
0018-9162/07/$25.00 © 2007 IEEE February 2007 45P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

C O V E R F E A T U R E

Finally, in mobile ad hoc networks—a type of dis-
tributed system that has no infrastructure and lets nodes
move freely—trust management can mitigate nodes’ self-
ish misbehavior, such as dropping or refusing to forward
packets for other nodes to save its battery power while
still requiring other nodes’ services.

Much research exists on trust management1-3 and rep-
utation management.4,5 We don’t distinguish trust man-
agement from reputation management because both can
be generalized as dynamic rating systems. Here, we sur-
vey the current research on trust management in dis-
tributed systems and explore some open research areas.

TRUST MODELS
Trust is a complex subject, and no unanimous defini-

tion of trust exists. The Merriam-Webster’s Dictionary
defines trust as “assured reliance on the character, abil-
ity, strength, or truth of someone or something.”
Dictionary.com describes trust as the “firm reliance on
the integrity, ability, or character of a person or thing.” We
define trust as the belief that an entity is capable of act-
ing reliably, dependably, and securely in a particular case.

Trust management entails collecting the information
necessary to establish a trust relationship and dynamically
monitoring and adjusting the existing trust relationship.

The various models for describing trust and trust
establishment in distributed systems include public-key
cryptography, the resurrecting duckling model, and the
distributed trust model.

Distributed systems such as the Internet, peer-to-peer networks, and mobile ad hoc

networks involve numerous entities, many of which haven’t previously interacted.Trust

management can help minimize risk and ensure the network activity of benign entities

in distributed systems.

Huaizhi Li and Mukesh Singhal
University of Kentucky

A
distributed system is a decentralized network
consisting of a collection of autonomous com-
puters that communicate with each other by
exchanging messages. These systems are scal-
able and fault tolerant, and they allow easy

resource sharing, concurrent processing, and transpar-
ent operation.

As the Internet’s popularity grows, distributed appli-
cations such as e-commerce are becoming important. In
addition, with the rapid development of network and
communication technologies, new forms of distributed
systems—such as peer-to-peer (P2P) networks and
mobile ad hoc networks—are quickly emerging.

Trust is an important issue in distributed systems.
Transactions in distributed systems can cross domains
and organizations, and not all domains can be trusted to
the same level. Even within the same domain, users’
trustworthiness can differ. A flexible and general-pur-
pose trust management system can maintain current and
consistent trustworthiness information for the different
entities in a distributed system.

In e-commerce, for example, a trust-management sys-
tem lets a buyer and seller become acquainted with each
other and estimate the risk of participating in a trans-
action, thus minimizing the loss. In P2P systems, where
each entity acts as both client and server and is expected
to contribute to the system, trust management can help
reduce free riding, which can seriously degrade P2P sys-
tem performance.

Trust Management in
Distributed Systems

46 Computer

Public-key cryptography
Many networked services have security mechanisms

based on cryptographic techniques such as the Pretty
Good Privacy (PGP)6 or X.5097 certificate systems,
which implicitly use the trust-management concept.

A public-key certificate is a digital certificate issued by
a trusted third party to certify a public key’s ownership.
A certificate contains an entity’s identity, public key, and
other information, such as the trusted third party’s dig-
ital signature. Service users are assumed to know the
trusted third party’s public key so that they can verify
the certificate. The trusted third party only vouches for
the association between an identity and a public key.
It doesn’t guarantee the entity’s trustworthiness.

In X.509, the trusted third party is a certificate author-
ity (CA), which is usually a trust-
worthy entity for issuing certificates
(Verisign, for example). Another CA
might also certify a particular CA.

When a user generates a public/
private key pair, it registers its pub-
lic key with a CA and has the CA
certify it. If the same CA certifies two
users and they want to communicate securely, they need
only exchange their certificates. If different CAs certify
two users, they must resort to higher-level CAs, which
certify their CAs until they reach a common CA. So,
X.509 uses a hierarchical structure, which constructs a
tree of trust.

PGP doesn’t use a CA. Instead, every entity certifies the
binding of IDs and public keys for other entities. For
example, an entity A might think it has good knowledge
of an entity B and is willing to sign B’s certificate. An entity
might assign a degree of trust—unknown, untrusted, mar-
ginally trusted, or fully trusted—to its certifiers.

The user chooses how to use the certificate. User C
might be confident about A’s trustworthiness and accept
B’s certificate, which A has signed. A pessimistic user
might only accept certificates certified by fully trusted
entities, whereas an optimistic user might trust margin-
ally trusted signers.

Traditional certificate schemes like X.509 and PGP
only bind public keys to identities. Because binding an
identity to access rights or authorized actions is outside
the certificate framework, a certificate framework only
provides partial trust management.

Resurrecting duckling model
Frank Stajano and Ross Anderson’s8 resurrecting

duckling model also has a hierarchical structure. The
entities in a network have a master-slave relationship.
The master entity is the mother duck and the slave entity
is the duckling.

A slave entity recognizes the first entity that sends it a
secret key through an out-of-band secret channel
(through physical contact, for example) as its master in

a process called imprinting. The master passes instruc-
tions and access control lists to its slaves, and the slaves
always abide by their master. The master, a time-out, or
a specific event can break the relationship between a
master and a slave. After that, other entities can imprint,
or resurrect, the slave. A slave entity can also become a
master to other entities through the imprinting process.

Thus, the relationship among nodes is a tree-like trust
relationship. An entity controls all the entities in its sub-
tree. Breaking the relation between two entities causes
the relationships in the entire subtree to break.

This model is appropriate for devices that can’t per-
form public-key cryptography. However, the model
requires an out-of-band secret channel to deliver the
secret key, which might not be feasible in some net-

works, such as ad hoc networks.

Distributed trust model
Alfarez Abdul-Rahman and

Stephen Hailes developed a distrib-
uted recommendation-based trust
model.1 They propose conditional
transitivity of trust, which hypothe-

sizes that trust is transitive under some conditions. For
example, if A trusts B, and B trusts C, we can’t simply
conclude that A trusts C, because trust generally isn’t tran-
sitive. Abdul-Rahman and Hailes claim that we can con-
clude that A trusts C if the following conditions are true:

• B recommends its trust in C to A explicitly;
• A trusts B as a recommender; and
• A can judge B’s recommendation and decide how

much it will trust C, irrespective of B’s trust in C.

The model’s motivation comes from human society,
where human beings get to know each other via direct
interaction and through a grapevine of relationships.
The same is true in distributed systems. In a large dis-
tributed system, every entity can’t obtain first-hand
information about all other entities. As an option, enti-
ties can rely on second-hand information or recom-
mendations. However, because recommendations have
uncertainty or risk, entities need to know how to cope
with second-hand information.

The distributed trust model assumes asymmetrical
trust. It defines two types of trust relationships: direct
trust and recommender trust. It categorizes a trust rela-
tionship between two entities in terms of different inter-
actions. Trust in one category is independent of trust in
other categories. This model uses continuous trust val-
ues for direct trust and recommender trust, as Tables 1
and 2 define.1 Other researchers fix trust value within
the range (0, 1).2

The recommendation protocol is straightforward. For
example, entity A needs a service from entity D (say car
service). A knows nothing about the quality of D’s ser-

The distributed

trust model assumes

asymmetrical trust.

February 2007 47

In P2P systems, peers often must interact with
unknown entities whose trustworthiness is also un-
known. Centralized schemes or schemes that rely on
global knowledge won’t work.

Recommendation-based trust management
Xiong and Liu2 based their distributed trust-manage-

ment system on feedback or recommendations that help
establish trust relationships between unknown or unfa-
miliar peers. They define a satisfactory interaction as 1
and a complaint as 0. Their trust metric is

(1)

where

• P is a set of peers in the P2P system;
• u and v are peers in the system, u, v � P;
• S(u,v,t) is the degree of satisfaction that u has with v

until the tth transaction;
• T(u,t) is u’s trust value evaluated by other peers until

the tth transaction;
• Cr(v,t) is the balance factor for filtering feedback

from v; and
• I(u,v,t) is the number of interactions that u has with

v up to the tth transaction.

So, T(u,t) is the ratio of the cumulative weighted satis-
faction that u receives to the total number of interactions
that u has within the P2P system.

T u t

S u v t Cr v t

I u v t

v P v u
(,)

(, ,) (,)

(, ,

,= ∈ ≠
∑ i

))
,v P v u∈ ≠
∑

vice, so A asks B for a recommendation with respect to
the car service category, assuming that A trusts B’s rec-
ommendation within this category. When B receives this
request and finds that it doesn’t know D either, B for-
wards A’s request to C, which has D’s trustworthiness
information within the car service category. C sends a
reply to A with D’s trust value. The path A � B � C � D
is the recommendation path.

We use the following formula to calculate the trust
value from the returned value1: tv_T = [rtv(1)/4] �

[rtv(2)/4] � ... � [rtv(i)/4] � ... � [rtv(n)/4] � tv(T), where
rtv(i) is the trust value of the ith recommender in the
recommendation path, tv(T) is the trust value of target
T returned by the last recommender, and tv_T is the cal-
culated trust value of target T.

When multiple recommendation paths exist between the
requester and the target, the target’s eventual trust value is
the average of the values calculated from different paths.

This model has some weaknesses:

• It doesn’t consider false recommendations and
assumes that a recommender with a good recom-
mender trust value always makes reliable recom-
mendations, which might not be true.

• It doesn’t provide a mechanism for monitoring and
reevaluating trust, which is dynamic.

Trust shouldn’t be considered a binary concept (that
is, either to trust or not to trust). Abdul-Rahman
and Hailes quantified trust as a multiple value concept.1

Many trust-management systems use the same ap-
proach.2,5,9,10 The key challenge then is how to process
the trust values to minimize the influence of false
recommendations.

We can classify the trust models into two categories:

• evidence-based model, in which entities establish a
trust relationship based on some evidence, such as
keys;6-8

• recommendation-based model, in which recom-
mendations from intermediaries set up the trust rela-
tionship between two strangers.1

We can also place the trust-management systems for
distributed systems into these two categories. For exam-
ple, Laurent Eschenauer, Virgil Gligor, and John Baras11

used an evidence-based approach, while Li Xiong and
Ling Liu2 and Karl Aberer and Zoran Despotovic3 used
a recommendation-based approach.

TRUST MANAGEMENT IN P2P SYSTEMS
P2P systems are distributed systems without central-

ized control or organization. The peers interact directly
and are both consumers and service providers. P2P sys-
tems need trust management to ensure cooperation—
for example, to reduce free riding.

Table 1. Direct trust value.

Value Meaning Explanation

–1 Distrust Completely untrustworthy

0 Ignorance Can’t decide

1 Minimal Lowest trust

2 Average Mean trustworthiness

3 Good Trusted by major population

4 Complete Fully trustworthy

Table 2. Recommender trust value.

Value Meaning Explanation

–1 Distrust Completely untrustworthy

0 Ignorance Can’t decide

1 Minimal The entity itself judges the

2 Average reliability of recommender’s

3 Good recommendation.

4 Complete

48 Computer

Xiong and Liu2 approximated that S(u,v,t) � Cr(v,t) by
I(u,v,t) – C(u,v,t) � T(v,t). C(u,v,t) denotes the degree of
complaint that v files against u. C(u,v,t) � T(v,t) indicates
the filtered complaint filed by v against u. The definition
of T(u,t) becomes

(2)

Therefore, T(u,t) is within the range (0, 1). The higher
T(u,t) is, the more trustworthy u is. This approach uses
v’s trust value T(v,t) as a balance factor, similar to Abdul-
Rahman and Hailes’s approach, which uses recommen-
dation trust value as a balance factor. The higher T(v,t)
is, the more reliable v’s complaint is. Thus v’s complaint
has more impact on u’s trust value.

The trustworthiness decision criterion is

If I(u,t) > C1 and T(u,t) > C2, then u is trustworthy.

C1 and C2 are thresholds, with C1 defining the min-
imum number of interactions required. Obviously, a cer-
tain number of interactions are necessary to improve
accuracy.

Because Xiong and Liu’s approach considers both pos-
itive and negative evaluations and interaction history,2

it is more likely to produce accurate results. However,
their trust-management system has several drawbacks:

• The decision criteria in Equation 2 require a mini-
mum number of interactions, which is a disadvan-
tage for newcomers and reentry nodes, which are
common in P2P systems.

• Because the balance factor used in Equation 1 is a
peer’s trust value, the system assumes that a peer with
a higher trust value always gives more reliable feed-
back than a peer with a lower trust value, which might
not be true.

• A peer’s behavior changes over time. More recent
feedback is closer to a peer’s current behavior than
older feedback. In this model, all previous feedback
has the same weight in evaluating a peer’s trust
value.

Aberer and Despotovic’s3 trust-management system
for P2P networks has some similarities to Xiong and
Liu’s approach. They used other peers’ feedback to eval-
uate a peer’s trust value. However, they only considered
complaints about a node, which makes the system too
sensitive to misbehavior. They used a probabilistic
method to analyze the collected complaints and make
decisions. The method also uses a binary trust value—
that is, a node is either trustworthy or distrusted—which
is too coarse.

T u t

C u v t T v t

I u

v P v u
(,) –

(, ,) (,)

(,

,= ∈ ≠
∑

1

i

vv t
v P v u

,)
,∈ ≠
∑

Anonymity in P2P trust-management systems
In a P2P trust-management system, a peer queries

other peers in the network to get another peer’s trust
value. A malicious peer could discover peers that report
a bad trust value for it and attack those peers in revenge
or to prevent them from reporting the bad trust value
(for example, by using a denial-of-service attack).

Anonymity is one way to cope with this problem.
Aameek Singh and Ling Liu’s TrustMe is an anonymous
trust management system for a P2P system.12 It uses pub-
lic-key cryptography-based mechanisms to realize
anonymity. For a particular peer, TrustMe randomly
selects a certain number of peers in the network to man-
age that peer’s trust value. These peers are the trust-hold-
ing agent peers for that peer, which doesn’t know the
identities of its THA peers.

Although TrustMe protects THA peers’ identities, a
malicious THA peer can disseminate negative trust
information for a peer. Remaining problems include pre-
venting malicious peers from becoming THA peers and
preventing peers from reporting a wrongful trust value
for another peer.

Initial setup. TrustMe requires that a node i has two
pairs of private/public keys, denoted by (Pi, Bi) and (Pi�,
Bi�), in which P denotes a private key and B denotes a
public key. A bootstrap server, which is the entry point
for peers in a P2P network, also has a pair of
private/public keys, (PBS, BBS). It gives the public key BBS

to all the nodes joining the network.
The bootstrap server generates a special private/

public-key pair (SPi, SBi) for node i. However, node i
knows only the public key SBi. The bootstrap server also
generates an identifier BIDi for node i: (BIDi = PBS

(“ValidNode”|Bi�), where PBS(M) means encrypting a
message M with key PBS and “|” means concatenation. A
node can decrypt BIDi using BBS and knows that BIDi is
a valid node’s identifier although it doesn’t know node
i’s real identity. It also knows node i’s public key.

Node join. When node i joins the network, it sends its
Bi and Bi� to the bootstrap server. After generating (SPi,
SBi) for node i, the bootstrap server sends SBi to node i.
The bootstrap server chooses a set of available peers in
the network to serve as the THA peers of node i. The
bootstrap server generates a trust-host message for each
of node i’s THA peers. For example, for peer x, the trust-
host message is THBS(i) = BIDx|PBS (BIDx(|Bx�IDi|Bi|
SPi|SBi)), where IDi is node i’s identity.

The bootstrap server sends the trust-host message to
node i, which broadcasts the message in the network.
When it receives the message, peer x reads it using BBS

and Px� and puts node i in a local database that stores the
IDs and trust values of the peers that it serves as a THA
peer. Only peer x can interpret the trust-host message.
All THA peers of node i know node i’s SPi. Furthermore,
node i only knows the BIDs of its THA peers, not their
real identities.

February 2007 49

Trust value query.When a peer j needs another peer i’s
trust value, peer j broadcasts a query message, Query:
{IDi}. When a THA peer of peer i, say peer x, receives the
query, it generates a reply containing peer i’s trust value
and sends it to peer j. The reply is R(x, i) = IDi | Bi | SBi |
SPi(TV | TS | BIDx | Px� (TS)), where TV is the trust value
of peer I, and TS is the message’s time stamp. Peer j uses
the key Bi for future communication with peer i. The
encryption with SPi guarantees that a THA peer generates
the reply message. Peers use BIDx to identify a THA peer,
although BIDx isn’t peer x’s true identity. Peer i can put
BIDx on a blacklist if peer x is a malicious peer. The time
stamp TS prevents a malicious node from replaying a reply.
Peer i can extract Bx� from BIDx and decrypt Px� (TS),
which can verify BIDx’s correctness.

Feedback. When peer j interacts
with peer i, they exchange a proof-
of-interaction message: peer i receives
Pj(TS | Bi | IDi) from peer j, and peer
j receives Pi(TS | Bj | IDj) from peer i.
No other peers can generate a fake
proof-of-interaction message. After
the interaction, peer j can report a
new trust value for peer i by broad-
casting a report message: Report(j, i)
= IDi | SBi(“report” | TV | Bj | Pj (Pi(TS | Bj | IDj))), where
TV is a new trust value for peer i.

Only peer i’s THA peers know SPi, so only these peers
can read the report message. The Pi(TS | Bj | IDj) part of
the report message is the proof-of-interaction message
exchanged with peer i, which is used to prevent peers
from faking a report. From Pi(TS | Bj | IDj), the THA
peers also get the identifier of the report message’s
sender, which is peer j.

Node leave. When a peer leaves a P2P network, it
notifies the bootstrap server. The bootstrap server selects
another peer to assume the leaving peer’s responsibilities.
The THA peers maintain a time stamp for the informa-
tion of each peer in their database. When a peer accesses
another peer’s information, the server updates the time
stamp. If the stamp is older than a certain value, a THA
peer will delete the information. Therefore, a leaving
peer’s information will eventually be deleted.

TRUST MANAGEMENT IN MOBILE
AD HOC NETWORKS

P2P systems assume that the network layer is reliable
and that data delivery, such as request and response, can
be guaranteed. This isn’t true for ad hoc networks.
Therefore, it isn’t directly possible to apply the previous
approaches to trust management in ad hoc networks.

An ad hoc network relies on all participants actively
contributing to network activities such as routing and
packet forwarding. An ad hoc network’s special char-
acteristics—such as limited memory, battery power, and
bandwidth—can cause nodes to act selfishly (refuse to

participate in routing and provide services to other
nodes, for example). Trust management can help miti-
gate this selfishness and ensure the efficient utilization
of network resources.

Monitoring-based trust-management systems
In ad hoc networks, a node can only sense the packets

transmitted within its transmission range. Sonya
Buchegger and Jean-Yves Le Boudec’s5 Confidant
(Cooperation of Nodes, Fairness in Dynamic Ad Hoc
Networks) protocol promotes cooperation in ad hoc net-
works by detecting and isolating malicious nodes.

Each node in the network runs the Confidant proto-
col. Confidant’s monitor component observes the behav-

ior of neighbor nodes to detect
misbehavior, such as packet drop-
ping. This requires nodes to run in
promiscuous mode.

When the monitor finds a misbe-
havior, it notifies the reputation sys-
tem, which manages a table con-
taining nodes and their ratings. The
rating is a number within a certain
range depending on the implementa-
tion. If the number of times a node

misbehaves exceeds a threshold, the reputation system
updates the node’s rating. If a node’s rating falls below a
threshold, the system considers it a malicious node. The
reputation system maintains a blacklist containing the
malicious nodes. When forwarding packets, nodes avoid
next-hop nodes on the blacklist.

When the reputation system detects a malicious node,
it notifies the trust manager to broadcast an alarm mes-
sage in the network. Trust managers also receive alarms
from other trust managers. A trust manager only dis-
tributes and accepts alarms from senders on its friends
list. (Establishing friendship is a research topic. One pos-
sible method is the resurrecting duckling model.8) Each
trust manager maintains a table with the trust levels of
received alarms.

The path manager ranks the path according to the rat-
ings of the nodes on the path. It deletes all paths con-
taining malicious nodes and drops route requests
received from malicious nodes.

Buchegger and Boudec didn’t discuss how to compute
reputation values.5 In addition, Confidant can’t prevent
malicious nodes from disseminating false information
about other nodes, and trustworthy nodes can lie.

Sergio Marti and his colleagues proposed two meth-
ods to improve an ad hoc network’s throughput in the
presence of misbehaving nodes: a watchdog method and
a path rater method.9 They assumed that a wireless inter-
face supports the promiscuous mode.

The watchdog is a misbehaving node locator running
on every node that maintains a buffer of recently sent
packets. After overhearing a packet, the watchdog com-

P2P systems assume

that the network layer

is reliable and

that data delivery

can be guaranteed.

50 Computer

pares it with the packets in the buffer to see if there’s a
match. If there is, the packet has been forwarded and
the watchdog removes the packet from the buffer. If a
packet stays in the buffer for longer than a certain
period, the watchdog increases a failure count for the
node responsible for forwarding the packet. If the count
exceeds a threshold value, the watchdog considers that
node as misbehaving.

A path rater at a node maintains a rating for every
other node that it knows in the network. To pick a route
that is most likely to be reliable, it computes a path met-
ric by averaging the rating of the nodes on the paths and
chooses the path with the highest metric. It assigns mis-
behaving nodes a very low rating, and thus excludes
them from routing.

Because of ad hoc networks’ characteristics, the proposed
approaches can’t accurately detect mis-
behaving nodes in situations such as
packet collisions and collusion of mali-
cious nodes.9

Evidence-based trust
management

Eschenauer and his colleagues pre-
sent a framework for trust manage-
ment in ad hoc networks based on
evidence distribution.11 They consider trust as a set of
relationships established with the support of evidence.
In their framework, evidence can be anything a policy
requires to establish a trust relationship, such as public
key, address, and identity. Any entity can generate evi-
dence for itself and for other entities. Evidence can be
obtained either online or offline, such as through phys-
ical contact.

One way to generate evidence is through public-key
cryptography. An entity can create a piece of evidence,
define its valid time, sign it with the entity’s private key,
and disseminate it to others. To verify this piece of evi-
dence, other entities will need the originator’s public key
and certificate. In the Internet, entities can use X.509.
However, in an ad hoc network, where there is no CA,
PGP might be an option. An entity can invalidate its evi-
dence by generating a revocation certificate at any time.

Eschenauer and colleagues’ approach also lets an entity
revoke other entities’ evidence by generating and dis-
seminating contradictory evidence. However, allowing
such actions is open to attack. A malicious entity can dis-
tribute bogus evidence to invalidate other nodes’ legiti-
mate evidence, which can cause chaos in the network. A
malicious entity might generate fake evidence for its own
purposes—for example, to impersonate other nodes.

To prevent these attacks, Eschenauer and his col-
leagues proposed using redundant and independent evi-
dence from various sources. However, they didn’t discuss
how to evaluate evidence, which is important for trust
management. Also, because each node’s trustworthiness

is not dynamically adjusted, the framework is mainly
useful for authentication.

TRUST MANAGEMENT IN E-COMMERCE
Trust or reputation management is an important issue

in e-commerce, where traders might have never met and
know nothing about each other’s trustworthiness. This
lack of information about traders’ reputations causes
uncertainty and mistrust, which influences the e-mar-
ket’s economic efficiency.

Considerable research has explored trust and reputa-
tion management in e-commerce. One possibility is to
build a centralized system, like a credit history agency, to
manage users’ reputations. However, this approach
neglects personal preferences and standards.

Online auction and shopping sites, such as eBay and
Amazon.com, use reputation man-
agement. eBay assigns sellers a rat-
ing of 1, 0, or –1 for trustworthiness
after one interaction, and computes
a seller’s reputation as the accumu-
lation of all the ratings received
within the past 180 days. New eBay
users receive a reputation of 0.
Amazon.com rates both sellers and
buyers after each interaction. It cal-

culates reputation as the average of all the feedback rat-
ings received during the system’s use. A new
Amazon.com user has no reputation value.

Users can easily misbehave in e-marketing. After cheat-
ing and obtaining a bad reputation, a user can simply
discard a current identity, obtain a new one, and reenter
the market. This kind of misbehavior causes low eco-
nomic and system utilization efficiency. To solve this
problem, Amazon.com and eBay apply pseudonyms.
New users must register with some personal information
so the system can trace their real identity. At the same
time, pseudonyms provide anonymity.

Reputation management for
the electronic community

Giorgos Zacharia4 proposed Sporas, a reputation
mechanism for electronic community. Sporas has the
following features:

• Reputation value is within the range of (0, 3000). A
new user is assigned 0, the minimum value.

• A current user’s reputation is always higher than a
new user’s.

• Two users can only rate each other once. If two users
interact multiple times, Sporas only accepts the latest
rating. This helps avoid the problem of two users
intentionally increasing their reputation value by fre-
quent interactions.

• It changes the reputation value of users with very high
reputation values more slightly.

One way to

generate evidence

is through public-key

cryptography.

February 2007 51

• In evaluating a user’s reputation, Sporas assigns
more weight to the most recent ratings because
they’re closer to the user’s current behavior.

Sporas uses the following formulas to update a user’s
reputation after a transaction:4

(3)

where

• Ri is the user’s reputation after the ith transaction;
• Ri–1 is the user’s reputation after the (i – 1)th trans-

action;
• is the reputation of the user with whom the

first user had the ith transaction with;
• Wi is the rating that another user gave to user i,

ranging from 0.1 (worst) to 1 (best);
• D = 3,000, the largest reputation value:
• � is a constant larger than 1 that determines how

much an entity’s reputation value changes after a
transaction;

• F is a damping function, which the system uses to
decrease the reputation change of very trustworthy
users and also reduces the influence of temporary
malicious accusations;

• s is a factor for F; and
• Ei is a user’s predicted rating (if the feedback is less

than the predicted rating, the user’s reputation goes
down).

Similar to a credit score evaluation system, entities
might have a low credit score at the beginning of their
use of the system, but, if they perform well for a period
of time, their credit score will increase, and the initial
low score won’t have much influence.

A distributed trust-management
broker framework

Kwei-Jay Lin and his colleagues proposed a distrib-
uted trust management broker framework for e-ser-
vices, such as e-commerce.10 In their framework, each
user (a client or a trader) is associated with a broker,
which collects trust ratings of any service providers
for its users. Figure 1 shows the framework’s archi-
tecture.

The trust-management framework consists of users,
brokers, and reputation authorities. A broker maintains
a database, which collects and stores trust information
for the users that it’s associated with.

Ri
other

R R R R W Ei i i i i i= +– –() (–1 1
1

θ
i i iΦ other))

() –– –(–)
–

Φ R

e

E
R

i R D

i
i

i
1 1 1

1
1

=

+

=

σ

– 1

D

When a client needs a trader’s trust information, it first
contacts its broker. The broker’s reputation manager com-
ponent processes requests from clients associated with
the broker. If it can’t handle a request, it passes the request
to the broker’s connection manager. The connection man-
ager sends the request to other brokers and processes their
replies. If no broker can provide the required informa-
tion, it sends the request to the reputation authority.

The reputation authority is designed as a universal
database. It collects trust information from the public
in a voluntary way and stores trust information for all
users. However, the database isn’t updated frequently, so
the information might be erroneous or obsolete.

After each transaction, a client submits its feedback
or rating of the trader to its reputation manager. The
reputation manager collects the feedback and computes
a trust value for the trader using the following formula:

(4)

where

• Tnew is a trader’s new trust value,
• Told is the old trust value,
• N is the current number of transactions,
• r is a trader’s feedback,
• �t is the time difference between feedback and Told,

and
• e-ß.�t is a discount factor of Told.

The formula considers both the feedback and the old
trust value. The reputation manager updates the trader’s
trust value from Told to Tnew in its local database.

Each broker also has a trust value depending on the
accuracy of its recommendations. The connection man-
ager maintains a database that stores other brokers’ trust
values. After a transaction, if the connection manager
asked other brokers for recommendations, the connec-
tion manager compares these recommendations with

T e
N

N
T e

N

N
rnew

t
old

t=
+

+
+

– . – .–β β∆ ∆
1

1
1

Figure 1. Architecture of a distributed trust-management

broker framework. Each user (a client or a trader) is associated

with a broker, which collects trust ratings of any service

providers for its users. Redrawn with permission from K.-J. Lin.

User User

Broker

User User

Broker

Reputation

authority

Reputation

authority

52 Computer

the transaction’s result and updates the brokers’ trust
values respectively.

When the connection manager receives a trust request
from the reputation manager, it forwards the request to
the first m brokers whose trust values are larger than a
threshold value T. After the connection manager receives
recommendation from other brokers, it processes the
recommendations using the following formula:

(5)

where Xi is broker i’s trust value, Ni is the number of
times that the connection manager has asked the broker
for recommendations, Ri is broker i’s recommendation,
and Fi is a time differential factor. If the time difference
from the last recommendation is less than a threshold
value, Fi is 1; otherwise, Fi is e-ß.�t.

The connection manager sends the calculated recom-
mendation R to the reputation manager, which passes
it to the user. The user decides whether or not to pro-
ceed with the transaction.

The broker framework10 is more flexible and scalable
than centralized trust management systems, such as
Amazon and eBay. Its performance relies on the broker
network’s trustworthiness and reliability. Recom-
mendations from a broker with low trust value have lit-
tle value. If some brokers crash, the trust information
stored at these brokers isn’t available.

Improving the broker framework’s robustness is an
unsolved problem. Both Sporas and the broker frame-
work use a damping function of the discount factor to
reduce the impact of false accusations. Sporas is a dis-
tributed system—each entity rates and evaluates other
entities. Determining how to effectively search other
entities’ reputation values is another unanswered prob-
lem. In this aspect, the broker framework is a better
approach.

T
rust management remains an active research area.
Many interesting research issues are yet to be fully
explored, including trust/reputation value storage.

Internet applications, such as e-commerce, can use data-
bases to store users’ trust values, updating them regu-
larly to reflect the current trustworthiness of users in the
system.

For P2P systems and mobile ad hoc networks, main-
taining such data isn’t an easy task. Because machines
can join or leave a P2P system randomly, a centralized
server for storing trust values might not be scalable, and
determining where the server should be located would
be problematic. For ad hoc networks, a centralized
server isn’t available. Maintaining data consistency is a
challenging issue, because some nodes might crash or
leave the network.

R
X N R F

X N F
i i i i

i i i

=
∑∑
i i i

i i

Effectively mitigating the influence of false accusations
is another open issue. In e-commerce, a user might inten-
tionally give a negative rating to another user. In P2P
and mobile ad hoc networks, a node might maliciously
assign a low trust value to another node.

Another potential area for research is combining
the trust values of different applications. A distrib-
uted system, such as an ad hoc network, might involve
several different applications, such as packet for-
warding, file sharing, and mobile e-commerce. Should
we use a different trust value for each application, or
use the same trust value for all applications? And, if
each application has its own trust value, how can we
combine their trust values? ■

Acknowledgments

We’re grateful to the anonymous reviewers whose
valuable comments helped us improve this article. This
research was partially supported by grant no. T0505060
from the US Treasury Department.

References

1. A. Abdul-Rahman and S. Hailes, “A Distributed Trust

Model,” Proc. New Security Paradigms Workshop, ACM

Press, 1997, pp. 48-60.

2. L. Xiong and L. Liu, “Building Trust in Decentralized Peer-

to-Peer Electronic Communities,” Proc. 5th Int’l Conf. Elec-

tronic Commerce Research (ICECR-5), 2002; www.mathcs.

emory.edu/~lxiong/research/pub/xiong02building.pdf.

3. K. Aberer and Z. Despotovic, “Managing Trust in a Peer-to-

Peer Information System,” Proc. 2001 ACM 10th Int’l Conf.

Information and Knowledge Management (CIKM 01), ACM

Press, 2001, pp. 310-317.

4. G. Zacharia, “Trust Management through Reputation Mech-

anisms,” Proc. Workshop in Deception, Fraud, and Trust in

Agent Societies, 3rd Int’l Conf. Autonomous Agents (Agents

99), ACM Press, 1999; www.istc.cnr.it/T3/download/

aamas1999/zacharia.pdf.

5. S. Buchegger and J.Y.L. Boudec, “Performance Analysis of the

Confidant Protocol: Cooperation of Nodes—Fairness in

Dynamic Ad Hoc Networks,” Proc. IEEE/ACM Workshop

on Mobile Ad Hoc Networking and Computing (MobiHOC),

IEEE Press, 2002, pp. 226-236.

6. M. Elkins et al., MIME Security with OpenPGP, IETF RFC

3156, Aug. 2001; www.ietf.org/rfc/rfc3156.txt.

7. R. Housley et al., Internet X.509 Public Key Infrastructure,

Certificate and CRL Profile, IETF RFC 2459, Jan. 1999;

www.ietf.org/rfc/rfc2459.txt.

8. F. Stajano and R.J. Anderson, “The Resurrecting Duckling:

Security Issues for Ad Hoc Wireless Networks,” Proc. 7th

Security Protocols Workshop, LNCS 1796, Springer-Verlag,

1999, pp. 172-194.

February 2007 53

9. S. Marti et al., “Mitigating Routing Misbehavior in Mobile

Ad Hoc Networks,” Proc. Int’l Conf. Mobile Computing and

Networking (Mobicom), ACM Press, 2000, pp. 255-265.

10. K.-J. Lin et al., “A Reputation and Trust Management Bro-

ker Framework for Web Applications,” Proc. IEEE Int’l Conf.

e-Technology, e-Commerce, and e-Services, IEEE CS Press,

2005, pp. 262-269.

11. L. Eschenauer, V.D. Gligor, and J. Baras, “On Trust Estab-

lishment in Mobile Ad-Hoc Networks,” Proc. Security Pro-

tocols Workshop, LNCS 2845, Springer, 2002, pp. 47-66.

12. A. Singh and L. Liu, “TrustMe: Anonymous Management of

Trust Relationships in Decentralized P2P Networks,” Proc.

3rd IEEE Conf. Peer-to-Peer Computing, IEEE CS Press,

2003, pp. 142-149.

Huaizhi Li is a PhD candidate in the Department of Com-

puter Science at the University of Kentucky, Lexington. His

research interests include wireless networks, computer net-

works security, and distributed systems. Li received an MS

in computer science from the University of Kentucky. Con-

tact him at hli3@cs.uky.edu.

Mukesh Singhal is a professor in the Department of Com-

puter Science at the University of Kentucky, Lexington. His

research interests include computer network security, dis-

tributed computing systems, wireless networks, and mobile

computing. Singhal received a PhD in computer science

from the University of Maryland. He is a Fellow of the

IEEE. Contact him at singhal@cs.uky.edu.

