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TRUST�REGION INTERIOR�POINT SQP ALGORITHMS FOR A CLASS OF

NONLINEAR PROGRAMMING PROBLEMS�
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Abstract� In this paper a family of trust�region interior�point SQP algorithms for the solution of a class of
minimization problems with nonlinear equality constraints and simple bounds on some of the variables is described and
analyzed� Such nonlinear programs arise e�g� from the discretization of optimal control problems� The algorithms
treat states and controls as independent variables� They are designed to take advantage of the structure of the
problem� In particular they do not rely on matrix factorizations of the linearized constraints� but use solutions of the
linearized state equation and the adjoint equation� They are well suited for large scale problems arising from optimal
control problems governed by partial di�erential equations�

The algorithms keep strict feasibility with respect to the bound constraints by using an a�ne scaling method
proposed for a di�erent class of problems by Coleman and Li and they exploit trust�region techniques for equality�
constrained optimization� Thus� they allow the computation of the steps using a variety of methods� including many
iterative techniques�

Global convergence of these algorithms to a 	rst�order KKT limit point is proved under very mild conditions on
the trial steps� Under reasonable� but more stringent conditions on the quadratic model and on the trial steps� the
sequence of iterates generated by the algorithms is shown to have a limit point satisfying the second�order necessary
KKT conditions� The local rate of convergence to a nondegenerate strict local minimizer is q�quadratic� The results
given here include as special cases current results for only equality constraints and for only simple bounds�

Numerical results for the solution of an optimal control problem governed by a nonlinear heat equation are
reported�

Keywords� Nonlinear programming� SQP methods� trust�region methods� interior�point algorithms� Dikin�
Karmarkar ellipsoid� Coleman�Li a�ne scaling� simple bounds� optimal control problems�

AMS subject classi�cations� 
�M�
� ��C��� ��C��

�� Introduction� In this paper we introduce and analyze a family of algorithms for the so�
lution of an important class of minimization problems which often arise from the discretization of
optimal control problems� These problems are specially structured nonlinear programming prob�
lems of the following form�

minimize f�y� u�

subject to C�y� u� � ���	�	�

u � B � fu � a � u � bg�
where y � IRm
 u � IRn�m 
 a � �IR � f��g�n�m
 and b � �IR � f��g�n�m� The functions
f � IRn �� IR and C � IRn �� IRm
 m � n
 are assumed to be at least continuously di�erentiable�
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As indicated above
 minimization problems of the form �	�	� often arise from the discretization of
optimal control problems� In this case y is the vector of state variables
 u is the vector of control
variables
 and C�y� u� � � is the discretized state equation� Other applications
 which might be
viewed as special optimal control problems include optimal design and parameter identi�cation
problems� Minimization problems �	�	� originating from optimal control problems governed by
large systems of ordinary di�erential equations
 or partial di�erential equations are the targets of
the algorithms in this paper�

Although there are algorithms available for the solution of nonlinear programming problems
that are more general than �	�	�
 the family of algorithms presented in this paper is unique in
the consequent use of structure inherent in many optimal control problems
 the use of optimiza�
tion techniques successfully applied in other contexts of nonlinear programming
 and the rigorous
theoretical justi�cation�

Our algorithms are based on sequential quadratic programming �SQP� methods and use trust�
region interior�point techniques to guarantee global convergence and to handle the bound con�
straints on the controls� SQP methods �nd a solution of the nonlinear programming problem
�	�	� by solving a sequence of quadratic programming problems� It is known
 see e�g� ����
 ����

that the structure of optimal control problems can be used to implement and analyze SQP meth�
ods� In particular
 to implement SQP methods
 it is su�cient to compute quantities of the form
Cy�y� u�vy
 Cy�y� u�

Tvy 
 Cu�y� u�vu
 Cu�y� u�
Tvy 
 and to compute solutions of the linearized state

equation Cy�y� u�vy � r
 and of the �adjoint equation� Cy�y� u�Tvy � r� Here Cy and Cu denotes
the derivatives of C with respect to y and u� This is an important observation
 because these are
tasks that arise naturally in the context of optimal control problems� All of the early SQP algo�
rithms
 and many of the recent ones rely on matrix factorizations
 like sparse LU decompositions

of the Jacobian J�x� of C�x�� For the applications we have in mind this is not feasible� Often

the involved matrices are too large to perform such computations and very often these matrices
are not even available in explicit form� On the other hand
 matrix�vector multiplications Cy�x�vy

Cy�x�Tvy 
 Cu�x�vu
 Cu�x�Tvy can be performed and e�cient solvers for the linearized state equa�
tion Cy�x�vy � r
 and the adjoint equation Cy�x�

Tvy � r often are available� For example
 the
partial Jacobian Cy�x� in the application treated in Section 		 has a block bidiagonal structure
with diagonal matrices being tridiagonal� Thus
 while the Jacobian is large
 the solution of the
linearized state equation or the adjoint equation can be done by block forward substitution or
block backward substitution
 respectively� In each substitution step
 only a relatively small system
with tridiagonal system has to be solved� This is typical for many applications
 in particular those
in dynamical systems� Many SQP based codes for optimal control problems governed by ODEs
or DAEs exploit this structure e�ciently in their numerical linear algebra� See
 e�g�
 �	�
 �
�
 ��
�

����
 ��
� and the references therein� For many applications
 in particular those governed by PDEs

such factorizations of the Jacobian J�x� of C�x� are not feasible from a practical point of view

but solution techniques for Cy�y� u�vy � r and Cy�y� u�Tvy � r are available� This has motivated
us to require only this information and to design a practicable algorithm that disjoins the partic�
ular equation solver from the optimization algorithm� In the presence of bound constraints
 this
task goes well beyond the mere replacement of matrix factorizations by black�box solvers� The
implementation of our algorithm is given in �	���

A purely local analysis for the case with no bounds constraints has being given in ����
 ����

����
 ����� However
 we consider here the much more di�cult issue of incorporating all this structure
into an algorithm that converges globally and handles bound constraints on the control variables
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u�

The global convergence of our algorithms is guaranteed by a trust�region strategy� In our
framework the trust region serves a dual purpose� Besides ensuring global convergence
 trust regions
also introduce a regularization of the subproblems which is related to the Tikhonov regularization�
For the solution of optimal control problems
 the partitioning of the variables into states y and
controls u motivates a partial decoupling of step components that leads to interesting alternatives
for the choice of the trust region� In Sections ��
�	 and ��
�
 we will introduce a decoupled and a
coupled trust�region approach� As indicated by the names
 in the decoupled approach the trust
region will act on step components separately� This allows a more e�cient implementation of
algorithms for the computation of these steps� However
 for problems with ill�conditioned state
equations
 this decoupling does not give an accurate estimate of the size of the steps and might
lead to poor performance� In this situation the coupled approach is better
 and so we include both�

For the treatment of the bound constraints on u we use an a�ne scaling interior�point method
introduced by Coleman and Li �	�� for problems with simple bounds� Interior�point approaches are
attractive for many optimization problems with a large number of bounds
 including the structured
problem �	�	�� In our context
 the a�ne scaling interior�point method is also of interest
 because
it does not interfere with the structure of the problem �	�	�� To apply this method
 no information
in addition to that needed for the case without bound constraints is required from the user� This
or similar interior�point approaches have recently also been used e�g� in ���
 �	��
 ����
 ����
 �����
The advantage of the approach in �	�� is that the scaling matrix is determined by the distance of
the iterates to the bounds and by the direction of the gradient� This dependence on the direction
of the gradient is important for global convergence and its good e�ect can be seen in numerical
examples
 see e�g� Figures 		�	 and 		�
�

Another important issue
 that is addressed in the implementations of the algorithms presented
in this paper is the problem scaling inherent in optimal control problems� As we have pointed out

the problems we are primarily interested in are discretizations of optimal control problems governed
by partial di�erential equations� The in�nite dimensional problem structure greatly in�uences the
�nite dimensional problem� In our implementation
 we take this into account by choosing scalar
products for the states y
 the controls u
 and the duality pairing needed to represent �TC�y� u�
that are discretizations of proper in�nite dimensional ones� It is beyond the scope of this paper
to give a comprehensive theoretical study of these issues
 but it is important to notice that the
formulation of the algorithms discussed here fully support the use of such scalar products without
any changes� This is a great advantage� In some of our numerical experiments �		�
 ���� this
improved the performance of our algorithms signi�cantly
 it avoided arti�cial ill�conditioning
 and
it enhanced the quality of the solution computed for a given stopping tolerance� Moreover
 our
numerical experiments also indicate the mesh independent behavior of our algorithms when this
type of scaling is used�

We believe that the features and strong theoretical properties of these algorithms make them
very attractive and powerful tools for the solution of optimal control problems� They have been
successfully applied to a boundary control problem
 see Section 		
 a distributed nonlinear elliptic
control problem ��	�
 and optimal control problems arising in �uid �ow �		�
 ����� The software that
produced these results currently is being beta�tested with the intent of electronic distribution �	���

Before we give an outline of this paper
 it is worth discussing the relationship between the
constrained minimization problem �	�	� and an equivalent reduced problem� Under the assumptions
of the Implicit Function Theorem it is possible to solve C�y� u� � � for y� This de�nes a smooth
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function y�u� and allows us to reduce the minimization problem �	�	�� The reduced problem is
given by

minimize �f�u� � f�y�u�� u�

subject to u � B � fu � a � u � bg��	�
�

This leads to the so�called black box approach in which the nonlinear constraint C�y� u� � � is
not visible to the optimizer� Its solution is part of the evaluation of the objective function �f�u��
The reduced problem can be solved by a gradient or a Newton�like method� For optimal control
problems
 many algorithms follow this approach� Often
 projection techniques are used to handle
the box constraints
 see e�g� �
��
 ��	��

Recently
 so�called all�at�once approaches that treat both y and u as independent variables
have been proposed to solve optimal control problems
 see e�g� �	�
 �
�
 ���
 �
��
 ��
�
 ����
 ����
 ����

����
 ����
 ����� ��	�
 ��
�
 ����
 ����
 ��
��

Since they move towards optimality and feasibility at the same time
 they o�er signi�cant ad�
vantages� SQP methods are of particular interest� They do not require the possibly very expensive
solution of the nonlinear state equation in every step
 but as indicated above allow use of the struc�
ture of optimal control problems� In addition
 SQP methods have proven to be very successful for
the solution of other nonlinear programming problems� See e�g� ���
 ���
 �
��
 �
��
 ����
 ����
 ����

����
 �����

As outlined before
 we use SQP based methods for the solution of �	�	�
 i�e�
 the all�at�once
approach� However
 the reduced problem �	�
� is important to us for two reasons� Firstly
 the
relation between the full problem �	�	� and the reduced problem �	�
� gives important insight
into the structure of �	�	� and allows us to extend techniques successfully applied to problems
of the form �	�
�� Secondly
 black box approaches are used very often to solve the problems we
have in mind� We want to use this expertise in designing more e�cient codes� Speci�cally
 our
consequent use of the structure of the optimal control problems leads to our family of trust�region
interior�point SQP algorithms� These algorithms only require information that the user has to
provide anyway if a black�box approach is used with a Newton�like method for the solution of the
nonlinear state equation and adjoint equations techniques for the computation of gradients� Thus
we combine the possible implementational advantages of a black�box approach with the generally
more e�cient all�at�once approach� It will be seen that in our algorithms the step s is decomposed
into two components� s � sn � st
 where sn is called the quasi�normal component and st is called
the tangential component� The role of quasi�normal component sn is to move towards feasibility�
It is of the form sn � ��sny �

T �T �T 
 where sny is essentially a Newton step for the solution of
the nonlinear state equation C�y� u� � � for given u� For most problems of interest here
 the
computation of a �true� normal component is not practical� The tangential component st moves
towards optimality� This component is in the null�space of the linearized constraints and it is of
the form st � ���Cy�y� u���Cu�y� u�su�T sTu �

T 
 where su is essentially a Newton�like step for the
reduced problem �	�
��

This paper is organized as follows� In Section 
 we discuss the structure of the problem and
motivate our SQP approach� We study the relationship between the all�at�once approach based on
�	�	� and the black box approach for �	�
� and the relationship between SQP methods for �	�	� and
Newton methods for �	�
�� For problems without box�constraints
 these connections are known

but for problems with box�constraints this will reveal useful new information� The �rst and second
order Karush�Kuhn�Tucker �KKT� conditions for �	�	� are stated in Section �� We will state them
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in a nonstandard form that will lead to the scaling matrix used in the a�ne scaling interior�point
approach� In Section � we will discuss the application of Newton�s method to the system of nonlinear
equations arising from the �rst�order KKT conditions� This will be important for the derivation
of our SQP method� In Section � we describe our trust�region interior�point SQP algorithms�
Sections ��	 and ��
 contain a description of the quasi�normal component and of the tangential
component� Using the derivations in Sections 
 and � the connections between the quasi�normal
component sn and the Newton step for the solution of the nonlinear state equation C�y� u� � �
for given u and the relations between the tangential component st and Newton�like steps for the
reduced problem �	�
� will be made precise� As noticed previously
 the partial decoupling of the
step components motivated by the partitioning of the variables into states y and controls u and the
roles of the decoupled and coupled trust�region approaches will be exposed in Sections ��
�	 and
��
�
� A complete statement of the trust�region interior�point SQP algorithms is given in Section
����

The convergence theory for these algorithms is given in Sections �
 �
 �
 and �� Section �
contains some technical results� In Section � we establish the existence of an accumulation point
of the iterates which satis�es the �rst�order Karush�Kuhn�Tucker �KKT� conditions �Corollary
��	�� This result is established under very mild assumptions on the steps and on the Lagrange
multipliers� It simultaneously extends the results presented recently by Coleman and Li �	�� for
simple bounds and those by Dennis
 El�Alem
 and Maciel �	�� for equality constraints� Under
additional conditions on the steps and on the quadratic model
 we show that the accumulation
point satisfying the �rst�order necessary KKT conditions also solves the second�order necessary
KKT conditions �Theorem ��
�� This latter result simultaneously extends those by Coleman and
Li �	�� for simple bounds and those by Dennis and Vicente �	�� for equality constraints� �See also
������ Finally
 we prove that if the sequence converges to a nondegenerate point satisfying the
su�cient second�order KKT conditions
 then the rate of convergence is q�quadratic �Corollary
��	�� Our analysis allows the application of a variety of methods for the computation of the step
components sn and st� In Section 	� we discuss practical algorithms for the computation of trial
steps and the multiplier estimates that are currently used in our implementation� Numerical results
obtained with our implementation of these algorithms
 called TRICE �trust�region interior�point
SQP algorithms for optimal control and engineering design problems� �	��
 are reported in Section
		� Section 	
 contains conclusions and a discussion of future work�

We review the notation used in this paper� The vector x is given by

x �

�
y

u

�
�

The Jacobian matrix of C�x� is denoted by J�x�� We use subscripted indices to represent the
evaluation of a function at a particular point of the sequences fxkg and f�kg� For instance
 fk
represents f�xk�
 and �k is the same as ��xk� �k�� The vector and matrix norms used are the ��
norms
 and Il represents the identity matrix of order l� Also �z�y and �z�u represent the subvectors
of z � IRn corresponding to the y and u components
 respectively�

�� The structure of the minimization problem� The purpose of this section is to discuss
some of the basic relationships between the problem �	�	� and its reduction �	�
�� This will introduce
fundamental quantities that are needed subsequently and it will support our claim that the basic
quantities needed to implement our SQP approach are already available if one uses a gradient or
Newton�like method for the solution of the reduced problem �	�
��
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The Lagrange function � � IRn�m �� IRn associated with the objective function f�x� and the
equality constraint C�x� � �c��x�� � � � � cm�x��

T � � is given by

��x� �� � f�x� � �TC�x��

where � � IRm are the Lagrange multipliers�
The linearized constraints are given by J�x�s � �C�x� or equivalently by

�
Cy�x� Cu�x�

�� sy
su

�
� �C�x���
�	�

We say that

s �

�
sy
su

�
� sy � IRm� su � IRn�m �

satis�es the linearized state equation if it is a solution to �
�	�� If Cy�x� is invertible
 the solutions
of the linearized state equation are of the form

s � sn �W �x�su��
�
�

where

sn �

�
�Cy�x���C�x�

�

�
�
���

is a particular solution and

W �x� �

�
�Cy�x�

��Cu�x�
In�m

�

is a matrix whose columns form a basis for the null space N �J�x�� of J�x�� One can see that
matrix�vector multiplications of the form W �x�Ts and W �x�su involve only the solution of linear
systems with the matrices Cy�x� and Cy�x�T � Moreover
 the y component of the particular solution
sn is just the step that one would compute if one would apply Newton�s method for the solution of
the nonlinear equation C�y� u� � � for given u�

The point we want to convey in this section has nothing to do with the presence or absence
of the bound constraints a � u � b� Therefore
 for the remainder of this section
 we consider the
simpler case where there are no bound constraints
 i�e�
 where B � IRn�m� If we solve �	�	� with
B � IRn�m by an SQP method
 then the quadratic programming subproblem we have to solve at
every iteration is of the form

minimize rf�x�Ts � �
�s

Tr�
xx��x� �� s

subject to Cy�x�sy � Cu�x�su � C�x� � ��
�
���

If the reduced Hessian W �x�Tr�
xx��x� ��W �x� is nonsingular
 the solution of �
��� is given by �
�
�

with

su � �
�
W �x�Tr�

xx��x� ��W �x�
���

W �x�T
�
rf�x� �r�

xx��x� ��s
n
�
��
���

-
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In practice the Hessian r�
xx��x� �� or the reduced Hessian W �x�

Tr�
xx��x� ��W �x� are often approx�

imated using quasi�Newton updates� In the latter case
 when an approximation to r�
xx��x� �� is

not available
 then the �cross�term� W �x�Tr�
xx��x� ��s

n has also to be approximated� This term
can be approximated by zero
 by �nite di�erences
 or by other quasi�Newton approximations
 see
e�g� ���� In the case where this cross term is approximated by zero
 the right hand side of the linear
system �
��� de�ning su can be written as

W �x�Trf�x� � �Cu�x�
TCy�x�

�Tryf�x� �ruf�x��

Thus
 if the Lagrange multiplier is computed by the adjoint formula

� � �Cy�x�
�Tryf�x���
���

then

W �x�Trf�x� � Cu�x�
T��ruf�x� � ru��x� ���

Now we turn to the reduced problem with B � IRn�m� Suppose there exists an open set U
such that for all u � U there exists a solution y of C�y� u� � � and such that the matrix Cy�x�
is invertible for all x � �y� u� with u � U and C�y� u� � �� Then the Implicit Function Theorem
guarantees the existence of a di�erentiable function

y � U � IRm

de�ned by

C�y�u�� u� � �

and the problem �	�	� can be reduced to �	�
�� Since y��� is di�erentiable
 the function �f is
di�erentiable and its gradient is given by

r �f�u� � W �y�u�� u�Trf�y�u�� u��

cf� �
��� Moreover
 it can be shown that the Hessian of �f is equal to the reduced Hessian

r� �f�u� � W �y�u�� u�Tr�
xx��y�u�� u� ��W �y�u�� u��

provided that the Lagrange multiplier is computed from �
����

One can see that the gradient and the Hessian information in the SQP method for �	�	� and
in the Newton method for �	�
� are the same if �y� u� solves C�y� u� � �� Thus
 if Newton�like
methods are applied for the solution of �	�
�
 then one has all the ingredients available necessary to
implement an SQP method for the solution of �	�	�� The important di�erence
 of course
 is that in
the SQP method we do not have to solve the nonlinear constraints C�y� u� � � at every iteration�

In these considerations we neglected the bound constraints a � u � b� These will be analyzed
in the following sections� We already point out that these relationships between �	�	� and �	�
� are
basically the same with or without the bound constraints�
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�� Optimality conditions� A point x� satis�es the �rst�order Karush�Kuhn�Tucker �KKT�
conditions if there exist �� � IRm and �a�� �

b
� � IRn�m such that

C�x�� � ��

a � u� � b��
ryf�x��
ruf�x��

�
�

�
Cy�x��

T��
Cu�x��

T��

�
�
�
�
�a�

�
�

�
�
�b�

�
� ��

��u��i � ai� ��
a
��i � �bi � �u��i� ��b��i � �� i � 	� � � � � n�m� and

�a� 	 �� �b� 	 ��
These KKT conditions are necessary conditions for x� to be a local solution of �	�	�� Note that the
constraint quali�cations are satis�ed since the invertibility of Cy�x�� and the form of the bound
constraints imply the linear independence of the active constraints� Under the assumption of the
invertibility of Cy�x��
 we can rewrite the �rst�order KKT conditions�

C�x�� � ��

a � u� � b�

�� � �Cy�x��
�Tryf�x���

ai � �u��i � bi �
 �ru��x�� ����i � ��
�u��i � ai �
 �ru��x�� ����i 	 �� and
�u��i � bi �
 �ru��x�� ����i � ��

One can obtain a useful form of the �rst�order KKT conditions by noting that

ru��x�� ��� � ruf�x�� � Cu�x��
T��

� ruf�x��� Cu�x��
TCy�x��

�Tryf�x��

� W �x��
Trf�x���

In other words
 ru��x�� ��� is just the reduced gradient corresponding to the u variables� Hence
x� is a �rst�order KKT point if

C�x�� � ��

a � u� � b�

ai � �u��i � bi �

�
W �x��Trf�x��

�
i
� ��

�u��i � ai �

�
W �x��Trf�x��

�
i
	 �� and

�u��i � bi �

�
W �x��Trf�x��

�
i
� ��

Furthermore
 x� satis�es the second�order necessary KKT conditions if it satis�es the �rst�
order KKT conditions and if the principal submatrix of the reduced Hessian

W �x��
Tr�

xx��x�� ���W �x��

corresponding to indices i such that ai � �u��i � bi is positive semi�de�nite
 where the multipliers
�� are given by �� � �Cy�x��

�Tryf�x���
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Now we adapt the idea of Coleman and Li �	
� to this context and de�ne D�x� � IR�n�m���n�m�

to be the diagonal matrix with diagonal elements given by

�
D�x�

�
ii
�

�����������������������������������

�b� u�
�
�

i if
�
W �x�Trf�x�

�
i
� � and bi � ���

	 if
�
W �x�Trf�x�

�
i
� � and bi � ���

�u� a�
�
�

i if
�
W �x�Trf�x�

�
i
	 � and ai � ���

	 if
�
W �x�Trf�x�

�
i
	 � and ai � ���

���	�

for i � 	� � � � � n �m� In the following proposition we give the form of the �rst�order and second�
order necessary KKT conditions that we use in this paper� To us
 they indicate the suitability of
���	� as a scaling for �	�	�� See also �	��
 �	��
 ���� and the remark below for further discussions on
the choice of D as a scaling matrix�

Proposition ���� The point x� satis�es the �rst�order KKT conditions if and only if

C�x�� � �� a � u� � b� and

D�x��W �x��
Trf�x�� � ��

The point x� satis�es the second�order necessary KKT conditions if and only if it satis�es the
�rst�order KKT conditions and

D�x��W �x��
Tr�

xx��x�� ���W �x��D�x��

is positive semi�de�nite� The corresponding multiplier is given by �� � �Cy�x���Tryf�x���
Remark ���� Proposition ��	 remains valid for a larger class of diagonal matrices D�x�� The

scalar 	 in the De�nition ���	� of D can be replaced by any other positive scalar and Proposition ��	
also remains valid with D�x� replaced by D�x�p
 p � �� Most of our convergence results still hold
true if D�x� is replaced by D�x�p
 p 	 	� See also Remark ��	� and
 for the case of simple bound
constraints
 �	��
 ����� However
 the square roots in the de�nition of D�x� will be necessary for the
proof of local q�quadratic convergence of our algorithms�

The form of the su�cient optimality conditions used in this paper requires the de�nition of
nondegeneracy or strict complementarity�

Definition ���� A point x in B is said to be nondegenerate if
�
W �x�Trf�x�

�
i
� � implies

ai � ui � bi for all i � f	� � � � � n�mg�
We now de�ne a diagonal �n �m�� �n�m� matrix E�x� with diagonal elements given by

�
E�x�

�
ii
�

���������
			�W �x�Trf�x��

i

			 if
�
W �x�Trf�x�

�
i
� � and bi � ��� or

if
�
W �x�Trf�x�

�
i
� � and ai � ���

� in all other cases


for i � 	� � � � � n �m� The signi�cance of this matrix will become clear in the next section when
we apply Newton�s method to the system of nonlinear equations arising from the �rst�order KKT
conditions� From the de�nitions of D�x� and E�x� we have the following property�
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Proposition ���� A nondegenerate point x� satis�es the second�order su�cient KKT condi�
tions if and only if it is a �rst�order KKT point and

D�x��W �x��
Tr�

xx��x�� ���W �x��D�x�� �E�x��

is positive de�nite� where �� � �Cy�x��
�Tryf�x���

�� Newton�s method� One way to motivate the algorithms described in this paper is to
apply Newton�s method to the system of nonlinear equations

C�x� � ��

D�x��W �x�Trf�x� � �����	�

where x is strictly feasible with respect to the bounds on the variables u
 i�e�
 a � u � b� This is re�
lated to Goodman�s approach �
�� for an orthogonal null�space basis and equality constraints�

Although D�x�� is usually discontinuous at points where
�
W �x�Trf�x�

�
i
� �
 the function

D�x��W �x�Trf�x� is continuous �but not di�erentiable� at such points� The application of New�
ton�s method to this type of nonlinear systems has �rst been suggested by Coleman and Li �	
� in
the context of nonlinear minimization problems with simple bounds� They have shown that this
type of nondi�erentiability still allows the Newton process to achieve local q�quadratic convergence�
In order to apply Newton�s method we �rst need to compute some derivatives�

To calculate the Jacobian of the reduced gradient W �x�Trf�x�
 we write

W �x�Trf�x� � ruf�x� � Cu�x�
T��

where � is given by Cy�x�T� � �ryf�x� and has derivatives

��
�y

� �Cy�x�
�T

�Pm
i��r�

yyci�x��i �r�
yyf�x�

�
� �Cy�x�

�Tr�
yy��x� ���

��
�u

� �Cy�x�
�T

�Pm
i��r�

yuci�x��i �r�
yuf�x�

�
� �Cy�x��Tr�

yu��x� ���

This implies the equalities

�
�y

�
W �x�Trf�x�

�
� Cu�x�T

��
�y
�r�

uyf�x� �
Pm

i��r�
uyci�x��i

� W �x�T
�
r�

yy��x� ��
r�

uy��x� ��

�
�

�
�u

�
W �x�Trf�x�

�
� Cu�x�T

��
�u
�r�

uuf�x� �
Pm

i��r�
uuci�x��i

� W �x�T
�
r�

yu��x� ��
r�

uu��x� ��

�
�
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and we can conclude that

	

	x

�
W �x�Trf�x�

�
� W �x�Tr�

xx��x� ���

where � � �Cy�x�
�Tryf�x��

A linearization of ���	� gives

Cy�x�sy � Cu�x�su � �C�x�����
� �
D�x��W �x�Tr�

xx��x� �� � �� j E�x��
�� sy

su

�
� �D�x��W �x�Trf�x�������

where � denotes the �n �m��m matrix with zero entries� Equation ���
� is the linearized state
equation� The diagonal elements of E�x� are the product of the derivative of the diagonal elements
of D�x�� and the components of the reduced gradient W �x�Trf�x�� The derivative of �D�x���ii
does not exist if

�
W �x�Trf�x�

�
i
� �� In this case we set the corresponding quantities in the

Jacobian to zero �see references �	
�
 �	���� This gives the equation ������

By using �
�
� we can rewrite the linear system ���
������� as

s � sn �W �x�su��
D�x��W �x�Tr�

xx��x� ��W �x�� E�x�
�
su � �D�x��W �x�T

�
r�

xx��x� ��s
n �rf�x�

�
������

We de�ne our Newton�like step as the solution of

s � sn �W �x�su������ �
�D�x��W �x�Tr�

xx��x� ��W �x�� E�x�
�
su � � �D�x��W �x�T

�
r�

xx��x� ��s
n �rf�x�

�
������

where �D�x� � IR�n�m���n�m� is the diagonal matrix de�ned by

�
�D�x��

�
ii
�

�����������������������������������

�b� u�
�

�

i if
�
W �x�T


r�
xx��x� ��s

n �rf�x���
i
� � and bi � ���

	 if
�
W �x�T


r�
xx��x� ��s

n �rf�x���
i
� � and bi � ���

�u� a�
�

�

i if
�
W �x�T


r�
xx��x� ��s

n �rf�x���
i
	 � and ai � ���

	 if
�
W �x�T


r�
xx��x� ��s

n �rf�x���
i
	 � and ai � ���

�����

for i � 	� � � � � n � m� This change of the diagonal scaling matrix is based on the form of the
right hand side of ������ Unlike D
 the scaling matrix �D includes information from the cross term
r�

xx��x� ��s
n and is therefore used as the scaling matrix for the computation of su in our algorithm


cf� ������ In the subsequent sections we will allow the replacement of the Hessian r�
xx��x� �� be a

suitable matrix H �
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If x is close to a nondegenerate point x� satisfying the second�order su�cient KKT conditions
and if W �x�Tr�

xx��x� ��s
n is su�ciently small
 a step s de�ned in this way is a Newton step on the

following system of nonlinear equations

C�x� � ��

D�x��uW �x�
Trf�x� � �������

where D�x�u depends on x� as follows�

�D�x�u�ii �

���������������������

	 or �b� u�
�
�

i or �u� a�
�
�

i if
�
W �x��

Trf�x��
�
i
� ��

�b� u�
�
�

i if
�
W �x��

Trf�x��
�
i
� ��

�u� a�
�

�

i if
�
W �x��

Trf�x��
�
i
� ��

for i � 	� � � � � n � m� If
�
W �x��

Trf�x��
�
i
� �
 the i�th diagonal element of D�x�u has to be

chosen so that �D�x� and D�x�u are the same matrix� Of course
 this depends on the sign of�
W �x�T �r�

xx��x� ��s
n�rf�x��

�
i
� As Coleman and Li �	
� pointed out
 D�x�u is just of theoretical

use since x� is unknown� One can see that D�x�
�
uW �x�

Trf�x� is continuously di�erentiable with
Lipschitz continuous derivatives in an open neighborhood of x�
 that D�x���uW �x��

Trf�x�� � �

and that the Jacobian of D�x��uW �x�

Trf�x� at x� is nonsingular
 for all choices of D�x�u� These
conditions are those typically required to get q�quadratic convergence for the Newton iteration
�see �	�
 Thm� ��
�	��� Thus the sequence of iterates generated by the Newton step �����������
will converge q�quadratically to a nondegenerate point that satis�es the su�cient KKT conditions�
The interior�point process damps the Newton step so that it stays strictly feasible but this does
not a�ect the rate of convergence� The details are provided in Corollary ��	�

	� Trust�region interior�point SQP algorithms� The algorithms that we propose gen�
erate a sequence of iterates fxkg where

xk �

�
yk
uk

�
�

and uk is strictly feasible with respect to the bounds
 i�e�
 a � uk � b� At iteration k we are given
xk
 and we need to compute a trial step sk� If sk is accepted
 we set xk�� � xk � sk � Otherwise we
set xk�� to xk
 reduce the trust�region radius
 and compute a new trial step�

Following the application of Newton�s method �����
 each trial step sk is decomposed as

sk � snk � stk � snk �Wk�sk�u�

where snk is called the quasi�normal component and s
t
k is the tangential component�

The role of snk is to move towards feasibility� It will be seen that s
n
k is related to the Newton

step for the solution of C�y� uk� � � for �xed uk� The role of s
t
k is to move towards optimality� The

u component of stk is related to the Newton step for the reduced problem �	�
�� However
 as made
clear previously
 we do not require feasibility with respect to the nonlinear equality constraints�
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The global convergence is guaranteed by imposing an appropriate trust region on the step
and monitoring the progress by a suitable merit function� The de�nition of the quasi�normal
component
 the tangential component
 and the merit function as well as the complete formulation
of our algorithms is the content of this section�

	��� The quasi�normal component� Let 
k be the trust radius at iteration k� The quasi�
normal component snk is related to the trust�region subproblem for the linearized constraints

minimize
	



kJksn � Ckk�

subject to ksnk � 
k �

and it is required to have the form

snk �

�
�snk �y
�

�
����	�

Thus the displacement along snk is made only in the y variables
 and as a consequence
 xk and
xk � snk have the same u components� Since �s

n
k�u � �
 the trust�region subproblem introduced

above can be rewritten as

minimize
	



kCy�xk��s

n�y � Ckk����
�

subject to k�sn�yk � 
k������

Thus
 the quasi�normal component snk is a trust�region globalization of the component s
n given in

�
��� of the Newton step ������ We do not have to solve ���
������� exactly
 we only have to assume
that the quasi�normal component satis�es the conditions

ksnkk � ��kCkk�����

and

kCkk� � kCy�xk��s
n
k�y � Ckk� 	 ��kCkkminf��kCkk� 
kg������

where ��
 ��
 and �� are positive constants independent of k� In Section 	��	
 we describe several
ways of computing a quasi�normal component that satis�es the requirements ���	�
 �����
 and ������
Condition ����� tell us that the quasi�normal component is small close to feasible points� Condition
����� is just a weaker form of Cauchy decrease or simple decrease for the trust�region subproblem
���
�
 ������

	��� The tangential component� The computation of the tangential component �sk�u fol�
lows a trust�region globalization of the Newton step ������ Following Coleman and Li �	�� we
symmetrize ����� and get�

�DkW
T
k HkWk

�Dk �Ek

�
�D��
k su � � �DkW

T
k

�
Hks

n
k �rfk

�
�

where Ek � E�xk� and Hk denotes a symmetric approximation to the Hessian matrix r�
xx�k � The

scaling matrix �Dk is equal to �D�xk� de�ned by ����� with r�
xx�k replaced by Hk� This suggests the
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change of variables �su � �D��
k su and the consideration in the scaled space �su of the trust�region

subproblem

minimize
�
�DkW

T
k



Hks

n
k �rfk

��T
�su �

	



�sTu

�
�DkW

T
k HkWk

�Dk �Ek

�
�su

subject to k�suk � 
k �

Now we can rewrite the previous subproblem in the unscaled space su as

minimize
�
WT

k �Hks
n
k �rfk�

�T
su �

�
�s

T
u

�
WT

k HkWk �Ek
�D��
k

�
su

subject to k �D��
k suk � 
k�

�����

Of course
 we also have to require that the new iterate is in the interior of the box constraints� To
ensure that uk�sk is strictly feasible with respect to the box constraints we choose �k � ��� 	�
 � �
��� 	�
 and compute su with �k�a�uk� � su � �k�b�uk�� However
 one of the strength of this trust�
region approach is that we can allow for approximate solutions of this subproblem� In particular

it is not necessary to solve the full trust�region subproblem including the box constraints� For
example
 one can compute the solution of the trust�region subproblem without the box constraints
and then scale the computed solution back so that the resulting damped su obeys �k�a � uk� �
su � �k�b� uk�
 see e�g� Section ��
��� We will show that under suitable assumptions this strategy
guarantees global convergence and local q�quadratic convergence� Another way to compute an
approximate u component of the step is to use a modi�ed conjugate�gradient algorithm applied
to the trust�region subproblem without the box constraints that is truncated if one of the bounds
�k�a � uk� � su � �k�b� uk� is violated� See Section 	��
� More ways to compute the tangential
component are possible� The conditions on the tangential component necessary to guarantee global
convergence are stated in Section ��
���

We now introduce a quadratic model

qk�s� � �k �rx�k
T s�

	



sTHks

of ��xk � s� �k� about �xk� �k�� A trivial manipulation shows that

qk�s
n
k �Wksu� � qk�s

n
k� � �g

T
k su �

	



su

TWT
k HkWksu������

with

�gk � WT
k rqk�snk� � WT

k

�
Hks

n
k �rfk

�
�

For convenience we de�ne

 k�su� � qk�s
n
k �Wksu� �

	



sTu

�
Ek
�D��
k

�
su������

	����� The decoupled trust�region approach� We can restate the trust�region subprob�
lem ����� as

minimize  k�su������

subject to k �D��
k suk � 
k����	��
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We refer to the approach based on this subproblem as the decoupled approach� In this decoupled
approach the trust�region constraint is of the form k �D��

k suk � 
k corresponding to the constraint
k�suk � 
k in the scaled space� One can see from ����� and ���	�� that we are imposing the trust
region separately on the y part of the quasi�normal component and on the u part of the tangential
component� Moreover
 if the cross�term WT

k Hks
n
k is set to zero
 then the trust�region subproblems

for the quasi�normal component and for the tangential component are completely separated�

	����� The coupled trust�region approach� The approach we present now forces the y
and u parts of the tangential component stk � Wk�sk�u to lie inside the trust region of radius 
k�
The reference trust�region subproblem is given by

minimize  k�su����		�

subject to

�����
�
�Cy�xk�

��Cu�xk�su
�D��
k su

������ � 
k����	
�

In the case where there are no bounds on u this trust�region constraint is of the form�����
�
�Cy�xk�

��Cu�xk�su
su

������ � kWksuk � 
k �

As opposed to the decoupled case
 one can see that the term Cy�xk�
��Cu�xk�su is present in

the trust�region constraint ���	
�� If W�
k denotes the Moore�Penrose pseudo inverse of Wk �see

�
�
 �Sec� �������
 then

	

kW�
k k

ksuk � kWksuk � kWkkksuk�

Thus
 if the condition number ��Wk� � kW�
k k kWkk is small
 then the decoupled and the coupled

approach will generate similar iterates� In this case
 the decoupled approach will be more e�cient
since it uses fewer linear system solves with the system matrix Cy�xk�� See Section 	��
� However

if ��Wk� is large
 e�g� if Cy�xk� is ill�conditioned
 then the coupled approach will use the true size
of the tangential component
 whereas the decoupled approach may underestimate vastly the size of
this step component� This can lead to poor performance of the decoupled approach when steps are
rejected and the trust�region radius is reduced based on the incorrect estimate ksuk of the norm of
st � Wksu� This indicates that when Cy�x� is ill�conditioned the coupled approach o�ers a better
regularization of the step�

	����� Cauchy decrease for the tangential component� To assure global convergence to
a �rst�order KKT point
 we consider analogs for the subproblems ���������	�� and ���		�����	
� of
the fraction of Cauchy decrease or simple decrease conditions for the unconstrained minimization
problem�

First we consider the decoupled trust�region subproblem ���������	��� The Cauchy step cdk is
de�ned for this case as the solution of

minimize  k�su�

subject to k �D��
k suk � 
k � su � spanf� �D�

k�gkg�
�k�a� uk� � su � �k�b� uk��

----
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where � �D�
k�gk is the steepest�descent direction for  k�su� at su � � in the norm k �D��

k � k� Here
�k � ��� 	� ensures that the Cauchy step cdk remains strictly feasible with respect to the box
constraints� The parameter � � ��� 	� is �xed for all k� As in many trust�region algorithms
 we
require the tangential component �sk�u with �k�a� uk� � �sk�u � �k�b� uk� to give a decrease on

 k�su� smaller than a uniform fraction of the decrease given by cdk for the same function  k�su��
This condition is often called fraction of Cauchy decrease
 and in this case is

 k����  k��sk�u� 	 
d�

�
 k���� k�c

d
k�
�
����	��

where 
d� is positive and �xed across all iterations� It is not di�cult to see that dogleg or conjugate�
gradient algorithms can compute components �sk�u conveniently that satisfy condition ���	�� with


d� � 	� We leave these issues to Section 	��
�
In a similar way
 the component �sk�u with �k�a� uk� � �sk�u � �k�b� uk� satis�es a fraction

of Cauchy decrease for the coupled trust�region subproblem ���		�����	
� if

 k����  k��sk�u� 	 
c�

�
 k����  k�c

c
k�
�
����	��

for some 
c� independent of k
 where the Cauchy step c
c
k is the solution of

minimize  k�su�

subject to

�����
�
�Cy�xk���Cu�xk�su

�D��
k su

������ � 
k� su � spanf� �D�
k�gkg�

�k�a� uk� � su � �k�b� uk��

In Section 	��
 we show how to use conjugate�gradients to compute components �sk�u satisfying
the condition ���	���

One �nal comment is in order� In the coupled approach
 the Cauchy step cck was de�ned
along the direction � �D�

k�gk� To simplify this discussion
 suppose that there are no bounds on u�
In this case the trust�region constraint is of the form kWksuk � 
k � The presence of Wk gives
the trust region an ellipsoidal shape� The steepest�descent direction for the quadratic ����� in the
norm kWk � k at su � � is given by ��WT

k Wk����gk� Our analysis still holds for this case since
fk�WT

k Wk�
��kg is a bounded sequence� The reason why we avoid the term �WT

k Wk�
�� is that

in many applications there is no reasonable way to solve systems with WT
k Wk� We will show in

Section 	��
 how this a�ects the use of conjugate gradients �see Remark 	��
�� Finally
 we point
out that this problem does not arise if the decoupled approach is used�

	����� Optimal decrease for the tangential component� The conditions in the previous
subsection are su�cient to guarantee global convergence to a point satisfying �rst�order necessary
KKT conditions
 but they are too weak to guarantee global convergence to a point satisfying
second�order necessary KKT conditions� To accomplish this
 just as in the unconstrained case ����

����
 in the box�constrained case �	��
 and in the equality�constrained case �	��
 we need to make
sure that su satis�es an appropriate fraction of optimal decrease condition�

First we consider the decoupled approach and let odk be an optimal solution of the trust�region
subproblem ���������	��� It follows from the KKT conditions for this trust�region subproblem that
there exists �k 	 � such that

WT
k HkWk �Ek

�D��
k � �k �D

��
k is positive semi�de�nite
���	��
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WT

k HkWk � Ek
�D��
k � �k �D

��
k

�
odk � ��gk � and���	��

�k�
k � k �D��
k odkk� � ��

�For practical algorithms to compute odk see references ����
 ����
 ����
 ����� These conditions are also

su�cient for odk to be an optimal solution �

�
 ������ Since uk � odk might not be strictly feasible


we consider �ko
d
k 
 where �k is given by

�k � �k min
i�������n�m



	� max



bi � �uk�i
�odk �i

�
ai � �uk�i
�odk �i

� �
����	��

The tangential component �sk�u then is required to satisfy the following fraction of optimal
decrease condition

 k���� k��sk�u� 	 
d�

�
 k����  k��ko

d
k �
�
and

k �D��
k �sk�uk � 
d� 
k �

���	��

where 
d� � 

d
� are positive parameters�

From conditions ���	��
 ���	��
 and ���	��
 and �k � 	
 we can write

 k����  k��sk�u� 	 
d�

�
��k�gTk odk �

	



��k �o

d
k�

T
�
WT

k HkWk � Ek
�D��
k

�
�odk�

�

	 
d� �k

�
��gTk odk �

	



�odk �

T
�
WT

k HkWk � Ek
�D��
k � �k �D

��
k

�
�odk�

�

�
	




d� �

�
k�k�o

d
k�

T �D��
k �o

d
k�

	 	




d� �kkRko

d
kk� �

	




d� �

�
k�k


�
k

	 	




d� �

�
k�k


�
k ����	��

where WT
k HkWk �Ek

�D��
k � �k �D

��
k � RT

kRk�
Now let us focus on the coupled approach and let ock be the optimal solution of the trust�region

subproblem ���		�����	
�� It follows from the KKT conditions for this trust�region subproblem
and the equality �

Cy�xk�
��Cu�xk�

�T
Cy�xk�

��Cu�xk� � WT
k Wk � In�m�

that there exists �k 	 � such that

WT
k HkWk � Ek

�D��
k � �k

�
�D��
k �WT

k Wk � In�m

�
is positive semi�de�nite
���
�� �

WT
k HkWk �Ek

�D��
k � �k

�
�D��
k �WT

k Wk � In�m

��
ock � ��gk � and���
	�

�k

�

k �

�����
�
�Cy�xk�

��Cu�xk�o
c
k

�D��
k ock

������
�
� ��
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Now we damp ock with �k given as in ���	�� but with odk replaced by ock� Thus
 the resulting step
uk� �ko

c
k is strictly feasible� We impose the following fraction of optimal decrease condition on the

tangential component �sk�u�

 k���� k��sk�u� 	 
c�

�
 k���� k��ko

c
k�
�
and

�����
�
�Cy�xk�

��Cu�xk��sk�u
�D��
k �sk�u

������ � 
c�
k �

���

�

In this case it can be shown in a way similar to ���	�� that

 k����  ��sk�u� 	 	




c��

�
k�k


�
k ����
��

	��� Reduced and full Hessians� In the previous section we considered an approximation
Hk to the full Hessian� The algorithms and theory presented in this paper are also valid if we use
an approximation bHk to the reduced Hessian WT

k r�
xx�kWk � In this case we set

Hk �

�
� �

� bHk

�
����
��

Due to the form of Wk 
 we have

WT
k HkWk � bHk�

This allows us to obtain the expansion ����� in the context of a reduced Hessian approximation�
For the algorithms with reduced Hessian approximation the following observations are useful�

Hkd �

�
�bHkdu

�
�

dTHkd � dTu
bHkdu����
��

WT
k Hkd � bHkdu�

	��� Outline of the algorithms� We need to introduce a merit function and the correspond�
ing actual and predicted reductions� The merit function used is the augmented Lagrangian

L�x� �! �� � f�x� � �TC�x� � �C�x�TC�x��

We follow �	�� and de�ne the actual decrease at iteration k as

ared�sk! �k� � L�xk� �k! �k�� L�xk � sk � �k��! �k��

and the predicted decrease as

pred�sk! �k� � L�xk� �k! �k��
�
qk�sk� � "�

T
k �Jksk � Ck� � �kkJksk � Ckk�

�
�

with "�k � �k�� � �k�

-
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Remark ���� A possible rede�nition of the actual and predicted decreases is obtained by

subtracting the term �
��sk�

T
u

�
Ek
�D��
k

�
�sk�u from both ared�sk! �k� and pred�sk! �k�� This type of

modi�cation has been suggested in �	�� for minimization with simple bounds
 and it does not a�ect
the global and local results given in this paper�

To decide whether to accept or reject a trial step sk 
 we evaluate the ratio

ared�sk! �k�

pred�sk! �k�
�

To update the penalty parameter �k we use the scheme proposed by El�Alem �
��� Other schemes
to update the penalty parameter have been suggested in �
	� and �����

We can now outline the main procedures of the trust�region interior�point SQP algorithms
and leave the practical computation of snk 
 �sk�u
 and �k to Section 	��

Algorithm ��� �Trust�region interior�point SQP algorithms	�
	 Choose x	 such that a � u	 � b
 pick 
	 � �
 and calculate �	� Choose ��
 ��
 �
 
min


max
 ��
 and ��� such that � � ��� ��� � � 	
 � � 
min � 
max
 �� � �
 and ��� 	 	�


 For k � �� 	� 
� � � � do

�	 Compute snk such that ksnkk � 
k�

Compute �sk�u based on the subproblem ���������	�� �or ���		�����	
� for the coupled
approach� satisfying

�k�a� uk� � �sk�u � �k�b� uk��

with �k � ��� 	�� Set sk � snk � stk � snk �Wk�sk�u�

�
 Compute �k�� and set "�k � �k�� � �k�

�� Compute pred�sk! �k����

pred�sk! �k��� � qk���� qk�sk��"�Tk �Jksk � Ck� � �k��

�
kCkk� � kJksk � Ckk�

�
�

If pred�sk! �k��� 	 �k��

�

�
kCkk� � kJksk � Ckk�

�
then set �k � �k��� Otherwise set

�k �


�
qk�sk�� qk��� � "�Tk �Jksk � Ck�

�
kCkk� � kJksk � Ckk� � ���


�� If ared�sk 
�k�
pred�sk 
�k�

� ��
 set


k�� � ��max
n
ksnkk� k �D��

k �sk�uk
o
in the decoupled case or


k�� � ��max



ksnkk�

�����
�
�Cy�xk���Cu�xk��sk�u

�D��
k �sk�u

������
�
in the

coupled case
 and reject sk �
Otherwise accept sk and choose 
k�� such that

maxf
min� 
kg � 
k�� � 
max�


�� If sk was rejected set xk�� � xk and �k�� � �k� Otherwise set xk�� � xk � sk and
�k�� � �k � "�k�

Of course the rules to update the trust radius in the previous algorithm can be much more
involved but the above su�ces to prove convergence results and to understand the trust�region
mechanism�
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	�	� Assumptions� In order to establish local and global convergence results we need some
general assumptions� We list these assumptions below� Let # be an open subset of IRn such that
for all iterations k
 xk and xk � sk are in #�

A�� The functions f�x�
 ci�x�
 i � 	� � � � � m
 are twice continuously di�erentiable in #�
A�� The partial Jacobian Cy�x� is nonsingular for all x � #�
A�� The functions f�x�
 rf�x�
 r�f�x�
 C�x�
 J�x�
 r�ci�x�
 i � 	� � � � � m are bounded in #�
A�� The sequences fWkg
 fHkg
 and f�kg are bounded�
A�	 The matrix C��y �x� is uniformly bounded in #�
A�
 The sequence fukg is bounded�
It is equivalent to Assumptions A���A��
 that there exist positive constants �	� � � � � �� indepen�

dent of k such that

jf�x�j � �	� krf�x�k � ��� kr�f�x�k � ��� kC�x�k � ��� kJ�x�k � ���

kr�ci�x�k � �
� i � 	� � � � � m� and kCy�x�
��k � ��

for all x � #
 and
kWkk � ��� kHkk � ��� k�kk � ��� and k �Dkk � ���

for all k�
For the rest of this paper we suppose that Assumptions A�	�A�� are always satis�ed�
As we have pointed out earlier
 our approach is related to the Newton method presented in

Section �� The u component �sNk �u of the Newton step s
N
k � snk �Wk�sNk �u
 whenever it is de�ned


is given by

�sNk �u � �
�
�D�
kW

T
k HkWk �Ek

���
�D�
k�gk

� � �Dk

�
�DkW

T
k HkWk

�Dk � Ek

���
�Dk�gk�

���
��

where

snk �

�
�Cy�xk�

��Ck

�

�
����
��

and �gk � WT
k

�
Hks

n
k � rfk

�
� From ���
�� we see that the Newton step is well de�ned in a

neighborhood of a nondegenerate point that satis�es the second�order su�cient KKT conditions
and for which WT

k Hks
n
k is su�ciently small� To guarantee strict feasibility of this step we consider

a damped Newton step given by

snk �Wk�
N
k �s

N
k �u����
��

where �sNk �u and snk are given by ���
�� and ���
��
 and

�Nk � �k min
i�������n�m



	� max



bi � �uk�i
��sNk �u�i

�
ai � �uk�i
��sNk �u�i

� �
����
��

If Algorithms ��	 are particularized to satisfy the following conditions on the steps
 on the
quadratic model
 and on the Lagrange multipliers
 then we can prove global and local convergence�
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C�� The quasi�normal component snk satis�es conditions ���	�
 �����
 and ������
The tangential component �sk�u satis�es the fraction of Cauchy decrease condition ���	��
����	�� for the coupled approach��
The parameter �k is chosen in ��� 	�
 where � � ��� 	� is �xed for all k�

C�� The tangential component �sk�u satis�es the fraction of optimal decrease condition ���	��
����

� for the coupled approach��

C�� The second derivatives of f and ci
 i � 	� � � � � m are Lipschitz continuous in #�
The approximation to the Hessian matrix is exact
 i�e�
 Hk � r�

xx��xk� �k� with Lagrange
multiplier �k � �Cy�xk�

�Tryf�xk��

C�� The step sk is given by ���
�� provided �s
N
k �u exists
 �s

n
k�y lies inside the trust region �����


and �Nk �s
N
k �u lies inside the trust region ���	�� ����	
� for the coupled approach��

The parameter �k is chosen such that �k 	 � and j�k � 	j is O

�� �Dk�gk

����
Condition C�	 assures global convergence to a �rst�order KKT point� Global convergence to

a point that satis�es the second�order necessary KKT conditions requires Conditions C�	�C��� To
prove local q�quadratic convergence
 we need Conditions C�	
 C��
 and C��� It should be pointed
out that the satisfaction of C�
 or C�� does not necessarily imply the satisfaction of C�	�


� Intermediate results� We start by pointing out that ����� with the fact that the tangential
component lies in the null space of Jk 
 together imply

kCkk� � kJksk � Ckk� 	 ��kCkkminf��kCkk� 
kg����	�

We calculated the �rst derivatives of ��x� � �Cy�x��Tryf�x� in Section �� It is clear that
under Assumptions A�� and A�� these derivatives are bounded in #� Thus
 if �k is computed as
stated in Condition C��
 then there exists a positive constant ��	 independent of k such that

k"�kk � ��	kskk����
�

From ksqkk � 
max and Assumptions A���A�� we also have

k�gkk �
���WT

k

�
Hks

q
k �rfk

���� � ���������

where ��� � �����
max � ����
The following lemma is required for the convergence theory�
Lemma 
��� Every trial step satis�es

kskk � ��
k�����

and� if sk is rejected in Step ��	 of Algorithms 
��� then


k�� 	 �
kskk������

where �� and �
 are positive constants independent of k�
Proof� In the coupled trust�region approach we bound stk as follows������

�
�Cy�xk���Cu�xk�su

su

������ �
�����
�

Im �
� �Dk

������
�����
�
�Cy�xk�

��Cu�xk�su
�D��
k su

������
� �	 � ��� 
k �
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where �� is a uniform bound for k �Dkk
 see Assumption A��� Since ksnkk � 
k 
 we obtain kskk �
�
 � ��� 
k� It is not di�cult to see now that in Step 
�� we have 
k�� 	 ��

� min
n
	� �

����

o
kskk�

In the decoupled approach
 kskk � ksnk � Wk�sk�uk � �	 � �����
k and similarly 
k�� 	
��
� min

n
	� �

����

o
kskk
 where �� is a uniform bound for kWkk
 see Assumption A���

We can combine these bounds to obtain

kskk � maxf
 � ��� 	 � ����g 
k�

k�� 	 ��

� min
n
	� �

����
� �
����

o
kskk�

In the case where fraction of optimal decrease ���	�� or ���

� is imposed on �sk�u
 the constants

�� and �
 depend also on 
d� and 
c� �

In the following lemma we rewrite the fraction of Cauchy decrease conditions ���	�� and ���	��
in a more useful form for the analysis�

Lemma 
��� If �sk�u satis�es Condition C�� then

qk�s
n
k �� qk�s

n
k �Wk�sk�u� 	 ��k �Dk�gkkmin

n
��k �Dk�gkk� ��
k

o
������

where ��� ��� and �� are positive constants independent of the iteration k�

Proof� From the de�nition ����� of  k we �nd

qk�s
n
k�� qk�s

n
k �Wk�sk�u� 	 qk�s

n
k�� qk�s

n
k �Wk�sk�u�� 	



�sk�

T
u

�
Ek
�D��
k

�
�sk�u

�  k����  k��sk�u�������

Let $
k be the maximum k �D��
k � k norm of a step
 say �$sk�u
 along � �Dk

�gk
k�gkk

allowed inside the

trust region� Here $gk � �Dk�gk�

If the trust region is given by ���	��
 then


k � $
k ������

If the trust region is given by ���	
�
 then we can use Assumptions A���A�� to deduce the
inequality


�k �

�����
�
�Cy�xk�

��Cu�xk��$sk�u
�D��
k �$sk�u

������
�

� k � Cy�xk�
��Cu�xk� �Dk

�D��
k �$sk�uk� � k �D��

k �$sk�uk�

� �����
�
� � 	�k �D��

k �$sk�uk�

� �����
�
� � 	�

$
�k

or
 equivalently


$
k 	 	q
����

�
� � 	


k ������

D 
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De�ne � � IR� �� IR as ��t� �  k

�
�t �Dk

�gk
k�gkk

�
�  k���� Then ��t� � �k$gkkt � rk

� t
�
 where

rk �
�gT
k
�Hk�gk

k�gkk�
and $Hk � �Dk

�
WT

k HkWk �Ek
�D��
k

�
�Dk� Now we need to minimize � in ��� Tk� where

Tk is given by

Tk � min



$
k� �kmin



k �Dk�gkk
��gk�i

� ��gk�i � �

�
� �kmin



�k

�Dk�gkk
��gk�i

� ��gk�i � �

��
�

Let t�k be the minimizer of � in ��� Tk�� If t
�
k � ��� Tk� then

��t�k� � �	



k$gkk�
rk

� �	



k$gkk�
k $Hkk

����	��

If t�k � Tk then either rk � � in which case
k�gkk
rk

	 Tk or rk � � in which case rkTk � k$gkk� In either
event


��t�k� � ��Tk� � �Tkk$gkk� rk



T �
k � �Tk



k$gkk����		�

We can combine �����
 ���	��
 and ���		� with

 k���� k��sk�u� 	 
d�

�
 k����  k�c

d
k�
�
� �
d���t�k�

to get

qk�s
n
k�� qk�s

n
k �Wk�sk�u� 	 	




d� k$gkkmin



k$gkk
k $Hkk

� Tk

�
�

The facts that �k 	 � and k�gkk � ��� �see ������ imply that

 k���� k��sk�u�

	 	




d� k �Dk�gkkmin

��� k �Dk�gkk
k �DT

k

�
WT

k HkWk �Ek
�D��
k

�
�Dkk

�min

�
$
k�

�

���
k �Dk�gkk

���� �

To complete the proof
 we use �����
 �����
 the Assumptions A�	�A��
 and the fact that


k � 
max to establish ����� with �� �
�
� min

n

d� � 


c
�

o

 �� � min

n
�

���
�
�
��
�
�����

� 	
���

o

 and �� �

min

�
	� �p

��
�
��
�
��

�
�

Now we state the convenient form of the fraction of optimal decrease conditions ���	�� and
���

��

Lemma 
��� If �sk�u satis�es Condition C�� then

qk�s
n
k�� qk�s

n
k �Wk�sk�u� 	 ���

�
k�k


�
k ����	
�

where �� is a positive constant independent of the iteration k�
Proof� The proof follows immediately from observation ����� and conditions ���	�� and ���
���

We also need the following two inequalities�

D 

D 
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Lemma 
��� Under Condition C�� there exists a positive constant ��	 such that

qk���� qk�s
n
k��"�Tk �Jksk � Ck� 	 ���	kCkk����	��

Moreover if we assume Condition C��� then

qk���� qk�s
n
k ��"�Tk �Jksk � Ck� 	 ����kCkk


ksnkk� kskk� ����	��

Proof� The term qk����qk�s
n
k � can be bounded using ����� and ksnkk � 
k in the following way�

qk���� qk�s
n
k� � �rx�

T
k s

n
k � �

��s
n
k�

THk�s
n
k�

	 ���
�
krx�kk� �

�
kkHkk
�
kCkk�

On the other hand
 it follows from kJksk � Ckk � kCkk that

�"�Tk �Jksk � Ck� 	 �k"�kk kCkk����	��

Combining these two bounds with Assumptions A�� and A�� we get ���	���

To prove ���	�� we �rst observe that
 due to the de�nition of �k in Condition C�� and to the
form ���	� of the quasi�normal component snk 


rx�
T
k s

n
k �

�
�

rufk � Cu�xk�T�k

�T �
�snk�y
�

�
� �����	��

Thus

qk���� qk�s
n
k � 	 �	



��kHkk kCkk ksnkk 	 �	



���� kCkk ksnkk����	��

Also
 by appealing to ���
� and ���	��


�"�Tk �Jksk � Ck� 	 ���	kskk kCkk����	��

The proof of ���	�� is complete by combining ���	�� and ���	���

The convergence theory for trust regions traditionally requires consistency of actual and pre�
dicted decreases� This is given in the following lemma�

Lemma 
��� Under Condition C�� there exists a positive constant ��� such that

jared�sk! �k�� pred�sk! �k�j � ���

�
kskk� � �k

�
kskk� � kCkk kskk�

��
����	��

Moreover� if Condition C�� is also valid� then

jared�sk! �k�� pred�sk! �k�j � ����k

�
kskk� � kCkk kskk�

�
����
��

D 
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Proof� Adding and subtracting ��xk��� �k� to ared�sk! �k� � pred�sk! �k� and using Taylor
expansion we obtain

ared�sk! �k�� pred�sk! �k� � �
�s

T
k



Hk � r�

xx��xk � t�ksk� �k�
�
sk

��
�

Pm
i���"�k�is

T
kr�ci�xk � t�ksk�sk

��k
�Pm

i�� ci�xk � t�ksk��sk�
Tr�ci�xk � t�ksk��sk�

��sk�
TJ�xk � t�ksk�

TJ�xk � t�ksk��sk�

��sk�TJ�xk�TJ�xk��sk�
�
�

where t�k 
 t
�
k 
 and t

�
k are in ��� 	�� By expanding ci�xk � t�ksk� around ci�xk� and using Assumptions

A�� and A�� we get ���	���

The estimate ���
�� follows from ���
�
 �k 	 	
 and the Lipschitz continuity of the second
derivatives�

The last result in this section is a direct consequence of the scheme that updates �k in Step 
��
of Algorithms ��	�

Lemma 
�
� The sequence f�kg satis�es

�k 	 �k�� 	 	 and

pred�sk! �k� 	 �k




�
kCkk� � kJksk � Ckk�

�
����
	�

�� Global convergence to a �rst�order KKT point� The proof of the global convergence
to a �rst�order KKT point �Theorem ��	� established in this section follows the structure of the
convergence theory presented in �	�� for the equality�constrained optimization problem� This proof
is by contradiction and is based on Condition C�	� We show that the supposition

k �Dk�gkk� kCkk � �tol�

for all k
 leads to a contradiction�

The following three lemmas are necessary to bound the predicted decrease�

Lemma ���� Under Condition C�� the predicted decrease in the merit function satis�es

pred�sk! �� 	 ��k �Dk�gkkmin
n
��k �Dk�gkk� ��
k

o
���	kCkk� �

�
kCkk� � kJksk � Ckk�

�
�

���	�

for every � � ��

Proof� The inequality ���	� follows from a direct application of ���	�� and from the lower bound
������

D 

D 
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Lemma ���� Assume Condition C�� and k �Dk�gkk � kCkk � �tol are satis�ed� If kCkk � �
k�
where � is a positive constant satisfying

� � min
�

�tol

�
max

�
���tol

���	
min

�

���tol
�
max

� ��

��
����
�

then

pred�sk! �� 	 ��



k �Dk�gkkmin

n
��k �Dk�gkk� ��
k

o
� �

�
kCkk� � kJksk � Ckk�

�
������

for every � � ��
Proof� From k �Dk�gkk� kCkk � �tol and the �rst bound on � given by ���
�
 we get

k �Dk�gkk � 


�
�tol������

If we use this
 ���	�
 and the second bound on � given by ���
�
 we obtain

pred�sk! �� 	 
�
� k �Dk�gkkmin

n
��k �Dk�gkk� ��
k

o
� 
��tol

� min
n
�
��tol

� � ��
k

o
���	kCkk� �

�
kCkk� � kJksk � Ckk�

�
	 
�

� k �Dk�gkkmin
n
��k �Dk�gkk� ��
k

o
� �

�
kCkk� � kJksk � Ckk�

�
�

We can use Lemma ��
 with � � �k�� and conclude that if k �Dk�gkk� kCkk � �tol and kCkk �
�
k 
 then the penalty parameter at the current iteration does not need to be increased� See Step

�� of Algorithms ��	� This is equivalent to Lemma ��� in �	��� The next lemma states the same
result as Lemma ��� in �	�� but with a di�erent choice of ��

Lemma ���� Assume Condition C�� and k �Dk�gkk � kCkk � �tol� If kCkk � �
k� where �

satis�es 
����� then there exists a positive constant ��� � � such that

pred�sk! �k� 	 ���
k ������

Proof� From ����� with � � �k and k �Dk�gkk 	 �
��tol
 cf� �����
 we obtain

pred�sk! �k� 	 
��tol
� minf�
��tol� � ��
kg

	 
��tol
� minf�
��tol��max

� ��g
k�

Hence ����� holds with

��� �
���tol

�
min

�

���tol
�
max

� ��

�
�

The following lemma is also required�

D 

D 
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Lemma ���� Under Condition C��� if k �Dk�gkk� kCkk � �tol for all k then the sequences f�kg
and fLkg are bounded and 
k is uniformly bounded away from zero�

Proof� See Lemmas ������	�
 ��
 in �	���
Our �rst global convergence result follows�

Theorem ���� Under Condition C�� the sequences of iterates generated by the trust�region
interior�point SQP Algorithms 
�� satisfy

lim inf
k

�
kDkW

T
k rfkk� kCkk

�
� �������

Proof� The proof is by contradiction� Suppose that for all k

k �Dk�gkk� kCkk � �tol������

At each iteration k either kCkk � �
k or kCkk � �
k 
 where � satis�es ���
�� In the �rst case we
appeal to Lemmas ��� and ��� and obtain

pred�sk! �k� 	 ���
��

where 
� is the lower bound on 
k given by Lemma ���� If kCkk � �
k
 we have from �k 	 	
 ���	�

���
	�
 and Lemma ���
 that

pred�sk! �k� 	 ��



�minf���� 	g
��

Hence pred�sk! �k� 	 ��
 for all k
 where the positive constant ��
 does not depend on k� From
this and ���	�� we establish				ared�sk! �k�� pred�sk! �k�

pred�sk! �k�

				 � ���

��


�
kskk� � ��

�
kskk� � kCkk kskk�

��
� ���


�
k �

where �� is the upper bound on �k guaranteed by Lemma ���� From the rules that update 
k in
Step 
�� of Algorithms ��	 this inequality tells us that an acceptable step always is found after a
�nite number of unsuccessful iterations� Using this fact
 we can ignore the rejected steps and work
only with successful iterates� So
 without loss of generality
 we have

Lk � Lk�� � ared�sk! �k� 	 ��pred�sk! �k� 	 ����
�

Now
 if we let k go to in�nity
 this contradicts the boundedness of fLkg guaranteed by Lemma ����
Hence the supposition ����� is false
 and we must have that

lim inf
k

�
k �Dk�gkk� kCkk

�
� �������

Let fkjg be a subsequence with limj �k �Dkj �gkjk � kCkjk� � �� Together with ����� and the

boundedness of fHkg this implies limj

�
k �DkjW

T
kj
rfkjk�kCkjk

�
� �� To establish �����
 it remains

to show that �Dkj 
 which is the scaling matrix de�ned with the reduced gradientW
T
kj
�Hkjs

n
kj
�rfkj �


can be replaced by Dkj � This can be shown by standard arguments� Let i � f	� � � � � n �mg be

D 
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arbitrary� Assume there exists �� � � and a subsequence of fkjg
 for simplicity again denoted by
fkjg
 such that

j�� �Dkj �Dkj�W
T
kj
rfkj �ij � ��������

If �WT
kj
rfkj �i � �
 then the boundedness of �Dkj andDkj yields a contradiction to ������ Thus
 there

must exist �� � � and a subsequence of fkjg
 again denoted by fkjg
 such that j�WT
kj
rfkj �ij � ���

Since limj Hkjs
n
kj
� �
 the de�nitions of �D and D imply that j� �Dkj �Dkj�ij � �
 which again leads

to a contradiction of ������ Consequently
 the previous assumption can not be satis�ed and ����� is
proven�

Using the continuity of C�x�
D�x�W �x�Trf�x�
 and Theorem ��	
 we can deduce the following
result�

Corollary ���� Let the conditions of Theorem ��� be valid� If fxkg is a bounded sequence�
then fxkg has a limit point satisfying the �rst�order KKT conditions�


� Global convergence to a second�order KKT point� In this section we establish global
convergence to a point that satis�es the second�order necessary KKT conditions�

Theorem 
��� Under Conditions C���C��� the sequences of iterates generated by the trust�
region interior�point SQP Algorithms 
�� satisfy

lim inf
k

�
k �Dk�gkk� kCkk� ��k�k

�
� �����	�

where �k is the Lagrange multiplier corresponding to the trust�region constraint� see 

��
�� 

�����
and �k is the damping parameter de�ned in 

�����

Proof� The proof is again by contradiction� Suppose that for all k


k �Dk�gkk� kCkk� ��k�k �
�

�
�tol����
�

�i� Suppose that kCkk � ��
k 
 where

�� � min

�
��

���tol

�����	 � ���

�
�����

and � satis�es ���
�� From the �rst bound on � in ���
� we get

k �Dk�gkk� ��k�k �
�

�
�tol�

Thus
 either k �Dk�gkk � �
��tol or �

�
k�k �

�
��tol� In the �rst case we proceed exactly as in Lemmas ��



��� and obtain

pred�sk! �� 	 ��



k �Dk�gkkmin

n
��k �Dk�gkk� ��
k

o
� �

�
kCkk� � kJksk � Ckk�

�
�����

	 ���


max


�k
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�

for every � � �� If ��k�k �
�
��tol then from �����
 ���	
�
 ���	��
 ksnkk � 
k
 and the second bound

on �� given in �����
 we can write

pred�sk! �� � qk�s
n
k�� qk�s

n
k �Wk�sk�u� � qk���� qk�s

n
k ��"�Tk �Jksk � Ck�

��
�
kCkk� � kJksk � Ckk�

�
	 	



���

�
k�k


�
k �

�
	

�
���tol
k � ���kCkk�	 � ���

�

k � �

�
kCkk� � kJksk � Ckk�

�
	 	



���

�
k�k


�
k � �

�
kCkk� � kJksk � Ckk�

�
�����

	 ���tol

�

�k

for every � � �� From the two bounds �����
 �����
 we conclude that if kCkk � ��
k then the
penalty parameter does not increase� See Step 
�� of Algorithms ��	� Moreover
 these two bounds
on pred�sk! �k� show the existence of a positive constant ��� independent of k such that

pred�sk! �k� 	 ���

�
k ������

provided kCkk � ��
k�
�ii� Now we prove that f�kg is bounded� If �k is increased at iteration k
 then it is updated

according to the rule

�k � 


�
qk�sk�� qk��� � "�

T
k �Jksk � Ck�

kCkk� � kJksk � Ckk�
�
� ���

We can write

�k
�

�
kCkk� � kJksk � Ckk�

�
� qk�sk�� qk�s

n
k�

�
�
qk���� qk�s

n
k �
�
� "�Tk �Jksk � Ck�

� ��
�

�
kCkk� � kJksk � Ckk�

�
�

By applying ���	� to the left hand side and �����
 ���	
�
 ���	��
 and ksnkk � 
k to the right hand
side
 we obtain

�k



��kCkkminf��kCkk� 
kg � ����	 � ���
kkCkk� ��




�
�
�JTk Ck�

Tsk � kJkskk�
�

� �����	 � ��� � �������
kkCkk������

If �k is increased at iteration k
 then
 because of part �i�
 kCkk � ��
k� Now we use this fact to
establish that �

��



minf����� 	g

�
�k � ����	 � ��� � �������

This proves that f�kg and fLkg are bounded sequences�
�iii� The next step is to prove that 
k is bounded away from zero�
If sk�� was an acceptable step
 then 
k 	 
min
 see Step 
�� in Algorithms ��	�
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If sk�� was a rejected
 then 
k 	 �
ksk��k
 see ������ We consider two cases� In both cases we
will use the fact that

	� �� �
				ared�sk��! �k���pred�sk��! �k���

� 	
				 �

In the �rst case we will assume that kCk��k � ��
k��� From ����� we have pred�sk��! �k��� 	
���


�
k��� Thus we can use ksk��k � ��
k��
 see �����
 and ���
�� with k replaced by k� 	 to obtain

				ared�sk��! �k���pred�sk��! �k���
� 	

				 � �����

�
���


�
k�� � ���

�
�k��

�
���


�
k��

ksk��k�

This gives 
k 	 �
ksk��k 	 
����
��
��

�����
����

�
��
� ����

The other case is kCk��k � ��
k��� In this case we get from ���	� and ���
	� with k replaced
by k � 	 that

pred�sk��! �k��� 	 �k��

� ��kCk��kminf��kCk��k� 
k��g

	 �k�����
k��kCk��k

	 �k���
����


�
k���

where ��� �

�
� minf����� 	g� Again we use �k�� 	 	 and ���
�� with k replaced by k� 	
 this time

with the last two lower bounds on pred�sk��! �k���
 and we write				ared�sk��! �k���pred�sk��! �k���
� 	

				 � ����k��ksk��k�
jpred�sk��! �k���j �

����k��kCk��k ksk��k�
jpred�sk��! �k���j

�
�
����k���

�
�


�
k��

�k�������

�
k��

�
����k����
k��kCk��k
�k�����
k��kCk��k

�
ksk��k�

Hence 
k 	 �
ksk��k 	 
����
���
�
��


���

�
�
���
��

� ��	�

Combining the two cases yields


k 	 
� � minf
min� ���� ��	g

for all k�
�iv� The rest of the proof consists of proving that an acceptable trial step is always found after

a �nite number of iterations and then from this concluding that the supposition ���
� is false� The
proof of these facts is exactly the proof of Theorem ��	 where � is now �� and ���
� is replaced by
���


�
��
The following result �nally establishes global convergence to a point satisfying the second�order

necessary KKT conditions� The proof uses ideas applied in �	�
 Lem� ����� However
 we show that
convergence to a limit point satis�es the second�order necessary conditions even in the degenerate
case�

Theorem 
��� Let fxkg be a bounded sequence of iterates generated by the trust�region
interior�point SQP Algorithms 
�� under Conditions C���C��� Then fxkg has a limit point x�
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satisfying the �rst�order KKT conditions� Furthermore� x� satis�es the second�order necessary
KKT conditions�

Proof� Consider the subsequence of fxkg for which the limit in ���	� is zero� Since this subse�
quence is bounded we can use the same arguments as in the proof of Theorem ��	 to show that it
has a convergent subsequence indexed by fkjg such that

lim
j

�
k �Dkj �gkjk� kCkjk

�
� lim

j

�
kDkjW

T
kj
rfkjk� kCkjk

�
� �������

Moreover


lim
j
��kj�kj � �������

where �kj is given by ���	��� Let x� denote the limit of fxkjg� It follows from ����� and the

continuity of C�x� and D�x�W �x�Trf�x� that x� satis�es the �rst�order KKT conditions�
Next
 we will prove that limj �kj � �� First we consider the decoupled approach� De�ne the

vector valued function h as follows�

h�x�i �

��� 	 if
�
W �x�Trf�x�

�
i
� � and

�
D�x�ii

�
� ���

W �x�Trf�x�
�
i
otherwise�

for all i � 	� � � � � n �m� The function h is used to identify the active indices� By de�nition of h
and since x� satis�es the �rst�order KKT conditions
 the implications

D�x��ii � � �
 h�x��i 
� �� i � 	� � � � � n�m���	��

are valid� �If x� is nondegenerate then h�x�� � W �x��Trf�x���� Moreover

lim
x�x�

D�x�h�x� � �����		�

Since limj xkj � x�
 ���	�� implies the existence of �	 � ��� 	� such that

min
n
�ukj �i � ai� bi � �ukj �i

o
�
			�hkj�

i

			 � 
�	� i � 	� � � � � n�m���	
�

for large enough j
 and


�	 � minfbi � ai� i � 	� � � � � n�mg�
Without loss of generality
 we will only consider the cases where �kj � �kj � 	� In the following

the index i will be the index de�ning �kj in ���	��� �The index i is really ij but we drop the j from
ij to alleviate the notation�� We also assume that j is large enough such that			� �D�

kj
hkj

�
i

			 � ��	����	��

cf� ���		��
Multiplying both sides of ���	�� by �D�

kj
gives�

Ekj � �kjIn�m

�
odkj �

�D�
kj

�
��gkj �WT

kj
HkjWkjo

d
kj

�
�
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which in turn implies

�kj j�odkj�ij � � �D�
kj
�ii
			���gkj �WT

kj
HkjWkjo

d
kj

�
i

			 ����	��

Also
 Assumption A�� implies kodkjk � ��
kj � ��
max� From this
 �����
 and Assumptions A���A��

we can write

	

�odkj�i
	 �kj

���� �Dkj�
�
ii

���	��

for some ��� independent of k� Now we distinguish between two cases�

In the �rst case we consider
			�hkj�

i

			 � �	 and appeal to ���	
� to get minf�ukj�i � ai� bi �
�ukj�ig � �	� Thus from ���	�� and the de�nition ���	�� of �kj we obtain

�kj 	
�kj�kj �	

���� �Dkj�
�
ii

����	��

Now we analyze the case
			�hkj�

i

			 � �	� Two possibilities can occur�

�i� The �rst possibility is that the value of the numerator de�ning �kj is equal to �
�Dkj�

�
ii� In

this situation ���	�� immediately implies

�kj 	
�kj�kj
���

����	��

�ii� The other possibility is that the value of the numerator de�ning �kj is not equal to �
�Dkj�

�
ii�

In this case we have from ���	�� that � �Dkj �
�
ii � �	 and since bi � ai � 
�	
 the numerator in the

de�nition ���	�� of �kj is bigger than �	� Thus

�kj 	
�kj�kj �	

���� �Dkj�
�
ii

����	��

Using �����
 ���	��
 ���	��
 ���	��
 �kj 	 �
 and the boundedness of �Dkj this proves that

lim
j
�kj � ��

By ���	�� we know that

�DkjW
T
kj
HkjWkj

�Dkj � Ekj � �kjIn�m

is positive semi�de�nite� Hence condition �����
 the continuity of W �x�Tr�
xx��x� ��W �x�
 the lim�

its limj kWT
kj
Hkjs

n
kj
k � � and limj �kj � � imply that the limit of the principal submatrix of

WT
kj
HkjWkj corresponding to indices l such that al � �u��l � bl is positive semi�de�nite� Hence


the second�order necessary KKT conditions are satis�ed at x�� This completes the proof for the
decoupled approach�

The proof for the coupled trust�region approach di�ers only from the proof for the decoupled
approach in the use of equations ���
�� and ���
	� and in the use of kWkjo

c
kj
k � �	 � ���
max to

bound the right hand side of inequality ���	���
Remark 
��� The global convergence results of Sections � and � hold true if the quadratic

 k�su� is rede�ned as  k�su� � qk�snk �Wksu� �see ����� and ������ without the Newton augmenta�

tion term �
�s

T
u

�
Ek
�D��
k

�
su� They are valid also if the matrices Dk and �Dk are rede�ned respectively

as Dp
k and

�Dp
k with p 	 	�
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�� Local rate of convergence� We will now analyze the local behavior of Algorithms ��	
under Conditions C�	
 C��
 and C��� We start by looking at the behavior of the trust radius close to
a nondegenerate point that satis�es the second�order su�cient KKT conditions� For this purpose
we require the following lemma�

Lemma ���� Under Condition C�� the quasi�normal component satis�es

ksnkk � ���kskk����	�

where ��� is positive and independent of the iteration counter k�
Proof� From sk � snk �Wk�sk�u
 we obtain

ksnkk � kskk� kWkk k�sk�uk�
But since kskk� � k�sk�yk� � k�sk�uk�
 we use Assumption A�� to obtain

ksnkk � �	 � ��� kskk �
and ���	� holds with ��� � 	� ���

Theorem ���� Let fxkg be a sequence of iterates generated by the trust�region interior�point
SQP Algorithms 
�� under Conditions C�� and C��� If xk converges to a nondegenerate point x�
satisfying the second�order su�cient KKT conditions� then 
k is uniformly bounded away from zero
and eventually all the iterations will be successful�

Proof� It follows from limk��� xk � x� and C�x�� � � that limk��� kCkk � �� This
fact
 condition �����
 and Assumptions A���A��
 together imply limk��� kWT

k Hks
n
kk � �� Since

xk converges to a nondegenerate point that satis�es the second�order su�cient KKT conditions and
limk��� kWT

k Hks
n
kk � �
 there exists a �� � � such that the smallest eigenvalue of �DkW

T
k HkWk

�Dk�
Ek is greater than �� for k su�ciently large�

First we will proof that f�kg is a bounded sequence� Since  k���� k��sk�u� 	 �
 we obtain
�
��
�D��
k �sk�u�

T
�
�DkW

T
k HkWk

�Dk � Ek

�
� �D��

k �sk�u� � �� �D��
k �sk�u�

T � �Dk�gk�

� k �D��
k �sk�uk k �Dk�gkk�

which
 by using the upper bounds on Wk and �Dk given by Assumptions A�� and A��
 implies

kstkk � kWk�sk�uk � 
����
��

k �Dk�gkk����
�

Using ����� and ���
�
 we �nd that

qk�s
n
k �� qk�s

n
k �Wk�sk�u� 	 ��k �Dk�gkkminf��k �Dk�gkk� ��
kg

	 ���kstkk��
�����

where ��� �

���
�����

minf 
���
�����

� 
	
����

� 
	
����

g accounts for the decoupled and coupled cases�
Next
 we prove that if kCkk � ���kskk
 where ��� will be de�ned later
 then the penalty param�

eter does not need to be increased� From ����� and kCkk � ���kskk
 we get

kskk� �
�
ksnkk� kstkk

�� � 
ksnkk� � 
kstkk�

� 
������kCkk kskk� 
kstkk��
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This estimate
 �����
 ���	��
 �����
 and kCkk � ���kskk yield
pred�sk! �� � qk�s

n
k �� qk�s

n
k �Wk�sk�u� � qk���� qk�s

n
k��"�Tk �Jksk � Ck�

� �
�
kCkk� � kJksk � Ckk�

�
	 	

�
���kskk� �

�
	

�
���kskk � ���������� � �����

���� � 	��kCkk
�
kskk�����

� �
�
kCkk� � kJksk � Ckk�

�
�

for every � � �� If kCkk � ���kskk
 where ��� satis�es

������ �
�� �

�
������� � ������

�
������ � ��� ������

then we set � � �k�� in ����� and deduce that the penalty parameter does not need to be increased�
See Step 
�� of Algorithms ��	� Hence if �k is increased then the inequality kCkk � ���kskk must
hold
 and we can proceed as in Theorem ��	
 equation �����
 and write

�k



��kCkkmin

�
��kCkk� 	

��
kskk

�
� �������� � 	� � �����kskk kCkk�

�here we used inequality ���	�� which in turn implies�
��



min

�
���

���
	

��

��
�k � ������� � 	� � �����

This gives the uniform boundedness of the penalty parameter�

�k � ��

for all k�
Given the boundedness of f�kg we can complete the proof of the theorem� If kCkk � ���kskk


where ��� satis�es �����
 then from ���	� and ���
	� we �nd that

pred�sk! �k� 	 �k
��



kCkkminf��kCkk� 
kg 	 �k���kskk�������

where ��� �

��

��

� minf������ �

�
g� In this case it follows from ���
�� and ����� that				ared�sk! �k�pred�sk! �k�

� 	
				 � ���

���
�kskk� kCkk� ������

Now
 suppose that kCkk � ���kskk� From ����� with � � �k we obtain pred�sk! �k� 	 
��
� kskk��

Now we use ���
�� and �k � ��
 to get				ared�sk! �k�pred�sk! �k�
� 	

				 � ������
���

�kskk� kCkk� ������

Finally from �����
 �����
 limk��� xk � x�
 and limk��� kCkk � �
 we get

lim
k���

ared�sk! �k�

pred�sk! �k�
� 	�
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which by the rules for updating the trust radius given in Step 
�� of Algorithms ��	
 shows that 
k
is uniformly bounded away from zero�

We use the following straightforward globalization of the quasi�normal component snk of the
Newton step given in ���
��� The new quasi�normal component is given by�

snk �

�
��kCy�xk�

��Ck

�

�
������

where

�k �

��� 	 if kCy�xk�
��Ckk � 
k�

�k
kCy�xk���Ckk

otherwise�
���	��

Before we state the q�quadratic rate of convergence we prove the following important result�
Lemma ���� The quasi�normal component 
���� satis�es conditions 

���� 

�	�� and 

�
� for

some positive ��� ��� and �� independent of k�

Proof� It is obvious that ���	� holds� Condition ����� is a direct consequence of the condition
������ In fact
 using kCy�xk��s

n
k�y � Ckk � kCkk and the boundedness of fCy�xk�

��g we �nd that

ksnkk � ksnk � Cy�xk�
��Ck � Cy�xk�

��Ckk
� kCy�xk�

��k
�
kCy�xk��s

n
k�y � Ckk� kCkk

�
� 
�� kCkk �

���		�

So
 let us prove ������ A simple manipulation shows that

kCkk� � kCy�xk��s
n
k�y � Ckk� � kCkk� � k � �kCy�xk�Cy�xk�

��Ck � Ckk�

� kCkk� �
�
�	� �k�kCkk

��
� �k�
� �k�kCkk� 	 �k kCkk��

We need to consider two cases� If �k � 	
 then

kCkk� � kCy�xk��s
n
k �y � Ckk� 	 kCkkminfkCkk� 
kg�

Otherwise
 �k �
�k

kCy�xk���Ckk
� In this case we get

kCkk� � kCy�xk��s
n
k�y � Ckk� 	 	

��
kCkk 
k 	 	

��
kCkkminfkCkk� 
kg�

Thus the result holds with �� � minf	� �
��
g and �� � 	�

Corollary ���� Let fxkg be a sequence of iterates generated by the trust�region interior�point
SQP Algorithms 
�� under Conditions C��� C��� and C�	� If xk converges to a nondegenerate point
x� satisfying the second�order su�cient KKT conditions� then xk converges q�quadratically�

Proof� We start by showing that j�Nk � 	j is O �kxk � x�k�
 where �Nk is given by ���
��� Since

limk��� kWT
k Hks

n
kk � �
 we have that

				�Nk	k � 	
				 is O�k�sNk �uk� �see �	

 Eq� ����� and Lem� 	
���

D 

D 
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Also since by Condition C�� j�k � 	j is O

�� �Dk�gk

���
 and �Dk�gk is O
�
k�sNk �uk

�
�see ���
���
 we can

see that j�k � 	j is also O
�
k�sNk �uk

�
� Furthermore


j�Nk � 	j � �k

					�Nk�k � 	
					� j�k � 	j �

Hence j�Nk � 	j is O
�
k�sNk �uk

�
� But �sNk �u is O �kxk � snk � x�k� and snk is O �kxk � x�k� and this

shows that j�Nk � 	j is O �kxk � x�k��
We need to prove that Condition C�� does not con�ict with Condition C�	 so that Theorem ��	

can be applied� In other words
 we need to show that the decrease conditions given in Condition
C�	 hold for the Newton damped step ���
�� whenever it is taken� In Lemma ��
 we showed that
the quasi�normal component snk given in ����� satis�es ���	�
 �����
 and ������ From Condition C��

snk given by ���
�� is used when it coincides with the s

n
k given by ������ Thus s

n
k given by ���
��

satis�es also ���	�
 �����
 and ������ It remains to prove that �Nk �s
N
k �u satis�es the Cauchy decrease

condition ���	�� ����	�� for the coupled approach�� This is indeed the case since

 k���� k��
N
k �s

N
k �u� 	 ��Nk �gTk �sNk �u �

	



��Nk �

���sNk �u�
T
�
WT

k HkWk � Ek
�D��
k

�
��sNk �u�

	 �Nk

�
��gTk �sNk �u �

	



��sNk �u�

T
�
WT

k HkWk �Ek
�D��
k

�
��sNk �u�

�
	 �Nk

�
 k���� k�c

d
k�
�
�

and j�Nk � 	j is O �kxk � x�k��
Now we need to show that eventually sk is given by ���
��� Since fxkg converges to a nonde�

generate point satisfying the second�order su�cient KKT conditions
 �sNk �u exists for k su�ciently
large� Furthermore �snk�y � �Cy�xk�

��Ck for k large enough because limk��� kCy�xk�
��Ckk � �


and from Theorem ��	
 
k is eventually bounded away from zero� Using a similar argument we see
that �Nk �s

N
k �u is inside the trust region ���	�� for the decoupled approach or ���	
� for the coupled

approach� So
 from Condition C�� we conclude that there exists a positive integer �k such that sk
is given by ���
�� for k 	 �k�

Using the fact that �sNk �u is O �kxk � x�k�
 we conclude that �Nk �s
N
k �u � �sNk �u is

O �kxk � x�k��� Thus

sk � sNk �

�
snk � Cy�xk�

��Cu�xk��
N
k �s

N
k �u

�Nk �s
N
k �u

�
�
�

snk � Cy�xk�
��Cu�xk��s

N
k �u

�sNk �u

�

is O �kxk � x�k��� This completes the proof since sNk can be seen as a Newton step on a given
vector function of the type ������ This function vanishes at x� and is continuously di�erentiable
with Lipschitz continuous derivatives and a nonsingular Jacobian matrix in an open neighborhood
of x�� See the discussion at the end of Section �� Thus the q�quadratic rate of convergence follows
from �	���Thm� ��
�	� and from the fact that sk � sNk is O �kxk � x�k���

��� Trial steps and multiplier estimates� When we described the trust�region interior�
point SQP algorithms
 we deferred the practical computation of the quasi�normal and tangential
components and of the multiplier estimates� In the following sections we address these issues�

D 
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����� Computation of the quasi�normal component� The quasi�normal component snk
is an approximate solution of the trust�region subproblem

minimize
	



kCy�xk��s

n�y � Ckk��	��	�

subject to k�sn�yk � 
k�

and it is required for global convergence to a point that satis�es the necessary KKT conditions
to satisfy conditions ���	�
 �����
 and ������ As we saw in equation ���		� of the proof of Lemma
��

 property ����� is a consequence of ������ Whether Property ����� holds depends on the way
in which the quasi�normal component is computed� We will show below that ����� is satis�ed for
many reasonable ways to compute snk �

There are various ways to compute the quasi�normal component snk for large scale problems�
For example
 one can use the conjugate�gradient method as suggested in ��	� and ����
 or one can
use the Lanczos bidiagonalization as described in �
��� Both methods compute an approximate
minimizer to the least squares functional in �	��	� from a subspace which contains its negative
gradient �Cy�xk�

TCk� Thus
 the components s
n
k generated by these methods satisfy jjsnk jj � 
k and

	



kCy�xk��s

n
k�y � Ckk� � min

�
	



kCy�xk�s� Ckk� � s � spanf�Cy�xk�

TCkg � ksk � 
k

�
�

We can appeal to a classical result due to Powell
 see ��

 Thm� ��
 ���
 Lem� ����
 to show that

kCkk� � kCy�xk��s
n
k �y � Ckk� 	 	



kCy�xk�

TCkkmin



kCy�xk�TCkk
kCy�xk�TCy�xk�k � 
k

�
�

Now one can use the fact that fCy�xk�g and fCy�xk�
�T g are bounded and write

kCkk� � kCy�xk��s
n
k �y � Ckk� 	 ��kCkkminf��kCkk� 
kg�

where �� and �� are positive and do not depend on k�
An alternative to the previous procedures is to compute the solution of Cy�xk�s � �C�xk� and

to scale this solution back into the trust region �see ������� In Lemma ��

 we proved that �����
satis�es conditions ���	�
 �����
 and ������

����� Computation of the tangential component� In this section we show how to de�
rive conjugate�gradient algorithms to compute �sk�u� Other practical algorithms to compute trial
steps for box�constrained minimization trust�region subproblems are introduced in ��� using three
dimensional subspace approximations and conjugate gradients�

Let us consider �rst the decoupled trust�region approach given in Section ��
�	� If we ignore
the bound constraints for the moment
 we can apply the conjugate�gradient algorithm proposed
by Steihaug ��	� and Toint ���� to solve the problem

minimize  k�su�

subject to k �D��
k suk � 
k�

However we also need to incorporate the constraints

�k�a� uk� � su � �k�b� uk��

This leads to the following algorithm�

Algorithm ���� �Computation of sk � snk �Wk�sk�u �Decoupled Approach		�
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	 Set s	u � �
 r	 � ��gk � �WT
k rqk�snk�
 q	 � �D�

kr	
 d	 � q	
 and � � ��

 For i � �� 	� 
� � � � do


�	 Compute �i �
rT
i
qi

dTi �W
T
k
HkWk�Ek

�D��

k
�di
�


�
 Compute
�i � maxf� � � � k �D��

k �s
i
u � �di�k � 
k �

�k�a� uk� � siu � �di � �k�b� uk�g�

�� If �i � �
 or if �i � �i
 then set �sk�u � siu � �idi
 where �i is given as in 
�
 and go to

�! otherwise set si��u � siu � �idi�

�� Update the residuals� ri�� � ri � �i�W

T
k HkWk � Ek

�D��
k �di and qi�� �

�D�
kri���


�� Check truncation criteria� if

r
rTi
�qi
�

rT
�
q�

� �
 set �sk�u � si��u and go to ��


�� Compute �i �
rT
i
�

qi
�

rTi qi
and set di�� � qi�� � �idi�

� Compute sk � snk �Wk�sk�u and stop�

Step 
 iterates entirely in the vector space of the u variables� After the u component of the step
sk has been computed
 Step � �nds its y component� The decoupled approach allows an e�cient
use of an approximation bHk to the reduced Hessian WT

k r�
xx�kWk� In this case
 only two linear

systems are required
 one with Cy�xk�
T in Step 	 to compute �gk and the other with Cy�xk� in Step

� to compute Wk�sk�u� If the Hessian r�
xx�k is being approximated
 then the total number of linear

systems is 
I�k� � 

 where I�k� is the number of conjugate�gradient iterations�
One can transform this algorithm to work in the whole space rather then in the reduced space by

considering the coupled trust�region approach given in Section ��
�
� This alternative is presented
below�

Algorithm ���� �Computation of sk � snk �Wk�sk�u �Coupled Approach		�
	 Set s	 � �
 r	 � ��gk � �WT

k rqk�snk�
 q	 � �D�
kr	
 d	 � Wkq	
 and � � ��


 For i � �� 	� 
� � � � do


�	 Compute �i �
rT
i
qi

dTi Hkdi��di�TuEk
�D��

k
�di�u

�


�
 Compute

�i � maxf� � � �

�����
�
�Cy�xk���Cu�xk���di�u

�D��
k ��di�u

������ � 
k �

�k�a� uk� � siu � ��di�u � �k�b� uk�g�

�� If �i � �
 or if �i � �i
 then stk � si � �idi
 where �i is given as in 
�
 and go to �!

otherwise set si�� � si � �idi�


�� Update the residuals� ri�� � ri � �i

�
WT

k Hkdi � Ek
�D��
k �di�u

�
and qi�� � �D�

kri���


�� Check truncation criteria� if

r
rT
i
�

qi
�

rT
�
q�

� �
 set stk � si�� and go to ��


�� Compute �i �
rTi
�qi
�

rT
i
qi

and set di�� � Wk�qi�� � �idi��

� Compute sk � snk � stk and stop�

Note that in Step 
 both the y and the u components of the tangential component are being
computed� The coupled approach is suitable particularly when an approximation Hk to the full
Hessian r�

xx�k is used� The coupled approach can be used also with an approximation
bHk to

the reduced Hessian WT
k r�

xx�kWk � In this case
 we consider Hk that is given by ���
�� and use
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the equalities ���
�� to compute the terms involving Hk in Algorithm 	��
� If the Hessian r�
xx�k

is approximated
 the total number of linear systems is 
I�k� � 

 where I�k� is the number of
conjugate�gradient iterations� If the reduced Hessian WT

k r�
xx�kWk is approximated
 this number

is I�k� � 
�
Two �nal important remarks are in order�
Remark ����� If WT

k Wk was included as a preconditioner in Algorithm 	��

 then the
conjugate�gradient iterates would monotonically increase in the norm kWk � k� Dropping this pre�
conditioner means that the conjugate�gradient iterates do not necessarily increase in this norm �see
��	��� As a result
 if the quasi�Newton step is inside the trust region
 Algorithm 	��
 can terminate
prematurely by stopping at the boundary of the trust region�

Remark ����� Since the conjugate�gradient Algorithms 	��	
 	��
 start by minimizing the
quadratic function  k�su� along the direction � �D�

k�gk
 it is quite clear that they produce reduced

tangential components �sk�u that satisfy ���	�� and ���	��
 respectively
 with 
d� � 
c� � 	�

����� Multiplier estimates� A convenient estimate for the Lagrange multipliers is the ad�
joint update

�k � �Cy�xk�
�Tryfk��	��
�

which we use after each successful step� However we also consider the following update�

�k�� � �Cy�xk�
�Tryqk�s

n
k� � �Cy�xk�

�T 
�Hks
n
k �y �ryfk

�
��	����

Here the use of �	���� instead of

�k�� � �Cy�xk � sk�
�Tryf�xk � sk���	����

might be justi�ed since we obtain �	���� without any further cost from the �rst iteration of any of
the conjugate�gradient algorithms described above� The updates �	��
�
 �	����
 and �	���� satisfy
the requirement given by A�� needed to prove global convergence to a �rst�order KKT point�

��� Numerical example� A typical application that has the structure described in this paper
is the control of a heating process� In this section we introduce a simpli�ed model for the heating
of a probe in a kiln discussed in ���� The temperature y�x� t� inside the probe is governed by a
nonlinear partial di�erential equation� The spatial domain is given by ��� 	�� The boundary x � 	
is the inside of the probe and x � � is the boundary of the probe�

The goal is to control the heating process in such a way that the temperature inside the probe
follows a certain desired temperature pro�le yd�t�� The control u�t� acts on the boundary x � ��
The problem can be formulated as follows�

minimize
	




Z T

	
��y�	� t�� yd�t��

� � �u��t��dt�		�	�

subject to

��y�x� t���y
�t
�x� t�� 	x���y�x� t��	xy�x� t�� � q�x� t�� �x� t� � ��� 	�� ��� T ��

��y��� t��	xy��� t� � g�y��� t�� u�t��� t � ��� T ��
��y�	� t��	xy�	� t� � �� t � ��� T ��

y�x� �� � y	�x�� x � ��� 	��
ulow � u � uupp�
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where y � L���� T !H���� 	��
 and u � L���� T �� The functions � � IR � IR and � � IR � IR
denote the speci�c heat capacity and the heat conduction
 respectively
 y	 is the initial temperature
distribution
 q is the source term
 g is a given scalar
 and � is a regularization parameter� Here
ulow� uupp � L���� T � are given functions�

If the partial di�erential equation and the integral are discretized
 we obtain an optimization
problem of the form �	�	�� The discretization uses �nite elements and was introduced in ��� �see also
�
�� and ������ The spatial domain ��� 	� is divided into Nx subintervals of equidistant length
 and
the spatial discretization is done using piecewise linear �nite elements� The time discretization is
performed by partitioning the interval ��� T � into Nt equidistant subintervals� Then the backward
Euler method is used to approximate the state space in time
 and piecewise constant functions
are used to approximate the control space� This leads to a discretized problem with dimension
n � Nt�Nx � 	� � Nt and m � Nt�Nx � 	�� Under the assumptions on the coe�cient functions �
and � stated in ���
 ���� which guarantee the well�posedness of the in�nite dimensional problem

it is shown in ���� that the constraints C�y� u� of the discretized problem satisfy the assumptions
A�� and A�� provided the discretization parameters Nx and Nt are chosen appropriately� For more
details we refer to the comprehensive treatments in ��� and �����

The algorithms studied in this paper have been implemented in FORTRAN ��� The resulting
software package TRICE
 trust�region interior�point SQP algorithms for optimal control and en�
gineering design problems is available via the internet �	���

We use the formula ����� to compute the quasi�normal component
 and Algorithms 	��	 and
	��
 to calculate the tangential component� The numerical test computations were done on a Sun
Sparcstation 	� in double precision� These results demonstrate the e�ectiveness of the algorithms�

With this discretization scheme
 Cy�x� is a block bidiagonal matrix with tridiagonal blocks�
Hence linear systems with Cy�x� and Cy�x�

T can be solved e�ciently by block forward substitution
or block backward substitution
 respectively� In each substitution step
 only a small system with
tridiagonal system has to be solved� In the implementation we use the linpack subroutine dgtsl
to solve the tridiagonal systems� Notice that direct factorizations are only applied to the small
�Nx � 	� � �Nx � 	� tridiagonal subblocks of Cy�x�
 but not to the entire NtNx � �Nt�Nx � 	��
Jacobian matrix �Cy�x� Cu�x��� See also �����

As we pointed out in Section 	
 the inner products and norms used in the trust�region interior�
point SQP algorithms are not necessarily the Euclidean ones� In our implementation �	��
 we call
subroutines to calculate the inner products hy�� y�i and hu�� u�i with y�� y� � IRm and u�� u� �
IRn�m� The user may supply these subroutines to incorporate a speci�c scaling� If the inner
product hx�� x�i is required
 then it is calculated as hy�� y�i � hu�� u�i� In this example
 we used
discretizations of the L���� T � and L���� T !H���� 	�� norms for the control and the state spaces
respectively� This is important for the correct computation of the adjoint and the appropriate
scaling of the problem�

In our numerical example we use the functions

��y� � q� � q�y� y � IR� ��y� � r� � r�y� y � IR�
with parameters r� � q� � �
 r� � �	
 and q� � 	� The desired and initial temperatures
 and the
right hand side are given by

yd�t� � 
� e
t�

y	�x� � 
 � cos �x� and
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q�x� t� � ���q�� 
q�� � ���r� � 
r���e

t cos �x

�r���e�
t � �
r��� � �q��e
�
t cos� �x�

with � � �	� The �nal temperature is chosen to be T � ��� and the scalar g � 	 is used in the
boundary condition� The functions in this example are those used in ���
 Ex� ��	�� The size of the
problem tested is n � 

��
 m � 
	�� corresponding to the values Nt � 	��
 Nx � 
��

The scheme used to update the trust radius is the following fairly standard one�
� If ratio�sk! �k� � 	���
 reject sk and set 
k�� � ��� norm�sk�!
� If 	��� � ratio�sk ! �k� � ��	
 reject sk and set 
k�� � ��� norm�sk�!
� If ��	 � ratio�sk! �k� � ����
 accept sk and set 
k�� � 
k!
� If ratio�sk! �k� 	 ����
 accept sk and set 
k�� � min

�


k� 	�

�	
�
!

where ratio�sk! �k� �
ared�sk
�k�
pred�sk
�k�




norm�sk� � max
n
ksnkk� k �D��

k �sk�uk
o

in the decoupled approach
 and

norm�sk� � max



ksnkk�

�����
�
�Cy�xk�

��Cu�xk��sk�u
�D��
k �sk�u

������
�

in the coupled approach� The algorithms are stopped if the trust radius gets below 	����
We have used �k � � � ������� for all k! 
	 � 	 as initial trust radius! ��� � 	 and �� � 	�

��

in the penalty scheme� The tolerance used in the conjugate�gradient iteration was � � 	���� The
upper and lower bounds were bi � 	���
 ai � �	���
 i � 	� � � � � n �m� The starting vector was
x	 � ��

For both the decoupled and the coupled approaches
 we did tests using approximations to
reduced and to full Hessians� We approximate these matrices with the limited memory BFGS
representations given in �	�� with a memory size of � pairs of vectors� For the reduced Hessian we
use a null�space secant update �see ����
 ������ The initial approximation chosen was �In�m for the
reduced Hessian and �In for the full Hessian
 where � is the user speci�ed regularization parameter
in the objective function �		�	��

In our implementation we use the following form of the diagonal matrix �Dk

�
�Dk

�
ii
�

�����
minf	� �b� uk�ig if ��gk�i � ��

minf	� �uk � a�ig if ��gk�i 	 ��
�		�
�

for i � 	� � � � � n�m� This form of �Dk gives a better transition between the in�nite and �nite bound
and is less sensitive to the introduction of meaningless bounds� See also Remark ��	�

The algorithms were stopped when

kDkW
T
k rfkk� kCkk � 	����

The results are shown in Tables 		�	 and 		�
 corresponding to the values � � 	��� and
� � 	���
 respectively� There were no rejected steps� The di�erent alternatives tested performed
quite similarly� The decoupled approach with reduced Hessian approximation seems to be the best
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Table ����

Numerical results for � � �����

Decoupled Coupled

Reduced bHk Full Hk Reduced bHk Full Hk

number of iterations k� 	� 
� 	� 	�

kCk�k ����
E � 		 �	���E� 	� ��	

E � 	
 �����E � 		
kDk�W

T
k�rfk�k �����E � �� �	���E� �� �����E � 	� �
��	E � ��

ksk���k �	
��E � �� �	��	E� �� �����E � �� �	���E � ��

k��� �	���E � �� �	���E� �� �	�		E � �� �
�
	E � ��

�k��� �	���E � �	 �	���E� �	 �	���E � �	 �	���E � �	

Table ����

Numerical results for � � �����

Decoupled Coupled

Reduced bHk Full Hk Reduced bHk Full Hk

number of iterations k� 	� 	� 	� 	�

kCk�k ��
��E � 		 �			�E� 	� �����E � 		 �	
��E � ��
kDk�W

T
k�rfk�k ��	�	E � �� �
���E� �� ��
�
E � �� �����E � ��

ksk���k �	�
�E � �� �	���E� �� �	���E � �� �����E � ��

k��� �����E � �� �
�
	E� �� �	�		E � �� ��
��E � ��

�k��� �	���E � �	 �	���E� �	 �	���E � �	 �	���E � �	
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Fig� ����� Dikin�Karmarkar a�ne scaling�

for this example� Note that in this case the computation of each trial step costs only three linear
system solvers with Cy�xk� and Cy�xk�

T 
 one to compute the quasi�normal component and two for
the computation of the tangential component�

We made an experiment to compare the use of the Coleman�Li a�ne scaling with the Dikin�
Karmarkar a�ne scaling� When applied to our class of problems
 the Coleman�Li a�ne scaling
is given by the matrices Dk and �Dk� A study of the Dikin�Karmarkar a�ne scaling for steepest
descent is given in ����� For our class of problems
 this scaling is given by�

Kk

�
ii
� minf	� �uk � a�i� �b� uk�ig� i � 	� � � � � n�m��		���

and has no dual information built in� We ran the trust�region interior�point SQP algorithm with
the decoupled and reduced Hessian approximation and �		�
� replaced by �		���� The algorithm
took only 		 iterations to reduce kKkW

T
k rfkk � kCkk to 	���� However
 as we can see from the

plots of the controls in Figures 		�	 and 		�

 the algorithm did not �nd the correct solution when
it used the Dikin�Karmarkar a�ne scaling �		���� Some of the variables are at the wrong bound
corresponding to negative multipliers�

��� Conclusions� In this paper we have introduced and analyzed some trust�region interior�
point SQP algorithms for an important class of nonlinear programming problems that appear in
many engineering applications� These algorithms use the structure of the problem
 and they com�
bine trust�region techniques for equality�constrained optimization with an a�ne scaling interior�
point approach for simple bounds� We have proved global and local convergence results for these
algorithms that includes as special cases both the results established for equality constraints �	��

�	�� and those for simple bounds �	���

We have implemented the trust�region interior�point SQP algorithms covering several trial step
computations and second�order approximations� In this paper we have reported numerical results
for the solution of a speci�c optimal control problem governed by a nonlinear heat equation� In �		�
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����
 ��	�
 these algorithms have been applied to other optimal control problems� The numerical
results have been quite satisfactory�

We are investigating extensions of these algorithms to handle bounds on the state variables
y� See ����� We also are developing an inexact analysis to deal with trial step computations that
allow for inexact linear system solvers and inexact directional derivatives ��	�� The formulation and
analysis of these methods in an in�nite dimensional framework is also part of our current studies�
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