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Abstract

Trust networks consist of transitive trust relationships
between people, organisations and software agents con-
nected through a medium for communication and inter-
action. By formalising trust relationships, e.g. as rep-
utation scores or as subjective trust measures, trust be-
tween parties within the community can be derived by
analysing the trust paths linking the parties together. This
article describes a method for trust network analysis using
subjective logic (TNA-SL). It provides a simple notation
for expressing transitive trust relationships, and defines
a method for simplifying complex trust networks so that
they can be expressed in a concise form and be computa-
tionally analysed. Trust measures are expressed as beliefs,
and subjective logic is used to compute trust between ar-
bitrary parties in the network. We show that TNA-SL is
efficient, and illustrate possible applications with exam-
ples.

1 Introduction

Modern communication media are increasingly removing
us from the familiar styles of interacting that traditionally
rely on some degree of pre-established trust between busi-
ness partners. Moreover, most traditional cues for assess-
ing trust in the physical world are not available through
those media. We may now be conducting business with
people and organisations of which we know nothing, and
we are faced with the difficult task of making decisions
involving risk in such situations. As a result, the topic
of trust in open computer networks is receiving consid-
erable attention in the network security community and
e-commerce industry [1, 4, 13, 18, 19, 23, 26]. State
of the art technology for stimulating trust in e-commerce
includes cryptographic security mechanisms for provid-
ing confidentiality of communication and authentication
of identities. However, merely having a cryptographi-
cally certified identity or knowing that the communication
channel is encrypted is not enough for making informed
decisions if no other knowledge about a remote transac-
tion partner is available. Trust therefore also applies to
the truthfulness of specific claims made by parties who re-
quest services in a given business context as described in
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the WS-Trust specifications [26], and trust between busi-
ness partners regarding security assertions as described in
the Liberty Alliance Framework [18, 19]. Trust also ap-
plies to the honesty, reputation and reliability of service
providers or transaction partners, in general or for a spe-
cific purpose. In this context, the process of assessing trust
becomes part of quality of service (QoS) evaluation, deci-
sion making and risk analysis.

Being able to formally express and reason with these
types of trust is needed not only to create substitutes for
the methods we use in the physical world, like for instance
trust based on experiences or trust in roles, but also for cre-
ating entirely new methods for determining trust that are
better suited for computerised interactions. This will facil-
itate the creation of communication infrastructures where
trust can thrive in order to ensure meaningful and mutually
beneficial interactions between players.

The main contribution of this paper is a method for
discovering trust networks between specific parties, and a
practical method for deriving measures of trust from such
networks. Our method, which is called TNA-SL (Trust
Network Analysis with Subjective Logic), is based on
analysing trust networks as directed series-parallel graphs
that can be represented as canonical expressions, com-
bined with measuring and computing trust using subjec-
tive logic. We finally provide a numerical example of how
trust can be analysed and computed using our method.

2 Trust Transitivity

Trust transitivity means, for example, that if Alice trusts
Bob who trusts Eric, then Alice will also trust Eric. This
assumes that Bob actually tells Alice that he trusts Eric,
which is called a recommendation.

It can be shown that trust is not always transitive in real
life [2]. For example the fact that Alice trusts Bob to look
after her child, and Bob trusts Eric to fix his car, does not
imply that Alice trusts Eric for looking after her child, or
for fixing her car. However, under certain semantic con-
straints [15], trust can be transitive, and a trust system can
be used to derive trust. In the last example, trust transitiv-
ity collapses because the scopes of Alice’s and Bob’s trust
are different.

We define trust scope1 as the specific type(s) of trust
assumed in a given trust relationship. In other words, the
trusted party is relied upon to have certain qualities, and
the scope is what the trusting party assumes those qualities
to be.

Let us assume that Alice needs to have her car ser-
viced, so she asks Bob for his advice about where to find
a good car mechanic in town. Bob is thus trusted by Alice
to know about a good car mechanic and to tell his honest

1The terms “trust context” [6], “trust purpose” [13] and “subject matter” [20]
have been used in the literature with the same meaning.
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Figure 1: Transitive trust principle

opinion about that. Bob in turn trusts Eric to be a good car
mechanic. This situation is illustrated in Fig.1, where the
indexes indicate the order in which the trust relationships
and recommendations are formed.

It is important to separate between trust in the ability to
recommend a good car mechanic which represents refer-
ral trust, and trust in actually being a good car mechanic
which represents functional trust. The scope of the trust is
nevertheless the same, namely to be a good car mechanic.
Assuming that, on several occasions, Bob has proved to
Alice that he is knowledgeable in matters relating to car
maintenance, Alice’s referral trust in Bob for the purpose
of recommending a good car mechanic can be considered
to be direct. Assuming that Eric on several occasions has
proved to Bob that he is a good mechanic, Bob’s func-
tional trust in Eric can also be considered to be direct.
Thanks to Bob’s advice, Alice also trusts Eric to actually
be a good mechanic. However, this functional trust must
be considered to be indirect, because Alice has not directly
observed or experienced Eric’s skills in car mechanics.

Let us slightly extend the example, wherein Bob does
not actually know any car mechanics himself, but he
knows Claire, whom he believes knows a good car me-
chanic. As it happens, Claire is happy to recommend the
car mechanic named Eric. As a result of transitivity, Alice
is able to derive trust in Eric, as illustrated in Fig.2, where
the indexes indicate the order in which the trust relation-
ships and recommendations are formed. The prefix “dr-”
denotes direct referral trust, “df-” denotes direct functional
trust, and “if-” denotes indirect functional trust.

dr-trust df-trust

rec.
Alice Bob Claire Eric

1

2

3
derived if-trust

dr-trust

rec.
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2

1

Figure 2: Transitive serial combination of trust arcs

Defining the exact scope of Alice’s trust in Bob is more
complicated in the extended example. It is most obvious
to say that Alice trusts Bob to recommend somebody (who
can recommend somebody etc.) who can recommend a
good car mechanic. The problem with this type of formu-
lation is that the length of the trust scope expression be-
comes proportional with the length of the transitive path,
so that the trust scope expression rapidly becomes impen-
etrable. It can be observed that this type of trust scope has
a recursive structure that can be exploited to define a more
compact expression for the trust scope. As already men-
tioned, trust in the ability to recommend represents refer-
ral trust, and is precisely what allows trust to become tran-
sitive. At the same time, referral trust always assumes the
existence of a functional trust scope at the end of the tran-

sitive path, which in this example is about being a good
car mechanic.

The “referral” variant of a trust scope can be consid-
ered to be recursive, so that any transitive trust chain, with
arbitrary length, can be expressed using only one trust
scope with two variants. This principle is captured by the
following criterion.

Definition 1 (Functional Trust Derivation Criterion)
Derivation of functional trust through referral trust,
requires that the last trust arc represents functional trust,
and all previous trust arcs represent referral trust.

In practical situations, a trust scope can be charac-
terised by being general or specific. For example, knowing
how to change wheels on a car is more specific than to be
a good car mechanic, where the former scope is a subset
of the latter. Whenever a given trust scope is part of all the
referral and functional trust scopes in a path, a transitive
trust path can be formed based on that trust scope. This
can be expressed with the following consistency criterion.

Definition 2 (Trust Scope Consistency Criterion) A
valid transitive trust path requires that there exists a trust
scope which is a common subset of all trust scopes in the
path. The derived trust scope is then the largest common
subset.

Trivially, every arc in a path can carry the same trust
scope. Transitive trust propagation is thus possible with
two variants (i.e. functional and referral) of a single trust
scope.

Specifying the two scope variants separately can be
omitted in case it is difficult to separate between them in
a given application. Although trust scopes are always ex-
pressed with the two variants in all the descriptions and
example of this paper, it is perfectly possible to assume
the same descriptions and examples without specifying the
two variants.

A transitive trust path stops with the first functional
trust arc encountered when there are no remaining out-
going referral trust arcs. It is, of course, possible for a
principal to have both functional and referral trust in an-
other principal, but that should be expressed as two sepa-
rate trust arcs.

The examples above assume some sort of absolute trust
between the agents along the transitive trust path. In re-
ality trust is never absolute, and many researchers have
proposed to express trust as discrete verbal statements, as
probabilities or other continuous measures. One observa-
tion which can be made from an intuitive perspective is
that trust is diluted through transitivity. Revisiting the ex-
ample of Fig.2, it can be noted that Alice’s trust in the car



mechanic Eric through the recommenders Bob and Claire
can be at most as confident as Claire’s trust in Eric.

It could be argued that negative trust in a transitive
chain can have the paradoxical effect of strengthening the
derived trust. Take for example the case where Bob dis-
trusts Claire and Claire distrusts Eric, whereas Alice trusts
Bob. In this situation, Alice might actually derive positive
trust in Eric, since she relies on Bob’s advice, and Bob
says: “Claire is a cheater, do not rely on her”. So the fact
that Claire distrusts Eric might count as a pro-Eric argu-
ment from Alice’s perspective. The question boils down
to “is the enemy of my enemy my friend?”. However this
question relates to how multiple types of untrustworthi-
ness, such as dishonesty and unreliability, should be inter-
preted in a trust network, which is outside the scope of this
study.

3 Parallel Trust Combination

It is common to collect advice from several sources in or-
der to be better informed when making decisions. This can
be modelled as parallel trust combination illustrated in
Fig.3, where again the indexes indicate the order in which
the trust relationships and recommendations are formed.

Alice

Bob

David

Eric

dr-tru
st1

3

Claire

df-trust
1

dr-trust
1

dr-trust

1

dr-tru
st1

2
rec.

2
rec.

2
rec.

2
rec.

derived if-trust

Figure 3: Parallel combination of trust paths

Let us assume again that Alice needs to get her car
serviced, and that she asks Bob to recommend a good car
mechanic. When Bob replies that Claire, a good friend of
his, recommended Eric to him, Alice would like to get a
second opinion, so she asks David whether he has heard
about Eric. David also knows and trusts Claire, and has
heard from her that Eric is a good car mechanic. Alice who
does not know Claire personally, is unable to obtain a first
hand recommendation about the car mechanic Eric, i.e.
she does not directly know anybody with functional trust
in Eric. Intuitively, if both Bob and David recommend
Claire as a good advisor regarding car mechanics, Alice’s
trust in Claire’s advice will be stronger than if she had only
asked Bob. Parallel combination of positive trust thus has
the effect of strengthening the derived trust.

In the case where Alice receives conflicting recom-
mended trust, e.g. trust and distrust at the same time, she
needs some method for combining these conflicting rec-
ommendations in order to derive her trust in Eric. Our
method, which is described in Sec.6, is based on subjec-
tive logic which easily can handle such cases.

4 Structured Notation

Transitive trust networks can involve many principals, and
in the examples below, capital letters A, B, C, D and E
will be used to denote principals instead of names such as
Alice and Bob.

We will use basic constructs of directed graphs to rep-
resent transitive trust networks. We will add some nota-
tion elements which allow us to express trust networks in
a structured way.

A single trust relationship can be expressed as a di-
rected arc between two nodes that represent the trust
source and the trust target of that arc. For example the
arc [A, B] means that A trusts B.

The symbol “:” will be used to denote the transitive
connection of two consecutive trust arcs to form a tran-
sitive trust path. The trust relationships of Fig.2 can be
expressed as:

([A, E]) = ([A, B] : [B, C] : [C, E]) (1)

where the trust scope is implicit. Let the trust scope e.g.
be defined as σ: “trust to be a good car mechanic”. Let
the functional variant be denoted by “fσ” and the refer-
ral variant by “rσ”. A distinction can be made between
initial direct trust and derived indirect trust. Whenever
relevant, the trust scope can be prefixed with “d” to indi-
cate direct trust (dσ), and with “i” to indicate indirect trust
(iσ). This can be combined with referral and functional
trust, so that for example indirect functional trust can be
denoted as “ifσ”. A reference to the trust scope can then
be explicitly included in the trust arc notation as e.g. de-
noted by [A, B, drσ]. The trust network of Fig.2 can then
be explicitly expressed as:

([A, E, ifσ]) =

([A, B, drσ] : [B, C, drσ] : [C, E, dfσ])
(2)

Let us now turn to the combination of parallel trust
paths, as illustrated in Fig.3. We will use the symbol “�”
to denote the graph connector for this purpose. The “�”
symbol visually resembles a simple graph of two parallel
paths between a pair of agents, so that it is natural to use
it for this purpose. Alice’s combination of the two parallel
trust paths from her to Eric in Fig.3 is then expressed as:

([A, E, ifσ]) = ((([A, B, drσ] : [B, C, drσ]) �

([A, D, drσ] : [D, C, drσ])) :

[C, E, dfσ])

(3)

In short notation, the same trust graph is expressed as:

([A, E]) = ((([A, B] : [B, C]) �

([A, D] : [D, C])) : [C, E])
(4)

It can be noted that Fig.3 contains two paths. The
graph consisting of the two separately expressed paths
would be:

([A, E]) = ([A, B] : [B, C] : [C, E]) �

([A, D] : [D, C] : [C, E])
(5)

A problem with Eq.(5) is that the arc [C, E] appears
twice. Although Eq.(4) and Eq.(5) consist of the same
two paths, their combined structures are different. Some
computational models would be indifferent to Eq.(4) and
Eq.(5), whereas others would produce different results de-
pending on which expression is being used. When im-
plementing the serial “:” as binary logic “AND”, and the
parallel “�” as binary logic “OR”, the results would be
equal. However, when implementing “:” and “�” as prob-
abilistic multiplication and comultiplication respectively,
the results would be different. It would also be different in



the case of applying subjective logic operators for transi-
tivity and parallel combination which will be described in
Sec.6 below. In general, it is therefore desirable to express
graphs in a form where an arc only appears once. This will
be called a canonical expression.

Definition 3 (Canonical Expression) An expression of a
trust graph in structured notation where every arc only
appears once is called canonical.

With this structured notation, arbitrarily large trust net-
works can be explicitly expressed in terms of source, tar-
get, and scope, as well as other attributes such as measure
and time whenever required.

A general directed trust graph is based on directed trust
arcs between pairs of nodes. With no restrictions on the
possible trust arcs, trust paths from a given source X to
a given target Y can contain cycles, which could result in
inconsistent calculative results. Cycles in the trust graph
must therefore be controlled when applying calculative
methods to derive measures of trust between two parties.
Normalisation and simplification are two different control
approaches. Our model is based on graph simplification,
and a comparison with normalisation methods used in e.g.
PageRank proposed by Page et al. (1998) [21], and in
EigenTrust proposed by Kamvar et al. (2003) [17] is pro-
vided in [10].

5 Network Simplification

Simplification of a trust network consists of including as
many arcs as possible from the original trust network,
while still maintaining a canonical expression. Graphs
that can be represented as canonical expressions with our
structured notation are known as directed series-parallel
graphs (DSPG) [5]. A DSPG can be constructed by se-
quences of serial and parallel compositions that are de-
fined as follows [5]:

Definition 4 (Directed Series-Parallel Composition)

• A directed series composition consists of replacing an
arc [A, C] with two arcs [A, B] and [B, C] where B
is a new node.

• A directed parallel composition consists of replacing
an arc [A, C] with two arcs [A, C]1 and [A, C]2.

The principle of directed series and parallel composi-
tion are illustrated in Fig.4.

A C

A B C

A C

A C

a) Series graph composition b) Parallel graph composition

Figure 4: DSPG composition.

By successively applying the principles of series and
parallel composition, arbitrarily large DSPGs can be con-
structed.

We will first describe an algorithm for determining all
practical trust paths from a given source to a given target,
and secondly algorithms for determining near-optimal or
optimal DSPGs.

5.1 Finding Paths

The first step is to determine the possible directed paths
between a given pair of agents called the start source and
the final target. The pseudo-code in Fig.5 represents an
algorithm for finding all practical directed paths between a
given start source and a given final target, where no single
path contains cycles.

Pseudo-Constructor for a trust arc between two parties:

Arc(Node source, Node target, Scope scope, Variant variant){
this.source = source;
this.target = target;
this.scope = scope;
this.variant = variant;

}

Pseudo-code for a depth-first path finding algorithm:
After completion, ‘paths’ contains all possible paths between source
and target.

void FindPaths(Node source, Node target, Scope scope) {
SELECT arcs FROM graph WHERE (

(arcs.source == source) AND
(arcs.target NOT IN path) AND
(arcs.scope == scope))

FOR EACH arc IN arcs DO {
IF (

(arc.target == target) AND
(arc.variant == ‘functional’) AND
(Confidence(path + arc) > Threshold)) {

paths.add(path + arc);
}
ELSE IF (

(arc.target != target) AND
(arc.variant == ‘referral’) AND
(Confidence(path + arc) > Threshold)) {

path.add(arc);
FindPaths(arc.target, target, scope);
path.remove(arc);

}
}

}

Pseudo-code for method call:
The global variables ‘path’ and ‘paths’ are initialized.

Vector path = NEW Vector OF TYPE arc;
Vector paths = NEW Vector OF TYPE path;
FindPaths(StartSource, FinalTarget, scope);

Figure 5: Path finding algorithm

In the pseudocode of Fig.5, the conditional
IF (Confidence(path + arc) > Threshold)

represents a heuristic rule for simplifying the graph anal-
ysis, where the path is only retained as long as the condi-
tional is TRUE. By removing paths with low confidence,
the number of paths to consider is reduced while the in-
formation loss can be kept to an insignificant level. For a
given application, the threshold can be defined as the low-
est level for which a trust relationship is meaningful. The
mathematical interpretation of confidence is described in
Sec.6.1.

5.2 Finding Directed Series-Parallel Graphs

Ideally, all the possible paths discovered by the algorithm
of Fig.5 should be taken into account when deriving the
trust value. A general directed graph will often contain
cycles and dependencies. This can be avoided by exclud-
ing certain paths, but this can also cause information loss.



Specific selection criteria are needed in order to find the
optimal subset of paths to include.

Fig.6 illustrates an example of a non-DSPG with de-
pendent paths, where it is assumed that A is the source
and E is the target. While there can be a large number of
possible distinct paths, it is possible to use heuristic rules
to discard paths, e.g. when their confidence drops below a
certain threshold.

A

B

C E

D

Figure 6: Dependent paths

With n possible paths, there are 2n − 1 different com-
binations for constructing graphs, of which not all neces-
sarily are DSPGs. Of the graphs that are DSPGs, only one
will be selected for deriving the trust measure.

In Fig.6 there are 3 possible paths between A and E:

φ1 = ([A, B] : [B, C] : [C, E]),
φ2 = ([A, D] : [D, C] : [C, E]),
φ3 = ([A, B] : [B, D] : [D, C] : [C, E]).

(6)

This leads to the following 7 potential combina-
tions/graphs.

γ1 = φ1, γ4 = φ1 � φ2, γ7 = φ1 � φ2 � φ3.
γ2 = φ2, γ5 = φ1 � φ3,
γ3 = φ3, γ6 = φ2 � φ3,

(7)

The graph represented by γ7 contains all possible paths
between A and E. The problem with γ7 is that it can
not be represented as a canonical expression, i.e. where
an arc can only appear once. In this example, one path
must must be removed from the graph in order to have a
canonical expression. The expressions γ4, γ5 and γ6 can
be canonicalised, and the expressions γ1, γ2 and γ3 are
already canonical, which means that all the expressions
except γ7 can be used as a basis for constructing a DSPG
and for deriving A’s trust in E.

The optimal DSPG is the one that results in the highest
confidence level of the derived trust value. This principle
focuses on maximising certainty in the trust value, and not
e.g. on deriving the most positive or negative trust value.
The interpretation of confidence can of course have differ-
ent meanings depending on the computational model, and
our approach is based on he classic confidence value of
probability density functions.

There is a trade-off between the time it takes to find
the optimal DSPG, and how close to the optimal DSPG a
simplified graph can be. It is possible to use a relatively
fast heuristic algorithm to find a DSPG close to, or equal
to the optimal DSPG. It is also possible to use a relatively
slow exhaustive algorithm that is guaranteed to find the
optimal DSPG.

5.2.1 Heuristic Search for Near-Optimal DSPGs

Fig.7 represents a heuristic algorithm for finding a near-
optimal DSPG. It constructs the DSPG by including new
paths one by one in decreasing order of confidence. Each
new path that potentially could turn the graph into a non-
DSPG and break canonicity is excluded. This is detected
by analysing each new potential branch with the method:

dspg.sep subgraph(branch.source,branch.sink)

Pseudo-code search algorithm for a near optimal DSPG:
After completion, ‘dspg’ contains a near-optimal trust graph

void FindNearOptimalDSPG(Vector paths) {
paths.sort according to confidence;
dspg = paths(0);
paths.remove(0);
FOR EACH path IN paths DO {

end of path = FALSE;
branch = EMPTY;
WHILE NOT end of path DO {

next arc = path.next;
end of path = path.no more arcs;
IF (next arc.sink NOT IN dspg) {

branch.add(next arc);
}
ELSE IF ((next arc.sink IN dspg) AND

(branch != EMPTY)) {
branch.add(next arc);
IF (dspg.sep subgraph(branch.source,branch.sink) {

dspg.add(branch);
branch = EMPTY;

}
ELSE {

end of path = TRUE;
}

}
}

}
}

Pseudo-code for method call:
The global variables ‘dspg’ and ‘paths’ are initialized.

Vector dspg = NEW Vector OF TYPE arc;
Vector paths = NEW Vector OF TYPE path;
FindNearOptimalDSPG(paths);

Figure 7: Heuristic algorithm for a near-optimal DSPG

which returns TRUE if the new branch can be added, and
FALSE if not. More precisely, it verifies that the subgraph
between the nodes where the new branch is to be added is a
separate sub-DSPG, so that a clean parallel graph compo-
sition according to Fig.4 is possible when adding the new
branch. While this subgraph analysis can be computation-
ally intensive, efficiency can be improved by caching these
intermediate results, so that in case several new branches
between the same nodes must be added, the analysis of the
corresponding subgraph only needs to be done once.

This method only requires the computation of the trust
value for a single DSPG, with computational complexity
Comp = lm, where m is average number of paths in the
DSPGs, and l is the average number of arcs in the paths.

The heuristic method produces a DSPG with overall
confidence in the trust level equal or close to that of the
optimal DSPG. The reason why this method can not guar-
antee to produce the optimal DSPG, is that it could ex-
clude two or more paths with relatively low confidence
levels because of conflict with a single path with high con-
fidence level previously included, whereas the low confi-
dence paths together could provide higher confidence than
the previous high confidence path alone. In such cases it
would have been optimal to exclude the single high confi-
dence path, and instead include the low confidence paths.
However, only the exhaustive method described below can
guarantee to find the optimal DSPG in such cases.

5.2.2 Exhaustive Search for the Optimal DSPG

The exhaustive method of finding the optimal DSPG con-
sists of determining all possible DSPGs, then deriving the
trust value for each one of them, and finally selecting the



DSPG and the corresponding canonical expression that
produces the trust value with the highest confidence level.

For brevity, we have not included the pseudocode al-
gorithm for the exhaustive search algorithm, because it
would be similar to the heuristic search algorithm. The
main difference is that all 2n − 1 possible orders of in-
cluding the paths are tried one by one, potentially leading
to 2n − 1 different DSPGs that must be evaluated. Nor-
mally, the DSPG that produces the highest confidence is
finally selected.

The computational complexity of the exhaustive
method is Comp = lm(2n − 1), where n is the number
of possible paths, m is the average number of paths in the
DSPGs, and l is the average number of arcs in the paths.

6 Trust Derivation with Subjective Logic

Subjective logic represents a practical belief calculus that
can be used for calculative analysis trust networks. TNA-
SL requires trust relationships to be expressed as beliefs,
and trust networks to be expressed as DSPGs in the form
of canonical expressions. In this section we describe how
trust can be derived with the belief calculus of subjective
logic. A numerical example is given in Sec.7.

6.1 Subjective Logic Fundamentals

Belief theory is a framework related to probability the-
ory, but where the probabilities over the set of possible
outcomes do not necessarily add up to 1, and the remain-
ing probability is assigned to the union of possible out-
comes. Belief calculus is suitable for approximate reason-
ing in situations of partial ignorance regarding the truth of
a given proposition.

Subjective logic [7] represents a specific belief calcu-
lus that uses a belief metric called opinion to express be-
liefs. An opinion denoted by ωA

x = (b, d, u, a) expresses
the relying party A’s belief in the truth of statement x.
When a statement for example says “Party X is honest
and reliable regarding σ”, then the opinion about the truth
of that statement can be interpreted as trust in X within
the scope of σ. Here b, d, and u represent belief, disbe-
lief and uncertainty respectively, where b, d, u ∈ [0, 1] and
b + d + u = 1. The confidence parameter used in the
pseudocode of Fig.fig:find-path can be defined as equal to
(1− c), i.e. the confidence of a trust value is equivalent to
the certainty of the corresponding opinion. The parameter
a ∈ [0, 1] is called the base rate, and is used for comput-
ing an opinion’s probability expectation value that can be
determined as E(ωA

x ) = b + au. More precisely, a deter-
mines how uncertainty shall contribute to the probability
expectation value E(ωA

x ). In the absence of any specific
evidence about a given party, the base rate determines the
a priori trust that would be put in any member of the com-
munity.

The opinion space can be mapped into the interior
of an equal-sided triangle, where, for an opinion ωx =
(bx, dx, ux, ax), the three parameters bx, dx and ux deter-
mine the position of the point in the triangle representing
the opinion. Fig.8 illustrates an example where the opin-
ion about a proposition x from a binary state space has the
value ωx = (0.7, 0.1, 0.2, 0.5).

The top vertex of the triangle represents uncertainty,
the bottom left vertex represents disbelief, and the bot-
tom right vertex represents belief. The parameter bx is
the value of a linear function on the triangle which takes
value 0 on the edge which joins the uncertainty and dis-
belief vertexes and takes value 1 at the belief vertex. In
other words, bx is equal to the quotient when the perpen-
dicular distance between the opinion point and the edge
joining the uncertainty and disbelief vertexes is divided by

a

ω  = (0.7, 0.1, 0.2, 0.5)x

x

xω

xE(  )

0.5 00

1
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Disbelief1 Belief10
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Uncertainty

Probability axis

Example opinion:

Projector

Figure 8: Opinion triangle with example opinion

the perpendicular distance between the belief vertex and
the same edge. The parameters dx and ux are determined
similarly. The base of the triangle is called the probability
axis. The base rate is indicated by a point on the probabil-
ity axis, and the projector starting from the opinion point
is parallel to the line that joins the uncertainty vertex and
the base rate point on the probability axis. The point at
which the projector meets the probability axis determines
the expectation value of the opinion, i.e. it coincides with
the point corresponding to expectation value E(ωA

x ).
Opinions can be ordered according to probability ex-

pectation value, but additional criteria are needed in case
of equal probability expectation values. We will use the
following rules to determine the order of opinions [7]:

Let ωx and ωy be two opinions. They can be ordered
according to the following rules by priority:

1. The opinion with the greatest probability expectation
is the greatest opinion.

2. The opinion with the least uncertainty is the greatest
opinion.

3. The opinion with the least base rate is the greatest
opinion.

The probability density over binary event spaces can
be expressed as beta PDFs (probability density functions)
denoted by beta (α, β) [3]. Let r and s express the num-
ber of positive and negative past observations respectively,
and let a express the a priori or base rate, then α and β can
be determined as:

α = r + 2a , β = s + 2(1 − a) . (8)
The following bijective mapping between the opinion

parameters and the beta PDF parameters can be deter-
mined analytically [7, 14].










bx = r/(r + s + 2)
dx = s/(r + s + 2)
ux = 2/(r + s + 2)
ax = base rate of x

⇐⇒











r = 2bx/ux

s = 2dx/ux
1 = bx + dx + ux
a = base rate of x

(9)

This means for example that a totally ignorant opinion
with ux = 1 and ax = 0.5 is equivalent to the uniform
PDF beta (1, 1) illustrated in Fig.9.

It also means that a dogmatic opinion with ux = 0
is equivalent to a spike PDF with infinitesimal width and
infinite height expressed by beta (bxη, dxη), where η →
∞. Dogmatic opinions can thus be interpreted as being
based on an infinite amount of evidence.
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Figure 9: A priori uniform beta(1,1)

After r positive and s negative observations in case of
a binary state space (i.e. a = 0.5), the a posteriori distri-
bution is the beta PDF with α = r + 1 and β = s + 1.
For example the beta PDF after observing 7 positive and
1 negative outcomes is illustrated in Fig.10, which also is
equivalent to the opinion illustrated in Fig.8
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Figure 10: A posteriori beta(8,2) after 7 positive and 1
negative observations

A PDF of this type expresses the uncertain probability
that a process will produce positive outcome during future
observations. The probability expectation value of Fig.10
is E(p) = 0.8. This can be interpreted as saying that the
relative frequency of a positive outcome in the future is
somewhat uncertain, and that the average value is 0.8.

The variable p is a probability variable, so that for a
given p the probability density beta(α, β) represents sec-
ond order probability. The first-order variable p represents
the probability of an event, whereas the density beta(α, β)
represents the probability that the first-order variable has
a specific value. Since the first-order variable p is con-
tinuous, the second-order probability beta(α, β) for any
given value of p ∈ [0, 1] is vanishingly small and therefore
meaningless as such. It is only meaningful to compute
∫ p2

p1

beta(α, β) for a given interval [p1, p2], or simply to
compute the expectation value of p. The expectation value
of the PDF is always equal to the expectation value of the
corresponding opinion. This provides a sound mathemati-
cal basis for combining opinions using Bayesian updating
of beta PDFs.

6.2 Determining Trust with Reputation Systems

The trust representation of subjective logic is directly
compatible with the reputation representation of Bayesian
reputation systems [12, 13, 25, 24]. This makes it possi-
ble to use reputation systems to determine trust measures.
The method for doing this is briefly described below.

Bayesian reputation systems allow agents to rate
other agents, both positively and negatively, by arbitrary

amounts, for a single transaction. This rating takes the
form of a vector:

ρ =

[

r
s

]

, where r ≥ 0 and s ≥ 0. (10)

A simple binary rating system can e.g. be implemented
by using ρ+ = [1, 0] for a satisfactory transaction and
ρ− = [0, 1] for an unsatisfactory transaction [11].

A particular rating can be denoted as:

ρX
Z,tR

(11)

which can be read as X’s rating of Z at time tR. When-
ever not relevant, these super- and subscripts can be omit-
ted.

6.2.1 Aging Ratings

Agents (and in particular human agents) may change their
behaviour over time, so it is desirable to give greater
weight to more recent ratings. This can be achieved by
introducing a longevity factor λ, which controls the rate at
which old ratings are ‘forgotten’:

ρX,t
Z,tR

= λt−tRρX
Z,tR

(12)

where 0 ≤ λ ≤ 1, tR is the time at which the rating was
collected and t is the current time.

6.2.2 Aggregating Ratings

Ratings may be aggregated by simple addition of the com-
ponents (vector addition).

For each pair of agents (X, Z), an aggregate rating
ρt(X, Z) can be calculated that reflects X’s overall opin-
ion of Z at time t:

ρt(X, Z) =
∑

ρX,t
Z,tR

, where tR ≤ t . (13)

Also, Z’s aggregate rating by all agents in a particular
set S can be calculated:

ρt(Z) =
∑

X∈S

ρt(X, Z). (14)

In particular, the aggregate rating for Z, taking into ac-
count ratings by the entire agent community C, can be
calculated:

ρt(Z) =
∑

X∈C

ρt(X, Z). (15)

6.2.3 The Reputation Score

Once aggregated ratings for a particular agent are known,
it is possible to calculate the reputation probability distri-
bution for that agent. This also takes into account the base
rate reputation score a of all agents in the community. The
reputation score is then expressed as:

beta(ρt(Z)) = beta(r + 2a, s + 2(1− a)), (16)
where

ρt(Z) =

[

r
s

]

.

However probability distributions, while informa-
tive, cannot be easily interpreted by users. A simpler
point estimate of an agent’s reputation is provided by
E[ beta(ρt(Z)) ], the expected value of the distribution.
This provides a score in the range [0, 1], which can be
scaled to any range (including, for example, ‘0% reliable
to 100% reliable’).



Definition 5 (Reputation Score) Let ρt(Z) = [r, s]′ rep-
resent target Z’s aggregate ratings at time t. Then the
function Rt(Z) defined by:

Rt(Z) = E[ beta(ρt(Z)) ] =
r + 2a

r + s + 2
(17)

is called Z’s reputation score at time t.

The reputation score Rt(Z) can be interpreted as a
probability measure indicating how a particular agent is
expected to behave in future transactions.

The base rate a is particularly useful for determining
the reputation score of agents for which the aggregated
ratings have low confidence, e.g. because the agents have
been idle for longer periods, or because they are new en-
trants to the community. It is interesting to note that in a
community where the base rate a is high, a single negative
rating will influence the reputation score more than a sin-
gle positive rating. Similarly, in a community where the
base rate a is low, a single positive rating will influence the
reputation score more than a single negative rating. This
nicely models the intuitive observation from everyday life
where “it takes many good experiences to balance out one
bad experience”.

6.3 Trust Reasoning

Subjective logic defines a number of operators [7, 22, 16],
where some represent generalisations of binary logic and
probability calculus operators, whereas others are unique
to belief theory because they depend on belief ownership.
Here we will only focus on the discounting and the con-
sensus operators. The discounting operator can be used to
derive trust from transitive paths, and the consensus oper-
ator can be used to derive trust from parallel paths. These
operators are described below.

• Discounting [7] is used to compute transitive trust.
Assume two agents A and B where A has refer-
ral trust in B, denoted by ωA

B = (bA
B , dA

B , uA
B, aA

B).
In addition B has functional trust in C, denoted by
ωB

C = (bB
C , dB

C , uB
C , aB

C). A’s indirect functional trust
in C can then be derived by discounting B’s trust in
C with A’s trust in B. The derived trust is denoted
by ωA:B

C = (bA:B
C , dA:B

C , uA:B
C , aA:B

C ). By using the
symbol ‘⊗’ to designate this operator, we can write
ωA:B

C = ωA
B ⊗ ωB

C .































bA:B
C = bA

BbB
C

dA:B
C = bA

BdB
C

uA:B
C = dA

B + uA
B + bA

BuB
C

aA:B
C = aB

C .

(18)

The effect of discounting in a transitive path is to in-
crease uncertainty, i.e. to reduce the confidence in the
expectation value.

• Consensus [7, 8, 9] is used to fuse two (possibly con-
flicting) beliefs into one. Let ωA

C = (bA
C , dA

C , uA
C , aA

C)
and ωB

C = (bB
C , dB

C , uB
C , aB

C) be trust in C
from A and B respectively. The opinion
ωA�B

C = (bA�B
C , dA�B

C , uA�B
C , aA�B

C ) is then
called the consensus between ωA

C and ωB
C , denoting

the trust that an imaginary agent [A, B] would have
in C, as if that agent represented both A and B. By
using the symbol ‘⊕’ to designate this operator, we

can write ωA�B
C = ωA

C ⊕ ωB
C .

Case I: uA
C + uB

C − uA
CuB

C 6= 0
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Case II: uA
C + uB

C − uA
CuB
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bA�B
C = (γA/B bA

C + bB
C)/(γA/B + 1)

dA�B
C = (γA/B dA

C + dB
C)/(γA/B + 1)

uA�B
C = 0

aA�B
C = aC .

where the relative weight γA/B = lim(uB
C/uA

C)

The effect of the consensus operator is to reduce un-
certainty, i.e. to increase the confidence in the expec-
tation value. In case the subjective opinions are prob-
ability values (u = 0), Case II produces the weighted
average of probabilities.

The discounting and consensus operators will be used
for the purpose of deriving trust measures in the example
below.

7 Example Derivation of Trust Measures

Transitive trust graphs can be stored and represented in a
computer system in the form of a list of directed trust arcs
with additional attributes.

This numerical example is based the trust graph of
Fig.3. Table 1 specifies trust measures expressed as opin-
ions. The DSTC Subjective Logic API2 was used to com-
pute the derived trust values.

Table 1: Direct trust measures of Fig.3

Arc Variant Measure Time

[A, B] r (0.9, 0.0, 0.1, 0.5) τ1

[A, D] r (0.9, 0.0, 0.1, 0.5) τ1

[B, C] r (0.9, 0.0, 0.1, 0.5) τ1

[C, E] f (0.9, 0.0, 0.1, 0.5) τ1

[D, C] r (0.3, 0.0, 0.7, 0.5) τ1

[A, B]′ r (0.0, 0.9, 0.1, 0.5) τ2

A parser based on the algorithms of Fig.5 and Fig.7
can go through the arcs of Table 1 to construct the trust

2Available at http://security.dstc.com/spectrum/



network of Fig.3, and the corresponding canonical expres-
sion of Eq.(4). By applying the discounting and consensus
operators to the expression of Eq.(4), a derived indirect
trust measure can be computed.

• Case a:

First assume that A derives her trust in E at time τ1,
in which case the first entry for [A, B] is used. The
expression for the derived trust measure and the nu-
merical result is given below.

ωA
E = ((ωA

B ⊗ ωB
C ) ⊕ (ωA

D ⊗ ωD
C )) ⊗ ωC

E

= (0.74, 0.00, 0.26, 0.50)
(19)

The derived trust measure can be translated into a
beta PDF according to Eq.(9) and visualised as a den-
sity function as illustrated by Fig.11
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Figure 11: ωA
E ≡ beta(6.7, 1.0)

• Case b:

Let us now assume that based on new experience at
time τ2, A’s trust in B suddenly is reduced to that
of the last entry for [A, B] in Table 1. As a result
of this, A needs to update her derived trust in E and
computes:

ω
′A
E = ((ω

′A
B ⊗ ωB

C ) ⊕ (ωA
D ⊗ ωD

C )) ⊗ ωC
E

= (0.287, 0.000, 0.713, 0.500)
(20)

Fig.12 below visualises the derived trust measure.
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Figure 12: ω
′A
E ≡ beta(1.8, 1.0)

It can be seen that the trust illustrated in Fig.11 is rel-
atively strong but that the trust in Fig.12 approaches the
uniform distribution of Fig.9 and therefore is very uncer-
tain. The interpretation of this is that the distrust intro-
duced in the arc [A, B] in case (b) has rendered the path

([A, B] : [B, C] : [C, E]) useless. In other words, when
A distrusts B, then whatever B recommends is completely
discounted by A. It is as if B had not recommended any-
thing at all. As a result A’s derived trust in E must be
based on the path ([A, D] : [D, C] : [C, E]) which was
already weak from the start.

8 Discussion and Conclusion

We have presented a notation for expressing trust net-
works, and a method for trust network analysis based on
graph simplification and trust derivation with subjective
logic. This approach is called Trust Network Analysis
with Subjective Logic (TNA-SL).

Our approach is different from trust network analysis
based on normalisation, as e.g. in PageRank and Eigen-
Trust. The main advantage of normalisation is that large
highly connected random graphs can be analysed while
still taking all arcs into account. The main disadvan-
tages of normalisation is that it is difficult to express
negative trust, and that it makes trust measures relative,
which prevents them from being interpreted in any abso-
lute sense like e.g. statistical reliability. Neither PageRank
nor EigenTrust can handle negative trust.

Trust network simplification with TNA-SL produces
networks expressed as directed series-parallel graphs. A
trust arc has the three basic attributes of source, target and
scope, where the trust scope can take either the functional
or the referral variant. This makes it possible to express
and analyse fine-grained semantics of trust. Additionally,
we have incorporated the attributes of measure and time
into the model in order to make it suitable for deriving
indirect trust measures through computational methods.

One advantage of TNA-SL is that negative trust can
be explicitly expressed and propagated. In order for dis-
trust to be propagated in a transitive fashion, all interme-
diate referral arcs must express positive trust, with only
the last functional arc expressing negative trust. Another
advantage is that trust measures in our model are equiv-
alent to beta PDFs, so that trust measures can be directly
interpreted in statistical terms, e.g. as measures of reliabil-
ity. This also makes it possible to consistently derive trust
measures from statistical data. Our model is for exam-
ple directly compatible with Bayesian reputation systems
[12, 25], so that reputation scores can be directly imported
as trust measures. This rich way of expressing trust sep-
arates between the nominal trust value (positive/negative)
and the confidence level (high/low), and also carries infor-
mation about the baseline trust in the community.

The main disadvantage of TNA-SL is that a complex
and cyclic network must be simplified before it can be
analysed, which can lead to loss of information. While the
simplification of large highly connected networks could
be slow, heuristic techniques can significantly reduce the
computational effort. This is done by ignoring paths for
which the confidence level drops below a certain thresh-
old, and by including the paths with the strongest confi-
dence level first when constructing a simplified network.
This also leads to minimal loss of information.

The approach to analysing transitive trust networks de-
scribed here provides a practical method for expressing
and deriving trust between peers/entities within a commu-
nity or network. It can be used in a wide range of appli-
cations, such as monitoring the behaviour of peers and as-
sisting decision making in P2P communities, providing a
quantitative measure of quality of web services, assessing
the reliability of peers in Internet communities, and eval-
uating the assurance of PKI certificates. Combined with
subjective logic, TNA-SL allows trust measures to be effi-
ciently analysed and computed, and ultimately interpreted
by humans and software agents.



References

[1] Matt Blaze, Joan Feigenbaum, and Jack Lacy. De-
centralized trust management. In Proceedings of
the 1996 IEEE Conference on Security and Privacy,
Oakland, CA, 1996.

[2] B. Christianson and W. S. Harbison. Why Isn’t Trust
Transitive? In Proceedings of the Security Protocols
International Workshop. University of Cambridge,
1996.

[3] M.H. DeGroot and M.J. Schervish. Probability and
Statistics (3rd Edition). Addison-Wesley, 2001.

[4] C. Ellison et al. RFC 2693 - SPKI Certifi-
cation Theory. IETF, September 1999. url:
http://www.ietf.org/rfc/rfc2693.txt.

[5] P. Flocchini and F.L. Luccio. Routing in Series
Parallel Networks. Theory of Computing Systems,
36(2):137–157, 2003.

[6] T. Grandison and M. Sloman. A Survey of Trust in
Internet Applications. IEEE Communications Sur-
veys and Tutorials, 3, 2000.

[7] A. Jøsang. A Logic for Uncertain Probabili-
ties. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 9(3):279–311, June
2001.

[8] A. Jøsang. The Consensus Operator for Combin-
ing Beliefs. Artificial Intelligence Journal, 142(1–
2):157–170, October 2002.

[9] A. Jøsang, M. Daniel, and P. Vannoorenberghe.
Strategies for Combining Conflicting Dogmatic Be-
liefs. In Xuezhi Wang, editor, Proceedings of the
6th International Conference on Information Fusion,
2003.

[10] A. Jøsang, E. Gray, and M. Kinateder. Simplifi-
cation and Analysis of Transitive Trust Networks
(to appear). Web Intelligence and Agent Systems,
00(00):00–00, 2005.

[11] A. Jøsang, S. Hird, and E. Faccer. Simulating the
Effect of Reputation Systems on e-Markets. In
P. Nixon and S. Terzis, editors, Proceedings of the
First International Conference on Trust Manage-
ment (iTrust), Crete, May 2003.

[12] A. Jøsang and R. Ismail. The Beta Reputation Sys-
tem. In Proceedings of the 15th Bled Electronic
Commerce Conference, Bled, Slovenia, June 2002.

[13] A. Jøsang, R. Ismail, and C. Boyd. A Survey of
Trust and Reputation Systems for Online Service
Provision (to appear). Decision Support Systems,
00(00):00–00, 2006.

[14] A. Jøsang and S. Pope. Normalising the Consensus
Operator for Belief Fusion. In Proceedings of the
18th Australian Joint Conference on Artificial Intel-
ligence, Sydney 2005.

[15] A. Jøsang and S. Pope. Semantic Constraints for
Trust Tansitivity. In S. Hartmann and M. Stumpt-
ner, editors, Proceedings of the Asia-Pacific Confer-
ence of Conceptual Modelling (APCCM) (Volume 43
of Conferences in Research and Practice in Infor-
mation Technology), Newcastle, Australia, February
2005.

[16] Audun Jøsang, Simon Pope, and Milan Daniel. Con-
ditional deduction under uncertainty. In Proceedings
of the 8th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncer-
tainty (ECSQARU 2005), 2005.

[17] S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina.
The EigenTrust Algorithm for Reputation Manage-
ment in P2P Networks. In Proceedings of the
Twelfth International World Wide Web Conference,
Budapest, May 2003.

[18] Liberty-Alliance. Liberty ID-FF Archi-
tecture Overview. Version: 1.2-errata-v1.0.
http://www.projectliberty.org/specs/liberty-idff-
arch-overview-v1.2.pdf, 2003.

[19] Liberty-Alliance. Liberty Trust Models Guide-
lines. http://www.projectliberty.org/specs/liberty-
trust-models-guidelines-v1.0.pdf, Draft Version 1.0-
15 edition, 2003.

[20] G. Mahoney, W. Myrvold, and G.C. Shoja. Generic
Reliability Trust Model. In A. Ghorbani and
S. Marsh, editors, Proceedings of the 3rd An-
nual Conference on Privacy, Security and Trust,
St.Andrews, New Brunswick, Canada, October
2005.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd.
The PageRank Citation Ranking: Bringing Order to
the Web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[22] Simon Pope and Audun Jøsang. Analsysis of com-
peting hypotheses using subjective logic. In Pro-
ceedings of the 10th International Command and
Control Research and Technology Symposium (IC-
CRTS). United States Department of Defense Com-
mand and Control Research Program (DoDCCRP),
2005.

[23] Ronald L. Rivest and Butler Lampson. SDSI – A
simple distributed security infrastructure. Presented
at CRYPTO’96 Rumpsession, 1996.

[24] R. Wishart, R. Robinson, J. Indulska, and A. Jøsang.
SuperstringRep: Reputation-enhanced Service Dis-
covery. In Proceedings of the 28th Australasian
Computer Science Conference (ACSC2005), 2005.

[25] A. Withby, A. Jøsang, and J. Indulska. Filtering Out
Unfair Ratings in Bayesian Reputation Systems. The
Icfain Journal of Management Research, 4(2):48–
64, 2005.

[26] WS-Trust. Web Services Trust Language (WS-Trust).
ftp://www6.software.ibm.com/software/developer/
library/ws-trust.pdf, February 2005.


