
 

 Trust Management for SOA-based IoT and 
Its Application to Service Composition 

Ing-Ray Chen, Jia Guo, and Fenye Bao 

Abstract— A future Internet of Things (IoT) system will connect the physical world into cyberspace everywhere and everything 

via billions of smart objects. On the one hand, IoT devices are physically connected via communication networks. The service 

oriented architecture (SOA) can provide interoperability among heterogeneous IoT devices in physical networks. On the other 

hand, IoT devices are virtually connected via social networks. In this paper we propose adaptive and scalable trust 

management to support service composition applications in SOA-based IoT systems. We develop a technique based on 

distributed collaborative filtering to select feedback using similarity rating of friendship, social contact, and community of interest 

relationships as the filter. Further we develop a novel adaptive filtering technique to determine the best way to combine direct 

trust and indirect trust dynamically to minimize convergence time and trust estimation bias in the presence of malicious nodes 

performing opportunistic service and collusion attacks. For scalability, we consider a design by which a capacity-limited node 

only keeps trust information of a subset of nodes of interest and performs minimum computation to update trust. We 

demonstrate the effectiveness of our proposed trust management through service composition application scenarios with a 

comparative performance analysis against EigenTrust and PeerTrust. 

Index Terms— Trust management; Internet of things; social networks; service composition; SOA; performance analysis.  
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1 INTRODUCTION

future Internet of Things (IoT) system connects the 

physical world into cyberspace via radio frequency 

identification (RFID) tags, sensors, and smart ob-

jects owned by human beings [1, 10]. Physical objects can 

be equipped with RFID tags and electronically identifia-

ble and tractable. Devices with sensing capability provide 

environmental information, body conditions, etc., which 

are remotely accessible. Smart objects like smart phones 

and consumer electronics with ample computing re-

sources share information and provide billions of new 

services connecting everyone with everything.   
In Service-Oriented Architecture (SOA) based IoT sys-

tems [11], each device is a service consumer and if desira-
ble can be a service provider offering services or share 
resources and interacts with service consumers via com-
patible service APIs. SOA technologies (such as WS-*, 
REST, and CoRE) enable publishing, discovery, selection, 
and composition of services offered by IoT devices. The 
important application scenarios proposed for SOA-based 
IoT systems include e-health (continuous care) [6, 13], 
smart product management, smart events for emergency 
management [22], etc. 

The motivation of providing a trust system for an 
SOA-based IoT system is easy to see. There are misbehav-
ing owners and consequently misbehaving devices that 
for self-interest may perform “discriminatory” attacks to 
ruin the reputation of other IoT devices which provide 
similar services. Furthermore, users of IoT devices are 
likely to be socially connected via social networks like 
Facebook, Twitter, Google+, etc. Therefore, misbehaving 

nodes with close social ties can collude and monopoly a 
class of services. 

SOA-based IoT systems challenge trust management 

in the following aspects. First, an IoT system has a huge 

amount of heterogeneous entities with limited capacity. 

Existing trust management protocols do not scale well to 

accommodate this requirement because of the limited 

storage space and computation resources. Second, a SOA-

based IoT system evolves with new nodes joining and 

existing nodes leaving. A trust management protocol 

must address this issue to allow newly joining nodes to 

build up trust quickly with a reasonable degree of accura-

cy [19]. Third, IoT devices are mostly human carried or 

human operated [2]. Trust management must take into 

account social relationships among device owners in or-

der to maximize protocol performance. Lastly and argua-

bly most importantly, a SOA-based IoT system essentially 

consists of a large number of heterogeneous IoT devices 

providing a wide variety of services. Many of them (the 

owners) will be malicious for their own gain so they will 

perform attacks for self-interest. Many of them with close 

social ties will collude to ruin the reputation of other de-

vices which provide similar services via bad-mouthing 

attacks, and conversely boost the reputation of each other 

via ballot-stuffing attacks. A trust management protocol 

for SOA-based IoT must be resilient to such attacks to be 

sustainable.  

Despite the abundance of trust protocols for P2P and 

ad hoc sensor networks [9, 31, 32, 39, 40], there is little 

work on trust management for IoT systems [3, 4, 5, 7, 37]. 

We will survey related work in Section II and compare as 

well as contrast our approach with existing work. The 

problem we aim to solve is design and validation of a 

scalable and adaptive trust management protocol for 
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SOA-based social IoT systems capable of answering the 

challenges discussed above. Our trust management pro-

tocol, called Adaptive IoT Trust, is executed autonomously 

by IoT devices with little human intervention. The main 

idea is to combine peer evaluation with trust evaluation 

in SOA-based IoT systems. The goals are two-fold: (a) 

trust bias minimization; (b) application performance op-

timization. This is achieved by adaptive trust manage-

ment, i.e., adjusting trust protocol settings in response to 

environment changes dynamically.  

The contributions of this paper are as follows: 

1. We propose an adaptive IoT trust protocol for 

SoA-based IoT systems with applications in ser-

vice composition. The novelty lies in the use of 

distributed collaborating filtering [12] to select 

trust feedback from owners of IoT nodes sharing 

similar social interests. 

2. We develop a novel adaptive filtering technique to 

adjust trust protocol parameters dynamically to 

minimize trust estimation bias and maximize ap-

plication performance. 

3. Our adaptive IoT trust protocol is scalable to large 

IoT systems in terms of storage and computational 

costs. We perform a comparative analysis of our 

adaptive IoT trust protocol against two prevalent 

trust protocols, namely, EigenTrust [39] and Peer-

Trust [40], in trust convergence, accuracy and re-

siliency properties achieved. 

4. We demonstrate the effectiveness of our adaptive 

IoT trust protocol against EigenTrust and Peer-

Trust through service composition application 

scenarios in SOA-based IoT environments in the 

presence of malicious nodes performing opportun-

istic service and false recommendation attacks. 

The rest of this paper is organized as follows. Section 2 

discusses related work in trust management for IoT sys-

tems. Section 3 describes the system model. Section 4 de-

tails our trust management protocol. Section 5 assesses 

the performance of our trust protocol in terms of its desir-

able properties including convergence behavior, trust 

assessment accuracy, resiliency against malicious attacks, 

and scalability. In Section 6, we demonstrate the effec-

tiveness of our trust management through trust-based 

service composition application scenarios, comparing its 

performance with two baseline schemes. Finally, Section 7 

concludes the paper and discusses future work. 

2 RELATED WORK 

One of the major challenges to IoT system design is 

device heterogeneity. Devices could be low-end with little 

to no storage/computational power (i.e., RFID tags), 

middle-end with restricted resources (i.e. sensors), to 

high-end (i.e., smart phones and laptops). Further, devic-

es could connect to the network through various meth-

ods, like cables, Wi-Fi, Bluetooth, 3G, near field commu-

nication (NFC), etc. SOA technologies provide great op-

portunities to resolve the issue. Guinard et al. [11] pro-

posed SOA-based IoT architecture where devices offer 

their functionalities via SOAP-based web services (WS-*) 

or RESTful APIs. This architecture supports the discov-

ery, query, selection, and on-demand provisioning of web 

services. In order to realize web service on resource-

constrained embedded devices, the IETF Constrained 

RESTful Environments (CoRE) working group has de-

fined Constrained Application Protocol (CoAP) that real-

izes a minimum subset of REST [26]. One practical exam-

ple is a web-based smart space framework [21] which 

applies REST to support pervasive applications, like re-

source sharing, in various devices.  

The social relationships in IoT systems have attracted 

research attentions [2, 8, 16]. Doddy et al. [8] provided the 

vision of applying reality mining techniques developed to 

understand human relationships to IoT systems. Kranz et 

al. [16] investigated on the potential of combining social 

and technical networks to collaboratively provide services 

to both human users and technical systems in IoT sys-

tems. Atzori et al. [2] proposed the concept of social IoT 

(SIoT) and analyzed social relationships among things, 

such as  parental object relationship, social contact object rela-

tionship, co-work object relationship, and ownership relation-

ship. However, their work focuses on the relationship 

among things rather than users. 

In the literature, Roman et al. [25] pointed out that tra-

ditional approaches for security, trust, and privacy man-

agement face difficulties when applying to IoT systems 

due to scalability and a high variety of relationship 

among IoT entities. Ren [24] proposed a key management 

scheme for heterogeneous wireless IoT systems. Zhou 

and Chao [28] proposed a media-aware traffic security 

architecture for IoT. The common drawback of their work 

is that they did not address the scalability issue.  

Trust management for IoT is still in its infancy with 

limited work reported in the literature to date. Chen et al. 

[7] proposed a trust management model based on fuzzy 

reputation for IoT. However, their trust management 

model considers a specific IoT environment consisting of 

only wireless sensors with QoS trust metrics only such as 

packet forwarding/delivery ratio and energy consump-

tion, and does not take into account the social relationship 

which is important in social IoT systems.  

Bao and Chen [3, 4] proposed a trust management pro-

tocol considering both social trust and QoS trust metrics 

and using both direct observations and indirect recom-

mendations to update trust. Their proposed trust man-

agement protocol considers a social IoT environment 

where environment conditions are dynamically changing, 

e.g., increasing misbehaving node population/activity, 

changeable behavior, rapid membership changes, and 

interaction pattern changes. To address the scalability 

issue, Bao and Chen further proposed a scalable trust 

management protocol [5] for large-scale IoT systems by 

utilizing a scalable storage management strategy. Relative 

to [3, 4, 5] this paper focuses on trust management for 

SOA-based IoT systems with the following specific con-

tributions: (1) utilizing distributed collaborating filtering 



 

 

[12, 38] to select trust feedback from nodes sharing similar 

social interests; (2) applying the proposed trust manage-

ment to a SOA-based service composition application to 

demonstrate its effectiveness; (3) developing a novel 

adaptive filtering technique to dynamically adjust trust 

parameter settings so as to minimize trust estimation bias 

and maximize application performance; (4) validating the 

proposed trust management and its application to service 

composition through ns-3 simulation [41] based on real 

trace data, and (5) demonstrating the superiority of our 

adaptive IoT trust protocol design over EigenTrust [39] 

and PeerTrust [40] in trust convergence, accuracy and 

resiliency properties, as well as in service composition 

application performance. 
EigenTrust [39] is a reputation scheme for P2P sys-

tems. Its basic idea is to aggregate trust recommendations 
towards a trustee node weighted by the trustor’s opinion 
toward the recommenders. It is assumed that in a P2P 
network, there are pre-trusted peers that can provide 
trusted recommendations so as to guarantee trust conver-
gence and break up malicious collectives.  

PeerTrust [40] is also a reputation system for P2P sys-

tems. Its basic idea is also to aggregate feedbacks 

weighted by the recommender’s trustworthiness. It con-

siders more factors that affect a recommender’s trustwor-

thiness, including transaction context, community con-

text, and credibility in terms of the trust and personalized 

similarity between the trustor and the recommender in 

order to filter out distrusted feedbacks. 

This paper extends from [33] by adding extensive sim-

ulation validation, surveying state-of-the art related work, 

considering more sophisticated attacker model and ana-

lyzing the resiliency against these attacks, devising a 

smart storage management strategy for capacity-limited 

IoT devices for scalability with extensive analysis, ad-

dressing the best way to combine social similarity metrics 

to evaluate raters for application performance maximiza-

tion, and adding a comparative performance analysis 

with EigenTrust [39] and PeerTrust [40] in trust conver-

gence, accuracy and resiliency properties and in the ap-

plication performance of the service composition applica-

tion running on top of our adaptive IoT trust protocol in 

SOA-based IoT systems. 

3 SYSTEM MODEL 

3.1 Social IoT Network Model 

We consider a user-centric social IoT [2] environment 

where nodes are physically connected via communication 

networks and socially connected via users’ social net-

works (Figure 1). Each node has a unique address to iden-

tify (i.e., URI). There is no centralized trusted authority. 

There are two types of nodes: devices and users (or own-

ers). The user-device relationship is a one-to-multiple 

relationship. In our trust management, the trustor is a 

user and the trustee is a device (owned by another user). 

For each user, the trust evaluation information is comput-

ed and stored in a designated high-end device owned by 

the user. 
Trust is evaluated based on both direct user satisfac-

tion experiences of past interaction experiences and rec-
ommendations from others.  

In particular, for recommendations from others, we 

utilize the design concept of distributed collaborating 

filtering [12, 38] to select trust feedback from nodes shar-

ing similar social interests. We consider the following 

three social relationships: friendship, social contact, and 

community of interest (CoI). More specifically, we use the 

social relationships between the trustor and the recom-

mender for the trustor to weigh the recommendation 

provided by the recommender toward a trustee. The rea-

son is that two users sharing similar social relationships 

including friendship (representing intimacy), social con-

tact (representing closeness) and CoI (representing 

knowledge and standard on the subject matter) are likely 

to have similar subjective trust view towards services 

provided by a trustee IoT device. A similar concept to the 

social contact relationship is proposed in [20], where famil-

iar strangers are identified based on colocation infor-

mation in urban transport environments for media shar-

ing. 

These social relationships are represented by three 

lists: a friend list with current friends, a location list with 

locations frequently visited for social contact, and a CoI 

list with devices (services) directly interacted with. Each 

user has at least one designated high-end device (i.e., 

smart phone and laptop) storing these lists in the user’s 

profile (see Figure 2). Other devices of the same user have 

the privilege to access the profile. By delegating the stor-

age and computation of social networks to a high-end 

device for each user, many low-end devices (i.e., sensors) 

are able to share and utilize the same social information 

to maximize its performance. Energy spent for maintain-

ing the lists and executing matching operations is negligi-

ble because energy spent for computation is very small 

compared with that for communication, and matching 

operations to identity a friend, social contact, or a CoI 

member are performed only when there is a change to the 

lists. 

In the physical networks, devices provide and/or con-

 

Figure 1: User-Centric Internet of Things Systems. 



 

 

sume services utilizing SOAP-based techniques or REST-

ful APIs (see Section 2). Each time when device d1 re-

quests a service from device d2, d1 updates the user satis-

faction experience record (in the user satisfaction experience 

list in Figure 2) towards d2 stored in the designated de-

vice of d1’s user. Similarly, d1 can query the trust infor-

mation (in the trust list in Figure 2) towards d2 from the 

designated device of d1’s user. Note that elements in the 

user interaction experience list correspond to devices in 

the CoI list. 

We consider a large IoT system in which a device with 

limited storage space cannot accommodate the full set of 

trust values towards all other devices. We address this 

scalability issue with a storage management design.  

In the context of SOA, an owner provides services via 

its IoT devices. An IoT device providing a service will 

have to compete with other IoT devices which provide a 

similar type of service. 

3.2 Attack Model 

A malicious node in general can perform communica-
tion protocol attacks to disrupt network operations. We 
assume such attack is handled by intrusion detection 
techniques [18, 29, 34, 35] and is not addressed in this 
paper. In the context of SOA, we are concerned with 
trust-related attacks that can disrupt the trust system. 
Bad-mouthing and ballot-stuffing attacks are the most 
common forms of reputation attacks. Self-promoting and 
opportunistic service attacks are the most common forms 
of attacks based on self-interest [44-46]. Thus, a malicious 
IoT device (because its owner is malicious) can perform 
the following trust-related attacks: 
1. Self-promoting attacks: it can promote its importance 

(by providing good recommendations for itself) so as 
to be selected as a SP, but then can provide bad or 
malfunctioned service. 

2. Bad-mouthing attacks: it can ruin the reputation of a 
well-behaved device (by providing bad recommenda-
tions against it) so as to decrease the chance of that 
good device being selected as a SP. This is a form of 
collusion attacks, i.e., it can collaborate with other bad 
nodes to ruin the reputation of a good node. 

3. Ballot-stuffing attacks: it can boost the reputation of a 

malicious node (by providing good recommendations) 

so as to increase the chance of that bad device being 

selected as a SP. This is a form of collusion attacks, i.e., 

it can collaborate with other bad nodes to boost the 

reputation of each other. 

4. Opportunistic service attacks: it can provide good ser-

vice to gain high reputation opportunistically especial-

ly when it senses its reputation is dropping because of 

providing bad service. With good reputation, it can ef-

fectively collude with other bad node to perform bad-

mouthing and ballot-stuffing attacks. 

A collaborative attack means that the malicious nodes 

in the system boost their allies and focus on particular 

victims in the system to victimize. Bad-mouthing and 

ballot-stuffing attacks are a form of collaborative attacks 

to the trust system to ruin the reputation of (and thus to 

victimize) good nodes and to boost the reputation of ma-

licious nodes.  

Table 1 summarizes the attack behavior of a malicious 

node as a rater, depending on the nature of the trustor 

and trustee nodes. If the trustor is non-malicious and the 

trustee is malicious, a malicious rater will perform ballot-

stuffing attacks. If the trustor is non-malicious and the 

trustee is also non-malicious, a malicious rater will per-

form bad-mouthing attacks.  

Table 2 summarizes the attack behavior of a malicious 

node as a SP, depending on the nature of the service re-

quester. If the service requester is non-malicious, a mali-

cious SP will perform both self-promoting and opportun-

istic service attacks. In particular, opportunistic service 

attacks are to be performed depending on the current 

reputation standing of the malicious SP itself.  

4 TRUST MANAGEMENT PROTOCOL 

Our adaptive IoT trust management protocol is dis-

tributed. Each user maintains its own trust assessment 

towards devices. For scalability, a user just keeps its trust 

evaluation results towards a limited set of devices of its 

interests. Each user stores its profile in a designated high-

end device (Figure 2). The profile of user 𝑢𝑥 includes: 

(1) A “friend” list including all friends of 𝑢𝑥, denoted by 

 

Figure 2: User Profile. 

Table 1: Behavior of a Malicious Rater. 

Trustor Trustee Bad-

Mouthing 

Ballot-

Stuffing 

malicious malicious   

malicious non-malicious   

non-malicious malicious  √ 

non-malicious non-malicious √  

Table 2: Behavior of a Malicious Service Provider. 

Service Requester Self-Promoting Opportunistic 

Service 

malicious   

non-malicious √ √ 



 

 

a set  𝐹𝑥  = {𝑢𝑎, 𝑢𝑏 , … }; 

(2) Locations that 𝑢𝑥  frequently visited for social con-
tact, denoted by a set 𝑃𝑥 = {𝑝𝑥,1, 𝑝𝑥,2, … }; 

(3) List of devices that 𝑢𝑥  has directly interacted with 

and the corresponding user satisfaction experience 
values, denoted by set 𝐷𝑥 = {𝑑𝑖, 𝑑𝑗 , … } and set 𝐵𝑥 = 

{(𝛼𝑥,𝑖, 𝛽𝑥,𝑖), (𝛼𝑥,𝑗, 𝛽𝑥,𝑗), … }, where 𝛼𝑥,𝑖 and 𝛽𝑥,𝑖 are the 

accumulated positive and negative user satisfaction 

experiences of user 𝑢𝑥 towards device 𝑑𝑖; 
(4) Trust values of user 𝑢𝑥 towards IoT devices, denoted 

by a set 𝑇𝑥 = {𝑡𝑥,𝑖, 𝑡𝑥,𝑗 , … }. 

4.1 Direct Interaction Experiences 

We adopt Bayesian framework [14] as the underlying 

model for evaluating direct trust from direct user satisfac-

tion experiences. The reason we choose Bayesian because 

it is well-established and because of its popularity in 

trust/reputation systems. In service computing, a service 

requester could rate a service provider after direct inter-

action based on nonfunctional characteristics. The non-

functional characteristics include user-observed response 

time, failure probability, prices, etc. The current user sat-

isfaction experience of user 𝑢𝑥 toward device 𝑑𝑖 is repre-
sented by a value, 𝑓𝑥,𝑖 . We consider the simple case in 

which the direct user satisfaction experience 𝑓𝑥,𝑖 is a bina-

ry value, with 1 indicating satisfied and 0 not satisfied. 
Then, we can consider 𝑓𝑥,𝑖 as an outcome of a Bernoulli 

trial with the probability of success parameter 𝜃𝑥,𝑖 follow-

ing a Beta distribution (a conjugate prior for the Bernoulli 
distribution), i.e., Beta( 𝛼𝑥,𝑖 , 𝛽𝑥,𝑖 ). Then, the posterior 

p(𝜃𝑥,𝑖|𝑓𝑥,𝑖 ) has a Beta distribution as well. Equation 1 

shows how the hyper parameters 𝛼𝑥,𝑖 and 𝛽𝑥,𝑖  are updated 

considering trust decay. 𝛼𝑥,𝑖 = 𝑒−𝜑Δ𝑡 ∙ 𝛼𝑥,𝑖(𝑜𝑙𝑑)
+ 𝑓𝑥,𝑖        𝛽𝑥,𝑖 = 𝑒−𝜑Δ𝑡 ∙ 𝛽𝑥,𝑖(𝑜𝑙𝑑)
+ 1− 𝑓𝑥,𝑖  (1) 

In Equation 1, 𝑓𝑥,𝑖  contributes to positive observations and 

1− 𝑓𝑥,𝑖 contributes to negative observations. When updat-

ing 𝛼𝑥,𝑖 and 𝛽𝑥,𝑖 , we consider an exponential decay, 𝑒−𝜑Δ𝑡, 
on 𝛼𝑥,𝑖(𝑜𝑙𝑑)

 and 𝛽𝑥,𝑖(𝑜𝑙𝑑)
, where 𝜑 is the decay factor which is 

normally is a small number to model small trust decay 

over time, and Δ𝑡 is the trust update interval.  

The direct trust of user 𝑢𝑥 to device 𝑑𝑖, 𝑡𝑥,𝑖𝑑 , is calculat-

ed as the expected value of 𝜃𝑥,𝑖, i.e., 𝑡𝑥,𝑖𝑑 = 𝐸�𝜃𝑥,𝑖� =
𝛼𝑥,𝑖𝛼𝑥,𝑖 + 𝛽𝑥,𝑖 (2)  

In the literature, 𝛼𝑥,𝑖 and 𝛽𝑥,𝑖 are often set to 1 initially 

since no prior knowledge available. In this paper, we con-

sider the social relationships (if available) between 𝑢𝑥 and 
the user of 𝑑𝑖 (say 𝑢𝑦) as the prior knowledge and set the 

initial values of 𝛼𝑥,𝑖  and 𝛽𝑥,𝑖  to 𝑠𝑠𝑠(𝑢𝑥 ,𝑢𝑦)  and 1−𝑠𝑠𝑠(𝑢𝑥 , 𝑢𝑦), respectively, where 𝑠𝑠𝑠(𝑢𝑥 ,𝑢𝑦) is the similar-

ity between 𝑢𝑥 and 𝑢𝑦 characterizing their social connec-

tion. This is discussed below. 

4.2 Recommendations 

When the devices of two users have direct interac-

tions, they can exchange their profiles and provide trust 

recommendations. In addition, a device can also aggres-

sively request trust recommendations from another de-

vice belonging to a friend when necessary. To preserve 

privacy, one can use a hash function (with session key) to 

prevent the identities of uncommon friends/devices from 

being revealed.  

We utilize the design concept of distributed collabo-

rating filtering [12, 38] to select trust feedback from nodes 

sharing similar social interests. A node will first measure 

its “social similarity” with a recommender in friendship, 

social contact (representing physical proximity) and CoI 

(representing knowledge on the subject matter) and then 

decide if the recommendation is trustable. The reason we 

consider these metrics is that these metrics are core social 

metrics for measuring social relationships which are mul-

tifaceted [43]. We adopt cosine similarity to measure the 

distance of two social relationship lists (see Figure 2), 

with 1 representing complete similarity and 0 represent-

ing no similarity. Computational efficiency is the main 

reason why we choose cosine similarity to measure the 

similarity of two vectors in high-dimensional positive 

spaces because of limited computational capacity of IoT 

devices. In this paper we further introduce a new design 

concept called application performance maximization by 

which the best weights assigned to the three similarity 

metrics are identified to optimize application perfor-

mance, when given a node population characterized by 

friendship, social connection, and community of interest 

relationships as input. Later in Section 6 we will deal with 

the subject of the effect of social similarity in friendship, 

social connection, and community of interest on applica-

tion performance and identify the best way of combining 

these metrics to maximize the service composition appli-

cation performance.  

We describe how these social similarity measures may 

be estimated dynamically as follows:  

• Friendship Similarity (𝑠𝑠𝑠𝑓): The friendship similari-

ty is a powerful social relationship (intimacy) for 

screening recommendations. After two users 𝑢𝑥  and 𝑢𝑦  exchange their friend lists, 𝐹𝑥  and 𝐹𝑦 , they could 

compute two binary vectors, 𝑉𝐹𝑥������⃗  and 𝑉𝐹𝑦������⃗ , each with 

size �𝐹𝑥 ∪ 𝐹𝑦�. An element in 𝑉𝐹𝑥������⃗  (or 𝑉𝐹𝑦������⃗ ) will be 1 if the 

corresponding user is in 𝐹𝑥  (or 𝐹𝑦 ), otherwise 0. Let �𝐴� be the norm of vector 𝐴 and |𝐵| be the cardinality 

of set 𝐵. Then, we could use the “cosine similarity” of 𝑉𝐹𝑥������⃗  and 𝑉𝐹𝑦������⃗  (giving the cosine of the angle between 

them) to compute 𝑠𝑠𝑠𝑓 as follows: 𝑠𝑠𝑠𝑓�𝑢𝑥 ,𝑢𝑦� =
𝑉𝐹𝑥������⃗ ∙ 𝑉𝐹𝑦�������⃗�𝑉𝐹𝑥������⃗ ��𝑉𝐹𝑦�������⃗ � =

�𝐹𝑥 ∩ 𝐹𝑦��|𝐹𝑥| ∙  �𝐹𝑦� (3) 

• Social Contact Similarity (𝑠𝑠𝑠𝑙 ): The social contact 

similarity presents closeness and is an indication if 

two nodes have the same physical contacts and thus 



 

 

the same sentiment towards devices which provide 

the same service. The operational area could be parti-

tioned into sub-grids. User 𝑢𝑥 records the IDs of sub-

grids it has visited in its location list 𝑃𝑥 for social con-
tact. After two users 𝑢𝑥 and 𝑢𝑦 exchange their location 

lists, 𝑃𝑥  and 𝑃𝑦 , they could compute 𝑠𝑠𝑠𝑙  in the same 

way of computing 𝑠𝑠𝑠𝑓 as follows: 𝑠𝑠𝑠𝑙�𝑢𝑥 , 𝑢𝑦� =
�𝑃𝑥 ∩ 𝑃𝑦��|𝑃𝑥| ∙  �𝑃𝑦� (4) 

• Community of Interest Similarity (𝑠𝑠𝑠𝑐): Two users 

in the same COI share similar social interests and most 

likely have common knowledge and standard toward 

a service provided by the same device. Also very like-

ly two users who have used services provided by the 

same IoT device can form a CoI (or are in the same 
CoI). After two users 𝑢𝑥 and 𝑢𝑦 exchange their device 

lists, 𝐷𝑥 and 𝐷𝑦, they could compute 𝑠𝑠𝑠𝑐 in the same 

way of computing 𝑠𝑠𝑠𝑓 as follows: 𝑠𝑠𝑠𝑐�𝑢𝑥 , 𝑢𝑦� =
�𝐷𝑥 ∩ 𝐷𝑦��|𝐷𝑥| ∙  �𝐷𝑦� (5) 

The social similarity between two users can be a 

weighted combination of all social similarity metrics, i.e., 

friendship, social contact, and community of interest, 

considered in this paper:  𝑠𝑠𝑠�𝑢𝑥 ,𝑢𝑦� = � 𝑤𝑣 ∙ 𝑠𝑠𝑠𝑣�𝑢𝑥 , 𝑢𝑦�𝑣∈{𝑓,𝑙,𝑐}

 (6)  

where 𝑤𝑓 + 𝑤𝑙 +𝑤𝑐 = 1 and 0 ≤ 𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐 ≤ 1. Each user 

can send trust recommendations request to its friends 

periodically (in every Δ𝑡 interval) or before requesting a 

service. Upon receiving recommendations, user 𝑢𝑥 selects 

top-k recommendations from k users with the highest 

similarity values with 𝑢𝑥 and calculates the indirect trust 
(𝑡𝑥,𝑖𝑟 ) towards device 𝑑𝑖 as follows: 𝑡𝑥,𝑖𝑟 = � 𝑠𝑠𝑠�𝑢𝑥 , 𝑢𝑦�∑ 𝑠𝑠𝑠(𝑢𝑥 , 𝑢𝑦)𝑢𝑦∈𝑈 · 𝑡𝑦,𝑖𝑑𝑢𝑦∈𝑈  (7)  

Here, 𝑈 is a set of up to k users whose 𝑠𝑠𝑠(𝑢𝑥 , 𝑢𝑦) val-

ues are the highest, and 𝑡𝑦,𝑖𝑑  is the direct trust of user 𝑢𝑦 

toward device 𝑑𝑖 serving as 𝑢𝑦′𝑠 recommendation toward 𝑑𝑖 provided to 𝑢𝑥 . Each recommendation is weighted by 

the ratio of the similarity score of the recommender to the 

sum of the similarity scores of all recommenders. We also 

note that if 𝑢𝑦  is malicious, then it can provide 𝑡𝑦,𝑖𝑑 =0 

against a good device for bad-mouthing attacks, and 𝑡𝑦,𝑖𝑑 =1 for a bad node for ballot-stuffing attacks. 

4.3 Adaptive Control of the Weight Parameter 

The trust value of user 𝑢𝑥 toward 𝑑𝑖 is denoted as 𝑡𝑥,𝑖 
and is obtained by combining direct trust and indirect 

recommendations (if available) as follows, 𝑡𝑥,𝑖 = 𝜇 ∙ 𝑡𝑥,𝑖𝑑 + (1 − 𝜇) ∙ 𝑡𝑥,𝑖𝑟  (8)  

Here, 𝜇 is a weight parameter (0 ≤ 𝜇 ≤ 1) to weigh the 

importance of direct trust relative to indirect trust feed-

back. The selection of 𝜇 is critical to trust evaluation. A 

contribution of the paper is that we propose a method 

based on adaptive filtering [12] to adjust 𝜇 dynamically in 

order to effectively cope with malicious attacks including 

self-promoting, bad-mouthing, ballot-stuffing, and oppor-

tunistic attacks and to improve trust evaluation perfor-

mance. The basic design principle is that a successful trust 

management protocol should provide high trust toward 

devices who have more positive user satisfaction experi-

ences and, conversely, low trust toward those with more 

negative user satisfaction experiences. Specifically, the 
current trust evaluation (i.e., 𝑡𝑥,𝑖(𝜇)  as a function of 𝜇 ) 

should be as close to the average user satisfaction experi-

ences observed over the last trust update window Δ𝑡 as 

possible. Therefore, we formulate the selection of 𝜇 as an 

optimization problem as follows:  

Find: 𝜇, 0 ≤ 𝜇 ≤ 1  

Minimize: MSE(𝜇) = ∑ �𝑡𝑥,𝑖(𝜇)− 𝑓𝑥,𝚤(𝑛𝑒𝑤)���������2𝑖  
 

(9)  

Here, 𝑡𝑥,𝑖(𝜇) is obtained from Equation 8 using past direct 

user satisfaction experiences and indirect trust feedback, 

and 𝑓𝑥,𝚤(𝑛𝑒𝑤)��������
 is the most recent direct user satisfaction expe-

riences observed by user 𝑢𝑥 within the last trust update 

interval Δ𝑡.  The objective can be achieved by minimizing 

the mean square error (MSE) of trust evaluations against 

actual user satisfaction experiences towards all applicable 

devices, such that the trust value could be a good indica-

tor or predictor for quality of service (with direct user 

satisfaction experiences considered as ground truth). Af-

ter user 𝑢𝑥 obtains new user satisfaction experiences over Δ𝑡, it can compute the average user satisfaction experi-

ence value 𝑓𝑥,𝚤(𝑛𝑒𝑤)��������
 and update 𝜇  by minimizing MSE in 

Equation 9. The optimization problem in Equation 9 can 
be solved by plugging 𝑡𝑥,𝑖(𝜇) in Equation 8 into Equation 

9 and minimizing  MSE(𝜇) as follows: 

MSE(𝜇) = ��𝜇 ∙ 𝑡𝑥,𝑖𝑑 + (1 − 𝜇) ∙ 𝑡𝑥,𝑖𝑟 − 𝑓𝑥,𝚤(𝑛𝑒𝑤)���������2𝑖  
(10)  

The minimum value of MSE(𝜇) is obtained at the point 

where the derivative is zero, i.e., MSE′(𝜇�) = 0. Thus, 𝜇� is 

obtained as follows, 

𝜇� =
∑ �𝑓𝑥,𝚤(𝑛𝑒𝑤)�������� − 𝑡𝑥,𝑖𝑟 � �𝑡𝑥,𝑖𝑑 − 𝑡𝑥,𝑖𝑟 �𝑖 ∑ �𝑡𝑥,𝑖𝑑 − 𝑡𝑥,𝑖𝑟 �2𝑖  (11)  

The optimal value of 𝜇 (i.e., 𝜇̂) should be in the range 

of [0, 1] because it is a weight parameter. Therefore, 𝜇̂ = �0 𝜇� < 0𝜇� 0 ≤ 𝜇� ≤ 1

1 𝜇� > 1
 (12)  

Each user computes its own optimal value of 𝜇 (i.e., 𝜇̂) 

and updates it dynamically in every trust update time 

interval Δ𝑡, based on Equations 11 and 12, using the his-

torical data collected in its storage, so there is essentially 

no extra overhead. This adaptive design is applicable to 



 

 

other trust parameters (i.e., 𝜑  and (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐 )) as well. 

However, introducing these trust parameters in Equation 

9 leads to a more complex optimization problem and may 

not be feasible for IoT devices with limited resources. In 

this paper we focus on adaptive control of 𝜇 and leave 

adaptive control of other trust parameters as future work. 

Here we note that our dynamic weight adjustment 

scheme is driven by minimizing the difference between 
the subjective trust 𝑡𝑥,𝑖(𝜇) as a result of following the trust 

aggregation protocol in Equation 8, and the new user sat-

isfaction experience 𝑓𝑥,𝚤(𝑛𝑒𝑤)��������
 obtained in the last trust up-

date interval Δ𝑡. If 𝑑𝑖  is a malicious node and it retains 

high reputation either because it performs opportunistic 

service attacks to gain high reputation, or because other 

nodes provide ballot-stuffing attacks to boost its reputa-

tion, then our trust system will be temporarily deceived 

of its true status because the difference between these two 

quantities will be small. However, the moment 𝑑𝑖  per-

forms self-promoting attacks and provides bad service to 

user 𝑢𝑥, this bad user experience will be immediately ob-

served by user 𝑢𝑥  and, as a result, the difference between 

these two quantities will be large enough to drive the 

change of 𝜇  to minimize MSE(𝜇) in Equation 10. It is 

noteworthy that 𝜇 is dynamically adjusted based on min-

imizing the sum of the differences of all devices observed 

by user 𝑢𝑥  over Δ𝑡,  so adjusting 𝜇  to minimize 

MSE(𝜇) moves toward the right direction of minimizing 

the difference between “the subjective trust” vs. “what 

service quality is actually provided” for all devices with 

which user 𝑢𝑥 has interaction experiences over Δ𝑡.  
4.4 Storage Management for Small IoT Devices 

Considering a large-scale IoT system in which each 

node has limited storage space to keep direct user satis-

faction experiences and trust values of a small set of 

nodes with which it shares interests. A node has to decide 

which trust values to keep. In general, nodes are more 

interested in others with higher trust values. However, 

simply saving the trust values towards the most trustwor-

thy nodes cannot make the trust evaluation process con-

verge and is not adaptive to dynamic environments since 

there is little chance to accumulate trust towards newly 

joining nodes. Our storage management strategy consid-

ers nodes with the highest trust values and recent inter-

acting nodes as these nodes are most likely to share com-

mon interests. 

Figure 3 illustrates how our approach works concep-

tualizing the storage size of each node as n (meaning that 

there is space to save trust values of up to n nodes). When 

a slot is needed, for a node’s trust value to be kept it must 

be in the top Ω of the n trust values, or this node is one of 

the most recent interacting nodes. We consider Ω = 50% in 

this paper and the selection of optimal Ω value in dynam-

ic IoT systems can be solved using the same adaptive con-

trol in Section 4.3. 

When node i obtains the trust value towards node j, if 

the storage space is not full or node i does have the trust 

information of node j in its storage space, then node i will 

simply save the trust value towards node j. If the storage 

space is full and node i does not have the trust infor-

mation of node j in its storage space, node i will put the 

trust value towards node j and pop out the trust value 

towards the earliest interacting node among those with 

trust values below the median (Ω = 50%). By using a max-

min-median heap, find medium, maximum or minimum 

operations can be performed in O(1) constant time, while 

all others operations (find, insert and delete) can be per-

formed in O(log n) logarithmic time. 

5 TRUST PROTOCOL PERFORMANCE  

In this section, we report simulation results obtained 

as a result of executing our proposed autonomous trust 

management protocol by IoT devices. We choose ns-3 [41, 

42] as the simulator as it emerges as the de facto standard 

open simulation platform for networking research; it is a 

discrete-event network simulator, targeted primarily for 

research and educational use. 

The focus in this Section is to demonstrate our proto-

col’s desirable convergence and accuracy properties, as 

well as its resiliency property against malicious attacks. In 

Section 6, we will apply it to service composition and 

compare its performance against the baseline trust man-

agement schemes. 

Our simulation results have three parts. First, we 

demonstrate trust convergence, accuracy and resiliency 

properties of our adaptive IoT trust protocol design 

against malicious attacks. We then demonstrate the effec-

tiveness of our storage management protocol design for 

IoT devices with limited storage space. Lastly, we per-

form a comparative analysis of our adaptive IoT trust 

protocol against two baseline schemes: EigenTrust [39] 

and PeerTrust [40]. 

Table 3 lists the default parameter values. We consider 

an IoT environment with NT = 400 heterogeneous smart 

objects/devices.  These IoT devices are randomly as-

signed to N = 40 users. Users are connected in a social 

network represented by a friendship matrix [17]. We con-

sider these users moving according to the SWIM mobility 

Table 3: Parameter List and Default Values Used. 

parameter value parameter value parameter value 

NT 400 m×m 16×16 T 200hrs 

N 40 PM 30% 𝜑 0.001 𝛺 Δ𝑡 50% 

2hrs 

σc 0.01 𝜆  1/day 
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Figure 3: Storage Management for Small IoT Devices. 



 

 

model [15] modeling human social behaviors in an 

m×m=16×16 operational region for the purpose of as-

sessing the social contact similarity metric between any 

pair of users. Direct trust of node i toward node j is as-

sessed upon completion of a service request from node i 

to node j.  Each node requests services from a selected 

device with a time interval following an exponential dis-

tribution with parameter 𝜆, with 1/day being the default 

unless otherwise specified. The trust update interval Δ𝑡 is 

2 hours at which time if there is no direct trust update 

due to service request and completion, direct trust will be 

decayed according to Equation 1. Indirect trust is always 

updated in every Δ𝑡 interval according to Equation 7. The 

system runs continuously although we often can observe 

trust convergence in less than 200 hours, given that bad 

nodes follow the attack behaviors specified in Section 3.2.  

The user satisfaction levels of service invocations are 

generated based on a real dataset [27] and are used as 

“ground truth” based on which the accuracy of our trust 

protocol is assessed. As the direct trust of user 𝑢𝑥 toward 

device/service provider 𝑑𝑖 (i.e., 𝑡𝑥,𝑖𝑑 ) is calculated by Equa-

tion 1 with “ground truth” user satisfaction experiences 

as input, 𝑡𝑥,𝑖𝑑  essentially is equal to ground truth. Howev-

er, we account for the presence of noise in the IoT envi-

ronment (i.e., error of assessing user satisfaction level 

received) by considering a standard deviation parameter 

σc (set to 1% as default) to reflect the deviation of the ac-

tual user satisfaction level as recorded in the database 

from the direct trust evaluation outcome in terms of 𝑡𝑥,𝑖𝑑 .  

Initially, 𝑡𝑥,𝑖 is set to 0.5 (ignorance) by user 𝑢𝑥 for all 

i’s. Then, trust is updated dynamically as nodes encoun-

ter each other, as services are requested and rendered, 
and as trust feedback are acquired. We consider 𝑤𝑓 =𝑤𝑙 = 𝑤𝑐 = 1/3 (in Equation 6) as we assess the conver-

gence and accuracy properties of our trust protocol in this 

section. Later in Section 6 we will identify the best weight 
assignment (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐) for social similarity computation 

for the service composition application.  

We test the resiliency of our trust protocol against ma-

licious node behavior (i.e., performing self-promotion, 

bad-mouthing and ballot-stuffing attacks) by randomly 

selecting a percentage PM out of all as dishonest malicious 

nodes with PM=30% as the default. A normal or good 

node follows the execution of our trust management pro-

tocol faithfully, while a malicious node provides false 

trust feedback by means of ballot-stuffing, bad-mouthing, 

and self-promoting attacks to gain advantage. 

5.1 Trust Convergence, Accuracy and Resiliency 
against Malicious Attacks 

In this section, we examine the trust convergence, ac-

curacy and resiliency properties of our adaptive IoT trust 

protocol design. We first compare static control (i.e., 𝜇 is 

fixed at a constant) vs. adaptive control (i.e., 𝜇 is changed 

dynamically based on Equation 12).  

Figure 4 shows trust evaluation results for a trustor 

node toward a “good” trustee node randomly picked. We 

see that trust convergence behavior is observed for either 

fixed or adaptive control. There is a tradeoff between 

convergence time vs. trust bias. With static control, when 

a higher 𝜇  value is used, the trust convergence time is 

longer, but the trust bias is smaller, i.e., the trust value is 

closer to ground truth after convergence. With adaptive 

control, on the other hand, the trustor node is able to ad-

just 𝜇 dynamically to minimize both the convergence time 

and the trust bias after convergence. Here we note that 

the trust value of a “good” trustee is not 1 because we use 

the user satisfaction levels of service invocations based on 

a real dataset [27] with a standard deviation parameter σc 

(set to 1% as default) reflecting the deviation of the actual 

user satisfaction level recorded in the database from the 

direct trust evaluation outcome.  

An interesting observation in Figure 4 is that if 𝜇 is too 

small (e.g., 0.2) the trust value is over-estimated upon 

convergence, which is not a desirable outcome as trust 

overshoot is considered a bad property detrimental to the 

stability of a trust system [36]. Our adaptive protocol dy-

namically adjusts 𝜇  for fast convergence without incur-

ring trust overshoot. 

Figure 4 is for the case in which the percentage of ma-

licious nodes PM = 30%. We conduct experiments to test 

the residency of our trust protocol against increasing ma-

licious node population. Figure 5 shows that as the popu-

lation of malicious nodes increases, both the convergence 

time and trust bias increase. However, the system is 

found to be resilient to malicious attacks for PM as high as 

40%, with proper convergence and accuracy behaviors 

 

Figure 4: Trust Value of a Good Node with PM = 30%. 

 

Figure 5: Trust Value of a Good Node under Adaptive Control with PM 

ranging from 20% to 50%. 
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exhibited. In general we observe that the trust bias is min-

imum, e.g., < 5% when PM ≤ 40% and the trust bias be-

comes more significant, e.g., > 10% when PM ≥ 50%.  This 

demonstrates the resiliency property of our trust protocol 

against malicious attacks.  

Correspondingly, Figure 6 shows how our trust-based 

adaptive control protocol adjusts 𝜇 in Equation 12 in re-

sponse to increasing malicious node population.  

We observe that as the malicious node population in-

creases, the system will have to rely more on direct trust 

by increasing 𝜇 and conversely rely less on indirect trust 

by decreasing 1 − 𝜇 so as to mitigate the effect of bad-

mouthing and ballot-stuffing attacks by malicious nodes. 

Figure 6 shows that when PM = 20%, the optimal con-

verged 𝜇 value is 0.78, while when PM = 50%, the optimal 

converged 𝜇 value is 0.90. This follows the design princi-

ple of “go up slowly, reduce quickly,” that is, when a 

node acts maliciously, its trust value should reduce quick-

ly, and when a node acts cooperatively, its trust should 

just go up slowly. When a node is being observed mali-

ciously, its trust value will be reduced quickly because in 

this case a high 𝜇 value will be used by our trust protocol 

and a high 𝜇 value means that the trust value of the mali-

cious node will be very close to direct trust which is low 

as the node is being observed maliciously. Conversely, 

when a node is being observed cooperatively, its trust 

value will just go up slowly because in this case a low 𝜇 

value will be used by our adaptive protocol and a low 𝜇 

value means that both direct trust and indirect trust will 

contribute to the overall trust based on Equation 8. Alt-

hough in this case, the direct trust observed is high as the 

node is being observed cooperatively, it will only increase 

the overall trust value slowly by a weight of 𝜇, with the 

indirect trust contributing to the overall trust by a weight 

of 1 − 𝜇. The system cannot rely on direct trust 100% be-

cause malicious nodes can perform opportunistic service 

attacks and there is an error of assessing direct trust due 

to noise in the environment. Figure 6 demonstrates that 

our adaptive control mechanism is effective in terms of 

convergence of 𝜇 to its optimal value under which trust 

bias is minimized.  

Figure 7 shows trust evaluation results for a trustor 

node toward a “bad” trustee node. Among all attacks, the 

bad node performs opportunistic service attacks with the 

high trust threshold being 0.7 and the low trust threshold 

being 0.5. Specifically, the bad node provides good ser-

vice to gain high reputation opportunistically when it 

senses its reputation drops below 0.5. Once it reputation 

rises to 0.7, it provides bad service again. We see from 

Figure 7 that our adaptive trust protocol is able to accu-

rately track the trust fluctuation of the bad node perform-

ing opportunistic service attacks. We observe that the rate 

of trust fluctuation is higher when PM is higher because 

more malicious nodes can collude to quickly bring the 

trust level of the bad node to 0.7.  

The effect of the decay parameter 𝜑  is analyzed in 

Figure 8. A smaller 𝜑  means a slower trust decay rate 

with 𝜑=0 meaning no trust decay. We choose 𝜑=0.001 to 

achieve the desirable convergence behavior. We see that 

as 𝜑  increases, it takes longer to achieve trust conver-

gence. This is because a good node remains good for its 

lifetime so a larger trust decay rate requires a good node 

to become more socially and service active over time in 

order to regain its trust status. In this case, we see that 𝜑=0 produces the fastest convergence rate. This is not 

necessarily true for cases in which a good node may be 

compromised dynamically for which 𝜑>0 may become 

the best setting. The determination of the optimal 𝜑 to 

trade convergence with accuracy as dictated by environ-

ment conditions is a future research area. 

5.2 Trust Evaluation with Limited Storage Space 

The results presented in Section 5.1 are based on the 

assumption that each node has sufficient storage to save 

trust values of all nodes. In this section, we consider a 

more realistic scenario in which many small IoT devices 

 

 

Figure 6: Adjustment of 𝝁 against Increasing Malicious Node Population. 

 

Figure 7: Trust Value of a Bad Node under Adaptive Control with PM 

ranging from 20% to 50%. 

           Figure 8: Effect of Decay Parameter on Trust Convergence. 
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only have a limited storage space. A trustor node in this 

case would run the trust storage management strategy 

described in Section 4.4 to store trust values considered 

important to the node.  

Figure 9 compares the trust value obtained by a trus-

tor node toward a good trustee node randomly picked, 

when PM = 30% and each node has 10%, 50% or 100% 

space to accommodate all trust values. We first note that 

the curve labeled with “adaptive trust-based 100% stor-

age” in Figure 9 is the same as the curve labeled with 

“adaptive trust-based” in Figure 4. We observe that the 

convergence time and trust bias after convergence are 

comparable for the 10% and 50% storage cases and they 

don’t deviate much from those for the 100% storage case. 

This demonstrates the effectiveness of our management 

strategy for limited storage. We attribute this to its ability 

to function like a filter, thus excluding highly deviated 

trust feedback coming from untrustworthy nodes to 

shield the system from false recommendation attacks. 

Lastly, we examine the effect of our management strat-

egy for limited storage on hit ratio. We define the “top-m 

hit ratio” as the percentage of the top-m most trustworthy 

nodes having their trust values stored in the limited n 

slots. Figure 10 shows the top-20 hit ratio as a function of 

time for a randomly selected node. We can see that initial-

ly the hit ratio is zero because there is no trust infor-

mation stored for any node. As the trust value converges, 

the hit ratio quickly increases and approaches its peak. 

We see that the maximum achievable hit ratios are 90%, 

85%, 75% and 50% under 100%, 50%, 10% and 5% storage 

spaces, respectively. Even with as little storage space as 

10%, the hit ratio only deteriorates from 90% to 75%. This 

again demonstrates the effectiveness and high space utili-

zation of our management strategy for limited storage. 

5.3 Comparative Analysis  

Figure 11 shows head-to-head performance compari-

son data of our adaptive IoT trust protocol against two 

baseline schemes, EigenTrust [39] and PeerTrust [40], for 

the trust evaluation of a good node randomly selected. 

The environment conditions are setup the same way as in 

Figure 4 with PM=30%. We see that while all protocols 

converge at about the same rate, our protocol achieves 

accuracy but EigenTrust and PeerTrust both suffer inac-

curacy. Figure 12 shows the corresponding 3-dimensional 

view with PM varying in the range of 20% to 40%. We see 

that the trust bias gap (difference to ground truth) for 

EigenTrust and PeerTrust widens as PM increases, while it 

remains minimum for our adaptive IoT trust protocol 

against increasing malicious node population. This 

demonstrates the resiliency property of our trust protocol 

against malicious attacks. We attribute the superiority of 

our adaptive IoT trust protocol over EigenTrust and 

PeerTrust to our protocol’s adaptability to adjust the best 

trust parameter (𝜇) dynamically to achieve trust accuracy 

despite the presence of a high percentage of malicious 

nodes performing opportunistic service attacks to boost 

their own reputation scores opportunistically and collud-

ing (via bad-mouthing attacks) to ruin the reputation of 

this good node. 

 

           Figure 9: Adaptive Control with Limited Storage. 

 

Figure 10: Hit Ratio with Limited Storage. 

Figure 11: Performance Comparison of Trust Convergence, Accuracy 

and Resiliency when PM=30%. 

 

Figure 12: Performance Comparison of Trust Convergence, Accuracy 

and Resiliency in 3-D View with PM ranging from 20% to 40%.  
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6 TRUST-BASED SERVICE COMPOSITION 

In this section, we apply our trust management to a 

trust-based service composition application in SOA-based 

IoT systems. In SOA, service composition can be classified 

as static, semi-automatic, and automatic. Service composi-

tion methods include workflow composition, AI plan-

ning, etc. [23]. Dynamic service composition could be-

come a complex planning problem. In this paper, we con-

sider a template-based semi-automatic service composi-

tion application for which a template (or a workflow) de-

scribes the data flow and logic of a composite service.  

Figure 13 shows an example for travel planning. There 

are 9 atomic services connected by three types of work-

flow structures in this example, namely, sequential, parallel 

(AND), and selection (OR). Each service would have mul-

tiple SP candidates.  

We use the “true” user satisfaction levels received 

from the SPs selected for the service composition applica-

tion to derive the overall user satisfaction level, called the 

utility score, to evaluate the performance of service com-

position. The utility score of a candidate service composi-

tion is calculated recursively. Specifically, the utility score 

of a composite service (whose utility score is 𝑢𝑠𝑠) com-

prising two subservices (whose utility scores are 𝑢𝑠1 and 𝑢𝑠2) depends on the structure connecting the two sub-

services as follows:  

• Sequential Structure: 𝑢𝑠𝑠 = 𝑢𝑠1 × 𝑢𝑠2; 

• Selection Structure: 𝑢𝑠𝑠 = max (𝑢𝑠1, 𝑢𝑠2); 

• Parallel Structure: 𝑢𝑠𝑠 = 1 − (1 − 𝑢𝑠1) × (1− 𝑢𝑠2). 

We also use the percentage of malicious nodes select-

ed as SPs for providing the travel service as an additional 

performance metric. For trust-based service composition, the 

goal is to select service providers based on trust evalua-

tion such that the composite service utility score is the 

best. We compare the performance of trust-based service 

composition with two baseline approaches: 

1. Ideal service composition which returns the maximum 

achievable utility score derived from ground truth or 

global knowledge. 

2. Random service composition which randomly selects 

service providers for service composition without re-

gard to trust. 

We differentiate two types of service composition ap-

plications: without constraints and with constraints, i.e., a 

budget limit for travel planning. In both scenarios, we 

compare the performance of trust-based service composition 

running on top of our adaptive IoT trust protocol against 

that running on top of EigenTrust and PeerTrust. 

6.1 Service Composition without Constraints 

In trust-based service composition without constraints, the 

SR selects the SP with the highest trust value for each re-

quired service. 

Figure 14 shows the ns-3 simulation results with 

PM=30%. We observe that trust-based service composition 

with our adaptive IoT trust protocol significantly outper-

forms random service composition and upon conver-

gence approaches the performance of ideal service com-

position based on ground truth. Further, our adaptive IoT 

trust protocol outperforms EigenTrust and PeerTrust as 

the underlying trust protocol for trust-based service com-

position. In addition, we also observe that the perfor-

mance gap widens as PM increases. 

Figure 15 shows the percentage of bad nodes selected 

for service composition without service constraints. Our 

adaptive IoT trust protocol again outperforms both Ei-

genTrust and PeerTrust with EigenTrust slightly perform-

ing better than PeerTrust.  
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Figure 13: A Service Composition Example (Travel Planning). 

 

Figure 14: Utility of Service Composition without Constraints. 

 

Figure 15: Probability of a bad SP being selected for Service Composi-

tion without Constraints.  
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We attribute the superiority of Adaptive IoT Trust 

over EigenTrust and PeerTrust to our protocol’s adapta-

bility to adjust the best trust parameter (𝜇) dynamically to 

minimize trust bias, and, consequently, maximize the 

performance of the service composition application.  

6.2 Service Composition with Constraints 

One example of service constraints is budget limit. 
Simply selecting the most trustworthy SPs may lead to 
infeasible solutions. Suppose that each SP announces its 
price when publishing the service and the SR has a budg-
et limit for service composition. In trust-based service com-
position with constraints, the SR calculates the overall utili-
ty score and the overall price for each candidate configu-
ration, using the trust value it has toward a SP to predict 
the utility score for that SP, and selects the configuration 
with the highest utility score among those with the over-

all price below the budget limit.  

Figure 16 shows the ns-3 simulation results with 

PM=30%. We first observe that the utility scores are lower 

than those without budget constraints since good service 

providers may post high price, thus preventing them 

from being included. We again observe that the trend is 

similar to Figures 14 in terms of performance ranking, 

with trust-based service composition with our adaptive IoT 

trust protocol outperforming that with either EigenTrust 

or PeerTrust. Figure 17 shows the percentage of bad 

nodes selected for service composition with budget limit 

constraints. Our adaptive IoT trust protocol again outper-

forms both EigenTrust and PeerTrust by a significant 

margin nearly cut in half in the percentage of bad nodes 

selected for service composition. We again attribute the 

superiority of our protocol over EigenTrust and PeerTrust 

to our protocol’s adaptability in response to a high per-

centage of nodes performing malicious attacks. 

6.3 Effects of Social Similarity on Trust Feedback 

So far we have assumed 𝑤𝑓 = 𝑤𝑙 = 𝑤𝑐 = 1/3 (in Equa-

tion 6) for computing social similarity, considering there 

is an equal contribution from friendship, social contact, 

and CoI. However, in some application environments 

(say remote travel agent service) in which nodes that are 

friends or in the same CoI may be more credible than 

nodes that are co-located in providing trust feedback, 

while in another environment (say local restaurant ser-

vice), it is the other way around. So there is an optimal 
weight assignment (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐) that can provide the most 

credible trust feedback. In this section, we examine the 
effect of (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐) on protocol performance with the ser-

vice composition application with constraints as our test 

case. 

Figure 18 shows the simulation results of the MSE of 

the difference between the utility obtainable under trust-

based service composition and the ideally achievable util-
ity for the service composition application vs. (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐). 
Note that 𝑤𝑐=1 − 𝑤𝑓 − 𝑤𝑙  and is not shown in the 3-D 

diagram. One can see clearly from Figure 18 that there 
exists an optimal weight assignment (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐) = 

(0.9, 0.0, 0.1) under which MSE is minimized, i.e., the 

utility obtainable via trust-based service composition is 

closest to the ideally achievable utility with perfect global 

 

 Figure 16: Utility of Service Composition with Constraints. 

 

Figure 17: Probability of a bad SP being selected for Service Composition 

with Constraints.  

 

 

 

Figure 18: Mean Square Error of Utility Difference vs. (𝒘𝒇,𝒘𝒍,𝒘𝒄). 
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knowledge of node status. Here it is worth noting that the 

social contact similarity metric is not a factor in this appli-

cation scenario for trust feedback because all services ex-

cept one (restaurant in Figure 13) do not require social 

contact similarity. However, this is not universally true 

should another service composition flowchart be given as 

input. The methodology developed in the paper will al-

low each service requester to dynamically decide and 
apply the optimal weight combination (𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐 ) that 

will lead to the most credible trust feedback to minimize 

trust bias and as a result maximize the utility or the user 

satisfaction level of the application.    

7 CONCLUSION 

In this paper, we designed and analyzed an adaptive 

and scalable trust management protocol for SOA-based 

IoT systems. We developed a distributed collaborating 

filtering technique to select trust feedback from owners of 

IoT nodes sharing similar social interests. We considered 

three social relationships, i.e., friendship, social contact, 

and community of interest, for measuring social similarity 

and filtering trust feedback based on social similarity. 

Further, we developed an adaptive filtering technique by 

which each node adaptively adjusts its best weight pa-

rameters for combining direct trust and indirect trust into 

the overall trust to minimize convergence time and trust 

bias of trust evaluation. We demonstrated via simulation 

the superiority of our adaptive IoT trust protocol over 

EigenTrust and PeerTrust in trust convergence, accuracy 

and resiliency against malicious nodes performing self-

promoting, bad-mouthing, ballot-stuffing, and opportun-

istic service attacks.    

For scalability we proposed a storage management 

strategy for small IoT devices to effectively utilize limited 

storage space. By using the proposed method, our trust 

protocol with limited storage space is able to achieve a 

similar performance level as that with unlimited storage 

space. To demonstrate the applicability, we applied our 

trust management protocol to a service composition ap-

plication, with or without service constraints in SOA-

based IoT systems. Our simulation results demonstrated 

that with our adaptive trust protocol design, the applica-

tion running on top of the trust protocol is able to ap-

proach the ideal performance upon convergence and can 

significantly outperform the counterpart non-trust-based 

random selection service composition, as well as service 

composition running on top of EigenTrust and PeerTrust.   

We also demonstrated that our technique is effective in 

deciding and applying the best weight combination 
(𝑤𝑓 ,𝑤𝑙 ,𝑤𝑐) for combining social similarities that will lead 

to the most credible trust feedback to minimize trust bias 

and maximize the utility of the application. 

In the paper we only considered persistent attackers 

[30], i.e., attackers that perform self-promoting, opportun-

istic service, bad-mouthing, and ballot-stuffing attacks 

with probability one, or wherever there is a chance.  In 

the future, we plan to consider other attacker behavior 

models including opportunistic collusion attacks (where 

malicious nodes collude only opportunistically depend-

ing on the situation given), random attacks (where mali-

cious nodes perform attack on and off randomly to elude 

detection) and insidious attacks (where malicious nodes 

hide until a critical mass is gathered so as to launch more 

effective collusion attacks) to further test the resiliency 

property of our adaptive and scalable trust protocol de-

sign. Also, the incentives considered in this paper are self-

interest (based on which a node performs self-promoting 

and opportunistic service attacks) and social relationships 

(based on which a node performs bad-mouthing and bal-

lot-stuffing attacks). The use of participant incentives for 

collusion attacks is an interesting extension out of this 

paper. 
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