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Abstract

Purpose of Review To assess the state-of-the-art in research on trust in robots and to examine if recent methodological advances

can aid in the development of trustworthy robots.

Recent Findings While traditional work in trustworthy robotics has focused on studying the antecedents and consequences of

trust in robots, recent work has gravitated towards the development of strategies for robots to actively gain, calibrate, and

maintain the human user’s trust. Among these works, there is emphasis on endowing robotic agents with reasoning capabilities

(e.g., via probabilistic modeling).

Summary The state-of-the-art in trust research provides roboticists with a large trove of tools to develop trustworthy robots.

However, challenges remain when it comes to trust in real-world human-robot interaction (HRI) settings: there exist outstanding

issues in trust measurement, guarantees on robot behavior (e.g., with respect to user privacy), and handling rich multidimensional

data. We examine how recent advances in psychometrics, trustworthy systems, robot-ethics, and deep learning can provide

resolution to each of these issues. In conclusion, we are of the opinion that these methodological advances could pave the way for

the creation of truly autonomous, trustworthy social robots.

Keywords Trust . Human-robot interaction . Probabilistic models .Measurement . Formal methods

Introduction

On July 2, 1994, USAir Flight 1016 was scheduled to land in

the Douglas International Airport in Charlotte, NC. Upon

nearing the airport, the plane experienced inclement weather

and was affected by wind shear (a sudden change in wind

velocity that can destabilize an aircraft). On the ground, a

wind shear alert system installed at the airport issued a total

of three warnings to the air traffic controller. But due to a lack

of trust in the alert system, the air traffic controller transmitted

only one of the alarms that was, unfortunately, never received

by the plane. Unaware of the presence of wind shear, the

aircrew failed to react appropriately and the plane crashed,

killing 37 people [1] (see Fig. 1). This tragedy vividly brings

to focus the critical role of trust in automation (and by exten-

sion, robots): a lack of trust can lead to disuse, with potentially

dire consequences. Had the air traffic controller trusted the

alert system and transmitted all three warnings, the tragedy

may have been averted.

Human-robot trust is crucial in today’s world where mod-

ern social robots are increasingly being deployed. In

healthcare, robots are used for patient rehabilitation [2] and

to provide frontline assistance during the on-going COVID-19

pandemic [3, 4].Within education, embodied social robots are

being used as tutors to aid learning among children [5]. The

unfortunate incident of USAir Flight 1016 highlights the prob-

lem of undertrust, but maximizing a user’s trust in a robot may

not necessarily lead to positive interaction outcomes.

Overtrust [6, 7] is also highly undesirable, especially in the

healthcare and educational settings above. For instance, [6]

demonstrated that people were willing to let an unknown ro-

bot enter restricted premises (e.g., by holding the door for it),

thus raising concerns about security, privacy, and safety.

Perhaps even more dramatically, a study by [7] showed that

people willingly ignored the emergency exit sign to follow an

evacuation robot taking a wrong turn during a (simulated but

realistic) fire emergency, even when said robot performed
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inefficiently prior to the start of the emergency. These exam-

ples drive home a key message:miscalibrated trust can lead to

misuse of robots.

The importance of trust in social robots has certainly

not gone unnoticed in the literature—there exist several

insightful reviews on trust in robots across a wide spec-

trum of topics, such as trust repair [8, 9•], trust in auto-

mation [10–15], trust in healthcare robotics [2], trust mea-

surement [16, 17], and probabilistic trust modeling [18].

In contrast to the above reviews, we focus on drawing

connections to recent developments in adjacent fields that

can be brought to bear upon important outstanding issues

in trust research. Specifically, we survey recent advances

in the development of trustworthy robots, highlight con-

temporary challenges, and finally examine how modern

tools from psychometrics, formal verification, robot

ethics, and deep learning can provide resolution to many

of these longstanding problems. Just as how advances in

engineering have brought us to the cusp of a robotic rev-

olution, we set out to examine if recent methodological

breakthroughs can similarly aid us in answering a funda-

mentally human question: do we trust robots to live

among us and, if not, can we create robots that are able

to gain our trust?

A Question of Trust

To obtain a meaningful answer to our central question, we need

to ascertain exactly what is meant by “trust in a robot.” Is the

notion of trust in automated systems (e.g., a wind-shear alert

system) equivalent to trust in a social robot? How is trust dif-

ferent from concepts such as trustworthiness and reputation?

Historically, trust has been studied with respect to automated

systems [11, 12, 14]. Since then, much effort has been

expended to extend the study of trust to human-robot interac-

tion (HRI) (see Fig. 2 for an overview). We use the term

“robots” to refer to embodied agents with a physical manifes-

tation that are meant to operate in noisy, dynamic environments

[8]. An automated system, on the other hand, may be a com-

puterized process without an explicit physical form. While re-

search on trust in automation can inform our understanding of

trust in robots [11], this robot-automation distinction (which is,

admittedly, not quite sharp) has important implications for the

way we conceptualize trust. For one, the physical embodiment

of a robot makes its design a key consideration in the formation

of trust. Furthermore, we envision social robots would be typ-

ically deployed in dynamic unstructured environments and

have to work alongside human agents. This suggests that the

ability to navigate uncertainty and social contexts plays a great-

er role in the formation and maintenance of human trust.

Trust should also be distinguished from the related con-

cepts of trustworthiness and reputation. Trust (in an agent) is

a property of the human user in relation to the agent in ques-

tion [19]. In contrast, trustworthiness is a property of the agent

and not of the human user [19, 20]. Hence, a human user may

not trust a trustworthy robot (and vice versa); this mismatch is

visualized in Fig. 3. The trust-reputation distinction is slightly

more nuanced. While both can be thought of as an “opinion”

regarding the agent in question, reputation involves not only

the opinion of the single human user (as in trust) but also the

collective opinion of other people [21]. In this paper, wemain-

ly focus on human trust in robots.

Distinctions aside, there is, unfortunately, no unified defi-

nition of trust in the literature [12, 13]. This has led to the

proliferation of qualitatively different ways to define trust.

For instance, trust has been thought of as a belief [13], an

attitude [13], an affective response [22], a sense of willingness

[23], a form of mutual understanding [24], and as an act of

reliance [25].

To handle this ambiguity in definitions, we take a

utilitarian approach to defining trust for HRI—we adopt a

trust definition that gives us practical benefits in terms of

developing appropriate robot behavior using planning and

control [26, 27]. As we will see over the course of this paper,

this choice of definition allows us to embed the notion of trust

into formal computational frameworks, specifically probabi-

listic graphical models [28], which in turn allows us to lever-

age powerful computational techniques for estimation, infer-

ence, planning, and coordination.

We define trust in three parts, each of which is built-off

previous work:

– First, the notion of trust can only arise in a situation that

involves uncertainty and vulnerability [23];

– Second, trust is a multifaceted construct that is latent and

cannot be directly observed [12, 29], and

– Third, trust mediates the relationship between the history

of observed events and the agent’s subsequent act of

reliance [13, 19].

Fig. 1 Remnants of the aircraft N954VJ involved in USAir Flight 1016

[141]. The plane crash was attributed to the lack of warnings about wind

shear from the air flight controller on duty who, due to mistrust in the

wind shear alert system, reported only one out of three alerts generated by

the system
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Fig. 2 An overview of trust research in robotics. The shown citation

network was generated with Gephi [142] based on 925 papers; papers

were obtained from an initial list of 72manually curated papers on trust in

robots. The remaining papers were obtained by crawling the web with

OpenCitations [143]. Each node represents a publication, whose size

scales with citation count. Initial work concentrated heavily on

measuring trust in automation/robots (green node in the middle). Since

then, research in the area has branched out to examine areas such as the

multirobot control and the design of robots, as well as new theoretical

frameworks for understanding trust in robots. The most recent work has

explored novel topics such as formal verification in HRI

Fig. 3 Conceptual diagram of trust calibration. A mismatch between a user’s trust in the robot and the robot’s actual trustworthiness results in either

overtrust or undertrust
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Putting everything together, we define an agent’s trust in

another agent as a

“multidimensional latent variable that mediates the re-

lationship between events in the past and the former

agent's subsequent choice of relying on the latter in an

uncertain environment.

Start with Design

A first step to establish human-robot trust is to design the robot

in a way that biases people to trust it appropriately.

Conventionally, one way to do so is by configuring the robot’s

physical appearance [11].With humans, our decision to trust a

person often hinges upon first impressions [30]. The same

goes for robots—people often judge a robot’s trustworthiness

based on its physical appearance [11, 31–33]. For instance,

robots that have human-like characteristics tend to be viewed

as more trustworthy [31], but only up to a certain point.

Robots that appear to be highly similar, but still quite distin-

guishable, from humans are seen as less trustworthy [32, 33].

This dip in perceived trustworthiness then recovers for robots

that appear indist inguishable from humans. This

phenomena—called the “uncanny valley” [8, 32, 33] due to

the U-shaped function relating perceived trustworthiness to

robot anthropomorphism—has important implications for

the design of social robots.

More recently, several works have revealed that the impact

of design on trust goes beyond just physical appearance. For

example, the way in which the robot is portrayed can greatly

impact the perceived trustworthiness of the robot. When a

social robot is simply presented as it is, empirical evidence

suggests that human users tend to overestimate the robot’s

capabilities [34] prior to engaging with it. This mismatch be-

tween expectation and reality—the expectation gap—then

leads to an unnecessary loss of trust after users interact with

the robot [34]. In a bid to encourage trust formation in the

robot, several works have since tried to close this gap by

supplying additional information together with the robot.

This can be done manually by suitably framing the robot’s

capabilities prior to any interaction [35–37]. Alternatively, it

can also be done automatically by algorithmically identifying

several “critical states”—those states where the action taken

has strong impact on the eventual outcome—from the robot’s

policy and showing the robot’s behavior in those states to the

user [38]. These studies demonstrate that suitably engineered

supplemental information can help foster human trust in the

robot by adjusting people’s initial expectations to an appro-

priate level. In other words, the design of trustworthy robots

does not simply stop at considerations about the robot’s size,

height, and physical make-up. Instead, successful design

requires careful thought about the way a robot presents itself

to the user.

Gaining, Maintaining, and Calibrating Trust

While a robot’s design can prime the user to adopt a certain

level of trust in it, the design’s efficacy is often dependent on

the context [39] and individual differences among human

users [40, 41]. As such, design alone may not be sufficient

to induce the appropriate level of trust. The robot still has to

actively gain, maintain, and calibrate the user’s trust for suc-

cessful collaboration to occur [42]. This is especially challeng-

ing considering how meaningful social interactions often oc-

cur over a protracted period of time. The user’s trust in the

robot is not a static phenomenon—trust fluctuates dynamical-

ly as the interaction unfolds over time [43]. To cope with this,

the robot in question has to deploy effective strategies that

enable it to navigate the changing trust landscape. In the fol-

lowing, we have organized existing strategies in the literature

into four major groups in order of increasing model complex-

ity, starting with (i) heuristics and (ii) techniques that exploit

the interaction process, and progressing to (iii) computational

trust models and (iv) theory of mind approaches.

Heuristics

An important class of trust calibration strategies in the litera-

ture takes the form of heuristics: rule-of-thumb responses up-

on the onset of certain events. The design of these heuristics is

often informed by empirical evidence from psychology.

Heuristics have been proposed to tackle two different situa-

tions: to combat overtrust and to repair trust. As an example

of the former, [25] proposed to use visual prompts to nudge

users to reevaluate their trust in the robotic system when the

user has left the automated system running unattended for too

long.

The second situation occurs when the robot makes a mis-

take, which can lead to a disproportionate loss of trust in it [44,

45]. The potential loss of trust from such events is not just a

rare curiosity—robots are far from infallible, especially when

operating for prolonged periods of time. It is crucial for the

robot to respond appropriately after a mistake so as to reinstate

(or recalibrate) the user’s trust. That is, it has to engage in trust

repair [9•]. On this front, researchers have documented a va-

riety of relevant repair strategies [8, 9•]. For example, the

robot could provide explanations for the failure or provide

alternative plans [9•]. However, one should consider the

context of the situation before selecting a particular repair

heuristic. Recent work [46] has shown that when the loss of

trust is attributed to the lack of competence in the robot, apol-

ogizing can effectively repair trust. In contrast, when the act

that induced trust loss was perceived to be intentional on the
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robot’s part, denial that there was any such intention was a

better repair strategy compared with an apology. A nuanced

application of these heuristics can go a long way in ensuring

successful human-robot interaction.

Exploiting the Process

While heuristics focus on what a robot should do, a key ele-

ment for proper trust calibration is to consider how the robot

behaves. This element can have substantive impact on the

user’s trust; at the physical level, [47] found that a robot that

could convey its incapabilities solely via informative arm

movements was found to be more trustworthy by users.

Similarly, robots that came across as transparent, either by

providing explanations for its actions [48, 49] or simply by

providing more information about its actions [50, 51], were

judged as more trustworthy. At a more cognitive level, one

study suggests that robots that took risky actions in an uncer-

tain environment were viewed with distrust [52], although this

depends on the individual user’s risk appetite [53]. In other

work, robots that expressed vulnerability [54] or emotion [55]

through natural language were trusted more. Furthermore, the

use of language to communicate with the human user has been

shown to mitigate the loss of trust that follows from a perfor-

mance failure [56]. In all of the above, trust can be gained by

exploiting the process in which something is accomplished

despite the fact that the end goal for the robot does not change.

Computational Trust Models

The techniques reviewed above rely on pre-programmed strat-

egies, which may be difficult to scale for robots that have to

operate in multiple different contexts. A more general ap-

proach is to directly model the human’s dynamic trust in the

robot. Work in this area has focused on two problems: (i)

estimating trust based on observations of the human’s behav-

ior [18, 27, 57–64] and (ii) utilizing the estimate of trust to

guide robot behavior [27, 58, 65–69].

A major line of work in this area was started with the

introduction of the Online Probabilistic Trust Inference

Model (OPTIMo) [61], which captures trust as a latent vari-

able in a dynamic probabilistic graphical model (PGM) [28].

While there have been other pioneering attempts to model

trust, they have been restricted to simple functions [60] or fail

to account for uncertainty in the trust estimation [59]. In com-

parison, the probabilistic graphical approach presented in

OPTIMo leverages on powerful inference techniques that al-

low trust estimation in real time. Furthermore, this approach

accounts for both estimation uncertainty and the dynamic na-

ture of trust in a principled fashion by way of Bayesian infer-

ence [28]. This approach is perhaps made even more appeal-

ing by the evidence in cognitive science that humans act in a

Bayes-rational manner [70], suggesting that robots equipped

with this variant of trust model are in fact reasoning with a

valid approximation of the human user’s trust. This graphical

model framework also allows us to translate conceptual dia-

grams of trust dynamics into an actual quantitative program

that lends itself to testable hypotheses [71] (see Fig. 4 and

Fig. 5 for an example).

Since the development of OPTIMo, works have contribut-

ed important extensions. For example, [64] modeled trust with

a beta-binomial (rather than a linear Gaussian) and explored

how the model can be used to cluster individuals by their

“trust” profiles. Dynamic Bayesian networks of this flavor

have also been used to guide the robot’s actions. In several

works [27, 68], the estimated trust has been used as a mech-

anism for the robot to decide if control over the robot should

be relinquished to the human. In [67, 69•], a variant OPTIMo

was incorporated into POMDP planning, thus allowing the

robot to obtain a policy that reasons over the latent trust of

the human user. This Bayesian approach to reasoning about

trust has also been explored non-parametrically using

Gaussian processes [63]. Lastly, this framework has also been

extended to model a user’s trust in multiple robots [62], thus

paving the way for dynamic trust modeling in multi-agent

settings.

Endowing Robots with a Theory of Mind

Trust is but one aspect of the human user’s mental state. The

most general approach to developing trustworthy robotic agents

is to endow them with the ability to reason and respond to the

demands and expectations of the human partner in an online,

adaptive manner. To do this, recent works have turned to one of

the most ubiquitous social agents for inspiration: children.

Despite their nascent mental faculties, children exhibit an

astounding ability in navigating our complex social environ-

ment. Decades of research has revealed that this social dexter-

ity can be attributed to having a “theory of mind” (ToM) [72].

At a broad level, a ToM refers to an agent’s (e.g., a child)

ability to mentally represent the beliefs, desires, and intentions

of another agent (e.g., a different child) [73]. Just as with

children, endowing a robot with a ToMwould enable it reason

about the human user’s unobservable mental attributes.

Through such reasoning, the robot can predict what the human

user wants to do, in turn allowing it to plan in anticipation of

the human user’s future behavior.

This idea has been instantiated in robotics before in the

formalism behind Interactive Partially Observable Markov

Decision Processes [74]. However, it is only recently that

this approach has been explored in relation to trust [67,

75–77]. Recent approaches have shifted away from simple,

but unrealistic models of human behavior, to empirically

motivated ones. For instance, [78] explored a bounded

memory model of adaptation where the user was assumed

to make decisions myopically, a choice supported by
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evidence from behavioral economics [79]. Furthermore,

they endowed the robot with the ability to reason about

the adaptability of the user (i.e., the degree to which the

user is willing to switch to the robot’s preferred plan). By

reasoning about this aspect of the human’s mental state, the

robotic agent could then guide the user towards a strategy

that is known to lead to a better outcome when the user is

adaptable. In contrast, when the user is adamant about fol-

lowing his/her own policy, then the robot can adapt to the

user in order to retain trust. Similarly, other recent works

have further explored how incorporating different aspects

of the human’s beliefs and intentions, such as notions of

fairness [76], risk [75], and capability [77], can lead to

gains in trust. Endowing robots with a ToM in this way

allows robotic agents to better earn the trust of their human

partners. That said, full-fledged ToM models remain diffi-

cult to construct and generally incur heavier computational

cost relative to “direct” computational trust models.

Fig. 5 A probabilistic graphical model (PGM) representation of Fig. 4

unrolled for three time steps. Latent variables (i.e., trust in the robot) are

unshaded. Nodes can represent multidimensional random vectors. The

graphical model encodes explicit assumptions about the generative

process behind the interaction: conditional independence between any

two sets of variables can be inferred by inspecting the structure of the

graph via d-separation [28]. By instantiating the prior and conditional

probability distributions, the model can be used for inference and

simulation

Fig. 4 A typical conceptual

diagram in the trust literature

(e.g., in [12]). Trust is

conceptualized as a construct that

depends on the user’s propensity

to trust the robot (i.e.,

dispositional trust), the task at

hand (i.e., situational/contextual

trust), and initial “learned trust”

from the user’s general prior

experience with robots. Trust then

shapes the user’s initial reliance

on the robot. During the

interaction, factors can change

(gray boxes), which affect robot

behavior, and in turn dynamic

trust, and the subsequent reliance

on the robot
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Summary

Trust is essential for robots to successfully work with their hu-

man counterparts. While it is challenging for a robot to gain,

maintain, and calibrate trust, research in the past decade has

provided us with an entire suite of tools to meet this challenge.

A note of caution is in order: althoughwe presented these tools in

increasing order of complexity, by no means is the order indic-

ative of the relative importance of these tools. The trove of tools

developed in the last decade, from heuristics to computational

models, is one important step forward to realizing a future where

social robots can be trusted to live and work among us.

Challenges and Opportunities for Trust
Research

Scientific progress invariably leads to both new challenges

and new opportunities. Research on trust in robots is no ex-

ception. We highlight three key challenges and the corre-

sponding opportunities in trust research that could be the focus

of much inquiry in the coming decade.

Challenge I: The Measurement of Trust “In the Wild”

A human’s trust in a robot is an unobservable phenomena. As

such, there have been major pioneering efforts in the past

decade to develop instruments that measure trust in human-

robot interaction, most notably in the form of self-report scales

[43, 80–85]. More recently, there has been a trend to move

away from self-report measures towards more “objective”

measures of trust [16, 17, 86–88]. These include physiological

measures such as eye-tracking [89, 90], social-cues extracted

from video feed/cameras [91, 92], audio [93–95], skin re-

sponse [96, 97], and neural measures [96–99], as well as play

behavior in behavioral economic games [37, 92, 100].

This development is in concordance with the broad recogni-

tion in the research community on the need to bring HRI from

the confines of labs to real-world settings. In this regard, the

“objective” measures above can be an improvement over self-

report scales. For instance, physiological measures can be far

less disruptive than periodic self-reports and can be deployed in

real-world environments with appropriate equipment. Many of

the above measures can also be obtained in real time with much

higher temporal resolution than self-reports and can be used to

directly inform robot decision-making.

Despite this tremendous effort to better measure trust, some

thorny issues remain. Even among the validated scales that

have been developed, there is a conspicuous lack of confirma-

tory testing (e.g., via confirmatory rather than exploratory fac-

tor analysis). An exception is the trust scale developed in [82]

meant to examine trust in automation (not specific to robots),

whose factor structure has been confirmed separately in [101].

Furthermore, the literature is relatively silent on the topic of

measurement invariance [102, 103]: we found only a single

mention in [101]. Briefly, a scale that exhibits measurement

invariance is measuring the same construct (i.e., trust) across

different comparison groups or occasions [103]. If invariance

is not satisfied, then differences in the observed scores be-

tween two experimental groups or two time points, even if

statistically significant, may not reflect actual differences in

trust. Finally, there is a lack of information regarding the psy-

chometric properties, such as the reliability [104], of “objec-

tive” measures. Despite the positive properties mentioned

above, “objective” measures are not immune from psycho-

metric considerations [105]. Rather, “objective” measures

can be thought of as manifestations of underlying trust (e.g.,

as observations emitted from the latent variable in a PGM) and

should be scrutinized for their reliability and validity just as

with self-report questionnaires.

Although these issues do not directly invalidate existing

results in the literature, it is still important to assess any

existing shortcomings in the existing instruments, and im-

prove upon them if need be, especially in view of the replica-

tion crisis plaguing psychological science [106].

Challenge II: Bridging Trustworthy Robots and
Human Trust

Thus far, we have explored in detail how human users develop

trust in robots. However, the literature on human trust in ro-

bots can also be seen in relation to research on trustworthy

systems (and more recently, trustworthy AI [107]), where

frameworks and methods have been developed to ensure (or

assess if) a given system satisfies desired properties. These

methods have their roots in the field of software engineering

and have traditionally focused on satisfying metrics based on

non-functional properties of the system (e.g., reliability) [108]

as well as the quality of service (e.g., empathy of a social

robot) [108, 109].

More recently, there is a trend to adopt these techniques to

model aspects of the human user. One important class of tech-

niques is formal verification [110], which are powerful tools

that enable system designers to provide guarantees of system

performance. Recent work has extended formal methods to

handle concepts such as fairness [111], privacy [112, 113],

and even cognitive load [114]. Formal verification techniques

have also been applied to problems in human-automation in-

teraction [115, 116], suggesting that these methods can also be

fruitfully applied to HRI.

To date, very few works have explored how formal

methods can be applied in conjunction with human trust in

robots. Pioneering work [117] presented a verification and

validation framework that allows assistive robots to demon-

strate their trustworthiness in a handover task. Similarly,

[118•] has explored formal verification methods for cognitive
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trust in a multiagent setting, in which trust is formalized as an

operator in a logic. By combining the logic with a probabilistic

model of the environment, one can use formal verification

techniques to assess if the particular human-robot system sat-

isfies a list of required properties related to trust. However,

much is left to be done. A key technical challenge is to scale-

up existing tools to the complexity of HRI. There is also a

need to ensure that the models used in formal verification

sufficiently represents the HRI task for the guarantees to be

meaningful.

One important aspect of trustworthy systems that is in-

timately related to trust and that deserves additional atten-

tion is privacy. In [119], the authors raised concern that

when social robots are deployed to work with vulnerable

groups (e.g., children), there is the possibility that the ro-

bots will be used to intrude upon their privacy. For in-

stance, if the vulnerable person develops affection or trust

in the robot, they may inappropriately “confide” in the

robot. This can be an avenue for abuse by other malicious

agents if the robot has recording capabilities. This idea was

further developed in [120] where they showed experimen-

tally that trust in robots can be exploited to convince hu-

man users to engage in risky acts (e.g., gambling) and to

reveal sensitive information (e.g., information often used

in bank password resets). These trust-related privacy issues

go beyond intentional intrusion by external agents when

we consider multiagent planning, where there is the possi-

bility of individual information being leaked [121]. This

problem becomes all the more acute if medical information

(e.g., diagnosis of motor-related diseases, such as

Parkinson’s) is involved [122]. More broadly, this issue

of privacy can be seen from the perspective of developing

safe (and thus trustworthy) robots, where the notion of

safety includes not only physical safety [123] but also safe-

ty from unwanted intrusions of privacy.

Recent work suggests that there are ways to resolve this

tension between privacy and trust. In particular, techniques

from the differential privacy literature [124] can be used to

combat the leakage of private information [122]. With re-

gard to the intrusion of privacy via robots, the field of robot

ethics can inform us about the regulations and codes of

conduct that should be in place prior to deployment of

social robots among vulnerable groups [125]. We should

also recognize that the effect of trust on privacy can actu-

ally be harnessed for the social good. In [126], the devel-

opment of trust in virtual humans encouraged patients to

disclose medical information that they would otherwise

have withheld in the presence of a real doctor due to fear

of social judgment during a health screening. From this

perspective, a robust ethical and legal framework to regu-

late the use of social robots is important to address privacy

and safety concerns associated with the use of social robots

in our everyday lives [125].

Challenge III: Rich Trust Models for Real-World
Scenarios

Trust is most often described as a rich, multidimensional con-

struct [127] and in a real-world setting, a variety of elements

come together to affect trust. While there is no doubt that

existing models have yielded impressive results, there is still

much work to be done to fully capture trust in robots. Some

recent works have begun to explore this area. For example,

[53] examined two different aspects of trust—trust in a robot’s

intention and trust in a robot’s capability—and demonstrated

that these two factors interact to give rise to reliance on the

robot. Similarly, [63] demonstrated that trust can be modeled

as a latent function (i.e., an infinite-dimensional model of

trust) to incorporate different contexts and showed that this

approach could capture how trust transfers across different

task environments.

These two examples highlight two distinct but comple-

mentary approaches to studying the multidimensional na-

ture of trust. The first is that, by taking multidimension-

ality seriously, we can develop a richer and more accurate

understanding of not only what causes humans to cooper-

ate (or not) with robots but also how this cooperation

comes about. In other words, it could give us insight into

the mechanisms, and not just the antecedents, through

which trust affects human-robot collaboration. In line with

this view, a few pioneering works have begun exploring

the mediating role of (unidimensional) trust via formal

causal mediation analysis [128–130]. The goal in this ap-

proach is to empirically test if a particular trust-based

mechanism is supported by the data [131–133]. A rela-

tively unexplored, but potentially fruitful, area is the un-

derstanding of trust mechanisms in the multidimensional

case. There is value in assessing the viability of actual

mechanisms beyond scientific curiosity, especially when

modeling trust in the PGM framework. In such models,

the structure of the graph is often taken to be true by fiat.

However, there is no guarantee that the given graph struc-

ture corresponds to the actual causal graph of the phe-

nomena of interest [28]. Empirical studies that reveal de-

tailed mechanisms underlying trust in robots would be

critical in obtaining better approximations to the true

causal graph, which in turn should lead to more robust

computational models of trust.

A second possible approach is to leverage on the ad-

vances in deep probabilistic models to model latent trust

in the context of high-dimensional input data, which is

prevalent in real-world settings. This is especially relevant

in light of the recent interest in integrating video, audio,

and psychophysiological measures into trust modeling

[88]. The recent integration of deep neural networks with

probabilistic modeling (e.g., [134–136]) has made it pos-

sible to handle high-dimensional unstructured data within
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PGMs. Briefly, these methods work by mapping the high-

dimensional raw data into a reduced space characterized by

some latent random real vector, where the mapping is typ-

ically achieved via neural networks. Although some may

be concerned about the lack of interpretability of the learnt

latent space in this approach (due to the nonlinearity of

neural networks), recent work has sought to learn latent

representations that are “disentangled”—in other words,

representations whose individual dimensions provide

meaningful information about the data being modeled

[137–139]. Regardless of interpretability, this approach is

nevertheless particularly valuable in the context of robot-

ics: social robots have to make sense of its environment

based on raw sensory information. Being able to perform

trust inference based on such unstructured data can help a

robot to autonomously plan and act appropriately in our

social environment.

These two approaches to studying multidimensional trust

are not incompatible. The former provides us with the much

needed structural understanding of the construct of trust. The

latter approach allows robots to effectively handle the rich

sources of sensory data to reason about trust in real time.

These two approaches can be combined [140] to get the best

of both worlds, potentially allowing us to develop robots that

can perform structured trust inference in a messy, high-

dimensional world.

Conclusions

Human trust in robots is a fascinating and central topic in HRI.

Without appropriate trust, robots are vulnerable to either dis-

use or misuse. In this respect, trust is an enabler that allows

robots to emerge from their industrial shell and out into the

human social environment. Today, advances in both algo-

rithms and design have led to the creation of social robots that

can infer and reason about human characteristics to gain,

maintain, and calibrate human trust throughout the course of

an interaction, further cementing their place as partners to their

human users. While challenges remain, methodological ad-

vances in recent years seem to promise resolution to these

longstanding issues. We trust that the research community

will be able to leverage these methods to turn meaningful,

long-lasting HRI into an everyday reality.
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