76.51%

1.092
79.85%

1.107
100.00%

Black
sheep

1.407
67.78%

1.075
60.83%

1.258
75.34%

1.285
77.70%

1.300
100.00%

Table 2: Accuracy and coverage measures on users,

for different RS algorithms on different views.

facts have the following reason: CF works well, both in terms
of coverage and in terms of error, for heavy raters (users
who already provided a lot of ratings) while it performs very
poorly on cold start users. On many important views such as
controversial items and opinionated users MT1 outperforms
both CF and TrustAll.

4.3.4 Propagating trust with a Local Trust Metric
In the previous section we analyzed performances of RS

algorithms that consider only trust information but don’t
propagate trust. Here we analyze how trust propagation us-
ing the local Trust Metric Moletrust performs. We name
MT2, MT3 and MT4 the algorithms which propagate trust
up to distance 2, 3 and 4 respectively. Of course propagating
trust allows to reach more users and hence predict a trust
score for more of them (see graphs and data in [5]). It is in-
teresting to briefly report the number of neighbours that can
be identified by the different first steps in the Trust-aware
Recommender System architecture. The average number
of directly trusted users (MT1) is 9.88, while the average
number of comparable users (users for which the Pearson
Correlation coefficient is computable) is 160.73. However
just propagating trust a few steps helps to increase signifi-
cantly the number of neighbours that can be considered for
the rating predictions. Propagating at distance 2 (friends of
friends) is possible to reach 399.89 users and increasing the
trust propagation horizon to 3 and 4 allows to reach respec-
tively 4, 386.32 and 16, 333.94 users [5]. This pattern is even
more evident on cold start users [5].

Since by propagating trust it is possible to reach more
users and hence to compute a predicted trust score in them
and to count them as neighbours, the prediction coverage
of the RS algorithm increases. In fact the larger the trust
propagation horizon, the greater the coverage (see columns
MT1, MT2 and MT3 of Table 1 and 2). For instance, on
all ratings, the ratings coverage increases from 28.33% for
MT1, to 60.47% for MT2, to 74.37% for MT3. By continu-
ing to propagate trust (i.e. expanding the trust propagation
horizon) it is possible to consider more and more users as
possible neighbours and hence to arrive at 88.20%, the rat-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

M
A

E

Algorithms

CF
1.094

MT1
0.674

MT2
0.833

MT3
0.854

TrustAll
0.856

MAE

Figure 2: MAE on cold start users for some repre-

sentative algorithms.

ings coverage of TrustAll which considers every user who
provided a rating. The downside of this is that the error in-
creases as well. For example, on cold start users, the MAUE
is 0.674 for MT1, 0.820 for MT2 and 0.854 for MT3. These
results say that by propagating trust it is possible to increase
the coverage (generate more recommendations) but that it
also considers users who are worse predictors for the current
user so that the prediction error increases as well. The trust
propagation horizon basically represents a tradeoff between
accuracy and coverage.

4.3.5 Global Trust Metrics not appropriate for Rec-
ommender Systems

An additional experiment we performed is about testing
the performance of global Trust Metrics as algorithms for
predicting the trust score of unknown users. A global trust
metric predicts for every user the same trust scores in other
users. This technique, like TrustAll, is hence not personal-
ized. We have chosen to run PageRank [9] as global trust
metric and to normalize the output value in [0,1]. We call
the Recommender System that uses PageRank for its Trust
Metric module, PR. PR performs similarly to TrustAll, even
slightly worse (MAE of 0.847 and 0.821 respectively). This
means that a global Trust Metric is not suited for a Rec-
ommender System whose task is to leverage individual dif-
ferent opinions and not to merge all of them into a global
average. We also tried to restrict the neighbours to just
the first 100 users as ranked by PageRank but this algo-
rithm (called PR100) while of course reducing the coverage,
reports even larger errors (MAE of 0.973). The reason be-
hind these bad performances is that globally trusted users
(as found by PageRank) tend to be peculiar in their rating
patterns and provide more varied ratings so that averaging
them generates larger errors. Summarizing we can say that
global trust metrics are not suited in the task to find good
neighbours, especially because the task of RSs is to provide
personalized recommendations while global trust metrics are
unpersonalized.

4.3.6 Combining Estimated Trust and User Similar-
ity

In the architecture of Trust-aware Recommender Systems

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

R
at

in
gs

 c
ov

er
ag

e

Algorithms

CF
3.22%

MT1
11.05%

MT2
25.02%

MT3
41.74%

TrustAll
92.92%

Ratings coverage

Figure 3: Ratings coverage on cold start users for

some representative algorithms.

(Figure 1), the“rating predictor”module takes as input both
the Estimated Trust matrix and the User Similarity matrix.
The idea is that the weight of a neighbour used in Equation 1
can be derived both from the user similarity value computed
by the Similarity Metric (Pearson Correlation Coefficient in
our case) and the predicted trust value computed by a Trust
Metric. We have already commented on the number of users
for which it is possible to compute a similarity weight or a
predicted trust in previous subsection [5]. However in order
to devise a way of combining these two matrices, it is in-
teresting to analyze how much they overlap. As previously
reported, the number of users reachable in one step (the
ones used by MT1) are on average 9.88 and the number of
users in which a user similarity coefficient is computable are
on average 160.73. The two matrix rows overlap only on
1.91 users on average, that is only for 1.91 users we have
both a predicted trust and a user similarity. The number of
users reachable propadating trust up to distance 2 is 399.89.
Comparing it again with the number of users in which a simi-
larity coefficient is computable (160.73), the average number
of users present in both lists is 28.84. These numbers show
how Pearson Correlation coefficient and MoleTrust address
different portions of the user base in which they are able to
compute a weight. So, in order to combine these weights, we
tested the simple technique of computing a weighted average
when there are two weights available and, in case only one
is available, of using that. We call this technique CF+MTx :
for example the systems that combine CF and MT1 is called
CF+MT1. The results are not very good. When comparing
CF+MT1 with CF and MT1 for example, we see that the
coverage is greater than the coverage of the two techniques.
This is of course the expected situation since CF+MT1 con-
siders both the users in which it is possible to predict a trust
score (as MT1 does) and the users in which it is possible to
compute a user similarity (as CF does). However the error
of CF+MTx is in general in between of CF and MTx, that is
worse than MTx and better than CF. The problem is that,
as we reported earlier, CF is almost always not able to find
good neighbours and hence making an average of the users
who are similar and of the users that are trusted produces
worse results that just considering trusted users. Since tech-
niques that used only trust were superior in previous tests

to CF-based ones, we also try to just use the predicted trust
score when both the weights were available but the results
are very similar.

5. DISCUSSION OF RESULTS
In this section we summarize and discuss the most impor-

tant results of the presented experiments. The first impor-
tant result it that considering only the ratings of directly
trusted users is the technique that, in general, achieves the
smallest error with an acceptable coverage. The compara-
tive improvement over the other techniques is particularly
evident with regard to controversial items and black sheep,
two of the most important and challenging views. With re-
gard to cold start users, standard CF techniques totally fail
and are not able to generate any recommendation. Instead
by considering ratings of trusted users we achieve a very
small error and are able to produce a recommendation for
almost 17% of the users. We can therefore state that provid-
ing a single trust statement is an easy, effective and reliable
way of bootstrapping the Recommender System for a new
user. It is important to underline that the evidence is based
on experiments carried on a real world, large dataset. In
particular the Epinions datasets allowed us to explore top-
ics which were not addressed before by research papers, such
as cold start users and other views. Using our local Trust
Metric MoleTrust in order to propagate trust allows users
trusted by trusted users (at distance 2 from active user in
the directed trust network), or even further away users, to
be considered as possible neighbours. In this way, the cov-
erage increases significantly, but the error increases as well.
This means that ratings of users at distance 2 (or more) are
less precise and less useful than ratings of users at distance
1, i.e. directly trusted by the active user. However it is an
open issue to see if different local trust metrics are able to ex-
tract just some of the other users such that their ratings are
really effective in improving the recommendation accuracy.
In fact, this method can be used to evaluate the quality of
different trust metrics, i.e. a better trust metric is the one
that is able to find the best neighbours and hence to reduce
the prediction error. As last point we would like to highlight
how Collaborative Filtering, the state of the art technique,
performed badly in our experiments, especially on cold start
users (which in our dataset are in fact more than 50%). The
reason of this has to be found in the characteristics of the
datasets used for evaluation. In previous research evalua-
tions the most used dataset was MovieLens, while we used a
dataset derived from the online community of Epinion.com.
As we have already commented they present very different
characteristics. It is still an open point to understand how
much the different datasets influence the evaluation of dif-
ferent algorithms’ performances.

6. CONCLUSIONS
In this paper we have presented our proposal for enhancing

Recommender Systems by use of trust information. We have
presented a deep empirical evaluation on a real world, large
dataset of the performances of different algorithms ranging
from standard CF to algorithms powered with local or global
trust metrics, from combination of these to baseline algo-
rithms. We have also segmented the evaluation only on cer-
tain views (cold start users, controversial items, etc.) over
the dataset in order to better highlight the relative merits of

the different algorithms. The empirical results indicate that
trust is very effective in alleviating RSs weaknesses. In par-
ticular the algorithm powered with MoleTrust local trust
metric is always more effective than CF algorithms which
surprisingly performs even worse than simple averages when
evaluated on all the ratings. This difference is especially
large when considering cold start users, for which CF is to-
tally uneffective. The trust propagation horizon represents
a tradeoff between accuracy and coverage, i.e. by increasing
the distance to which trust is propagated by the local trust
metric the prediction coverage increases but the error in-
creases as well. Results also indicates that global trust met-
rics are not appropriate in the context of RSs. Given that
the user similarity assessment of standard CF is not effective
in finding good neighbours, the algorithms that combines
both user similarity weight and predicted trust weights are
not able to perform better than algorithms that just utilize
trust information.

7. REFERENCES
[1] J. Breese, D. Heckerman, and C. Kadie. Empirical

analysis of predictive algorithms for collaborative
filtering. In Proceedings of the Fourteenth Conference
on Uncertainty in Artifi cial Intelligence, Madison,
WI, July 1998. Morgan Kaufmann.

[2] J. Golbeck. Computing and Applying Trust in
Web-based Social Networks. PhD thesis, University of
Maryland, 2005.

[3] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, 2004.

[4] P. Massa. A survey of trust use and modeling in
current real systems, 2006. Chapter in “Trust in
E-Services: Technologies, Practices and Challenges”,
Idea Group, Inc.

[5] P. Massa and P. Avesani. Trust-aware collaborative
filtering for recommender systems. In Proc. of
Federated Int. Conference On The Move to Meaningful
Internet: CoopIS, DOA, ODBASE, 2004.

[6] P. Massa and P. Avesani. Trust metrics on
controversial users: balancing between tyranny of the
majority and echo chambers, 2007. International
Journal on Semantic Web and Information Systems.

[7] J. O’Donovan and B. Smyth. Trust in recommender
systems. In IUI ’05: Proceedings of the 10th
international conference on Intelligent user interfaces,
pages 167–174, New York, NY, USA, 2005. ACM
Press.

[8] M. P. O’Mahony, N. J. Hurley, and G. C. M. Silvestre.
Recommender systems: Attack types and strategies.
In Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI-05), Pittsburgh,
Pennsylvania, USA, 9–13, Jul 2005. AAAI Press.

[9] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford, USA, 1998.

[10] P. Resnick and H. Varian. Recommender systems.
Communications of the ACM, 40(3):56–58, 1997.

[11] C.-N. Ziegler. Towards Decentralized Recommender
Systems. PhD thesis, Albert-Ludwigs-Universität
Freiburg, Freiburg i.Br., Germany, June 2005.

