

 Trust Management for SOA-based IoT and
Its Application to Service Composition

Ing-Ray Chen, Jia Guo, and Fenye Bao

Abstract— A future Internet of Things (IoT) system will connect the physical world into cyberspace everywhere and everything

via billions of smart objects. On the one hand, IoT devices are physically connected via communication networks. The service

oriented architecture (SOA) can provide interoperability among heterogeneous IoT devices in physical networks. On the other

hand, IoT devices are virtually connected via social networks. In this paper we propose adaptive and scalable trust

management to support service composition applications in SOA-based IoT systems. We develop a technique based on

distributed collaborative filtering to select feedback using similarity rating of friendship, social contact, and community of interest

relationships as the filter. Further we develop a novel adaptive filtering technique to determine the best way to combine direct

trust and indirect trust dynamically to minimize convergence time and trust estimation bias in the presence of malicious nodes

performing opportunistic service and collusion attacks. For scalability, we consider a design by which a capacity-limited node

only keeps trust information of a subset of nodes of interest and performs minimum computation to update trust. We

demonstrate the effectiveness of our proposed trust management through service composition application scenarios with a

comparative performance analysis against EigenTrust and PeerTrust.

Index Terms— Trust management; Internet of things; social networks; service composition; SOA; performance analysis.

——————————  ——————————

1 INTRODUCTION

future Internet of Things (IoT) system connects the

physical world into cyberspace via radio frequency

identification (RFID) tags, sensors, and smart ob-

jects owned by human beings [1, 10]. Physical objects can

be equipped with RFID tags and electronically identifia-

ble and tractable. Devices with sensing capability provide

environmental information, body conditions, etc., which

are remotely accessible. Smart objects like smart phones

and consumer electronics with ample computing re-

sources share information and provide billions of new

services connecting everyone with everything.
In Service-Oriented Architecture (SOA) based IoT sys-

tems [11], each device is a service consumer and if desira-
ble can be a service provider offering services or share
resources and interacts with service consumers via com-
patible service APIs. SOA technologies (such as WS-*,
REST, and CoRE) enable publishing, discovery, selection,
and composition of services offered by IoT devices. The
important application scenarios proposed for SOA-based
IoT systems include e-health (continuous care) [6, 13],
smart product management, smart events for emergency
management [22], etc.

The motivation of providing a trust system for an
SOA-based IoT system is easy to see. There are misbehav-
ing owners and consequently misbehaving devices that
for self-interest may perform “discriminatory” attacks to
ruin the reputation of other IoT devices which provide
similar services. Furthermore, users of IoT devices are
likely to be socially connected via social networks like
Facebook, Twitter, Google+, etc. Therefore, misbehaving

nodes with close social ties can collude and monopoly a
class of services.

SOA-based IoT systems challenge trust management

in the following aspects. First, an IoT system has a huge

amount of heterogeneous entities with limited capacity.

Existing trust management protocols do not scale well to

accommodate this requirement because of the limited

storage space and computation resources. Second, a SOA-

based IoT system evolves with new nodes joining and

existing nodes leaving. A trust management protocol

must address this issue to allow newly joining nodes to

build up trust quickly with a reasonable degree of accura-

cy [19]. Third, IoT devices are mostly human carried or

human operated [2]. Trust management must take into

account social relationships among device owners in or-

der to maximize protocol performance. Lastly and argua-

bly most importantly, a SOA-based IoT system essentially

consists of a large number of heterogeneous IoT devices

providing a wide variety of services. Many of them (the

owners) will be malicious for their own gain so they will

perform attacks for self-interest. Many of them with close

social ties will collude to ruin the reputation of other de-

vices which provide similar services via bad-mouthing

attacks, and conversely boost the reputation of each other

via ballot-stuffing attacks. A trust management protocol

for SOA-based IoT must be resilient to such attacks to be

sustainable.

Despite the abundance of trust protocols for P2P and

ad hoc sensor networks [9, 31, 32, 39, 40], there is little

work on trust management for IoT systems [3, 4, 5, 7, 37].

We will survey related work in Section II and compare as

well as contrast our approach with existing work. The

problem we aim to solve is design and validation of a

scalable and adaptive trust management protocol for

————————————————

• Ing-Ray Chen, Jia Guo, and Fenye Bao are with the Department of Com-
puter Science, Virginia Tech, Falls Church, VA 22043; Email: {irchen,
jiaguo, baofenye}@vt.edu.

A

SOA-based social IoT systems capable of answering the

challenges discussed above. Our trust management pro-

tocol, called Adaptive IoT Trust, is executed autonomously

by IoT devices with little human intervention. The main

idea is to combine peer evaluation with trust evaluation

in SOA-based IoT systems. The goals are two-fold: (a)

trust bias minimization; (b) application performance op-

timization. This is achieved by adaptive trust manage-

ment, i.e., adjusting trust protocol settings in response to

environment changes dynamically.

The contributions of this paper are as follows:

1. We propose an adaptive IoT trust protocol for

SoA-based IoT systems with applications in ser-

vice composition. The novelty lies in the use of

distributed collaborating filtering [12] to select

trust feedback from owners of IoT nodes sharing

similar social interests.

2. We develop a novel adaptive filtering technique to

adjust trust protocol parameters dynamically to

minimize trust estimation bias and maximize ap-

plication performance.

3. Our adaptive IoT trust protocol is scalable to large

IoT systems in terms of storage and computational

costs. We perform a comparative analysis of our

adaptive IoT trust protocol against two prevalent

trust protocols, namely, EigenTrust [39] and Peer-

Trust [40], in trust convergence, accuracy and re-

siliency properties achieved.

4. We demonstrate the effectiveness of our adaptive

IoT trust protocol against EigenTrust and Peer-

Trust through service composition application

scenarios in SOA-based IoT environments in the

presence of malicious nodes performing opportun-

istic service and false recommendation attacks.

The rest of this paper is organized as follows. Section 2

discusses related work in trust management for IoT sys-

tems. Section 3 describes the system model. Section 4 de-

tails our trust management protocol. Section 5 assesses

the performance of our trust protocol in terms of its desir-

able properties including convergence behavior, trust

assessment accuracy, resiliency against malicious attacks,

and scalability. In Section 6, we demonstrate the effec-

tiveness of our trust management through trust-based

service composition application scenarios, comparing its

performance with two baseline schemes. Finally, Section 7

concludes the paper and discusses future work.

2 RELATED WORK

One of the major challenges to IoT system design is

device heterogeneity. Devices could be low-end with little

to no storage/computational power (i.e., RFID tags),

middle-end with restricted resources (i.e. sensors), to

high-end (i.e., smart phones and laptops). Further, devic-

es could connect to the network through various meth-

ods, like cables, Wi-Fi, Bluetooth, 3G, near field commu-

nication (NFC), etc. SOA technologies provide great op-

portunities to resolve the issue. Guinard et al. [11] pro-

posed SOA-based IoT architecture where devices offer

their functionalities via SOAP-based web services (WS-*)

or RESTful APIs. This architecture supports the discov-

ery, query, selection, and on-demand provisioning of web

services. In order to realize web service on resource-

constrained embedded devices, the IETF Constrained

RESTful Environments (CoRE) working group has de-

fined Constrained Application Protocol (CoAP) that real-

izes a minimum subset of REST [26]. One practical exam-

ple is a web-based smart space framework [21] which

applies REST to support pervasive applications, like re-

source sharing, in various devices.

The social relationships in IoT systems have attracted

research attentions [2, 8, 16]. Doddy et al. [8] provided the

vision of applying reality mining techniques developed to

understand human relationships to IoT systems. Kranz et

al. [16] investigated on the potential of combining social

and technical networks to collaboratively provide services

to both human users and technical systems in IoT sys-

tems. Atzori et al. [2] proposed the concept of social IoT

(SIoT) and analyzed social relationships among things,

such as parental object relationship, social contact object rela-

tionship, co-work object relationship, and ownership relation-

ship. However, their work focuses on the relationship

among things rather than users.

In the literature, Roman et al. [25] pointed out that tra-

ditional approaches for security, trust, and privacy man-

agement face difficulties when applying to IoT systems

due to scalability and a high variety of relationship

among IoT entities. Ren [24] proposed a key management

scheme for heterogeneous wireless IoT systems. Zhou

and Chao [28] proposed a media-aware traffic security

architecture for IoT. The common drawback of their work

is that they did not address the scalability issue.

Trust management for IoT is still in its infancy with

limited work reported in the literature to date. Chen et al.

[7] proposed a trust management model based on fuzzy

reputation for IoT. However, their trust management

model considers a specific IoT environment consisting of

only wireless sensors with QoS trust metrics only such as

packet forwarding/delivery ratio and energy consump-

tion, and does not take into account the social relationship

which is important in social IoT systems.

Bao and Chen [3, 4] proposed a trust management pro-

tocol considering both social trust and QoS trust metrics

and using both direct observations and indirect recom-

mendations to update trust. Their proposed trust man-

agement protocol considers a social IoT environment

where environment conditions are dynamically changing,

e.g., increasing misbehaving node population/activity,

changeable behavior, rapid membership changes, and

interaction pattern changes. To address the scalability

issue, Bao and Chen further proposed a scalable trust

management protocol [5] for large-scale IoT systems by

utilizing a scalable storage management strategy. Relative

to [3, 4, 5] this paper focuses on trust management for

SOA-based IoT systems with the following specific con-

tributions: (1) utilizing distributed collaborating filtering

[12, 38] to select trust feedback from nodes sharing similar

social interests; (2) applying the proposed trust manage-

ment to a SOA-based service composition application to

demonstrate its effectiveness; (3) developing a novel

adaptive filtering technique to dynamically adjust trust

parameter settings so as to minimize trust estimation bias

and maximize application performance; (4) validating the

proposed trust management and its application to service

composition through ns-3 simulation [41] based on real

trace data, and (5) demonstrating the superiority of our

adaptive IoT trust protocol design over EigenTrust [39]

and PeerTrust [40] in trust convergence, accuracy and

resiliency properties, as well as in service composition

application performance.
EigenTrust [39] is a reputation scheme for P2P sys-

tems. Its basic idea is to aggregate trust recommendations
towards a trustee node weighted by the trustor’s opinion
toward the recommenders. It is assumed that in a P2P
network, there are pre-trusted peers that can provide
trusted recommendations so as to guarantee trust conver-
gence and break up malicious collectives.

PeerTrust [40] is also a reputation system for P2P sys-

tems. Its basic idea is also to aggregate feedbacks

weighted by the recommender’s trustworthiness. It con-

siders more factors that affect a recommender’s trustwor-

thiness, including transaction context, community con-

text, and credibility in terms of the trust and personalized

similarity between the trustor and the recommender in

order to filter out distrusted feedbacks.

This paper extends from [33] by adding extensive sim-

ulation validation, surveying state-of-the art related work,

considering more sophisticated attacker model and ana-

lyzing the resiliency against these attacks, devising a

smart storage management strategy for capacity-limited

IoT devices for scalability with extensive analysis, ad-

dressing the best way to combine social similarity metrics

to evaluate raters for application performance maximiza-

tion, and adding a comparative performance analysis

with EigenTrust [39] and PeerTrust [40] in trust conver-

gence, accuracy and resiliency properties and in the ap-

plication performance of the service composition applica-

tion running on top of our adaptive IoT trust protocol in

SOA-based IoT systems.

3 SYSTEM MODEL

3.1 Social IoT Network Model

We consider a user-centric social IoT [2] environment

where nodes are physically connected via communication

networks and socially connected via users’ social net-

works (Figure 1). Each node has a unique address to iden-

tify (i.e., URI). There is no centralized trusted authority.

There are two types of nodes: devices and users (or own-

ers). The user-device relationship is a one-to-multiple

relationship. In our trust management, the trustor is a

user and the trustee is a device (owned by another user).

For each user, the trust evaluation information is comput-

ed and stored in a designated high-end device owned by

the user.
Trust is evaluated based on both direct user satisfac-

tion experiences of past interaction experiences and rec-
ommendations from others.

In particular, for recommendations from others, we

utilize the design concept of distributed collaborating

filtering [12, 38] to select trust feedback from nodes shar-

ing similar social interests. We consider the following

three social relationships: friendship, social contact, and

community of interest (CoI). More specifically, we use the

social relationships between the trustor and the recom-

mender for the trustor to weigh the recommendation

provided by the recommender toward a trustee. The rea-

son is that two users sharing similar social relationships

including friendship (representing intimacy), social con-

tact (representing closeness) and CoI (representing

knowledge and standard on the subject matter) are likely

to have similar subjective trust view towards services

provided by a trustee IoT device. A similar concept to the

social contact relationship is proposed in [20], where famil-

iar strangers are identified based on colocation infor-

mation in urban transport environments for media shar-

ing.

These social relationships are represented by three

lists: a friend list with current friends, a location list with

locations frequently visited for social contact, and a CoI

list with devices (services) directly interacted with. Each

user has at least one designated high-end device (i.e.,

smart phone and laptop) storing these lists in the user’s

profile (see Figure 2). Other devices of the same user have

the privilege to access the profile. By delegating the stor-

age and computation of social networks to a high-end

device for each user, many low-end devices (i.e., sensors)

are able to share and utilize the same social information

to maximize its performance. Energy spent for maintain-

ing the lists and executing matching operations is negligi-

ble because energy spent for computation is very small

compared with that for communication, and matching

operations to identity a friend, social contact, or a CoI

member are performed only when there is a change to the

lists.

In the physical networks, devices provide and/or con-

Figure 1: User-Centric Internet of Things Systems.

sume services utilizing SOAP-based techniques or REST-

ful APIs (see Section 2). Each time when device d1 re-

quests a service from device d2, d1 updates the user satis-

faction experience record (in the user satisfaction experience

list in Figure 2) towards d2 stored in the designated de-

vice of d1’s user. Similarly, d1 can query the trust infor-

mation (in the trust list in Figure 2) towards d2 from the

designated device of d1’s user. Note that elements in the

user interaction experience list correspond to devices in

the CoI list.

We consider a large IoT system in which a device with

limited storage space cannot accommodate the full set of

trust values towards all other devices. We address this

scalability issue with a storage management design.

In the context of SOA, an owner provides services via

its IoT devices. An IoT device providing a service will

have to compete with other IoT devices which provide a

similar type of service.

3.2 Attack Model

A malicious node in general can perform communica-
tion protocol attacks to disrupt network operations. We
assume such attack is handled by intrusion detection
techniques [18, 29, 34, 35] and is not addressed in this
paper. In the context of SOA, we are concerned with
trust-related attacks that can disrupt the trust system.
Bad-mouthing and ballot-stuffing attacks are the most
common forms of reputation attacks. Self-promoting and
opportunistic service attacks are the most common forms
of attacks based on self-interest [44-46]. Thus, a malicious
IoT device (because its owner is malicious) can perform
the following trust-related attacks:
1. Self-promoting attacks: it can promote its importance

(by providing good recommendations for itself) so as
to be selected as a SP, but then can provide bad or
malfunctioned service.

2. Bad-mouthing attacks: it can ruin the reputation of a
well-behaved device (by providing bad recommenda-
tions against it) so as to decrease the chance of that
good device being selected as a SP. This is a form of
collusion attacks, i.e., it can collaborate with other bad
nodes to ruin the reputation of a good node.

3. Ballot-stuffing attacks: it can boost the reputation of a

malicious node (by providing good recommendations)

so as to increase the chance of that bad device being

selected as a SP. This is a form of collusion attacks, i.e.,

it can collaborate with other bad nodes to boost the

reputation of each other.

4. Opportunistic service attacks: it can provide good ser-

vice to gain high reputation opportunistically especial-

ly when it senses its reputation is dropping because of

providing bad service. With good reputation, it can ef-

fectively collude with other bad node to perform bad-

mouthing and ballot-stuffing attacks.

A collaborative attack means that the malicious nodes

in the system boost their allies and focus on particular

victims in the system to victimize. Bad-mouthing and

ballot-stuffing attacks are a form of collaborative attacks

to the trust system to ruin the reputation of (and thus to

victimize) good nodes and to boost the reputation of ma-

licious nodes.

Table 1 summarizes the attack behavior of a malicious

node as a rater, depending on the nature of the trustor

and trustee nodes. If the trustor is non-malicious and the

trustee is malicious, a malicious rater will perform ballot-

stuffing attacks. If the trustor is non-malicious and the

trustee is also non-malicious, a malicious rater will per-

form bad-mouthing attacks.

Table 2 summarizes the attack behavior of a malicious

node as a SP, depending on the nature of the service re-

quester. If the service requester is non-malicious, a mali-

cious SP will perform both self-promoting and opportun-

istic service attacks. In particular, opportunistic service

attacks are to be performed depending on the current

reputation standing of the malicious SP itself.

4 TRUST MANAGEMENT PROTOCOL

Our adaptive IoT trust management protocol is dis-

tributed. Each user maintains its own trust assessment

towards devices. For scalability, a user just keeps its trust

evaluation results towards a limited set of devices of its

interests. Each user stores its profile in a designated high-

end device (Figure 2). The profile of user 𝑢𝑥 includes:

(1) A “friend” list including all friends of 𝑢𝑥, denoted by

Figure 2: User Profile.

Table 1: Behavior of a Malicious Rater.

Trustor Trustee Bad-

Mouthing

Ballot-

Stuffing

malicious malicious

malicious non-malicious

non-malicious malicious √

non-malicious non-malicious √

Table 2: Behavior of a Malicious Service Provider.

Service Requester Self-Promoting Opportunistic

Service

malicious

non-malicious √ √

a set 𝐹𝑥 = {𝑢𝑎, 𝑢𝑏 , … };

(2) Locations that 𝑢𝑥 frequently visited for social con-
tact, denoted by a set 𝑃𝑥 = {𝑝𝑥,1, 𝑝𝑥,2, … };

(3) List of devices that 𝑢𝑥 has directly interacted with

and the corresponding user satisfaction experience
values, denoted by set 𝐷𝑥 = {𝑑𝑖, 𝑑𝑗 , … } and set 𝐵𝑥 =

{(𝛼𝑥,𝑖, 𝛽𝑥,𝑖), (𝛼𝑥,𝑗, 𝛽𝑥,𝑗), … }, where 𝛼𝑥,𝑖 and 𝛽𝑥,𝑖 are the

accumulated positive and negative user satisfaction

experiences of user 𝑢𝑥 towards device 𝑑𝑖;
(4) Trust values of user 𝑢𝑥 towards IoT devices, denoted

by a set 𝑇𝑥 = {𝑡𝑥,𝑖, 𝑡𝑥,𝑗 , … }.

4.1 Direct Interaction Experiences

We adopt Bayesian framework [14] as the underlying

model for evaluating direct trust from direct user satisfac-

tion experiences. The reason we choose Bayesian because

it is well-established and because of its popularity in

trust/reputation systems. In service computing, a service

requester could rate a service provider after direct inter-

action based on nonfunctional characteristics. The non-

functional characteristics include user-observed response

time, failure probability, prices, etc. The current user sat-

isfaction experience of user 𝑢𝑥 toward device 𝑑𝑖 is repre-
sented by a value, 𝑓𝑥,𝑖 . We consider the simple case in

which the direct user satisfaction experience 𝑓𝑥,𝑖 is a bina-

ry value, with 1 indicating satisfied and 0 not satisfied.
Then, we can consider 𝑓𝑥,𝑖 as an outcome of a Bernoulli

trial with the probability of success parameter 𝜃𝑥,𝑖 follow-

ing a Beta distribution (a conjugate prior for the Bernoulli
distribution), i.e., Beta(𝛼𝑥,𝑖 , 𝛽𝑥,𝑖). Then, the posterior

p(𝜃𝑥,𝑖|𝑓𝑥,𝑖) has a Beta distribution as well. Equation 1

shows how the hyper parameters 𝛼𝑥,𝑖 and 𝛽𝑥,𝑖 are updated

considering trust decay. 𝛼𝑥,𝑖 = 𝑒−𝜑Δ𝑡 ∙ 𝛼𝑥,𝑖(𝑜𝑙𝑑)
+ 𝑓𝑥,𝑖 𝛽𝑥,𝑖 = 𝑒−𝜑Δ𝑡 ∙ 𝛽𝑥,𝑖(𝑜𝑙𝑑)
+ 1− 𝑓𝑥,𝑖 (1)

In Equation 1, 𝑓𝑥,𝑖 contributes to positive observations and

1− 𝑓𝑥,𝑖 contributes to negative observations. When updat-

ing 𝛼𝑥,𝑖 and 𝛽𝑥,𝑖 , we consider an exponential decay, 𝑒−𝜑Δ𝑡,
on 𝛼𝑥,𝑖(𝑜𝑙𝑑)

 and 𝛽𝑥,𝑖(𝑜𝑙𝑑)
, where 𝜑 is the decay factor which is

normally is a small number to model small trust decay

over time, and Δ𝑡 is the trust update interval.

The direct trust of user 𝑢𝑥 to device 𝑑𝑖, 𝑡𝑥,𝑖𝑑 , is calculat-

ed as the expected value of 𝜃𝑥,𝑖, i.e., 𝑡𝑥,𝑖𝑑 = 𝐸�𝜃𝑥,𝑖� =
𝛼𝑥,𝑖𝛼𝑥,𝑖 + 𝛽𝑥,𝑖 (2)

In the literature, 𝛼𝑥,𝑖 and 𝛽𝑥,𝑖 are often set to 1 initially

since no prior knowledge available. In this paper, we con-

sider the social relationships (if available) between 𝑢𝑥 and
the user of 𝑑𝑖 (say 𝑢𝑦) as the prior knowledge and set the

initial values of 𝛼𝑥,𝑖 and 𝛽𝑥,𝑖 to 𝑠𝑠𝑠(𝑢𝑥 ,𝑢𝑦) and 1−𝑠𝑠𝑠(𝑢𝑥 , 𝑢𝑦), respectively, where 𝑠𝑠𝑠(𝑢𝑥 ,𝑢𝑦) is the similar-

ity between 𝑢𝑥 and 𝑢𝑦 characterizing their social connec-

tion. This is discussed below.

4.2 Recommendations

When the devices of two users have direct interac-

tions, they can exchange their profiles and provide trust

recommendations. In addition, a device can also aggres-

sively request trust recommendations from another de-

vice belonging to a friend when necessary. To preserve

privacy, one can use a hash function (with session key) to

prevent the identities of uncommon friends/devices from

being revealed.

We utilize the design concept of distributed collabo-

rating filtering [12, 38] to select trust feedback from nodes

sharing similar social interests. A node will first measure

its “social similarity” with a recommender in friendship,

social contact (representing physical proximity) and CoI

(representing knowledge on the subject matter) and then

decide if the recommendation is trustable. The reason we

consider these metrics is that these metrics are core social

metrics for measuring social relationships which are mul-

tifaceted [43]. We adopt cosine similarity to measure the

distance of two social relationship lists (see Figure 2),

with 1 representing complete similarity and 0 represent-

ing no similarity. Computational efficiency is the main

reason why we choose cosine similarity to measure the

similarity of two vectors in high-dimensional positive

spaces because of limited computational capacity of IoT

devices. In this paper we further introduce a new design

concept called application performance maximization by

which the best weights assigned to the three similarity

metrics are identified to optimize application perfor-

mance, when given a node population characterized by

friendship, social connection, and community of interest

relationships as input. Later in Section 6 we will deal with

the subject of the effect of social similarity in friendship,

social connection, and community of interest on applica-

tion performance and identify the best way of combining

these metrics to maximize the service composition appli-

cation performance.

We describe how these social similarity measures may

be estimated dynamically as follows:

• Friendship Similarity (𝑠𝑠𝑠𝑓): The friendship similari-

ty is a powerful social relationship (intimacy) for

screening recommendations. After two users 𝑢𝑥 and 𝑢𝑦 exchange their friend lists, 𝐹𝑥 and 𝐹𝑦 , they could

compute two binary vectors, 𝑉𝐹𝑥������⃗ and 𝑉𝐹𝑦������⃗ , each with

size �𝐹𝑥 ∪ 𝐹𝑦�. An element in 𝑉𝐹𝑥������⃗ (or 𝑉𝐹𝑦������⃗) will be 1 if the

corresponding user is in 𝐹𝑥 (or 𝐹𝑦), otherwise 0. Let �𝐴� be the norm of vector 𝐴 and |𝐵| be the cardinality

of set 𝐵. Then, we could use the “cosine similarity” of 𝑉𝐹𝑥������⃗ and 𝑉𝐹𝑦������⃗ (giving the cosine of the angle between

them) to compute 𝑠𝑠𝑠𝑓 as follows: 𝑠𝑠𝑠𝑓�𝑢𝑥 ,𝑢𝑦� =
𝑉𝐹𝑥������⃗ ∙ 𝑉𝐹𝑦�������⃗�𝑉𝐹𝑥������⃗ ��𝑉𝐹𝑦�������⃗ � =

�𝐹𝑥 ∩ 𝐹𝑦��|𝐹𝑥| ∙ �𝐹𝑦� (3)

• Social Contact Similarity (𝑠𝑠𝑠𝑙): The social contact

similarity presents closeness and is an indication if

two nodes have the same physical contacts and thus

the same sentiment towards devices which provide

the same service. The operational area could be parti-

tioned into sub-grids. User 𝑢𝑥 records the IDs of sub-

grids it has visited in its location list 𝑃𝑥 for social con-
tact. After two users 𝑢𝑥 and 𝑢𝑦 exchange their location

lists, 𝑃𝑥 and 𝑃𝑦 , they could compute 𝑠𝑠𝑠𝑙 in the same

way of computing 𝑠𝑠𝑠𝑓 as follows: 𝑠𝑠𝑠𝑙�𝑢𝑥 , 𝑢𝑦� =
�𝑃𝑥 ∩ 𝑃𝑦��|𝑃𝑥| ∙ �𝑃𝑦� (4)

• Community of Interest Similarity (𝑠𝑠𝑠𝑐): Two users

in the same COI share similar social interests and most

likely have common knowledge and standard toward

a service provided by the same device. Also very like-

ly two users who have used services provided by the

same IoT device can form a CoI (or are in the same
CoI). After two users 𝑢𝑥 and 𝑢𝑦 exchange their device

lists, 𝐷𝑥 and 𝐷𝑦, they could compute 𝑠𝑠𝑠𝑐 in the same

way of computing 𝑠𝑠𝑠𝑓 as follows: 𝑠𝑠𝑠𝑐�𝑢𝑥 , 𝑢𝑦� =
�𝐷𝑥 ∩ 𝐷𝑦��|𝐷𝑥| ∙ �𝐷𝑦� (5)

The social similarity between two users can be a

weighted combination of all social similarity metrics, i.e.,

friendship, social contact, and community of interest,

considered in this paper: 𝑠𝑠𝑠�𝑢𝑥 ,𝑢𝑦� = � 𝑤𝑣 ∙ 𝑠𝑠𝑠𝑣�𝑢𝑥 , 𝑢𝑦�𝑣∈{𝑓,𝑙,𝑐}

 (6)

where 𝑤𝑓 + 𝑤𝑙 +𝑤𝑐 = 1 and 0 ≤ 𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐 ≤ 1. Each user

can send trust recommendations request to its friends

periodically (in every Δ𝑡 interval) or before requesting a

service. Upon receiving recommendations, user 𝑢𝑥 selects

top-k recommendations from k users with the highest

similarity values with 𝑢𝑥 and calculates the indirect trust
(𝑡𝑥,𝑖𝑟) towards device 𝑑𝑖 as follows: 𝑡𝑥,𝑖𝑟 = � 𝑠𝑠𝑠�𝑢𝑥 , 𝑢𝑦�∑ 𝑠𝑠𝑠(𝑢𝑥 , 𝑢𝑦)𝑢𝑦∈𝑈 · 𝑡𝑦,𝑖𝑑𝑢𝑦∈𝑈 (7)

Here, 𝑈 is a set of up to k users whose 𝑠𝑠𝑠(𝑢𝑥 , 𝑢𝑦) val-

ues are the highest, and 𝑡𝑦,𝑖𝑑 is the direct trust of user 𝑢𝑦

toward device 𝑑𝑖 serving as 𝑢𝑦′𝑠 recommendation toward 𝑑𝑖 provided to 𝑢𝑥 . Each recommendation is weighted by

the ratio of the similarity score of the recommender to the

sum of the similarity scores of all recommenders. We also

note that if 𝑢𝑦 is malicious, then it can provide 𝑡𝑦,𝑖𝑑 =0

against a good device for bad-mouthing attacks, and 𝑡𝑦,𝑖𝑑 =1 for a bad node for ballot-stuffing attacks.

4.3 Adaptive Control of the Weight Parameter

The trust value of user 𝑢𝑥 toward 𝑑𝑖 is denoted as 𝑡𝑥,𝑖
and is obtained by combining direct trust and indirect

recommendations (if available) as follows, 𝑡𝑥,𝑖 = 𝜇 ∙ 𝑡𝑥,𝑖𝑑 + (1 − 𝜇) ∙ 𝑡𝑥,𝑖𝑟 (8)

Here, 𝜇 is a weight parameter (0 ≤ 𝜇 ≤ 1) to weigh the

importance of direct trust relative to indirect trust feed-

back. The selection of 𝜇 is critical to trust evaluation. A

contribution of the paper is that we propose a method

based on adaptive filtering [12] to adjust 𝜇 dynamically in

order to effectively cope with malicious attacks including

self-promoting, bad-mouthing, ballot-stuffing, and oppor-

tunistic attacks and to improve trust evaluation perfor-

mance. The basic design principle is that a successful trust

management protocol should provide high trust toward

devices who have more positive user satisfaction experi-

ences and, conversely, low trust toward those with more

negative user satisfaction experiences. Specifically, the
current trust evaluation (i.e., 𝑡𝑥,𝑖(𝜇) as a function of 𝜇)

should be as close to the average user satisfaction experi-

ences observed over the last trust update window Δ𝑡 as

possible. Therefore, we formulate the selection of 𝜇 as an

optimization problem as follows:

Find: 𝜇, 0 ≤ 𝜇 ≤ 1

Minimize: MSE(𝜇) = ∑ �𝑡𝑥,𝑖(𝜇)− 𝑓𝑥,𝚤(𝑛𝑒𝑤)���������2𝑖

(9)

Here, 𝑡𝑥,𝑖(𝜇) is obtained from Equation 8 using past direct

user satisfaction experiences and indirect trust feedback,

and 𝑓𝑥,𝚤(𝑛𝑒𝑤)��������
 is the most recent direct user satisfaction expe-

riences observed by user 𝑢𝑥 within the last trust update

interval Δ𝑡. The objective can be achieved by minimizing

the mean square error (MSE) of trust evaluations against

actual user satisfaction experiences towards all applicable

devices, such that the trust value could be a good indica-

tor or predictor for quality of service (with direct user

satisfaction experiences considered as ground truth). Af-

ter user 𝑢𝑥 obtains new user satisfaction experiences over Δ𝑡, it can compute the average user satisfaction experi-

ence value 𝑓𝑥,𝚤(𝑛𝑒𝑤)��������
 and update 𝜇 by minimizing MSE in

Equation 9. The optimization problem in Equation 9 can
be solved by plugging 𝑡𝑥,𝑖(𝜇) in Equation 8 into Equation

9 and minimizing MSE(𝜇) as follows:

MSE(𝜇) = ��𝜇 ∙ 𝑡𝑥,𝑖𝑑 + (1 − 𝜇) ∙ 𝑡𝑥,𝑖𝑟 − 𝑓𝑥,𝚤(𝑛𝑒𝑤)���������2𝑖
(10)

The minimum value of MSE(𝜇) is obtained at the point

where the derivative is zero, i.e., MSE′(𝜇�) = 0. Thus, 𝜇� is

obtained as follows,

𝜇� =
∑ �𝑓𝑥,𝚤(𝑛𝑒𝑤)�������� − 𝑡𝑥,𝑖𝑟 � �𝑡𝑥,𝑖𝑑 − 𝑡𝑥,𝑖𝑟 �𝑖 ∑ �𝑡𝑥,𝑖𝑑 − 𝑡𝑥,𝑖𝑟 �2𝑖 (11)

The optimal value of 𝜇 (i.e., 𝜇̂) should be in the range

of [0, 1] because it is a weight parameter. Therefore, 𝜇̂ = �0 𝜇� < 0𝜇� 0 ≤ 𝜇� ≤ 1

1 𝜇� > 1
 (12)

Each user computes its own optimal value of 𝜇 (i.e., 𝜇̂)

and updates it dynamically in every trust update time

interval Δ𝑡, based on Equations 11 and 12, using the his-

torical data collected in its storage, so there is essentially

no extra overhead. This adaptive design is applicable to

other trust parameters (i.e., 𝜑 and (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐)) as well.

However, introducing these trust parameters in Equation

9 leads to a more complex optimization problem and may

not be feasible for IoT devices with limited resources. In

this paper we focus on adaptive control of 𝜇 and leave

adaptive control of other trust parameters as future work.

Here we note that our dynamic weight adjustment

scheme is driven by minimizing the difference between
the subjective trust 𝑡𝑥,𝑖(𝜇) as a result of following the trust

aggregation protocol in Equation 8, and the new user sat-

isfaction experience 𝑓𝑥,𝚤(𝑛𝑒𝑤)��������
 obtained in the last trust up-

date interval Δ𝑡. If 𝑑𝑖 is a malicious node and it retains

high reputation either because it performs opportunistic

service attacks to gain high reputation, or because other

nodes provide ballot-stuffing attacks to boost its reputa-

tion, then our trust system will be temporarily deceived

of its true status because the difference between these two

quantities will be small. However, the moment 𝑑𝑖 per-

forms self-promoting attacks and provides bad service to

user 𝑢𝑥, this bad user experience will be immediately ob-

served by user 𝑢𝑥 and, as a result, the difference between

these two quantities will be large enough to drive the

change of 𝜇 to minimize MSE(𝜇) in Equation 10. It is

noteworthy that 𝜇 is dynamically adjusted based on min-

imizing the sum of the differences of all devices observed

by user 𝑢𝑥 over Δ𝑡, so adjusting 𝜇 to minimize

MSE(𝜇) moves toward the right direction of minimizing

the difference between “the subjective trust” vs. “what

service quality is actually provided” for all devices with

which user 𝑢𝑥 has interaction experiences over Δ𝑡.
4.4 Storage Management for Small IoT Devices

Considering a large-scale IoT system in which each

node has limited storage space to keep direct user satis-

faction experiences and trust values of a small set of

nodes with which it shares interests. A node has to decide

which trust values to keep. In general, nodes are more

interested in others with higher trust values. However,

simply saving the trust values towards the most trustwor-

thy nodes cannot make the trust evaluation process con-

verge and is not adaptive to dynamic environments since

there is little chance to accumulate trust towards newly

joining nodes. Our storage management strategy consid-

ers nodes with the highest trust values and recent inter-

acting nodes as these nodes are most likely to share com-

mon interests.

Figure 3 illustrates how our approach works concep-

tualizing the storage size of each node as n (meaning that

there is space to save trust values of up to n nodes). When

a slot is needed, for a node’s trust value to be kept it must

be in the top Ω of the n trust values, or this node is one of

the most recent interacting nodes. We consider Ω = 50% in

this paper and the selection of optimal Ω value in dynam-

ic IoT systems can be solved using the same adaptive con-

trol in Section 4.3.

When node i obtains the trust value towards node j, if

the storage space is not full or node i does have the trust

information of node j in its storage space, then node i will

simply save the trust value towards node j. If the storage

space is full and node i does not have the trust infor-

mation of node j in its storage space, node i will put the

trust value towards node j and pop out the trust value

towards the earliest interacting node among those with

trust values below the median (Ω = 50%). By using a max-

min-median heap, find medium, maximum or minimum

operations can be performed in O(1) constant time, while

all others operations (find, insert and delete) can be per-

formed in O(log n) logarithmic time.

5 TRUST PROTOCOL PERFORMANCE

In this section, we report simulation results obtained

as a result of executing our proposed autonomous trust

management protocol by IoT devices. We choose ns-3 [41,

42] as the simulator as it emerges as the de facto standard

open simulation platform for networking research; it is a

discrete-event network simulator, targeted primarily for

research and educational use.

The focus in this Section is to demonstrate our proto-

col’s desirable convergence and accuracy properties, as

well as its resiliency property against malicious attacks. In

Section 6, we will apply it to service composition and

compare its performance against the baseline trust man-

agement schemes.

Our simulation results have three parts. First, we

demonstrate trust convergence, accuracy and resiliency

properties of our adaptive IoT trust protocol design

against malicious attacks. We then demonstrate the effec-

tiveness of our storage management protocol design for

IoT devices with limited storage space. Lastly, we per-

form a comparative analysis of our adaptive IoT trust

protocol against two baseline schemes: EigenTrust [39]

and PeerTrust [40].

Table 3 lists the default parameter values. We consider

an IoT environment with NT = 400 heterogeneous smart

objects/devices. These IoT devices are randomly as-

signed to N = 40 users. Users are connected in a social

network represented by a friendship matrix [17]. We con-

sider these users moving according to the SWIM mobility

Table 3: Parameter List and Default Values Used.

parameter value parameter value parameter value

NT 400 m×m 16×16 T 200hrs

N 40 PM 30% 𝜑 0.001 𝛺 Δ𝑡 50%

2hrs

σc 0.01 𝜆 1/day

node b

……

node j

……

trust value b

……

trust value j

……

node a trust value a

node b

……

empty

trust value b

……

empty

node a trust value a

……

node k

……

……

trust value k

……

node a trust value a

node h trust value h

node z trust value z

node j trust value j node j trust value j

updateinsert

node j trust value j

pop insert

(a) Storage space is not full. (b) Node j’s trust value exists. (c) Otherwise (pop k and insert j).

Figure 3: Storage Management for Small IoT Devices.

model [15] modeling human social behaviors in an

m×m=16×16 operational region for the purpose of as-

sessing the social contact similarity metric between any

pair of users. Direct trust of node i toward node j is as-

sessed upon completion of a service request from node i

to node j. Each node requests services from a selected

device with a time interval following an exponential dis-

tribution with parameter 𝜆, with 1/day being the default

unless otherwise specified. The trust update interval Δ𝑡 is

2 hours at which time if there is no direct trust update

due to service request and completion, direct trust will be

decayed according to Equation 1. Indirect trust is always

updated in every Δ𝑡 interval according to Equation 7. The

system runs continuously although we often can observe

trust convergence in less than 200 hours, given that bad

nodes follow the attack behaviors specified in Section 3.2.

The user satisfaction levels of service invocations are

generated based on a real dataset [27] and are used as

“ground truth” based on which the accuracy of our trust

protocol is assessed. As the direct trust of user 𝑢𝑥 toward

device/service provider 𝑑𝑖 (i.e., 𝑡𝑥,𝑖𝑑) is calculated by Equa-

tion 1 with “ground truth” user satisfaction experiences

as input, 𝑡𝑥,𝑖𝑑 essentially is equal to ground truth. Howev-

er, we account for the presence of noise in the IoT envi-

ronment (i.e., error of assessing user satisfaction level

received) by considering a standard deviation parameter

σc (set to 1% as default) to reflect the deviation of the ac-

tual user satisfaction level as recorded in the database

from the direct trust evaluation outcome in terms of 𝑡𝑥,𝑖𝑑 .

Initially, 𝑡𝑥,𝑖 is set to 0.5 (ignorance) by user 𝑢𝑥 for all

i’s. Then, trust is updated dynamically as nodes encoun-

ter each other, as services are requested and rendered,
and as trust feedback are acquired. We consider 𝑤𝑓 =𝑤𝑙 = 𝑤𝑐 = 1/3 (in Equation 6) as we assess the conver-

gence and accuracy properties of our trust protocol in this

section. Later in Section 6 we will identify the best weight
assignment (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐) for social similarity computation

for the service composition application.

We test the resiliency of our trust protocol against ma-

licious node behavior (i.e., performing self-promotion,

bad-mouthing and ballot-stuffing attacks) by randomly

selecting a percentage PM out of all as dishonest malicious

nodes with PM=30% as the default. A normal or good

node follows the execution of our trust management pro-

tocol faithfully, while a malicious node provides false

trust feedback by means of ballot-stuffing, bad-mouthing,

and self-promoting attacks to gain advantage.

5.1 Trust Convergence, Accuracy and Resiliency
against Malicious Attacks

In this section, we examine the trust convergence, ac-

curacy and resiliency properties of our adaptive IoT trust

protocol design. We first compare static control (i.e., 𝜇 is

fixed at a constant) vs. adaptive control (i.e., 𝜇 is changed

dynamically based on Equation 12).

Figure 4 shows trust evaluation results for a trustor

node toward a “good” trustee node randomly picked. We

see that trust convergence behavior is observed for either

fixed or adaptive control. There is a tradeoff between

convergence time vs. trust bias. With static control, when

a higher 𝜇 value is used, the trust convergence time is

longer, but the trust bias is smaller, i.e., the trust value is

closer to ground truth after convergence. With adaptive

control, on the other hand, the trustor node is able to ad-

just 𝜇 dynamically to minimize both the convergence time

and the trust bias after convergence. Here we note that

the trust value of a “good” trustee is not 1 because we use

the user satisfaction levels of service invocations based on

a real dataset [27] with a standard deviation parameter σc

(set to 1% as default) reflecting the deviation of the actual

user satisfaction level recorded in the database from the

direct trust evaluation outcome.

An interesting observation in Figure 4 is that if 𝜇 is too

small (e.g., 0.2) the trust value is over-estimated upon

convergence, which is not a desirable outcome as trust

overshoot is considered a bad property detrimental to the

stability of a trust system [36]. Our adaptive protocol dy-

namically adjusts 𝜇 for fast convergence without incur-

ring trust overshoot.

Figure 4 is for the case in which the percentage of ma-

licious nodes PM = 30%. We conduct experiments to test

the residency of our trust protocol against increasing ma-

licious node population. Figure 5 shows that as the popu-

lation of malicious nodes increases, both the convergence

time and trust bias increase. However, the system is

found to be resilient to malicious attacks for PM as high as

40%, with proper convergence and accuracy behaviors

Figure 4: Trust Value of a Good Node with PM = 30%.

Figure 5: Trust Value of a Good Node under Adaptive Control with PM

ranging from 20% to 50%.

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

Time (hours)

T
ru

s
t

v
a
lu

e

P
M
=30%

Ground truth

Adaptive IoT Trust

Static Trust µ=0.2

Static Trust µ=0.5

Static Trust µ=0.8

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time (hours)

T
ru

s
t
v
a
lu

e

Ground truth

Adaptive IoT Trust P
M
=20%

Adaptive IoT Trust P
M
=30%

Adaptive IoT Trust P
M
=40%

Adaptive IoT Trust P
M
=50%

exhibited. In general we observe that the trust bias is min-

imum, e.g., < 5% when PM ≤ 40% and the trust bias be-

comes more significant, e.g., > 10% when PM ≥ 50%. This

demonstrates the resiliency property of our trust protocol

against malicious attacks.

Correspondingly, Figure 6 shows how our trust-based

adaptive control protocol adjusts 𝜇 in Equation 12 in re-

sponse to increasing malicious node population.

We observe that as the malicious node population in-

creases, the system will have to rely more on direct trust

by increasing 𝜇 and conversely rely less on indirect trust

by decreasing 1 − 𝜇 so as to mitigate the effect of bad-

mouthing and ballot-stuffing attacks by malicious nodes.

Figure 6 shows that when PM = 20%, the optimal con-

verged 𝜇 value is 0.78, while when PM = 50%, the optimal

converged 𝜇 value is 0.90. This follows the design princi-

ple of “go up slowly, reduce quickly,” that is, when a

node acts maliciously, its trust value should reduce quick-

ly, and when a node acts cooperatively, its trust should

just go up slowly. When a node is being observed mali-

ciously, its trust value will be reduced quickly because in

this case a high 𝜇 value will be used by our trust protocol

and a high 𝜇 value means that the trust value of the mali-

cious node will be very close to direct trust which is low

as the node is being observed maliciously. Conversely,

when a node is being observed cooperatively, its trust

value will just go up slowly because in this case a low 𝜇

value will be used by our adaptive protocol and a low 𝜇

value means that both direct trust and indirect trust will

contribute to the overall trust based on Equation 8. Alt-

hough in this case, the direct trust observed is high as the

node is being observed cooperatively, it will only increase

the overall trust value slowly by a weight of 𝜇, with the

indirect trust contributing to the overall trust by a weight

of 1 − 𝜇. The system cannot rely on direct trust 100% be-

cause malicious nodes can perform opportunistic service

attacks and there is an error of assessing direct trust due

to noise in the environment. Figure 6 demonstrates that

our adaptive control mechanism is effective in terms of

convergence of 𝜇 to its optimal value under which trust

bias is minimized.

Figure 7 shows trust evaluation results for a trustor

node toward a “bad” trustee node. Among all attacks, the

bad node performs opportunistic service attacks with the

high trust threshold being 0.7 and the low trust threshold

being 0.5. Specifically, the bad node provides good ser-

vice to gain high reputation opportunistically when it

senses its reputation drops below 0.5. Once it reputation

rises to 0.7, it provides bad service again. We see from

Figure 7 that our adaptive trust protocol is able to accu-

rately track the trust fluctuation of the bad node perform-

ing opportunistic service attacks. We observe that the rate

of trust fluctuation is higher when PM is higher because

more malicious nodes can collude to quickly bring the

trust level of the bad node to 0.7.

The effect of the decay parameter 𝜑 is analyzed in

Figure 8. A smaller 𝜑 means a slower trust decay rate

with 𝜑=0 meaning no trust decay. We choose 𝜑=0.001 to

achieve the desirable convergence behavior. We see that

as 𝜑 increases, it takes longer to achieve trust conver-

gence. This is because a good node remains good for its

lifetime so a larger trust decay rate requires a good node

to become more socially and service active over time in

order to regain its trust status. In this case, we see that 𝜑=0 produces the fastest convergence rate. This is not

necessarily true for cases in which a good node may be

compromised dynamically for which 𝜑>0 may become

the best setting. The determination of the optimal 𝜑 to

trade convergence with accuracy as dictated by environ-

ment conditions is a future research area.

5.2 Trust Evaluation with Limited Storage Space

The results presented in Section 5.1 are based on the

assumption that each node has sufficient storage to save

trust values of all nodes. In this section, we consider a

more realistic scenario in which many small IoT devices

Figure 6: Adjustment of 𝝁 against Increasing Malicious Node Population.

Figure 7: Trust Value of a Bad Node under Adaptive Control with PM

ranging from 20% to 50%.

 Figure 8: Effect of Decay Parameter on Trust Convergence.

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

Time (hours)

µ

Adaptive IoT Trust P
M
=50%

Adaptive IoT Trust P
M
=40%

Adaptive IoT Trust P
M
=30%

Adaptive IoT Trust P
M
=20%

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

Time (hours)

T
ru

s
t

v
a
lu

e

Adaptive IOT Trust P
M

=20%

Adaptive IOT Trust P
M

=30%

Adaptive IOT Trust P
M

=40%

Adaptive IOT Trust P
M

=50%

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

Time (hours)

T
ru

s
t
v
a
lu

e

P
M
=30%

Ground truth

φ =0

φ =0.001

φ =0.01

φ =0.1

only have a limited storage space. A trustor node in this

case would run the trust storage management strategy

described in Section 4.4 to store trust values considered

important to the node.

Figure 9 compares the trust value obtained by a trus-

tor node toward a good trustee node randomly picked,

when PM = 30% and each node has 10%, 50% or 100%

space to accommodate all trust values. We first note that

the curve labeled with “adaptive trust-based 100% stor-

age” in Figure 9 is the same as the curve labeled with

“adaptive trust-based” in Figure 4. We observe that the

convergence time and trust bias after convergence are

comparable for the 10% and 50% storage cases and they

don’t deviate much from those for the 100% storage case.

This demonstrates the effectiveness of our management

strategy for limited storage. We attribute this to its ability

to function like a filter, thus excluding highly deviated

trust feedback coming from untrustworthy nodes to

shield the system from false recommendation attacks.

Lastly, we examine the effect of our management strat-

egy for limited storage on hit ratio. We define the “top-m

hit ratio” as the percentage of the top-m most trustworthy

nodes having their trust values stored in the limited n

slots. Figure 10 shows the top-20 hit ratio as a function of

time for a randomly selected node. We can see that initial-

ly the hit ratio is zero because there is no trust infor-

mation stored for any node. As the trust value converges,

the hit ratio quickly increases and approaches its peak.

We see that the maximum achievable hit ratios are 90%,

85%, 75% and 50% under 100%, 50%, 10% and 5% storage

spaces, respectively. Even with as little storage space as

10%, the hit ratio only deteriorates from 90% to 75%. This

again demonstrates the effectiveness and high space utili-

zation of our management strategy for limited storage.

5.3 Comparative Analysis

Figure 11 shows head-to-head performance compari-

son data of our adaptive IoT trust protocol against two

baseline schemes, EigenTrust [39] and PeerTrust [40], for

the trust evaluation of a good node randomly selected.

The environment conditions are setup the same way as in

Figure 4 with PM=30%. We see that while all protocols

converge at about the same rate, our protocol achieves

accuracy but EigenTrust and PeerTrust both suffer inac-

curacy. Figure 12 shows the corresponding 3-dimensional

view with PM varying in the range of 20% to 40%. We see

that the trust bias gap (difference to ground truth) for

EigenTrust and PeerTrust widens as PM increases, while it

remains minimum for our adaptive IoT trust protocol

against increasing malicious node population. This

demonstrates the resiliency property of our trust protocol

against malicious attacks. We attribute the superiority of

our adaptive IoT trust protocol over EigenTrust and

PeerTrust to our protocol’s adaptability to adjust the best

trust parameter (𝜇) dynamically to achieve trust accuracy

despite the presence of a high percentage of malicious

nodes performing opportunistic service attacks to boost

their own reputation scores opportunistically and collud-

ing (via bad-mouthing attacks) to ruin the reputation of

this good node.

 Figure 9: Adaptive Control with Limited Storage.

Figure 10: Hit Ratio with Limited Storage.

Figure 11: Performance Comparison of Trust Convergence, Accuracy

and Resiliency when PM=30%.

Figure 12: Performance Comparison of Trust Convergence, Accuracy

and Resiliency in 3-D View with PM ranging from 20% to 40%.

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

Time (hours)

T
ru

s
t
v
a
lu

e

P
M
=30%

Ground truth

Adaptive IoT Trust 10% storage

Adaptive IoT Trust 50% storage

Adaptive IoT Trust 100% storage

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Time (hours)

H
it
 r

a
ti
o

P
M
=30%

Adaptive IoT Trust 100% storage

Adaptive IoT Trust 50% storage

Adaptive IoT Trust 10% storage

Adaptive IoT Trust 5% storage

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time (hours)

T
ru

s
t
v
a
lu

e

P
M
=30%

Ground truth

Adaptive IoT Trust

EigenTrust

PeerTrust

6 TRUST-BASED SERVICE COMPOSITION

In this section, we apply our trust management to a

trust-based service composition application in SOA-based

IoT systems. In SOA, service composition can be classified

as static, semi-automatic, and automatic. Service composi-

tion methods include workflow composition, AI plan-

ning, etc. [23]. Dynamic service composition could be-

come a complex planning problem. In this paper, we con-

sider a template-based semi-automatic service composi-

tion application for which a template (or a workflow) de-

scribes the data flow and logic of a composite service.

Figure 13 shows an example for travel planning. There

are 9 atomic services connected by three types of work-

flow structures in this example, namely, sequential, parallel

(AND), and selection (OR). Each service would have mul-

tiple SP candidates.

We use the “true” user satisfaction levels received

from the SPs selected for the service composition applica-

tion to derive the overall user satisfaction level, called the

utility score, to evaluate the performance of service com-

position. The utility score of a candidate service composi-

tion is calculated recursively. Specifically, the utility score

of a composite service (whose utility score is 𝑢𝑠𝑠) com-

prising two subservices (whose utility scores are 𝑢𝑠1 and 𝑢𝑠2) depends on the structure connecting the two sub-

services as follows:

• Sequential Structure: 𝑢𝑠𝑠 = 𝑢𝑠1 × 𝑢𝑠2;

• Selection Structure: 𝑢𝑠𝑠 = max (𝑢𝑠1, 𝑢𝑠2);

• Parallel Structure: 𝑢𝑠𝑠 = 1 − (1 − 𝑢𝑠1) × (1− 𝑢𝑠2).

We also use the percentage of malicious nodes select-

ed as SPs for providing the travel service as an additional

performance metric. For trust-based service composition, the

goal is to select service providers based on trust evalua-

tion such that the composite service utility score is the

best. We compare the performance of trust-based service

composition with two baseline approaches:

1. Ideal service composition which returns the maximum

achievable utility score derived from ground truth or

global knowledge.

2. Random service composition which randomly selects

service providers for service composition without re-

gard to trust.

We differentiate two types of service composition ap-

plications: without constraints and with constraints, i.e., a

budget limit for travel planning. In both scenarios, we

compare the performance of trust-based service composition

running on top of our adaptive IoT trust protocol against

that running on top of EigenTrust and PeerTrust.

6.1 Service Composition without Constraints

In trust-based service composition without constraints, the

SR selects the SP with the highest trust value for each re-

quired service.

Figure 14 shows the ns-3 simulation results with

PM=30%. We observe that trust-based service composition

with our adaptive IoT trust protocol significantly outper-

forms random service composition and upon conver-

gence approaches the performance of ideal service com-

position based on ground truth. Further, our adaptive IoT

trust protocol outperforms EigenTrust and PeerTrust as

the underlying trust protocol for trust-based service com-

position. In addition, we also observe that the perfor-

mance gap widens as PM increases.

Figure 15 shows the percentage of bad nodes selected

for service composition without service constraints. Our

adaptive IoT trust protocol again outperforms both Ei-

genTrust and PeerTrust with EigenTrust slightly perform-

ing better than PeerTrust.

car

rental

public

transportation
taxi

airline

attractions restaurant

shuttle

airline

hotel

or

and

Figure 13: A Service Composition Example (Travel Planning).

Figure 14: Utility of Service Composition without Constraints.

Figure 15: Probability of a bad SP being selected for Service Composi-

tion without Constraints.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

Time (hours)

U
til

ity

P
M
=30%

Ideal
Adaptive IoT Trust

EigenTrust
PeerTrust
Random

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (hours)

P
 o

f
a
 b

a
d

 S
P

P
M
=30%

Adaptive IoT Trust

EigenTrust

PeerTrust

We attribute the superiority of Adaptive IoT Trust

over EigenTrust and PeerTrust to our protocol’s adapta-

bility to adjust the best trust parameter (𝜇) dynamically to

minimize trust bias, and, consequently, maximize the

performance of the service composition application.

6.2 Service Composition with Constraints

One example of service constraints is budget limit.
Simply selecting the most trustworthy SPs may lead to
infeasible solutions. Suppose that each SP announces its
price when publishing the service and the SR has a budg-
et limit for service composition. In trust-based service com-
position with constraints, the SR calculates the overall utili-
ty score and the overall price for each candidate configu-
ration, using the trust value it has toward a SP to predict
the utility score for that SP, and selects the configuration
with the highest utility score among those with the over-

all price below the budget limit.

Figure 16 shows the ns-3 simulation results with

PM=30%. We first observe that the utility scores are lower

than those without budget constraints since good service

providers may post high price, thus preventing them

from being included. We again observe that the trend is

similar to Figures 14 in terms of performance ranking,

with trust-based service composition with our adaptive IoT

trust protocol outperforming that with either EigenTrust

or PeerTrust. Figure 17 shows the percentage of bad

nodes selected for service composition with budget limit

constraints. Our adaptive IoT trust protocol again outper-

forms both EigenTrust and PeerTrust by a significant

margin nearly cut in half in the percentage of bad nodes

selected for service composition. We again attribute the

superiority of our protocol over EigenTrust and PeerTrust

to our protocol’s adaptability in response to a high per-

centage of nodes performing malicious attacks.

6.3 Effects of Social Similarity on Trust Feedback

So far we have assumed 𝑤𝑓 = 𝑤𝑙 = 𝑤𝑐 = 1/3 (in Equa-

tion 6) for computing social similarity, considering there

is an equal contribution from friendship, social contact,

and CoI. However, in some application environments

(say remote travel agent service) in which nodes that are

friends or in the same CoI may be more credible than

nodes that are co-located in providing trust feedback,

while in another environment (say local restaurant ser-

vice), it is the other way around. So there is an optimal
weight assignment (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐) that can provide the most

credible trust feedback. In this section, we examine the
effect of (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐) on protocol performance with the ser-

vice composition application with constraints as our test

case.

Figure 18 shows the simulation results of the MSE of

the difference between the utility obtainable under trust-

based service composition and the ideally achievable util-
ity for the service composition application vs. (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐).
Note that 𝑤𝑐=1 − 𝑤𝑓 − 𝑤𝑙 and is not shown in the 3-D

diagram. One can see clearly from Figure 18 that there
exists an optimal weight assignment (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐) =

(0.9, 0.0, 0.1) under which MSE is minimized, i.e., the

utility obtainable via trust-based service composition is

closest to the ideally achievable utility with perfect global

 Figure 16: Utility of Service Composition with Constraints.

Figure 17: Probability of a bad SP being selected for Service Composition

with Constraints.

Figure 18: Mean Square Error of Utility Difference vs. (𝒘𝒇,𝒘𝒍,𝒘𝒄).

0 100 200 300 400
0

0.2

0.4

0.6

0.8

Time (hours)

U
ti
lit

y

P
M
=30%

Ideal
Adaptive IoT Trust

EigenTrust
PeerTrust
Random

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (hours)

P
 o

f
a
 b

a
d

 S
P

P
M
=30%

Adaptive IoT Trust

EigenTrust

PeerTrust

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
11.5

12

12.5

w f
w

l

M
S

E

knowledge of node status. Here it is worth noting that the

social contact similarity metric is not a factor in this appli-

cation scenario for trust feedback because all services ex-

cept one (restaurant in Figure 13) do not require social

contact similarity. However, this is not universally true

should another service composition flowchart be given as

input. The methodology developed in the paper will al-

low each service requester to dynamically decide and
apply the optimal weight combination (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐) that

will lead to the most credible trust feedback to minimize

trust bias and as a result maximize the utility or the user

satisfaction level of the application.

7 CONCLUSION

In this paper, we designed and analyzed an adaptive

and scalable trust management protocol for SOA-based

IoT systems. We developed a distributed collaborating

filtering technique to select trust feedback from owners of

IoT nodes sharing similar social interests. We considered

three social relationships, i.e., friendship, social contact,

and community of interest, for measuring social similarity

and filtering trust feedback based on social similarity.

Further, we developed an adaptive filtering technique by

which each node adaptively adjusts its best weight pa-

rameters for combining direct trust and indirect trust into

the overall trust to minimize convergence time and trust

bias of trust evaluation. We demonstrated via simulation

the superiority of our adaptive IoT trust protocol over

EigenTrust and PeerTrust in trust convergence, accuracy

and resiliency against malicious nodes performing self-

promoting, bad-mouthing, ballot-stuffing, and opportun-

istic service attacks.

For scalability we proposed a storage management

strategy for small IoT devices to effectively utilize limited

storage space. By using the proposed method, our trust

protocol with limited storage space is able to achieve a

similar performance level as that with unlimited storage

space. To demonstrate the applicability, we applied our

trust management protocol to a service composition ap-

plication, with or without service constraints in SOA-

based IoT systems. Our simulation results demonstrated

that with our adaptive trust protocol design, the applica-

tion running on top of the trust protocol is able to ap-

proach the ideal performance upon convergence and can

significantly outperform the counterpart non-trust-based

random selection service composition, as well as service

composition running on top of EigenTrust and PeerTrust.

We also demonstrated that our technique is effective in

deciding and applying the best weight combination
(𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐) for combining social similarities that will lead

to the most credible trust feedback to minimize trust bias

and maximize the utility of the application.

In the paper we only considered persistent attackers

[30], i.e., attackers that perform self-promoting, opportun-

istic service, bad-mouthing, and ballot-stuffing attacks

with probability one, or wherever there is a chance. In

the future, we plan to consider other attacker behavior

models including opportunistic collusion attacks (where

malicious nodes collude only opportunistically depend-

ing on the situation given), random attacks (where mali-

cious nodes perform attack on and off randomly to elude

detection) and insidious attacks (where malicious nodes

hide until a critical mass is gathered so as to launch more

effective collusion attacks) to further test the resiliency

property of our adaptive and scalable trust protocol de-

sign. Also, the incentives considered in this paper are self-

interest (based on which a node performs self-promoting

and opportunistic service attacks) and social relationships

(based on which a node performs bad-mouthing and bal-

lot-stuffing attacks). The use of participant incentives for

collusion attacks is an interesting extension out of this

paper.

ACKNOWLEDGMENT

This material is based upon work supported in part by

the U.S. Army Research Laboratory and the U.S. Army

Research Office under W911NF-12-1-0445.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A
Survey,” Computer Networks, vol. 54, pp. 2787-2805, Oct. 2010.

[2] L. Atzori, A. Iera, and G. Morabito, “SIoT: Giving a Social
Structure to the Internet of Things,” IEEE Communication Letters,
vol. 15, no. 11, pp. 1193-1195, Nov. 2011.

[3] F. Bao, and I. R. Chen, “Dynamic Trust Management for
Internet of Things Applications,” 2012 International Workshop on

Self-Aware Internet of Things, San Jose, California, USA, 2012.
[4] F. Bao, and I. R. Chen, “Trust Management for the Internet of

Things and Its Application to Service Composition,” IEEE

WoWMoM 2012 Workshop on the Internet of Things: Smart Objects
and Services, San Francisco, CA, USA, 2012.

[5] F. Bao, I. R. Chen, and J. Guo, “Scalable, Adaptive and
Survivable Trust Management for Community of Interest Based
Internet of Things Systems,” 11th International Symposium on
Autonomous Decentralized System, Mexico City, Mexico, 2013.

[6] N. Bui, and M. Zorzi, “Health Care Applications: A Solution
Based on The Internet of Things,” 4th International Symposium
on Applied Sciences in Biomedical and Communication Technologies,
Barcelona, Spain, 2011, pp. 1-5.

[7] D. Chen, G. Chang, D. Sun, J. Li, J. Jia, and X. Wang, “TRM-IoT:
A Trust Management Model Based on Fuzzy Reputation for
Internet of Things,” Computer Science and Information Systems,
vol. 8, no. 4, pp. 1207-1228, Oct., 2011.

[8] P. Doody, and A. Shields, “Mining Network Relationships in
the Internet of Things,” International Workshop on Self-Aware
Internet of Things, San Jose, California, USA, 2012, pp. 7-12.

[9] S. Ganeriwal, L. K. Balzano, and M. B. Srivastava, “Reputation-
Based Framework for High Integrity Sensor Networks,” ACM
Transactions on Sensor Networks, vol. 4, no. 3, pp. 1-37, May 2008.

[10] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T.
Razafindralambo, “A Survey on Facilities for Experimental
Internet of Things Research,” IEEE Communications Magazine,
vol. 49, no. 11, pp. 58-67, Nov. 2011.

[11] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio,
“Interacting with the SOA-Based Internet of Things: Discovery,
Query, Selection, and On-Demand Provisioning of Web
Services,” IEEE Transactions on Services Computing, vol. 3, no. 3,
pp. 223-235, 2010.

[12] Z. Huang, D. Zeng, and H. Chen, “A Comparison of
Collaborative-Filtering Recommendation Algorithms for E-
commerce,” IEEE Intelligent Systems, vol. 22, pp. 68-78, 2007.

[13] A. J. Jara, M. A. Zamora, and A. F. G. Skarmeta, “An Internet of

Things-Based Personal Device for Diabetes Therapy
Management in Ambient Assisted Living (AAL),” Personal and

Ubiquitous Computing, vol. 15, no. 4, pp. 431-440, 2011.
[14] A. Jøsang, and R. Ismail, “The Beta Reputation System,” Bled

Electronic Commerce Conference, Bled, Slovenia, 2002, pp. 1-14.
[15] S. Kosta, A. Mei, and J. Stefa, “Small World in Motion (SWIM):

Modeling Communities in Ad-Hoc Mobile Networking,” 7th
IEEE Conference on Sensor, Mesh and Ad Hoc Communications and

Networks, Boston, MA, USA, 2010.
[16] M. Kranz, L. Roalter, and F. Michahelles, “Things That Twitter:

Social Networks and the Internet of Things,” CIoT Workshop at

the Eighth International Conference on Pervasive Computing,
Helsinki, Finland, 2010.

[17] Q. Li, S. Zhu, and G. Cao, “Routing in Socially Selfish Delay
Tolerant Networks,” IEEE Conference on Computer
Communications, San Diego, CA, 2010, pp. 1-9.

[18] I. R. Chen, F. Bao, M. Chang, and J.H. Cho, “Trust-based
intrusion detection in wireless sensor networks,” IEEE
International Conference on Communications, Kyoto, Japan, June
2011, pp. 1-6.

[19] P. Massa, and P. Avesani, “Trust-aware Recommender
Systems,” ACM Recommender Systems Conference, Minneapolis,
Minnesota, USA, 2007.

[20] D. A. Menasce, “QoS Issues in Web Services,” IEEE Internet
Computing, vol. 6, no. 6, pp. 72-75, 2002.

[21] C. Prehofer, J. v. Gurp, V. Stirbu, S. Sathish, P. P. Liimatainen,
C. d. Flora, and S. Tarkoma, “Practical Web-Based Smart
Spaces,” IEEE Pervasive Computing, vol. 9, no. 3, pp. 72-80, 2010.

[22] M. Presser, and S. Krco, The Internet of Things Initiative D2.1:

Initial report on IoT applications of strategic interest, 2011.
[23] J. Rao, and X. Su, “A Survey of Automated Web Service

Composition Methods,” 1st Conf. on Semantic Web Services and

Web Process Composition, San Diego, CA, USA, 2004, pp. 43-54.
[24] W. Ren, “QoS-aware and compromise-resilient key

management scheme for heterogeneous wireless Internet of
Things,” International Journal of Network Management, vol. 21, no.
4, pp. 284-299, July 2011.

[25] R. Roman, P. Najera, and J. Lopez, “Securing the Internet of
Things,” Computer, vol. 44, no. 9, pp. 51-58, 2011.

[26] Z. Shelby, “Emebedded Web Services,” IEEE Wireless
Communications, vol. 17, no. 6, pp. 52 - 57 Dec. 2010.

[27] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating QoS of Real-
World Web Services,” IEEE Transactions on Services Computing,
vol. 7, no. 1, pp. 32-39, 2014.

[28] L. Zhou, and H.-C. Chao, “Multimedia Traffic Security
Architecture for the Internet of Things,” IEEE Network, vol. 25,
no. 3, pp. 35-40, May-June, 2011.

[29] J.H. Cho, et al., “Effect of Intrusion Detection on Reliability of
Mission-Oriented Mobile Group Systems in Mobile Ad Hoc
Networks,” IEEE Trans. on Reliability, vol. 59, 2010, pp. 231-241.

[30] R. Mitchell and I. R. Chen, "Effect of Intrusion Detection and
Response on Reliability of Cyber Physical Systems," IEEE
Transactions on Reliability, vol. 62, no. 1, 2013, pp. 199-210.

[31] I.R. Chen, F. Bao, M. Chang, and J.H. Cho, “Dynamic Trust
Management for Delay Tolerant Networks and Its Application
to Secure Routing,” IEEE Trans. Parallel and Distributed Systems,
vol. 25, no. 5, 2014, pp. 1200-1210.

[32] J.H. Cho, I.R. Chen, and A.Swami, “Modeling and analysis of
trust management for cognitive mission-driven group
communication systems in mobile ad hoc networks,” Inter.
Conf. on Computational Science and Engineering, 2009, pp. 641-650.

[33] I. R. Chen, J. Guo and F. Bao, “Trust Management for Service
Composition in SOA-based Internet of Things Systems,” IEEE
2014 WCNC, Istanbul, Turkey, April 2014, pp. 3486-3491.

[34] R. Mitchell and I. R. Chen, "Effect of Intrusion Detection and
Response on Reliability of Cyber Physical Systems," IEEE
Transactions on Reliability, vol. 62, no. 1, 2013, pp. 199-210.

[35] R. Mitchell and I.R. Chen, “A survey of intrusion detection in
wireless network applications,” Computer Communications, vol.

42, 2014, pp. 1-23.
[36] J.H. Cho, A. Swami, and I.R. Chen, “Modeling and analysis of

trust management with trust chain optimization in mobile ad
hoc networks,” Journal of Network and Computer Applications, vol.
35, no. 3, pp. 1001-1012, May 2012.

[37] Z. Yan, P. Zhang, and A.V. Vasilakos, “A Survey on Trust Man-
agement for Internet of Things,” Journal of Network and Computer
Applications, vol. 42, pp. 120-134, 2014.

[38] X. Yang, Y. Guo, Y. Liu, and H. Steck, “A survey of collaborative
filtering based social recommender systems,” Computer Com-
munications, vol. 41, 2014, pp. 1-10.

[39] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The Ei-
genTrust algorithm for reputation management in P2P net-
works,” 12th International Conference on World Wide Web, Buda-
pest, Hungary, May 2003.

[40] L. Xiong, and L. Liu, “PeerTrust: Supporting Reputation-Based
Trust for Peer-to-Peer Electronic Communities”, IEEE Trans. on

Knowledge and Data Engineering, v.16, pp. 843-857, July 2004.
[41] The ns-3 simulator, http://www.nsnam.org.
[42] ns-3 Tutorial, http://www.cpe.ku.ac.th/~anan/myhomepage/wp-

content/uploads/2012/01/ns3-part1-introduction.pdf.
[43] W. Sherchan, S. Nepal, and C. Paris, “A Survey of Trust in Social

Networks,” ACM Computing Survey, Vol. 45, No. 4, Article 47,
August 2013.

[44] Z. Malik and A. Bouguettaya,”RATEWeb: Reputation Assess-
ment for Trust Establishment among Web Services,” The VLDB

Journal, vol. 18, 2009, pp. 885-911.
[45] M. Nitti, R. Girau, and L. Atzori, “Trustworthiness Management

in the Social Internet of Things,” IEEE Transactions on Knowledge

and Data Management, vol. 26, no. 5, 2014, pp. 1253-1266.
[46] Y. B. Saied, A. Olivereau, D. Zeghlache, and M. Laurent, “Trust

management system design for the Internet of Things: A con-
text-aware and multi-service approach,” Computers and Security,
vol. 39, Nov. 2013, pp. 351-365.

AUTHOR BIOGRAPHIES
Ing-Ray Chen received the BS degree from the Na-

tional Taiwan University, and the MS and PhD degrees

in computer science from the University of Houston.

He is a professor in the Department of Computer Sci-

ence at Virginia Tech. His research interests include

mobile computing, wireless systems, security, trust

management, and reliability and performance analysis.

Dr. Chen currently serves as an editor for IEEE Communications Letters,

IEEE Transactions on Network and Service Management, The Computer

Journal, and Security and Network Communications.

Jia Guo received the B.S. degree in Computer Science

from Jilin University, China in 2012. Currently he is

pursuing his Ph.D. degree in the Computer Science

Department at Virginia Tech. His research interests

include trust management, Internet of things, mobile

computing, secure and dependable computing, and

performance analysis.

Fenye Bao received the B.S. degree in computer sci-

ence from Nanjing University of Aeronautics and

Astronautics, Nanjing, China in 2006 and the M.E.

degree in software engineering from Tsinghua Univer-

sity, Beijing, China in 2009. He received his PhD de-

gree in Computer Science from Virginia Tech in 2013.

Currently he is a technical staff member of LinkedIn.

His research interests include trust management, security, social networks,

wireless sensor networks, and mobile computing.

	1 Introduction
	2 Related Work
	3 System Model
	3.1 Social IoT Network Model
	3.2 Attack Model

	4 Trust Management Protocol
	4.1 Direct Interaction Experiences
	4.2 Recommendations
	4.3 Adaptive Control of the Weight Parameter
	4.4 Storage Management for Small IoT Devices

	5 Trust Protocol Performance
	5.1 Trust Convergence, Accuracy and Resiliency against Malicious Attacks
	5.2 Trust Evaluation with Limited Storage Space
	5.3 Comparative Analysis

	6 Trust-Based Service Composition
	6.1 Service Composition without Constraints
	6.2 Service Composition with Constraints
	6.3 Effects of Social Similarity on Trust Feedback

	7 Conclusion
	Acknowledgment
	References
	Author Biographies

