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1. INTRODUCTION

With the recent advent of high-throughput technologies

for both compound synthesis and biological screening, there

is no shortage of publicly or commercially available data

sets and databases1 that can be used for computational drug

discovery applications (reviewed recently in Williams et al.2).

Rapid growth of large, publicly available databases (such

as PubChem3 or ChemSpider4 containing more than 20

million molecular records each) enabled by experimental

projects such as NIH’s Molecular Libraries and Imaging

Initiative5 provides new opportunities for the development

of cheminformatics methodologies and their application to

knowledge discovery in molecular databases.

A fundamental assumption of any cheminformatics study

is the correctness of the input data generated by experimental

scientists and available in various data sets. Nevertheless, a

recent study6 showed that on average there are two errors

per each medicinal chemistry publication with an overall

error rate for compounds indexed in the WOMBAT database7

as high as 8%. In another recent study,8 the authors

investigated several public and commercial databases to

calculate their error rates: the latter were ranging from 0.1

to 3.4% depending on the database.

How significant is the problem of accurate structure

representation (given that the error rates in current databases

may appear relatively low) since it concerns exploratory

cheminformatics and molecular modeling research? Recent

investigations by a large group of collaborators from six

laboratories9,10 have clearly demonstrated that the type of

chemical descriptors has much greater influence on the

prediction performance of QSAR models than the nature of

model optimization techniques. These findings suggest that

having erroneous structures represented by erroneous de-

scriptors should have a detrimental effect on model perfor-

mance. Indeed, a recent seminal publication8 clearly pointed

out the importance of chemical data curation in the context

of QSAR modeling. The authors have discussed the error

rates in several known databases and evaluated the conse-

quences of both random and systematic errors with respect

to the prediction performances of the derivative QSAR

models. They also presented several illustrative examples

of incorrect structures generated from either correct or

incorrect SMILES. The main conclusions of the study were

that small structural errors within a data set could lead to

significant losses of predictive ability of QSAR models. The

authors further demonstrated that manual curation of struc-

tural data leads to substantial increase in the model predic-

tivity. This conclusion becomes especially important in light

of the aforementioned study of Oprea et al.6 that cited a

significant error rate in medicinal chemistry literature.

Alarmed by these conclusions, we have examined several

popular public databases of bioactive molecules to assess

possible error rates in structure representation. For instance,

the NCI AIDS Antiviral Screen11 (the paper describing this

screen12 has been cited 57 times in PubMed Central only)

comprises 42687 chemical records with their associated

activity. Even quick analysis of this data sets revealed that

4202 (i.e., ca. 10%) compounds should be either treated with

care or removed before any cheminformatics investigation:

3350 compounds were mixtures and salts, and we detected

741 pairs of exact duplicates and stereoisomers, possessing

different or opposite reported activities. Similar observations

can be made for several well-known public databases such

as NCI Human Tumor Cell Line and PubChem, as well as

for smaller data sets studied and reported in published

literature. For instance, in a study already mentioned above,

six research teams each specializing in QSAR modeling

(including the authors of this paper!) collaborated on the

analysis of the Tetrahymena pyriformis aquatic toxicity data

set9,10 comprising 1093 compounds. Later this exact data

set was used by the organizers of CADASTER toxicity

challenge.13 However, our re-examination of this data set

showed the presence of six pairs of duplicates among 1093

compounds because of the presence of different metal cations

in salts (with different aquatic toxicities measured by pIGC50

ranging from ∼0.1 to 1 logarithmic unit. Furthermore, in

the new external set compiled by the organizers of the

CADASTER challenge to evaluate the comparative perfor-

mance of competing models, eight out of 120 compounds

were found to be structurally identical to modeling set

compounds but with different toxicity values (∼0.3 pIGC50).

Such disappointing observations may, at least in part,

explain why QSAR models may sometimes fail, which is
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an issue that was brought up in several recent publications14-16

(but none mentioned structure representation or biological

annotation errors as possible sources of poor performance

of QSAR models). Obviously, cheminformaticians must only

use correct chemical structures and biological activities in

their studies. Not surprisingly, any structural error translates

into either inability to calculate descriptors for incorrect

chemical records or erroneous descriptors. As a consequence,

models developed using inaccurate data (either structural or

biological) will have insignificant or reduced statistical power

(cf., Young et al.8) and will be unreliable for prediction. Since

the amount of data, the number of models, and the body of

cheminformatics publications continue to grow, it becomes

increasingly important to address the issue of data quality

that inherently affects the quality of models.

Surprisingly, the investigations into how the primary data

quality influences the performances of cheminformatics

models are almost absent in the published literature. Besides

the study by Young et al.8 mentioned above we also found

a paper by Southan et al.,17 which mentioned briefly some

procedures used to determine the number of unique chemical

structures in a database. It appears that for the most part

cheminformaticians and molecular modelers tend to take

published chemical and biological data at their face value

and launch calculations without carefully examining the

accuracy of the data records. It is indeed difficult to verify

the results of biological assays because it is well-known that

numerical values of bioactivity for the same compounds

measured in the same assays frequently disagree between

different laboratories. However, there should be much less

disagreement concerning the correct representation of a

chemical structure for compounds in the databases except

in certain difficult cases, such as chemicals with multiple

tautomeric forms.18 Very often errors in chemical representa-

tion are not obvious and are difficult to identify without

special tools and protocols.

Both common sense and the recent investigations described

above indicate that chemical record curation should be

viewed as a separate and critical component of any chem-

informatics research. By comparison, the community of

protein X-ray crystallographers has long recognized the

importance of structural data curation; indeed the Protein

Data Bank (PDB) team includes a large group of curators

whose major job is to process and validate primary data

submitted to the PDB by crystallographers.19 Furthermore,

NIH recently awarded a significant Center grant to a group

of scientists from the University of Michigan (http://

csardock.org/) where one of the major tasks is to curate

primary data on protein-ligand complexes deposited to the

PDB. Conversely, to the best of our knowledge, even the

largest publicly funded cheminformatics project, that is,

PubChem, is considered as a data repository, that is, no

special effort is dedicated to the curation of structural

information deposited to PubChem by various contributors.

Chemical data curation has been addressed whenever possible

within the publicly available ChemSpider project;4 however,

until now, most effort has focused on data collection and

database expansion. Thus, it is critical that scientists who

build models using data derived from available databases or

extracted from publications dedicate their own effort to the

task of data curation.

Although there are obvious and compelling reasons to

believe that chemical data curation should be given a lot of

attention, it is also obvious that, for the most part, the basic

steps to curate a data set of compounds have been either

considered trivial or ignored by experts in the field. For

instance, several years ago a group of experts in QSAR

modeling developed what is now known as OECD QSAR

modeling and validation principles;16,20 these are a set of

guidelines that the researchers should follow to achieve the

regulatory acceptance of QSAR models. There are five stated

principles that require QSAR models to be associated with

(i) defined end point, (ii) unambiguous algorithm, (iii) defined

domain of applicability, (iv) appropriate measures of good-

ness-of-fit, robustness and predictivity, and (v) if possible,

mechanistic interpretation. The need to curate primary data

used for model development is not even mentioned. Also,

in an effort to improve the quality of publications in the

QSAR modeling field, the Journal of Chemical Information

and Modeling published a special editorial highlighting the

requirements to QSAR papers that authors should follow to

publish their results in the journal.21 Again, no special

attention was given to data curation. Finally, there have been

several recent publications addressing common mistakes and

criticizing various faulty practices in the QSAR modeling

field;14-16,22-24 however, none of these papers has explicitly

discussed the importance of chemical record curation for

developing robust QSAR models. There is an obvious trend

within the community of QSAR modelers to establish and

follow the standardized guidelines for developing statistically

robust and externally predictive QSAR models.25 It appears

timely to emphasize the importance of and develop best

practices for data preparation prior to initiating the modeling

process because it is merely senseless to launch massive

cheminformatics or molecular modeling investigations if the

underlying chemical structures are not correct.

Arguably, each cheminformatics laboratory may have its

own protocol to prepare and curate a compound data set

before embarking on a modeling exercise. However, to the

best of our knowledge, there is no published compilation of

good practices for data set curation that at least beginners if

not established researchers are advised to follow. In our

opinion, there is a pressing need to amend the five OECD

principles by adding a sixth rule that would request careful

data curation prior to model development. Thus, this paper

presents an attempt to address the issue of chemical data

curation in a systematic way by pursuing the following major

goals:

(1) To alert the cheminformatics and molecular modeling

community to the fact that a significant fraction of

chemical and bioactivity data in the databases used for

modeling may be erroneous, which is likely to reduce

the quality of derived models.

(2) To develop a set of data curation procedures integrated

into a logical functional workflow that would process

the input data and correct structural errors whenever

possible (sometimes at the expense of removing incom-

plete or confusing data records).

(3) To share organized protocols for data curation with the

scientific community by providing sample case studies and

explicit pointers to the sources where procedures discussed

in this paper are available (with a bias toward data curation

B J. Chem. Inf. Model., Vol. xxx, No. xx, XXXX PERSPECTIVE



software that is made available free of charge to academic

investigators).

(4) To illustrate, with at least a few examples, that rigorously

developed QSAR models using well curated primary

data may be employed not only for predicting new

structures but also to spot and correct errors in biological

data reported in databases used either for model devel-

opment or model validation.

We wish to emphasize the importance of creating and

following a standardized data curation strategy applicable

to any ensemble of compounds, which should be really

viewed as a community exercise. Although this paper targets

mainly the beginners in the cheminformatics field, we believe

that it may serve as a general reference for best practices

for data set curation that could be useful for all scientists

working in the area of cheminformatics, QSAR, and mo-

lecular modeling. We point out a general problem in the field

that could be responsible for either reducing the quality of

published models or preventing the generation of models

worthy of publication. Importantly, we do not pretend to

provide an ultimate, all-encompassing collection of curation

practices covering all types of difficult or ambiguous cases

but focus on most frequent and common cases. We hope

that other experts will contribute their knowledge and best

practices for dealing with both relatively simple as well as

complex issues in subsequent publications.

Because of the complexity of modern chemical biology,

there is a clear separation between scientists who generate

data and those who analyze them. For the latter, data

analytical studies are impossible without trusting the original

data sources; however, it is important, whenever possible,

to verify the accuracy of primary data before developing any

model. To emphasize this point, the title of this paper in

part repeats the famous proverb that was frequently cited

by the late president Ronald Reagan during the cold war era

and that traces back to the founder of the Russian KGB Felix

Dzerzhinsky who supposedly invented it almost 100 years

ago as a founding principle of his organization (cf., http://

en.wikipedia.org/wiki/Trust,_but_verify).

2. MAIN STEPS FOR CHEMICAL DATA CURATION

In this section, we discuss the most important steps

required to curate a chemical data set (Figure 1). We

specifically focus on chemical structure curation procedures

and do not cover the highly relevant but special topic of name

to structure conversion, which is often used to create

chemical databases (cf., section 3.1); several publications

have already addressed the latter subject.7,26-28 Two main

issues are emphasized for each curation procedure: first, we

discuss the primary reason why a particular operation should

be undertaken and then provide practical technical advice

as to how to do it efficiently. Our goal here is to create a

repository of good practices for chemical structure curation,

not a software tutorial. The complete technical details

concerning the use of each software package employed in

our recommended curation protocols can be found on the

respective developers’ Web sites and in user manuals. We

do not endorse any of the software packages mentioned in

this study; however, we are naturally sensitive to the issue

of software availability and did tend to select software that

is freely available to academic investigators.

It is necessary to note that we focus on the 2D level of

molecular structure representation. Such limitation assumes

that the topological model (or molecular graph) implicitly

contains most of the essential structural information about a

given compound. Thus, the curation procedures described

herein lead to cleaned 2D representations of compounds. The

methods for efficient conversion of 2D molecular graphs to

3D structures are discussed elsewhere.29,30

2.1. Removal of Inorganics and Mixtures. Most chem-

informatics and QSAR software does not treat inorganic

molecules, because the majority of molecular descriptors can

be computed for organic compounds only. The inability to

model inorganics is an obvious limitation of conventional

cheminformatics software. There is a challenging need to

develop adequate chemical descriptors for this type of

molecules and include them in descriptor calculating soft-

ware. The fraction of inorganic compounds in most of the

available data sets, especially those of relevance to drug

discovery is very small. Nevertheless, some data sets

generated with the help of automated text-mining approaches

extracting data from the literature or electronic sources may

contain a significant number of inorganic compounds that

are known to have biological effects, for example, toxic

effects (cf., section 3.1). At present, all inorganic compounds

must be removed before the descriptors are calculated.

Several approaches can be used to rapidly identify and

filter out the inorganic compounds. The following protocol

is fast and convenient: assuming that SMILES strings for

the original data set are available and stored in a single SMI

file (each line contains the SMILES string for one compound

only), one can calculate their empirical formula (e.g., using

the cxcalc program included in the ChemAxon JChem

package31). Then compounds possessing no carbon atoms

(i.e., inorganic molecules) can be easily identified and

discarded. A simple Perl or Python script can process the

entire database in a few seconds, either by analyzing

empirical formula or SMILES strings directly. For nonpro-

grammers representing the majority of cheminformaticians,

Figure 1. General data set curation workflow.
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advanced text editors (such as Notepad++
32 for Windows)

enable a similar automatic treatment with dedicated tools

for substring searching and filtering. Once again, in the end

a manual inspection of the SMILES list is recommended.

However, it is much more frequent that a data set includes

organic compounds possessing rare elements and organo-

metallics. Dragon molecular descriptors33 can be calculated

only for molecules containing the following 38 atoms: H,

B, C, N, O, F, Al, Si, P, S, Cl, Cr, Mn, Fe, Co, Ni, Cu, Zn,

Ga, Ge, As, Se, Br, Mo, Ag, Cd, In, Sn, Sb, Te, I, Gd, Pt,

Au, Hg, Tl, Pb, Bi. As a result, if some compounds in the

data set contain Na, Mg, Ru, etc., they will be rejected by

the software (see Figure 2). Meanwhile, such cases could

be easily processed by other software, for example, MOE.34

We shall emphasize that we are not highlighting the relative

efficiency of different software to compute descriptors for

organometallics but merely point out that cheminformaticians

should assess whether their modeling tools can handle such

compounds and thus decide if they have to remove or keep

them in the data set. There are no available “push-button”

solutions for partial data deletion. However, scripts that can

identify inorganics by analyzing the compounds’ empirical

formula or SMILES strings can also be utilized to detect

organometallics and compounds with rare elements.

Similar to inorganics, most current approaches cannot

effectively deal with compound mixtures (although a recent

study35 offered an approach to model such systems). Thus,

the second important task of this first curation step concerns

the identification and the deletion of mixtures. It is of

importance to emphasize for beginners that one single

SMILES string can code several molecules: for instance the

following SMILES string CC()N[O-])C()N[O-])C.CC-

()N[O-])C()N[O-])C.[CH2-]I.C1)CC)NC)C1.[Co] con-

tains one cobalt, two molecules of N,N′-dioxidobutane-2,3-

diimine, one iodomethane, and one pyridine (CID003290398

in the STITCH database36). Obviously, it is impossible to

calculate descriptors using this SMILES string directly.

Treatment of mixtures is not as simple as it appears. The

practice of retaining the component with the highest molec-

ular weight or largest number of atoms is common and

widely used, but not necessarily the best solution. The best

option is first to delete such records prior to descriptor

calculation. However, if there is some reason to believe that

the experimentally determined biological activity associated

with the record is clearly caused by the largest molecule only

and not by mixture itself, it is advisible to use the record for

the largest molecule in the mixture. Such a simple situation

is usually possible only for mixtures formed by a relatively

large organic molecule and small inorganic molecules, for

example, hydrates, hydrochlorides, etc. In such cases, the

molecule with the highest molecular weight or the largest

number of atoms (preferably) should be retained for the

subsequent analysis. Given that descriptors must be calcu-

lated for one molecule only, the most relevant compound in

the mixture should be determined and selected. Different

situations are possible:

(1) All compounds in the mixture are (or appear to be)

identical (e.g., racemic mixtures using 2D representation

of molecules). In this case, only one molecule should

be kept, and the others should be simply deleted.

Certainly, this treatment is only appropriate for 2D

QSAR studies when racemic mixture possesses the same

activity (property) as corresponding enantiomers.

(2) The mixture contains one large organic compound and

several smaller ones, either organic or inorganic. Gener-

ally, it is better to delete the entire record. However, if

there are some reasons to believe that the experimentally

determined biological activity associated with the record

is clearly caused by the largest molecule only and not

by the entire mixture, one can keep the record: the

compound with the highest molecular weight (or the

largest number of atoms) can be kept and the others

should be deleted.

(3) Several similar organic compounds with similar mole-

cular weights are present: these are the most complicated

cases, and usually, the deletion of the entire record is

recommended (unless the active ingredient is known and

can be selected manually) because it is impossible to

determine which compound should be retained for

modeling using simple rules and automated software.

Manual intervention is required for such cases.

For beginners and nonprogrammers, the use of ChemAxon

Standardizer31 is recommended: the treatment of simple cases

is fast and simplified by “drag and drop” graphical tools.

Experienced users may prefer to use more advanced tools

to determine exactly what kind of mixtures (types i, ii, or

iii) are present in their data sets.

2.2. Structural Conversion and Cleaning. The second

step of the data set curation entails the conversion of SMILES

strings into 2D molecular graphs. Many programs can

accomplish this conversion, for example, ChemAxon,

MOE,34 Sybyl,37 OpenBabel,38 etc. However, the recent

study of Young et al.8 emphasized the relatively forgotten

problem related to the actual reliability of the conversion

from SMILES strings to two-dimensional structures. Indeed

they used ChemAxon Marvin to convert a library of SMILES

and mined the obtained structures for possible errors. Their

results showed that very few compounds (4 out of 2118)

were converted incorrectly by Marvin; the other errors were

related to the presence of wrong initial SMILES strings

(because of manual drawing errors or conversion errors from

2D structures into SMILES strings) in the database. This

observation suggests that the direct calculation of descriptors

from SMILES using any software is much more risky than

using alternative formats (e.g., sdf or Mol2) since SMILES

do not allow users to visualize, clean, and check chemical

structures at 2D level.

Some records in a data set may correspond to salts that

are a common form of many drugs. Although properties of

Figure 2. Descriptor calculation for three organometallic com-
pounds using DRAGON, MOE, ISIDA, and HiT QSAR software.
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salts can be very different from those of the corresponding

neutral molecules8 and exclusion of salts prior to QSAR

analysis is preferred, the removal of metal counterions as

well as the neutralization of the remaining carbocations (or

carbanions) is still acceptable. Indeed, similar to inorganics,

salts are not processed by most of descriptor-generating

software, and their presence can generate numerous errors

in descriptors’ calculation. The neutralization of the charged

organic molecules is more disputable: it is quite rare to know

precisely the experimental conditions under which the

compounds have been tested or the physicochemical envi-

ronment within cells where the compound is active. In those

cases, when the pH of the solution and its exact composition

are known, it may be possible to evaluate if a compound

should have a charge. Making such prediction still requires

the knowledge of pKa for each proton donor/acceptor group

in the molecule and several available predictors (e.g., from

ACDLabs39 or ChemAxon) could help. When reliable

estimates are impossible or if descriptors used for the analysis

are insensitive to charge, it is simply recommended to

neutralize respective compounds, especially in the case of

large data sets containing just a few salts. This task can be

successfully realized by MOE,34 ChemAxon Standardizer,

or OpenBabel,38 which identifies salts, deletes counterions,

and then neutralizes the remaining organic compounds. Even

zwitterions are successfully treated by most available soft-

ware. However some difficult cases like compounds where

there are covalent bonds between metals and molecules (see

compound 3 in Figure 2) can also be encountered. From our

experience, such cases are not properly treated by the

aforementioned software. Advanced scripts detecting the

presence of metals as well as manual curation are thus needed

to curate these cases.

Another question concerns the explicit or implicit presence

of hydrogen atoms in the structures. In our experience, the

use of explicit hydrogens for calculating 2D descriptors leads

in most cases to QSAR models with higher prediction

performances. However, our experience also suggests that

sometimes the use of explicit hydrogens may also introduce

noise in the descriptor matrix (especially when using

fragment-based descriptors) and, thus, lead to less reliable

models. Many software packages claim to have reliable

procedures for adding/removing hydrogens. For instance, our

experience indicates that removing hydrogens is not well

realized in certain cases, for example, when hydrogens are

attached to nitrogens in rings or in secondary amines. In those

cases, hydrogens are not always removed, which leads to

error messages in programs calculating descriptors param-

etrized for the treatment of hydrogen-depleted graphs, as well

as incorrect descriptor values.

2.3. Normalization of Specific Chemotypes. Very often

the same functional group may be represented by different

structural patterns in a given data set. For example, nitro

groups have multiple mesomers and, thus, can be represented

using two double bonds between nitrogen and oxygens

(neutral form), or one single bond linking the nitrogen and

the protonated oxygen, or linking both nitrogen and oxygen

atoms that are oppositely charged (Figure 3). For chemin-

formaticians, these situations may lead to serious inconsis-

tency problems, because molecular descriptors calculated for

these different representations of the same chemical group

would be significantly different. For example, if two identical

compounds contain a nitro group represented by two different

patterns, they will not be recognized as identical by

conventional similarity metrics because some of their

computed descriptors will be different.

Manual conversion of all functional groups to some

standard forms is too time-consuming and could introduce

additional human-dependent nonsystematic errors. ChemAx-

on’s Standardizer is probably the most well-known tool to

rapidly and efficiently realize chemotype normalizations.

Users can manually draw the pattern conversion for several

functional groups and store them in a dedicated reusable xml

rule file. Taking into account the specifics of individual

research laboratories (modeling software, descriptors, etc.),

the users could build a customized database of functional

group conversions, which can be applied to every new data

set. Thus, beginners can directly use the library of conversion

rules developed by more experienced modelers to treat their

data sets in the proper way.

Although ring aromatization and the normalization of

carboxyl, nitro, and sulfonyl groups are relatively obvious,

more complex cases like anionic heterocycles, polyzwitte-

rions, tautomers, etc., require a deeper analysis and multiple

normalization steps. To illustrate this point, we chose three

compounds possessing the sydnone chemotype (Figure 4),

represented by its different mesomeric forms. The application

of the Standardizer with classical settings (neutralize, tau-

tomerize, aromatize, and clean2D) was able to normalize two

of the three compounds (2′ and 3′), whereas the first

compound was not aromatized. A second step using the

“transform” function (allowing the conversion of user-defined

groups) led to the normalized forms (2′ and 3′) of the

compound 1. Depending on the modeled property, the

experimental conditions and the other compounds in the data

set, one can transform these compounds into the formal

sydnone chemotype (possessing the keto group) like in Figure

4. But, it has to be noted that such notation (aromatic ring

and the branched keto group) will be rejected by many

descriptor calculating software (Figure 5).

In some cases, compounds may exist in several tautomeric

forms,18 the most common ones being the keto-enolic

Figure 3. Structure normalization: five types of nitro group
representations retrieved in the nitroaromatics data set for rats and
T. pyriformis case studies (see section 3.2 in the text for details).
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tautomers. Choosing one form instead of another could have

a significant impact on the prediction performances of QSAR

models built with such data. As suggested in the study by

Young et al.,8 discarding one tautomer form may be realized

taking into account the compound’s mechanism of action,

if the latter is known for the studied biological activity. For

instance, the choice between keto-enolic tautomeric forms

may be influenced by the knowledge about the formation of

a specific hydrogen bond with the target receptor, or an

aromatic ring. Moreover, experimental conditions of the

modeled chemical system (especially, pH) are crucial. A

remarkable review addressing different problems related to

tautomers was recently published by Dr. Yvonne Martin.18

2.4. Removal of Duplicates. Rigorous statistical analysis

of any data set assumes that each compound is unique and

thus, structurally different from all other compounds. How-

ever, structural duplicates are often present in chemical data

sets, especially in large ones. For instance, the same

compound could be ordered for a screening campaign from

two different sources, given different internal IDs, and thus,

two corresponding records would be placed in a database

(sometimes, with rather different values of the associated

experimentally measured property or bioactivity). QSAR

models built for such data sets may have artificially skewed

predictivity (see section 3.4) even if a data set contains only

a small percentage of duplicates. Duplicates can also affect

the observed frequency of a given chemotype in a data set,

the distribution of compounds according to their structural

similarity, etc. As a consequence, duplicates must be removed

prior to any modeling study. The first step of the procedure

requires the detection of identical molecular structures within

the set, whereas the second step is dedicated to the

comparison of the studied property values for the retrieved

duplicates.

A current practice consists of identifying duplicates from

SMILES strings, which is correct if and only if the latter

are canonical SMILES. However, the experience shows that

most beginners are not aware of this requirement and often

use noncanonical SMILES to identify chemical duplicates.

Thus, it is of importance to underline that a given compound

can be represented by several SMILES strings: for instance,

three formally different SMILES strings, that is, O)C(OCC)C,

C()O)(OCC)C, and O(C(C))O)CC, can code the same

compound, that is, ethyl acetate. Without the standardization

of these SMILES into the CCOC(C))O, the canonical form

(different from the three previous strings), it is impossible

to identify them as duplicates in a particular data set from

SMILES strings alone. The calculation of empirical formula

from SMILES represents an additional filter to retrieve

duplicates.

Once duplicates are identified, the analysis of their

properties is mandatory, requiring some manual effort. For

a given pair of duplicate structures, if their experimental

properties are identical, then one compound should be merely

deleted. However, if their experimental properties are

numerically different, we shall consider two main scenarios

for data curation:

(1) The property value may be wrong for one compound

because of, for example, a human error when the

database was built (these types of errors are often

manifested in significant outliers when QSAR models

are either built or employed for external predictions).

Another frequent case is when the data are compiled

from literature sources and the same compound was

tested in two or more different laboratories under

possibly different experimental conditions, variations in

the protocol, etc., leading to the difference in (formally

the same) measured property. In this case, supplementary

investigations must be done to decide if both entries

should be deleted from the data set or if only one should

be deleted. If the data set is large enough and there is

no obvious explanation of such discrepancies, we

recommend to place such cases into a special external

test set including all suspicious records and try to reveal

the most likely true value by comparing experimental

records to the results of consensus predictions from

statistically significant and externally validated QSAR

models.

(2) Both experimental properties are correct but the previous

curation tasks (for example, the removal of counterions

in salts) have modified the substance records to create

such duplicates. For instance, the two records could

correspond to two different salts of the same compound

(or a neutral compound and its salt). As previously

mentioned, their experimental properties can indeed be

very different. If both experimental properties are highly

similar, the record can be kept associating the structure

with the arithmetic average of properties. If they are

significantly different, we recommend eliminating both

records.

To successfully and rapidly achieve the removal of dupli-
cates, we currently recommend both ISIDA/Duplicates40 (see
Figure 6) and HiT QSAR;41,42 these programs are free for
academic laboratories and complementary to each other. For

Figure 4. Use of ChemAxon Standardizer to normalize three
compounds possessing the sydnone chemotype (see text for details).

Figure 5. Examples of misleading structure representations pro-
duced by the “general style” option available in ChemAxon
Standardizer, which may serve as a potential source of errors for
programs calculating molecular descriptors.
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each pair of compounds, ISIDA/Duplicates calculates “on
the fly” the Euclidean distances between them using the input
descriptor matrix of the data set. Then, all pairs with a
distance lower than or equal to a user-defined threshold (zero
by default) are considered duplicates. Efficiency depends
mainly on the type and the number of descriptors used to
represent compounds. The definition of duplicates is strongly
associated with the types of descriptors employed to char-
acterize chemicals: for example, two isomers of the same
structure would be identified as duplicates if the descriptors
used are insensitive to branching in the structures, and two
stereoisomers will be considered as duplicates in the case
where descriptors (e.g., most molecular connectivity indices)
do not take into account the chirality. It has to be pointed
out that there is no set of descriptors universally recognized
to be best for duplicate recognition. An example is given in
Figure 7 where two isomers have been processed by ISIDA/
Duplicates. If simple descriptors like Dragon/constitutional
or ISIDA/small fragments are used, these two compounds
are identified as duplicates. One can note that this approach
can be useful to rapidly detect pairs of isomers in the
database. The use of more complex descriptors such as
Dragon/2D and ISIDA/long fragments discriminates the two

isomers which are not identified as duplicates anymore.
ISIDA/Duplicates natively calculates long fragment descrip-
tors43 that take into account molecular branching and atom
connectivity properties, and can also import external sets of
descriptors (like Dragon, MOE, etc.) to take into account
chirality and other three-dimensional properties. The program
can automatically identify duplicates and output the resulting
list, as well as a curated library of compounds.

In HiT QSAR the search for duplicates is performed by

an innovative one-click tool implementing the CANON

algorithm that employs the canonical numeration using the

atom connectivity matrix. Each molecule is represented as

a string reflecting the empirical formula/order of connectivity

for each atom, for example, benzene would be represented

as C6H6/1_2a,1_3a,1_7s,2_4a,2_8s,3_5a,3_9s,4_10s,4_6a,-

5_11s,5_6a,6_12s/, where atoms 1-6 are carbons and 7-12

are hydrogen atoms. If such strings are similar for different

records, the respective compounds are reported as duplicates.

However, this approach does have certain limitations: for

instance, cis-trans and (R-S) isomers, as well as diastere-

oisomers, are considered as duplicates. For this reason the

use of both ISIDA/Duplicates and HiT QSAR programs in

concert leads to high retrieval rates of real structural

duplicates.

2.5. Final Manual Checking. The last step of the curation

entails manual inspection of every molecular structure (as

much as possible for the large data sets). We recommend

inspecting the curated data set carefully to establish the types

of chemical scaffolds present in the data set, their relative

proportion in the set, etc. Obviously, for large data sets (more

than a thousand of compounds), this step is time-consuming

and extremely laborious. However, several pieces of advice

can be formulated to reduce the amount of effort: for

instance, to check only compounds with complex structures

or having a large number of atoms. Another apparent solution

is to generate a representative sample of the set and then,

check it for the presence of potential erroneous structures

(rechecking of the whole data set may become unavoidable

if significant errors are found).

Common errors identified during the manual cleaning

procedure may have different origins:

(1) The structure is wrong: A rapid check of both IUPAC

compound’s name (if available) and its structure is

essential to identify possible errors concerning the

scaffold and positions of substituents (e.g., because of

manual errors or program bugs8 in the conversion of

SMILES into 2D structures). Actually, the identification

of incorrect structures is the most difficult part of the

data curation. The majority of structures are incorrect

due to random human errors when the structures have

been drawn/converted in an electronic format. Although

it is relatively easy for a small data set to check each

individual structure and search for perfect agreement

between chemical names and the actual structures, it

becomes unfeasible for large data sets. For example, it

would take a restrictive amount of time to discover that

particular chlorine has to be in position 2 and not in

position 1 in the 58 653th compound of a studied data

set. Therefore, we suggest the following protocol: with

the development of numerous freely available chemical

databases, it is now relatively simple to mine these

databases and retrieve chemical structures from a list

of names or CAS numbers. Several entries for each name

Figure 6. Automatic retrieval of structural duplicates using the
ISIDA/Duplicates program: example of stereoisomers (Ames mu-
tagenicity data set) with opposite mutagenicity properties.

Figure 7. Two structural isomers retrieved as either duplicates or
nonduplicates by ISIDA/Duplicates and HiT QSAR according to
different pools of chemical descriptors.
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or CAS ID are likely to be retrieved because of known

overlaps between databases; some of them are coded as

SMILES strings and some as 2D/3D structures stored

in mol, mol2 files, etc. The analysis of these multiple

entries for every single compound is then critical: since

a given IUPAC name or CAS number is unique for every

compound, all structures retrieved using a given query

(e.g., 2-chlorobenzylsulfonamide or CAS #89665-79-

2) must represent exactly the same compound. On the

other hand, one or several (or all) entries of databases

may be wrong. The curation task is then to verify

whether the actual structure used in modeling corre-

sponds to the structures retrieved from the database

mining exercise. There are no freely available tools

specifically dedicated to this task, but we believe that

challenges of data integration in bio- and cheminfor-

matics will highlight such tools as being critical for

efficient merging between different databases. We also

consider that the comparison between different structures

retrieved for a given query should be realized at two-

dimensional level (three-dimensional if the stereochem-

istry is specified) but not using SMILES only (there is

no guaranty that all SMILES strings in all databases are

canonical).

(2) The normalization of bonds is incomplete: common

mistakes are related to the presence of different repre-

sentations of the same functional groups. Despite the

normalization procedure, some very specific cases can

still be present, and thus, the corresponding chemotypes

must be corrected manually.

(3) Some duplicates may still be present despite the use of

automated software to remove them. For instance, some

tautomers can still be found. Advanced tools developed

internally in private companies or in academic labora-

tories capable of such fine filtering may exist but they

appear to be unavailable in the public domain.

(4) Other possibilities: wrong charges, presence of explicit

hydrogens in a hydrogen depleted structure, incorrect

bonds, etc.

2.6. General Remarks and Disclosure. We would like

to stress that the main purpose of this report is not software

comparison; this would be simply impossible since the

majority of such software is likely hidden within industrial

laboratories. We are mostly concerned with possible sources

of inaccurate structures and adequate procedures imple-

mented in available software that should be followed to

correct the erroneous data records. Thus, we have attempted

to make Table 1, a repository of available software dedicated

to data curation, as complete as possible, concerning cases,

procedures and listed selected software that is capable of

making the requisite corrections. The only bias that we had

was toward software that can be obtained free of charge for

academic investigators or with which we had firsthand

experience. Our laboratory is not affiliated in any special

way with any of the software vendors and therefore any

mention of any software should not be regarded as an

advertisement.

3. EXAMPLES OF APPLICATIONS RELYING ON DATA
SET CURATION

3.1. Cheminformatics Analysis of Compounds Induc-

ing Liver Injuries. Drug-induced liver injury (DILI) is one

of the main causes of drug attrition.44-46 Elimination of drug

candidates likely to cause hepatotoxicity at early stages of

drug discovery workflow could significantly increase the rate

and reduce the cost of drug development. The ability to

predict DILI effects of drug candidates from their chemical

structure is critical to help guiding experimental drug

discovery projects toward safer medicines. More generally,

there is now a great deal of interest both in the U.S. (for

instance, with the Toxcast47 program) and Europe (the

REACH regulation48) in developing fast and accurate

experimental and computational approaches to predict toxic

effects of chemicals, for example, hepatotoxicity.

A large amount of published information that could

improve our knowledge about DILI mechanisms is available,

but the information is spread over a large body of publica-

tions using inconsistent terms. Recently, our group in

collaboration with the Biowisdom company49 launched a

project concerning the cheminformatics analysis of assertions

mined from the biomedical literature that describe DILI

effects of chemical compounds. BioWisdom’s Sofia platform

Table 1. Summary of Major Procedures and Corresponding Relevant Software for Every Step of the Data Curation Processa

procedures software availability

inorganics removal ChemAxon/Standardizer free for academia31

OpenEye/Filter free for academia67

structure normalization (fragment removal, structural curation, salt
neutralization)

ChemAxon/Standardizer free for academia31

OpenBabel free38

Molecular Networks/CHECK,TAUTOMER commercial68

duplicate removal ISIDA/Duplicates free for academia40

HiT QSAR free for academia42

CCG/MOE commercial34

SDF management/viewer file format converter ISIDA/EdiSDF free40

Hyleos/ChemFileBrowser free69

OpenBabel free38

ChemAxon/MarwinView free for academia31

CambridgeSoft/ChemOffice commercial70

Schrödinger/Canvas commercial71

ACD/ChemFolder commercial39

Symyx/Cheminformatics commercial72

CCG/MOE commercial34

Accelrys/Accord commercial73

Tripos/Benchware Pantheon commercial37

a We invite all interested scientists to enrich this table by adding their preferred procedures and relevant software to the open document
available at our web site, http://mml.unc.edu.
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(http://www.biowisdom.com/) was used to generate asser-

tional meta-data, comprising thousands of highly accurate

and comprehensive observational statements. These state-

ments are represented in triple constructs: concept_relation-

ship_concept, for example, Cafestol_suppresses_Bile acid

biosynthesis, Azathioprine_induces_Cholestasis, etc. Each

assertion is derived from and evidenced by a variety of

electronic data sources. More importantly, the assertional

meta-data have been collected across different species, i.e.,

human, rodent and nonrodent animals.

As is often the case for data sets based on literature

sources, the initial data set resulting directly from text mining

described compounds by chemical names only. In cases like

this, a large number of duplicates is expected because many

compounds are described in the literature using many

different names; for instance, the ChemSpider4 search using

“aspirin” as a key word indicates that there are more than

35 synonyms that are commonly used for aspirin (or refer

to aspirin in literature) and, in total, more than 180 terms

(drug names, usual names, etc.) that are related to aspirin.

In this recent study,50 after the identifications and curation

of obvious chemical synonyms, a set of 1061 compounds

(stored as SMILES strings) was retrieved from the analysis

of assertions mined from Medline abstracts using text-mining

tools. Unlike most traditional QSAR data sets, the com-

pounds were extremely diverse with almost all possible

problematic cases in terms of data set curation: presence of

numerous inorganics, mixtures of organics and inorganics,

salts, zwitterions and duplicates. No software would be able

to compute relevant descriptors for this exotic data set. As

a result no possible cheminformatics analysis (especially

QSAR modeling) was possible for this data set without

thorough data curation (see Table 2). Both automatic and

manual procedures have been employed to clean this data

set as follows:

(1) Initially, all inorganic compounds have been removed

since our data analysis strategy includes the calculation

of molecular descriptors for organic compounds only.

We should emphasize again that this is an obvious

limitation of many cheminformatics approaches since

inorganic molecules are definitely known to induce liver

injuries; however, the total fraction of inorganics in our

data set was relatively small. For example, the following

compounds have been removed: activated charcoal,

cobalt dichloride, ferrous sulfate, zinc chloride, sulfur,

cis-diaminedichloroplatinum, manganese chloride, etc.

Moreover, additional compounds were removed because

(i) their corresponding SMILES strings could not be

identified unequivocally due to the inconsistent name

or irrelevant labeling code or (ii) they corresponded to

a mixture of compounds (for example, Gramicidin,

which involves six antibiotic molecules). Thus, after this

step, 993 compounds remained.

(2) Then, 2D molecular structures (chemical connectivity

maps) have been generated from SMILES strings using

the ChemAxon’s JChem 5.1 program under the control

of ISIDA to create a unique SDF file containing both

structures and DILI profiles. We also used Standardizer

to remove all counterions, clean records including

multiple compounds, clean the 2D molecular geometries

and normalize bonds (aromatic, nitro groups etc.) as

described in section 2.

(3) Finally, duplicate molecular structures were detected

automatically using the ISIDA/Duplicates40 program,

followed by careful manual inspection of the entire data

set. 951 compounds remained out of the 1061 initial

molecules (i.e., as much as ∼10% of the data set was

eliminated).

The main objective of the study was to demonstrate the

usefulness of classical cheminformatics approaches to ana-

lyze assertions of drug-induced liver effects in different

species, and more precisely, to explore the relationships

between chemical structures and animal DILI toxicity. Thus,

our goal was to extract knowledge about the influence of

specific scaffolds and chemotypes on DILI. After the critical

Table 2. Statistical Parameters of QSAR Models Obtained before and after Curationa

ID name R2 Q2 REF
2 Sws Scv SEF REVS

2 REVS(NM)
2

1 Rat 0.96 0.84-0.93 0.89-0.92 0.11-0.13 0.16-0.24 0.20-0.26
2 Rat(NM) 0.91-0.97 0.89-0.95 0.45-0.88 0.10-0.18 0.14-0.28 0.28-0.58
3 TP 0.83 0.76 0.33 0.38 0.54 -0.58
4 TP(NM) 0.85 0.54 0.31 0.54 0.49 0.44
5 DILI noncurated no modeling was possible
6 DILI50 modeling set 5-fold external CV accuracy ) 62-68%

external sets accuracy ) 56-73%
7b 62 Ames noncurated sensitivityRF ) 83%; sensitivitySVM ) 87%; specificityRF ) specificitySVM ) 75%

AUCGP ) 88%; AUCSVM ) 89%; AUCRF ) 83%
8b 63 Ames curated sensitivityRF ) sensitivitySVM ) 79%; specificityRF ) specificitySVM ) 81%

AUCGP ) 86%; AUCSVM ) 84%; AUCRF ) 83%

a Where TP ) Tetrahymena pyriformis data set, NM ) modeling set with various representations of nitro groups, R2
) determination

coefficient, Q2
) cross validation determination coefficient, REF

2
) determination coefficient for external folds extracted from the modeling set,

Sws ) standard error of a prediction for work set, Scv ) standard error of prediction for work set in cross validation terms, Sts ) standard error
of a prediction for external folds extracted from the modeling set, A ) number of PLS latent variables, D ) number of descriptors, M )

number of molecules in the work set, REVS
2
) determination coefficient for external validation set, REVS(NM)

2
) determination coefficient for

external validation set with shuffled nitro groups, AUC ) area under curve statistical parameter, RF ) random forest, SVM ) supporting
vector machine, and GP ) Gaussian processes. b Prediction performances are reported for external validation set.

Table 3. Number of Investigated Compounds in the Data Sets
before and after Curation

number of compounds

data set original set curated set

liver toxicants (DILI) 1061 951 (90%)
nitroaromatics (rats) 28 28 (100%)
nitroaromatics (T. pyriformis) 95 95 (100%)
ToxRefDB 320 292 (91%)
Ames mutagenicity 7090 6542 (92%)
bioavailability (UCSD) 805 734 (91%)
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step of chemical data curation, we have explored the issue

of concordance of liver effects across species and found that

the concordance values between any two species from the

three groups studied, i.e., humans, rodents and nonrodent

animals, were relatively low (40-45%), which was in

agreement with earlier studies reported in the literature.51-53

The subsequent cluster analysis54 of the 951 remaining

compounds using 2D fragment descriptors43 allowed us to

identify multiple clusters of compounds belonging to struc-

turally congeneric series. Similar liver effect profiles have

been observed for most clusters although some compounds

appeared as outliers. In several cases of such outliers,

additional focused mining of public data sources led to

revised assertions that were more in tune with DILI profiles

expected on the basis of chemical similarity. Thus, the

chemical similarity analysis was helpful in focusing on

possible gaps in assertion data for liver effects reported in

the literature for different species and correcting the errone-

ous or missing assertions. In addition, binary QSAR models

of liver toxicity were derived and the mean external

prediction accuracy in 5-fold external validation study was

found to be 65%.

To enable the profile analysis and QSAR modeling using

this large data set extracted from literature using automatic

text mining tools, it was essential to utilize various data

curation procedures described above. Data cleaning and

standardizing was critical since no investigation at all would

be possible without having consistent structural representa-

tions, correct chemical descriptors and the absence of

duplicates. We believe that our study50 presented the first

example when rigorous text mining and cheminformatics data

analysis were combined toward establishing predictive

models of chemical toxicity.

3.2. QSAR Modeling of Nitroaromatic Toxicants. There

is a public concern and a strong need in evaluating the

potential environmental risks associated with the production,

storage, and application of explosive compounds, many of

which are nitro- and polynitroaromatics. Recently, a data set

of nitro-aromatic compounds of military interest was com-

piled from different sources to investigate the relationships

between their chemical structure and toxicity. Each com-

pound was manually inspected in order to create a curated

data set. During this process, five different representations

of nitro groups were identified (Figure 3). Obviously, the

difference in one or two bonds may appear to be insignificant

in the context of the entire compound, but in reality, those

inconsistencies in the molecular representation of the same

functional group could actually lead to different descriptors

of the same molecule and, in some cases, to poor QSAR

modeling results.

Two sets of nitroaromatic derivatives were compared

(1) Case Study 1: 28 compounds (2 aromatics and 26

nitroaromatics) tested in rats to evaluate their animal

toxicity expressed as log(LD50), mmol/kg.55

(2) Case Study 2: 95 compounds tested against Tetrahymena

pyriformis, a ciliated freshwater protozoan, to assess their

aquatic toxic effects expressed as log(IGC50), mmol/mL.56

In the first case study, five different representations of nitro
groups were equally distributed within the modeling set.
Initially three different overlapping validation sets were
selected according to.55,57 Each external set consisted of one
aromatic compound and five nitroaromatics with different

types of nitro group representation. The sets with compounds
possessing various types of nitro group representations were
referred to as “mixed”. 2D simplex descriptors, PLS statisti-
cal approach, and principles of external test set formation
as described in Kuz’min et al.55 were used. Three models
were developed using the mixed sets (Table 2). One of them
had the same predictivity as original models55 (Rext

2
≈ 0.9),

whereas the prediction accuracy for the two others was much
lower (Rext

2
) 0.45-0.60). Thus, in one case the differences

in the nitro group representation had no effect on model
predictivity, whereas in the two others the prediction
performance decreased significantly. At the same time the
goodness-of-fit and robustness of both groups of models for
the training set were equal (Table 2), confirming the well-
known Kubinyi paradox58 and the necessity of external
validation.59 Thus, one can conclude that simultaneous usage
of different types of nitro group representation can signifi-
cantly influence the predictive ability of the models.

In the second case study, 60% of the modeling set

compounds possessed nitro groups represented with aromatic

bonds (see Figure 3), whereas the remaining four classes of

the nitro group patterns were equally represented (10% each).

The same proportions were kept for the external validation

set consisting of 63 compounds. The statistical metrics

resulting from 5-fold external cross-validation of the model-

ing set and an external validation set were selected as a

measure of model predictivity. Similarly to the first case

study, the same descriptors and statistical approaches as in

the original study56 were used for model generation for the

mixed set. Goodness-of-fit and robustness of the original56

and shuffled models were equal (Table 2). Overall compari-

son of model predictivity in the 5-fold external cross-

validation experiment shows that the original consensus

model is better than the consensus model obtained using the

mixed nitro groups. However, their prediction performances

estimated using the original external validation set were

almost similar. Even more impressive and unexpected results

were obtained for the external set when nitro groups were

mixed in the same way as for the training set. In the case of

a model built on the mixed set, the mixing of the nitro group

representation among external validation set compounds did

not significantly affect the predictivity (Rext
2
) 0.49 and

Rext(NM)
2
) 0.44), whereas the difference was dramatic for

the original model (Rext
2
) 0.54 and Rext(NM)

2 < 0) (Table 2).

Here, the index “NM” refers to the set with the mixed nitro

groups.

The results obtained here with two different nitroaromatics

data sets validate the necessity of the nitro group standard-

ization. They show that even small differences in structure

representation can lead to significant errors, and even robust

and inherently predictive models can fail on noncurated

external validation sets.

3.3. ToxRefDB. At the time of the study, the original

version of the ToxRef DataBase (http://www.epa.gov/NCCT/

toxrefdb/)60 contained 320 compounds tested for their

carcinogenicity in both rats and mice (totally 26 panels of

experimental data represented as binary results, that is, toxic

or nontoxic). The initial efforts to generate QSAR models

for these compounds were unsuccessful: we could not build

any statistically significant model based on our standard

QSAR modeling workflow.25 Thus, we have examined the

data set for possible errors as follows (and we believe this
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exercise could be illustrative as an example of a training

session on the protocol for data examination prior to model

building).

Even a quick examination of the data set (see Figure 8)

revealed that a deep cleaning of 2D structures, addition of

explicit hydrogens and standardization of problematic nitro

and carboxylic groups was necessary. After application of

all of the data set curation procedures discussed in section

2, as well as aromatization, mixtures and salts removal, and

standardization of nitro and carboxylic groups, only 293

compounds remained. Subsequent search for duplicates using

HiT QSAR and ISIDA software revealed the presence of

the (S)-isomer of bioallethrin and its racemate. Since

stereochemical information was available for one pair of

compounds only, these structures were marked as duplicates

on 2D level. Thus, 291 from the original 310 structures were

accepted for subsequent modeling (see Table 3).

However, further visual inspection of these structures

revealed some misleading representations, especially with

respect to unexpected assignment of aromatic bond types.

This occurred because of the choice of “General style”

instead of the “Basic style” option in the ChemAxon

Standardizer. Unlike the “General style”, the ring of 2-py-

ridone, for instance, is not aromatized under the “Basic style”

option. If the “General style” is effectively correct from the

chemistry viewpoint, it has to be stressed that many

cheminformatics programs will generate errors or simply

reject the compound because a carbon atom is not formally

tetravalent under this “General style” representation (see

Figure 5). Additional information can be found at the

following ChemAxon Web site (http://www.chemaxon.com/

jchem/marvin/help/sci/aromatization-doc.html). This example

demonstrates that there is no simple “push-button” solution

for chemical data curation and that data inspection and

curation including manual involvement is necessary.

Following the chemical record cleaning, the data set

appeared ready for the QSAR modeling. However, the

curation procedures should not be limited to structure analysis

but should also include the evaluation of the quality of the

experimental data (as our earlier example with the analysis

of DILI data suggests). Thus, we applied ISIDA/Cluster40

to group similar compounds into clusters. With ISIDA

visualization tools, we rapidly identified some suspicious

pairs of highly similar compounds (e.g., with only a methyl

group in a different position) that nevertheless had large

differences in their toxicity profiles. Some of these cases,

for example, ametryn and prometryn could be classical

“activity cliffs”, but we also found true and suspicious cases

of erroneously annotated compounds, for instance, atrazine.

At the time of the study and even in a recent version of the

ToxRefDB (http://www.epa.gov/NCCT/toxrefdb/files/

ToxRefDB_ChronicCancer_2009Apr06.xls), atrazine is an-

notated as a nontumorigen for both rats and mice. Con-

versely, two compounds, propazine and simazine, identified

by ISIDA/Cluster as structural neighbors of atrazine and

different from the latter by presence or absence of only one

methyl group, are both annotated as tumorigen agents for

rats. After additional investigation we found literature

evidence that atrazine has been reported elsewhere as a rat

tumorigen.61 We believe that this example suggest a crucial

importance of verifying not only molecular structures but

also activity data using cheminformatics tools such as

clustering by compound similarity and the analysis of

property distributions. The results of QSAR modeling of the

curated data set will be published separately.

3.4. Ames Mutagenicity. Recently our group initiated a

collaborative modeling project involving many international

participants to develop most significant models of the Ames

mutagenicity; each research group was expected to use

different descriptors and machine learning approaches. The

data set, kindly provided by Dr. K. Hansen,62 consists of

7090 compounds classified as mutagenic or nonmutagenic.

Briefly, frame-shift mutations or base-pair substitutions can

be detected in the Ames test by the exposure of histidine-

dependent strains of Salmonella typhimurium to a given

compound. Herein, mutagenicity is represented in a binary

format: a compound is classified as positive (mutagenic) if

it significantly induces revertant colony growth at least in

one strain. A compound is labeled negative (nonmutagenic)

if it does not induce revertant colony growth in any strain

tested.

The original data set was curated using both HiT QSAR

and ISIDA software: (1) All structural duplicates were

removed. If both molecules (according to 2D structures) had

the same mutagenicity effect, then one of them was removed,

and if both molecules had different mutagenicity effects, then

both were deleted. (2) All inorganic compounds were

excluded. (3) The remaining structures were cleaned using

the ChemAxon Standardizer and HiT QSAR software. (5)

The last step before modeling was the repetition of duplicates

search and careful manual checking.

(1) One of the most important steps of the curation

procedure is the removal of duplicates: 518 pairs of

structural duplicates (at 2D level of structure description)

were found by both HiT QSAR and ISIDA software

(Figure 6). For the original data set the situation was as

follows: 80% of compounds were represented by 2D

structures without any information about stereochemis-

try, and for approximately 20% of the compounds,

stereochemical information was available. However, in

most cases only one of the two enantiomeric forms was

characterized. In some cases (about one hundred), the

experimental information for both (R)- and (S)-stereoi-

somers or for two or more diastereoisomers was

reported. Moreover, only 7 out of one hundred pairs

created by different enantiomers had different mutage-

nicity. Thus, one can conclude that for the most part

Figure 8. Real examples of erroneous structure records in chemical
databases leading to Dragon error messages.
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the stereochemistry of investigated compounds does not

influence their mutagenic effect. As a result, it appeared

logical to represent molecular structures at 2D topologi-

cal level for further QSAR analysis.

Most of the pairs were formed by classical duplicates,

that is, identical (topologically or topologically and

stereochemicaly if applicable) structures with the same

mutagenicity property; for instance, 2-((4-chlorophenyl-

)methyl)-oxirane was found twice in the original data

set. Some duplicates represented stereoisomers (R-S or

diastereomers) with the same mutagenicity (e.g., (R)-

and (S)-penbutolol). In this case, one of the stereoisomers

was removed from the data set. The same procedure was

applied for diastereomers with identical mutagenicity

(e.g., ursodiol and chenodiol).

The situation when regular duplicates, similar or

different enantiomers ((R)- and (S)-2-nitrobutane) or

diastereomers had different mutagenicity values was rare

(∼ 30 pairs including 7 for different enantiomers), and

probably, it could be explained by the presence of errors

in the interpretation of experimental data. All such

suspicious records were excluded from the subsequent

analysis. However, in the absence of data curation, we

could easily foresee a situation when identical com-

pounds with identical mutagenicity would be distributed

between training and test sets. Should this happen we

would expect to observe an artificially enhanced predic-

tive accuracy of the training set models. We shall use

this example to illustrate how data set curation may help

design and/or tune more efficiently the modeling pa-

rameters such as descriptor types or the machine learning

approach. Thus, after duplicates analysis and removal,

6572 compounds remained.

The group that provided us with the Ames data set

has already published the preliminary results of their

QSAR studies;62 however, the statistical parameters of

their models using the noncurated data set of 7090

compounds were, probably, overestimated since almost

9% of compounds should have been removed. To assess

the consequences of their presence in the data set, we

conducted the following study. The data set was

randomly divided into two subsets five times following

our standard routine for generating training and valida-

tion sets for QSAR modeling and then the content of

both sets was analyzed in terms of the presence/absence

of duplicates. Results showed that 229-255 out of 518

pairs of duplicates were split between the modeling and

external validation sets (it corresponds to the probabi-

listic distribution). This situation could lead to overes-

timating the model predictivity, despite the usage of

three-dimensional structures and the whole collection of

Dragon-X 1.2 descriptors (including 3D). We would like

to emphasize that the overall quality of QSAR models

presented in ref 62 is still high despite the presence of

duplicates. Nevertheless, in our opinion, their presence

significantly biased almost all steps of modeling, from

model building to the selection of best models. After

the beginning of our collaborative study, the Ames data

set was revised by Dr. Hansen, and only 6512 com-

pounds remained in their study.63

(2) In our study, the remaining 6572 compounds were

checked for the presence of inorganic compounds using

the ISIDA Software. Thirty inorganic compounds such

as ammonia and phosphoric acid were excluded.

(3) The remaining 6542 structures were cleaned by the

ChemAxon Standardizer (addition of explicit hydrogens,

benzene ring aromatization, and nitro and carboxylic

group standardization) and the HiT QSAR Software

(nitro group standardization and connectivity checking).

(4) The last step before the modeling stage was the repetition

of search for duplicates and careful manual checking.

This step was obviously time-consuming but necessary,

because some erroneous structures (lacking hydrogens,

having different tautomeric forms or representations of

nitro groups, etc.) may become duplicates after structural

cleaning. At the end no additional molecule was removed

and 6542 compounds still remained for our international

QSAR modeling exercise (see Table 3).

The detailed description of the study and its results

obtained on the curated data set will be described in a

separate publication because, again, this paper is focusing

on the issue of data curation. However, we should mention

that in total a group of collaborators has developed as many

as 32 predictive QSAR models using different combinations

of chemical descriptors and machine learning approaches.

It is also worth noting that the results were initially reported

by the Hansen group for noncurated data sets62 and the later

modeling of the curated data63 showed that the predictivity

of models developed on not-curated data sets was indeed

somewhat overestimated (see Table 2) because of the

presence of structural duplicates. Unlike small data sets, we

should also emphasize that for such a large data set, the

difference in prediction performances of models built before

and after curation is statistically significant even when the

difference in prediction accuracy is as low as 2%. Moreover,

it is clear from Table 2 that models became more balanced

(difference between specificity and sensitivity decreased from

8-12% to 2% only). This example illustrates that the use

of data curation leads to more predictive and balanced

models, along with more objective estimate of their true

predictive power.

In addition to statistical aspects of models resulting from

the analysis of curated vs noncurated data sets, this study

also provides another example of investigation (after the DILI

study50), where developed QSAR models were successfully

used for the correction of erroneously annotated compounds

in the data set. A compound was considered suspicious and

selected for deeper experimental checking if (1) at least 30

out of 32 models obtained by the different teams failed to

predict it accurately (either in modeling or the external

validation sets) or (2) two or more structurally similar

compounds had different annotations. In total, we have

identified 86 suspicious compounds in the external set (51

nonmutagens and 35 mutagens) and 54 compounds in the

modeling set (39 nonmutagens and 15 mutagens). Using both

manual and automatic literature mining tools, our analysis

revealed that 31 compounds (16 from the external set and

15 from the modeling set) were erroneously annotated in

the original data set since we have indeed found published

evidence that were in agreement with the model predictions

for these compounds. Among them, 29 were originally

annotated as nonmutagens, predicted as mutagens and were

confirmed by at least one publication to be real Ames

mutagens. On the other hand, only two mutagens predicted

as nonmutagens were confirmed as nonmutagens. These

results are in agreement with earlier observations63 suggest-
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ing that the experimental error rate for determining com-

pounds as nonmutagenic is higher than that for mutagens

(because compounds tested as negatives in the Ames test in

certain bacterial strains may turn out to cause reverse

mutations when examined in additional strains). Once again,

the identification of 31 mislabeled compounds because of

discordance between their stated and predicted properties

suggests, perhaps unexpectedly, that predictive QSAR mod-

els obtained on carefully curated data sets can be successfully

used for experimental biological data curation. Another

important impact of experimental data curation applied to

these compounds is that, despite an insignificant change in

the overall prediction accuracy (see Table 2) for the whole

external set (<1%) and the external cross-validation on the

modeling set (<0.5%), there is a major improvement in

prediction performances for these mislabeled compounds:

for the external set, 19% (16 out of 86) of these mislabeled

compounds have been predicted correctly (compared to zero

percent with the original labels) and 28% (15 out of 54) for

the modeling set. Data curation is thus an important criterion

for QSAR model improvement in terms of prediction

performances and reliability.

3.5. Bioavailability Competition. One recent illustration

of the famous proverb “the road to hell is paVed with good

intentions” was the recent “QSARworld Modeling Challenge

2008” organized by QSARWorld (http://www.qsarworld.

com.) Like other similar challenges, its overall objective was

to benchmark modeling techniques from different interna-

tional teams according to their “blind” prediction perfor-

mances. The participants were asked to build QSAR models

to predict human oral bioavailability using a given training

set of compounds, for which both chemical structures and

experimental biological data were made available. The best

model was supposed to be selected based on the prediction

accuracy (RMSE) for an external preselected (blind) test set,

for which only chemical structures were made available.

Our group (and we believe many others) welcomed this

challenge as an excellent opportunity to share the knowledge

and experience between QSAR specialists throughout the

world. We fully expected to participate in the challenge that

was bound to enable the building of collective QSAR

wisdom. Unfortunately, serious concerns regarding the

modeling set, as well as the method of performance evalu-

ation of QSAR models, were rapidly identified. In fact, the

concerns were so strong that we concluded that the entire

exercise was pointless and withdrew from the participation.

Our decision was based on the following specific reasons.

The oral bioavailability data for all test set compounds were

supposed to be completely unavailable so that the indepen-

dent modeling effort could not be compromised in any way

(as was indeed the case for another recent Solubility

Challenge64,65). Nevertheless, these “external” data were in

fact publicly available through the link placed at the

QSARWorld Challenge Web site (http://modem.ucsd.edu/

adme/databases/databases_extend.htm) at the same time

when the competition was announced. In fact, the entire data

set (i.e., both training and test sets) was compiled and kindly

provided to us upon request by Dr. Tingjun Hou (Dept. of

Chemistry and Biochemistry, University of California in San

Diego). In addition, the SDF files provided by QSARWorld

contained compound IDs from the Dr. Hou’s database.66 As

a result the blind competitive aspect of the Challenge was

obviously compromised because all experimental values for

the external data set were known.

Moreover, it appeared that the quality of the data was low

despite the absence of obvious errors in the structure

representations. There were only few accidental mistakes,

for example, lack of aromaticity in trapidil or a single (C-O)

instead of a double (CdO) bond in ticarcillin. Most likely,

some curation procedures were applied by creators of this

data set which is appropriate before launching this kind of

challenge. However, the search for duplicates using the HiT

QSAR software41,42 revealed 11 pairs of similar structures.

Three of them were different in terms of stereochemical

configuration (quinidine and quinine, betamethasone and

dexamethasone, and levofloxacin and ofloxacin), and nev-

ertheless, different isomers were reported to be associated

with identical biological data. The structures in the remaining

eight pairs were completely identical. The only difference

was in the chemical names of duplicates, for example,

dronabinol and tetrahydrocannabinol or metaprotenerol and

orciprenaline. Thus, while the search for duplicates on the

basis of names or CAS numbers can be done very rapidly,

it is an inefficient tool to discover all chemically identical

pairs of compounds. Furthermore, the experimental bioavail-

ability values for similar compounds found in these four pairs

differed by 8-43%. Such discrepancies are common for data

sets compiled from the literature, when experimental values

of investigated property are usually averaged. Actually, as

we suggested above, activity values with small variations

from one source to another could be averaged, but not in

the cases such as quetiapine with bioavailability equal to 90%

as reported in one source66 and 9% as reported elsewhere.7

Most likely, this difference is caused by simple human error,

and “9” was intended to be reported as “90”. In this case,

the removal of a compound with large deviation between

experimental values reported in different sources from the

training set is highly appropriate. It is also desirable to create

a special test set containing such suspicious compounds to

help reveal the true value by the means of consensus

predictions using QSAR models built on “clean” data sets

(cf. our description of both DILI and Ames studies above

demonstrating the power of rigorously built QSAR models

for correcting false biological data).

In case of any doubt concerning the consistency of the

data, the search for analogous information in available

sources is also a good solution. Specifically, it was found

that some experimental data on human oral bioavailability

provided by the Challenge organizers were not always

measured on humans. Moreover, the simple comparison of

the bioavailability data provided by the Challenge project

with those found in WOMBAT-PK7 for a large number of

identical compounds revealed a large discrepancy between

the two sources for many compounds. Thus, among 220

identical compounds found in both the Challenge and

Wombat data sets, 54 compounds showed significant (g10%)

differences: g 20% for 25 compounds; g 30% for 15

compounds, and g50% for 5 compounds (Figure 9). Thus,

after the application of the curation procedures to the original

data set, consisting of 805 compounds, only 734 structures

remained (see Table 3).

Obviously, we strongly support the idea of organizing

QSAR Challenges in general. However, each Challenge

should be designed very carefully. We believe that the
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following simple recommendations may be useful when

organizing competitive QSAR studies:

(1) Biological data for the test set should be truly unavailable

until the completion of the competition (a good example

is the recent 2009 CADASTER Toxicity Challenge13).

(2) Chemical structures should be thoroughly curated, for

example, using procedures outlined in this paper.

(3) Biological data should be of high quality, curated and

consistent.

Results of this challenge, which are already posted at
the QSARWorld Web site (http://www.qsarworld.com/
modleingcompetition08results1.php), also demonstrate the
importance of data curation. The best-model is characterized
by RMSE of 30%, which is completely unacceptable given
that the entire range of data values was 0-100%. Moreover,
no additional statistical characteristics of the model quality
were reported. In our opinion, the use of RMSE values only
to estimate any model performance is insufficient; we always
also report Rtest

2 (the coefficient of determination is more
informative than RMSE in revealing whether or not predicted
values reproduce quantitatively the experimental ones) and
expect its value to exceed 0.6 to claim that the model is
acceptable (as we mentioned the Rtest

2 value was not reported
but it is highly unlikely that it exceeds 0.6 given the very
high RMSE value). This opinion was also validated by the
citation of Dr D. Krstajic, the winner of the bioavailability
challenge, posted on the same Web site: “Unfortunately, for
the supplied data set, we were not able to find any good
model.” This case study reconfirms that robust and predictive
QSAR models cannot be obtained using low-quality data.

4. CONCLUSIONS

Molecular modelers and cheminformaticians typically

analyze experimental data generated by other scientists.

Consequently, when it comes to data accuracy, cheminfor-

maticians are always at the mercy of data providers who

may inadvertently publish (partially) erroneous data. Thus,

dataset curation is crucial for any cheminformatics analysis

such as similarity searching, clustering, QSAR modeling,

virtual screening, etc, especially nowadays when the avail-

ability of chemical datasets in public domain has skyrocketed

in recent years. Despite the obvious importance of this

preliminary step in the computational analysis of any dataset,

there appears to be no commonly accepted guidance or set

of procedures for chemical data curation. The main objective

of this paper was to emphasize the need for a standardized

chemical data curation strategy that should be followed at

the onset of any molecular modeling investigation.

In this study, the most important steps of data set cleaning

have been described including the removal of inorganics,

organometallics, counterions, and mixtures; structural clean-

ing, ring aromatization, normalization of specific chemotypes,

curation of tautomeric forms; deletion of duplicates; and

manual checking of the structures and biological activities.

Some general rules following the discussed applications were

also formulated:

(1) It is risky to calculate chemical descriptors directly from

SMILES. It is preferable to compute descriptors (inte-

gral, fragments, etc.) from curated 2D (or 3D if neces-

sary) chemical structures, where all chemotypes are

strictly normalized.

(2) Structural comparison across available databases may

facilitate the detection of incorrect structures.

(3) Even small differences in functional group representa-

tions could cause significant errors in models.

(4) Searching for structure-based duplicates and their re-

moval is one of the mandatory steps in QSAR analysis.

Such searches based on chemical name or CAS number

only are both incomplete and inefficient.

(5) Because of the large number of experimental data

sources, the search for additional information about

investigated property in all available sources is desired

to extract valuable knowledge and to compare the data

to detect activity cliffs and identify diverse sources of

errors.

(6) Nothing can replace hands-on participation in the process

because some errors obvious to a human are still not

obvious for computers. After finishing all the mentioned

steps, structures and activities should be checked manu-

ally once again.

Table 1 summarizes all proposed procedures (cf., also Figure
1) and provides a list of available software for every step of
the curation process. This list is not exhaustive, and we invite
readers to enrich it via a special link on our Web site (http://
chembench.mml.unc.edu/) by adding references and links to
other software that could be of interest in the context of data
curation.

To emphasize the importance of data curation as a

mandatory step in data analysis, we have discussed several

case studies where chemical curation of the original “raw”

database enabled the successful modeling study (specifically,

QSAR analysis) or resulted in a significant improvement of

model’s prediction accuracy. We also demonstrated that in

some cases rigorously developed QSAR models could be

even used to correct erroneous biological data associated with

chemical compounds. We consider our paper complementary

to the study by Young et al.8 that provided several examples

to illustrate how poor data quality could have detrimental

influence on QSAR models.

In conclusion, we believe that there is a clear need for an

additional principle that should be added to the five OECD

principles for QSAR model development and validation,16,20

and this principle should address the need for data curation

before the model development is initiated. We suggest that

this additional principle could be formulated as follows: “To

ensure the consideration of (Q)SAR models for regulatory

purposes, the models must be trained and validated on

chemical data sets that have been thoroughly curated with

respect to both chemical structure and associated target

Figure 9. Experimental bioavailability values (%) from QSAR-
World competition (X-axis) versus WOMBAT (Y-axis) for 55
overlapping compounds.
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property values.” We believe that good practices for curation

of chemical records outlined in this paper will be of value

to all scientists working in the fields of molecular modeling,

cheminformatics, and QSAR modeling.
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