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Abstract

A general scheme for trust-region methods on Riemannian manifolds
is proposed and analyzed. Among the various approaches available to
(approximately) solve the trust-region subproblems, particular attention
is paid to the truncated conjugate-gradient technique. The method is
illustrated on problems from numerical linear algebra.

Key words. Numerical optimization on manifolds, trust-region, trun-
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1 Introduction

Several problems related to numerical linear algebra can be expressed as op-
timizing a smooth function whose domain is a differentiable manifold. Ap-
plications appear in various areas, including computer vision [MKS01], ma-
chine learning [NA05], electronic structure computation [LE00], system bal-
ancing [HM94], model reduction [YL99], and robot manipulation [HHM02].

The simplest algorithms for solving optimization problems on manifolds
are arguably those based on the idea of steepest descent; see, e.g., [HM94,

∗This work was supported by the US National Science Foundation under Grants
ACI0324944 and CCR9912415, by the School of Computational Science of Florida State
University through a postdoctoral fellowship, and by Microsoft Research through a Re-
search Fellowship at Peterhouse, Cambridge. This research was initiated while the first
author was a Research Fellow with the Belgian National Fund for Scientific Research
(FNRS) at the University of Liège.
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Udr94] and references therein. These algorithms have good global conver-
gence properties but slow (linear) local convergence. Other methods achieve
superlinear convergence by using second-order information on the cost func-
tion. Among these methods, Newton’s method is conceptually the simplest.
The history of Newton’s method on manifolds can be traced back to Luen-
berger [Lue72], if not earlier. Gabay [Gab82] proposed a Newton method on
embedded submanifolds of R

n. Smith [Smi93, Smi94] and Udrişte [Udr94]
formulated and analyzed the method on general Riemannian manifolds.
Related work includes [Shu86, EAS98, OW00, Man02, MM02, ADM+02,
DPM03, HT04].

A plain Newton method, on general manifolds as well as in R
n, has

major drawbacks as a numerical optimization method. The computational
cost is often prohibitive, as a linear system has to be solved at each iteration.
Moreover, the method is locally attracted to any stationary point, be it a
local minimizer, local maxizer or saddle point. Finally, the method may
not even converge to stationary points, unless some strong conditions are
statisfied (such as convexity of the cost function).

In the case of cost functions on R
n, several techniques exist to im-

prove the convergence properties of Newton’s method. Most of these tech-
niques fall into two categories: line-search methods and trust-region meth-
ods; see [NW99]. The advantages of a trust-region method over the pure
Newton method are multiple. First, under mild conditions, trust-region
schemes are provably convergent to a set of stationary points of the cost
functions for all initial conditions. Moreover, the cost function is nonincreas-
ing at each iterate which favors convergence to a local minimizer. Finally,
the presence of a trust-region gives an additional guideline to stop the inner
iteration early, hence reducing the computational cost, while preserving the
fast local convergence of the exact scheme. Line-search techniques have been
considered on Riemannian manifolds by Udrişte [Udr94] and Yang [Yan05].

The main purpose of this paper is to provide a theoretical and algorith-
mic framework for trust-region methods on Riemannian manifolds, appli-
cable to multiple problems. The Riemannian trust-region (RTR) approach
we propose works along the following lines. First, much as in the work of
Shub [Shu86, ADM+02], a retraction R (Definition 2.1) is chosen on the
Riemannian manifold M that defines for any point x ∈ M a one-to-one
correspondence Rx between a neighborhood of x in M and a neighborhood
of 0x in the tangent space TxM (see Figure 1). Using this retraction, the
cost function f on M is lifted to a cost function f̂x = f ◦Rx on TxM . Since
TxM is an Euclidean space, it is possible to define a quadratic model of f̂x

and adapt classical methods in R
n to compute (in general, approximately) a
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minimizer of the model within a trust-region around 0x ∈ TxM . This mini-
mizer is then retracted back from TxM to M using the retraction Rx. This
point is a candidate for the new iterate, which will be accepted or rejected
depending on the quality of the agreement between the quadratic model and
the function f itself.

It is this “lift-solve-retract” procedure that distinguishes the proposed
RTR approach from the standard trust-region methods; the standard meth-
ods, since they live in R

n, only require the “solve” part. On a manifold,
lifting the cost function makes it possible to locally fall back to a friendly
Euclidean world (the tangent space TxM) where classical techniques can
be applied, and the retraction brings the result back to the manifold. A
difficulty, from an analysis perspective, is that the RTR method does not
deal with a unique cost function (as in the classical case), but rather with a
succession of different lifted cost functions f̂xk

, where xk is the kth iterate.
A main contribution of this paper is to show that, under reasonable condi-
tions, the nice properties of the standard trust-region schemes are preserved
in their Riemannian generalizations (see Section 4).

Notice that it is theoretically possible to choose once for all the retraction
as the Riemannian exponential mapping. This corresponds to a strategy
used by numerous Riemannian optimization methods when they compute
the exponential of a tangent update vector in order to obtain a new iterate
on the manifold; see [Smi94, Udr94, EAS98, Yan05]. However, as pointed
out by Manton [Man02, Section IX], the exponential may not be the most
appropriate or computationally efficient way of performing the update. Our
convergence analysis shows that the good properties of the algorithms hold
for all suitably defined retractions (Definition 2.1) and not only for the
exponential mapping.

The “lift-solve-retract” technique, as an aside, is not specific to trust-
region methods, and can be applied to generalize a wide variety of classical
optimization methods to manifolds. This approach, which finds its roots
in the work of Shub [Shu86], seems to have received little attention in the
literature until recently [ADM+02, ABG04a]. Note that coordinate-based
approaches follow a similar pattern; in practice, however, lifting to the tan-
gent space tends to lead to more streamlined and computationally efficient
algorithms (see discussion in Section 2.1).

There is clearly a link between techniques of optimization on manifolds
and standard constrained optimization approaches. Notice however that
there are manifolds that are not defined as constrained sets in R

n; an im-
portant example is the Grassmann manifold (see Section 5.3). (Clearly,
by Nash’s embedding theorem [Nas56], every Riemannian manifold can be
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smoothly isometrically embedded in a Euclidean space; but this is only an
existence theorem, and such an embedding may be elusive or computation-
ally intractable.) Also, there are constrained sets that do not admit a regular
manifold structure; a simple example is {x ∈ R

n : ‖x‖∞ = 1}. The applica-
tion areas thus overlap, but are not identical. On the problems that can be
tackled by both approaches, an interesting feature of manifold optimization
schemes is that they are feasible: each iterate belongs to the constrained
set. Feasibility is advantageous, or even essential, in several situations (see,
e.g., [LT01]). For example, the cost function is sometimes not defined out-
side the feasible set; or, the value of the cost function may have little if any
relevance outside the feasible set; moreover, if the algorithm runs out of time
or computing resources, it should be able to terminate and return a feasible
point.

We assume throughout that it is computationally impractical to deter-
mine whether the Hessian of the cost function is positive definite; trust-
region subproblems are thus solved using inner iterations, such as the trun-
cated conjugate-gradient method, that improve on the so-called Cauchy
point by only using the Hessian of the model through its application to
a vector. As a consequence, convergence of the trust-region algorithm to
stationary points that are not local minima (i.e., saddle points and local
maxima) cannot be ruled out. However, because trust-region methods are
descent methods (the value of the cost function never increases), the situa-
tion is fundamentally different from the pure Newton case: convergence to
saddle points and local minima of the cost function is numerically unstable
and is thus not expected to occur in practice; and indeed, convergence to
saddle points and local minima is only observed on very specifically crafted
numerical experiments.

The theory and algorithms can be adapted to exploit the properties of
specific manifolds and problems in several disciplines. Numerical linear al-
gebra considers several problems that can be analyzed and solved using this
approach. A particularly illustrative and computationally efficient applica-
tion is the computation of the rightmost or leftmost eigenvalue and associ-
ated eigenvector of a symmetric/positive-definite matrix pencil (A, B). In
this case, the manifold can be chosen as the projective space and a pos-
sible choice for the cost function is the Rayleigh quotient. The resulting
trust-region algorithm can be interpreted as an inexact Rayleigh quotient
iteration; we refer to [ABG06] for details.

This paper makes use of basic notions of Riemannian geometry and nu-
merical optimization; background can be found in [dC92] and [NW99]. The
general concept of trust-region methods on Riemannian manifolds is pre-

4



sented in Section 2. Methods for (approximately) solving the trust-region
subproblems are considered in Section 3. Convergence properties are in-
vestigated in Section 4. The theory is illustrated on practical examples in
Section 5. In particular, a block algorithm for the computation of extreme
eigenpairs, which evolves on the Grassmann manifold, is derived in detail in
Section 5.3. Conclusions are presented in Section 6.

A preliminary version of the results presented in this paper appeared in
the proceedings of the 16th MTNS conference [ABG04a].

2 The general algorithm

We follow the usual conventions of matrix computations and view R
n as

the set of column vectors with n real components. The basic trust-region
method in R

n for a cost function f consists of adding to the current iterate
x ∈ R

n the update vector η ∈ R
n solving the trust-region subproblem

min
η∈Rn

m(η) = f(x) + ∂f(x)η +
1

2
ηT ∂2f(x)η ‖η‖ ≤ ∆ (1)

where ∂f = (∂1f, . . . , ∂nf) is the differential of f , (∂2f)ij = ∂2
ijf is the

Hessian matrix—some convergence results allow for ∂2f(x) in (1) to be
replaced by any symmetric matrix, but we postpone this relaxation until
later in the development—and ∆ is the trust-region radius. The quality of
the model m is assessed by forming the quotient

ρ =
f(x) − f(x + η)

m(0) − m(η)
. (2)

Depending on the value of ρ, the new iterate will be accepted or discarded
and the trust-region radius ∆ will be updated. More details will be given
later in this paper; or see, e.g., [NW99, CGT00].

With a view towards extending the concept of trust-region subproblem
to manifolds, we first consider the case of an abstract Euclidean space, i.e.,
a vector space endowed with an inner product (that is, a symmetric, bilin-
ear, positive-definite form). This generalization to an Euclidean space E of
dimension d requires little effort since E may be identified with R

d once a
basis of E is chosen (we refer to [Boo75, Section I.2] for a discussion on the
distinction between R

n and abstract Euclidean spaces). Let g(·, ·) denote
the inner product on E. Given a function f : E → R and a current iterate
x ∈ E, one can choose a basis (ei)i=1,...,d of E (not necessarily orthonormal
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with respect to the inner product) and write a classical G-norm trust-region
subproblem (see, e.g., [GLRT99, Section 2])

min
η̄∈Rd

m(η̄) := f̄(x̄) + ∂f̄(x̄)η̄ +
1

2
η̄T ∂2f̄(x̄)η̄, η̄T Gη̄ ≤ ∆2

x (3)

where x =
∑

i x̄iei, η =
∑

i η̄iei, f̄(x̄) = f(
∑

i x̄iei) and Gij = g(ei, ej). It
can be shown that m(η) does not depend on the choice of basis (ei)i=1,...,d;
therefore (3) can be written as a coordinate-free expression

min
η∈E

m(η) = f(x) + Df(x)[η] +
1

2
D2f(x)[η, η]

= f(x) + g(grad f(x), η) +
1

2
g(Hessf [η], η) s.t. g(η, η) ≤ ∆2

x

(4)

for the trust-region subproblem in the Euclidean space E.
Now let M be a manifold of dimension d. Intuitively, this means that M

looks locally like R
d. Local correspondences between M and R

d are given by
coordinate charts φα : Ωα ⊂ M → R

n; see, e.g., [dC92] for details. How can
we define a trust-region method for a cost function f on M? Given a current
iterate x, it is tempting to choose a coordinate neighborhood Ωα containing
x, translate the problem to R

d through the chart φα, build a quadratic model
m, solve the trust-region problem in R

d and bring back the solution to M
through φ−1

α . The difficulty is that there are in general infinitely many α’s
such that x ∈ Ωα. Each choice will yield a different model function m ◦ φα

and a different trust region {y ∈ M : ‖φα(y)‖ ≤ ∆}, hence a different next
iterate x+. This kind of situation is pervasive in numerics on manifolds; it is
usually addressed, assuming that M is a Riemannian manifold, by working
in so-called normal coordinates.

In order to explain the concept of normal coordinates, we now present
a condensed overview of Riemannian geometric concepts; we refer to [dC92,
O’N83] for details. In what follows, M will be a (C∞) Riemannian mani-
fold, i.e., M is endowed with a correspondence, called a Riemannian metric,
which associates to each point x of M an inner product gx(·, ·) on the tangent
space TxM and which varies differentiably. The Riemannian metric induces
a norm ‖ξ‖ =

√

gx(ξ, ξ) on the tangent spaces TxM . Also associated with a
Riemannian manifold are the notions of Levi-Civita (or Riemannian) connec-
tion ∇, parallel transport, geodesic (which, intuitively, generalizes the notion
of straight line) and associated exponential map defined by Expxξ = γ(1)
where γ is the geodesic satisfying γ(0) = x and γ′(0) = ξ, with γ′(0) de-
noting the tangent vector to the curve γ at t = 0. Given a point x in M ,
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there is a ball Bǫ(0x) in TxM of radius ǫ around the origin 0x of TxM such
that Expx is a diffeomorphism of Bǫ(0x) onto an open subset of M . Then
Expx(Bǫ(0x)) = U is called a normal neighborhood of x, and Expx defines a
diffeomorphism between the Euclidean space TxM and U . The supremum
of these ǫ’s is the injectivity radius ix(M) at x, and i(M) := infx∈M ix is
the injectivity radius of M . Finally, normal coordinates are defined in a
normal neighborhood U by considering an orthonormal basis {ei} of TxM
and taking (u1, . . . , ud) as the coordinates of y = Expx (

∑n
i=1 uiei).

An important observation is that, for the purpose of defining a trust-
region method, the choice of a basis {ei} in TxM is immaterial, since trust-
region subproblems on a Euclidean space like TxM admit a coordinate-
free expression (4). Therefore, the exponential mapping makes it possible
to uniquely define trust-region subproblems on Riemannian manifolds by
locally mapping the manifold to the Euclidean space TxM .

However, as pointed out in [Man02], the systematic use of the exponential
mapping is questionable: other local mappings to TxM may reduce the
computational cost while preserving the useful convergence properties of the
considered method. Therefore, in this paper, we relax the exponential to a
class of mappings called retractions, a concept that we borrow from [Shu86,
ADM+02] with some modifications (see also the illustration on Figure 1).

Definition 2.1 (retraction) A retraction on a manifold M is a mapping
R on the tangent bundle TM into M with the following properties. Let Rx

denote the restriction of R to TxM .

1. R is continuously differentiable.
2. Rx(ξ) = x if and only if ξ = 0x, the zero element of TxM .
3. DRx(0x) = idTxM , the identity mapping on TxM , with the canonical

identification T0x
TxM ≃ TxM .

It follows from the inverse function theorem (see [dC92, Ch. 0, Th. 2.10])
that Rx is a local diffeomorphism at 0x, namely, Rx is not only C1 but
also bijective with differentiable inverse on a neighborhood V of 0x in TxM .
In particular, the exponential mapping is a retraction (see Proposition 2.9
in [dC92, Ch. 3] and the proof thereof), and any other retraction can be
thought of as a first-order approximation of the exponential mapping. No-
tice that no assumption is made on the second and higher derivatives of
the retractions; in particular, D2(Exp−1

x ◦Rx)(0x) need not vanish (see also
discussion in Section 2.1). Practical examples of retractions on specific Rie-
mannian manifolds, that may be more tractable computationally than the
exponential, are given in Section 5. We point out that the requirements in
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Definition 2.1 are stronger than needed to obtain the convergence results; in
particular, we could allow R to be defined only in a certain subset of TM .
However, weaker assumptions would make the forthcoming developments
more complicated, and there is no evidence that they would be more rele-
vant in practical applications. For the same reason, we assume throughout
that the manifold M is complete, i.e., Exp ξ exists for all ξ in TM .

TxMx

ξ

Rxξ M

Figure 1: Illustration of retractions.

We can now lay out the structure of a trust-region method on a Rieman-
nian manifold (M, g) with retraction R. Given a cost function f : M → R

and a current iterate xk ∈ M , we use Rxk
to locally map the minimization

problem for f on M into a minimization problem for the cost function

f̂xk
: Txk

M → R : ξ 7→ f(Rxk
ξ). (5)

The Riemannian metric g turns Txk
M into a Euclidean space endowed with

the inner product gxk
(·, ·), and, following (4), the trust-region subproblem

on Txk
M reads

min
η∈Txk

M
mxk

(η) = f̂xk
(0xk

) + Df̂xk
(0xk

)[η] +
1

2
D2f̂xk

(0xk
)[η, η]

= f̂xk
(0xk

)+gxk
(grad f̂xk

(0xk
), η)+

1

2
gxk

(Hessf̂xk
(0xk

)[η], η) s.t. gxk
(η, η) ≤ ∆2

k.

(6)

For the global convergence theory it is only required that the second-
order term in the model be some symmetric form. Therefore, instead of (6),
we will consider the following more general formulation

min
η∈Txk

M
mxk

(η) = f(xk)+gxk
(grad f(xk), η)+

1

2
gxk

(Hxk
η, η) s.t. gxk

(η, η) ≤ ∆2
k,

(7)
where Hxk

: Txk
M → Txk

M is some symmetric linear operator, i.e., gxk
(Hxk

ξ, χ) =
gxk

(ξ,Hxk
χ), ξ, χ ∈ TxM . This is called the trust-region subproblem.
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Next, an (approximate) solution ηk of the Euclidean trust-region sub-
problem (7) is computed using any available method: if an iterative method
is used, its iterations are called inner iterations of the overall algorithm (see
Section 3). The candidate for the new iterate is then given by

x+ = Rxk
(ηk). (8)

The decision to accept or not the candidate and to update the trust-
region radius is based on the quotient

ρk =
f(xk) − f(Rxk

(ηk))

mxk
(0xk

) − mxk
(ηk)

=
f̂xk

(0xk
) − f̂xk

(ηk)

mxk
(0xk

) − mxk
(ηk)

. (9)

If ρk is exceedingly small, then the model is very inaccurate: the step must
be rejected and the trust-region radius must be reduced. If ρk is small but
less dramatically so, then the step is accepted but the trust-region radius
is reduced. If ρk is close to 1, then there is a good agreement between the
model and the function over the step, and the trust-region radius can be
expanded.

This procedure can be formalized as the following algorithm; it reduces
to [NW99, Alg. 4.1] in the classical R

n case (see [CGT00, Ch. 10] for vari-
ants).

Algorithm 1 (RTR – basic Riemannian Trust-Region algorithm) Data:
Complete Riemannian manifold (M, g); real function f on M ; retraction R
from TM to M as in Definition 2.1.
Parameters: ∆̄ > 0, ∆0 ∈ (0, ∆̄), and ρ′ ∈ [0, 1

4).
Input: initial iterate x0 ∈ M .
Output: sequence of iterates {xk}.
for k = 0, 1, 2, . . .

Obtain ηk by (approximately) solving (7);
Evaluate ρk from (9);
if ρk < 1

4
∆k+1 = 1

4∆k

else if ρk > 3
4 and ‖ηk‖ = ∆k

∆k+1 = min(2∆k, ∆̄)
else

∆k+1 = ∆k;
if ρk > ρ′

xk+1 = Rxηk

else
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xk+1 = xk;
end (for).

In the sequel we will sometimes drop the subscript “k” and denote xk+1

by x+.

2.1 Discussion

The concept of retraction (Definition 2.1) is related to the local param-
eterizations around points introduced in [HT04]. To any smooth family
of parameterizations {µx}x∈M , one can associate a retraction defined by
Rx := µx ◦ (Dµx(0x))−1. Conversely, given smooth vector fields ei, i =
1, . . . , d such that {ei(x)}i=1,...,d is a basis of TxM for all x in a neigh-
bourhood U of x∗, to a retraction R one can associate the mappings µx :
(u1, . . . , ud) 7→ Rx(

∑

uiei(x)) which form a locally smooth family of pa-
rameterizations around x∗. Notice that in general this technique cannot be
applied globally: while a smooth basis {ei(x)}i=1,...,d always exists locally,
there are manifolds for which such a basis fails to exist globally. (An example
is a sphere embedded in a space of odd dimension: a result informally known
as the “hairy ball theorem” states that there is no nonvanishing smooth vec-
tor field on such a sphere, hence there is no globally smooth basis of vector
fields.) Moreover, from a computational viewpoint, such a basis of vector
fields may be difficult or even impossible to deal with. The use of retrac-
tions in the context of trust-region methods is thus particularly convenient,
as it takes advantage of the fact that trust-region methods (and optimiza-
tion methods in general) can be defined on general Euclidean spaces, devoid
of a particular basis. We refer to Section 5 for illustrations on concrete
examples.

From the “first-order rigidity condition” DRx(0x) = idTxM satisfied by
retractions (Definition 2.1), it follows that grad f̂xk

(0x) = grad f(x), where
grad f(x), the gradient of f at x, is defined by gx(grad f(x), ξ) = dfx(ξ),
ξ ∈ TxM (see [dC92, Ch. 3, Ex. 8]). Since no assumption is made on the
second and higher-order derivatives of the retraction (such conditions are
not necessary in the local and global convergence analyses carried out in
Section 4), it follows that in general Hess f̂(0x) 6= Hess f(x), where

Hess f(x) : TxM 7→ TxM : ξ 7→ Hess f(x)[ξ] := ∇ξgrad f(x), (10)

is the Hessian operator of f at x, as defined in [dC92, Ch. 6, Ex. 11].
In Lemma 4.11, second-order conditions are given on the retraction such
that Hess f̂xk

(0x) = Hess f(x). In the case of embedded submanifolds, the
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Levi-Civita connection ∇ reduces to a directional derivative in the embed-
ding space followed by a projection onto the tangent space to the mani-
fold [O’N83, §4.3]; this facilitates the derivation of a formula for Hess f(x)[ξ].
(Notice that in the literature, the word Hessian is sometimes used for the
second covariant differential D2f , which is related to the Hessian opera-
tor (10) by the identity D2f(ξ, χ) = gx(Hess f(x)[ξ], χ) [O’N83].)

In general, there is no assumption on the operator Hxk
in (7) other than

being a symmetric linear operator. Consequently, even though mxk
was

initially presented as a model of f ◦ Rxk
, the choice of the retraction Rxk

does not impose any constraint on mxk
. In order to achieve superlinear

convergence, however, Hxk
will be required to be an “approximate” Hessian

(Theorem 4.13). Obtaining an appropriate approximate Hessian in practice
is addressed in Section 5.1. A possible way of choosing Hxk

is to define mx

as the quadratic model of f ◦ R̃xk
, where R̃x is a retraction, not necessarily

equal to Rxk
; a similar point of view was adopted in [HT04] in the framework

of Newton’s method.
We conclude this section by pointing out more explicitly the link between

Algorithm 1 and the Riemannian Newton method. Assume that Hxk
in (7)

is the exact Hessian of f at xk, and assume that the exact solution η∗ of the
trust-region subproblem (7) lies in the interior of the trust region. Then η∗

satisfies
grad f + ∇η∗grad f = 0,

which is the Riemannian Newton equation of Smith [Smi93, Smi94] and
Udrişte [Udr94, Ch. 7, §5]. Note that both authors propose to apply the
update vector η∗ using the Riemannian exponential retraction; namely, the
new iterate is defined as x+ = Expxη∗. As shown by Smith [Smi93, Smi94],
the Riemannian Newton algorithm converges locally quadratically to the
nondegenerate stationary points of f . A cubic rate of convergence is even
observed in frequently encountered cases where some symmetry condition
holds [AMS04]. We will see in Section 4 that the superlinear convergence
property of Newton’s method is preserved by the trust-region modification,
while the global convergence properties are improved: the accumulation
points are guaranteed to be stationary points regardless of the initial condi-
tions, and among the stationary points only the local minima can be local
attractors.
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3 Computing a trust-region step

We have seen in Section 2 that the use of retractions yields trust-region
subproblems expressed in Euclidean spaces TxM . Therefore, all the classical
methods for solving the trust-region subproblem can be applied.

As mentioned in the introduction, it is assumed here that for some rea-
son, usually related to the large size of the problem under consideration or
to the computational efficiency required to outperform alternative methods,
it is impractical to check positive-definiteness of Hxk

; rather, Hxk
is only

available via its application to a vector. The truncated conjugate-gradient
method of Steihaug [Ste83] and Toint [Toi81] is particularly appropriate in
these circumstances. The following algorithm is a straightforward adap-
tation of the method of [Ste83] to the trust-region subproblem (7). This
algorithm is an inner iteration as it is an iteration used within the RTR
framework (Algorithm 1) to compute an approximate solution of the trust-
region subproblems. Note that we use indices in superscript to denote the
evolution of η within the inner iteration, while subscripts are used in the
outer iteration.

Algorithm 2 (tCG – truncated CG for the trust-region subproblem)
Set η0 = 0, r0 = grad f(xk), δ0 = −r0;
for j = 0, 1, 2, . . . until a stopping criterion is satisfied, perform the itera-
tion:

if gxk
(δj ,Hxk

δj) ≤ 0
Compute τ such that η = ηj + τδj minimizes mxk

(η) in (7)
and satisfies ‖η‖gx

= ∆;
return η;

Set αj = gxk
(rj , rj)/gxk

(δj ,Hxk
δj);

Set ηj+1 = ηj + αjδj;
if ‖ηj+1‖gx

≥ ∆
Compute τ ≥ 0 such that η = ηj + τδj satisfies ‖η‖gx

= ∆;
return η;

Set rj+1 = rj + αjHxk
δj;

Set βj+1 = gxk
(rj+1, rj+1)/gxk

(rj , rj);
Set δj+1 = −rj+1 + βj+1δj;

end (for).

The simplest stopping criterion for Algorithm 2 is to truncate after a
fixed number of iterations. In order to improve the convergence rate, a
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possibility is to stop as soon as an iteration j is reached for which

‖rj‖ ≤ ‖r0‖min(‖r0‖
θ, κ). (11)

Concerning the computation of τ , it can be shown that when g(δj ,Hxk
δj) ≤

0, arg minτ∈R mxk
(ηj +τδj) is equal to the positive root of ‖ηj +τδk‖gx

= ∆,
which is explicitly given by

−gx(ηj , δj) +
√

gx(ηj , δj)2 − (∆2 − gx(ηj , ηj))gx(δj , δj)

gx(δj , δj)
.

Notice that the tCG algorithm only requires the following:

• An evaluation of grad f(x).
• A routine that performs line minimizations for the model m.
• A routine that returns Hxk

δ given δ ∈ TxM .

The algorithm can thus be considered as “inverse-free”. The reader in-
terested in the underlying principles of the Steihaug-Toint truncated CG
method should refer to [Ste83], [NW99] or [CGT00].

Alternatives to tCG for approximately solving trust-region subproblems
are mentioned in [CGT00, Section 7.5.4]; see also [Hag01, HP04].

4 Convergence analysis

In this section, we first study the global convergence properties of the RTR
scheme (Algorithm 1), without any assumption on the way the trust-region
subproblems (7) are solved, except that the approximate solution ηk must
produce a decrease of the model that is at least a fixed fraction of the
so-called Cauchy decrease. Under mild additional assumptions on the re-
traction and the cost function, it is shown that the sequences {xk} produced
by Algorithm 1 converge to the set of stationary points of the cost function.
This result is well known in the R

n case; in the case of manifolds, the con-
vergence analysis has to address the fact that a different lifted cost function
f̂xk

is considered at each iterate xk.
We then analyze the local convergence of Algorithm 1-2 around nonde-

generate local minima. Algorithm 1-2 refers to the RTR framework where
the trust-region subproblems are approximately solved using the tCG al-
gorithm with stopping criterion (11). It is shown that the iterates of the
algorithm converge to nondegenerate stationary points with an order of con-
vergence min{θ + 1, 2} (at least).
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4.1 Global convergence

The objective of this section is to show that, under appropriate assumptions,
the sequence {xk} generated by Algorithm 1 satisfies limk→∞ ‖grad f(xk)‖ =
0; this generalizes a classical convergence property of trust-region methods
in R

n, see [NW99, Theorem 4.8]. In what follows, (M, g) is a complete
Riemannian manifold of dimension d, and R is a retraction on M (Defini-
tion 2.1). We define

f̂ : TM 7→ R : ξ 7→ f(Rξ) (12)

and, in accordance with (5), f̂x denotes the restriction of f̂ to TxM . We
denote by Bδ(0x) = {ξ ∈ TxM : ‖ξ‖ < δ} the open ball in TxM of radius δ
centered at 0x, and Bδ(x) stands for the set {y ∈ M : dist(x, y) < δ} where
dist denotes the Riemannian distance (i.e., the distance defined in terms of
the Riemannian metric; see, e.g., [O’N83, §5.15]). We denote by P t←t0

γ v the
vector of Tγ(t)M obtained by parallel transporting the vector v ∈ Tγ(t0)M
along a curve γ.

As in the classical R
n case, we first show that at least one accumulation

point of {xk} is stationary. The convergence result requires that mxk
(ηk) be

a sufficiently good approximation of f̂xk
(ηk). In [CGT00, Thm 6.4.5] this

is guaranteed by the assumption that the Hessian of the cost function is
bounded. It is however possible to weaken this assumption, which leads us
to consider the following definition.

Definition 4.1 (radially L-C1 function) Let f̂ : TM → R be as in (12).
We say that f̂ is radially Lipschitz continuously differentiable if there exist
reals βRL > 0 and δRL > 0 such that, for all x ∈ M , for all ξ ∈ TxM with
‖ξ‖ = 1, and for all t < δRL, it holds

∣

∣

∣

∣

d

dτ
f̂x(τξ)|τ=t −

d

dτ
f̂x(τξ)|τ=0

∣

∣

∣

∣

≤ βRLt. (13)

For the purpose of Algorithm 1, which is a descent algorithm, this condition
needs only to be imposed for all x, y in the level set

{x ∈ M : f(x) ≤ f(x0)}. (14)

A key assumption in the classical global convergence result in R
n is that

the approximate solution ηk of the trust-region subproblem (7) produces at
least as much decrease in the model function as a fixed fraction of the Cauchy
decrease; see [NW99, Section 4.3]. Since the trust-region subproblem (7) is
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expressed on a Euclidean space, the definition of the Cauchy point is adapted
from R

n without difficulty, and the bound

mxk
(0) − mxk

(ηk) ≥ c1‖gradf(xk)‖min

(

∆k,
‖gradf(xk)‖

‖Hxk
‖

)

, (15)

for some constant c1 > 0, is readily obtained from the R
n case, where ‖Hxk

‖
is defined as

‖Hxk
‖ := sup{‖Hxk

ζ‖ : ζ ∈ Txk
M, ‖ζ‖ = 1}. (16)

In particular, the truncated CG method (Algorithm 2) satisfies this bound
(with c1 = 1

2 , see [NW99, Lemma 4.5]) since it first computes the Cauchy
point and then attempts to improve the model decrease.

With these things in place, we can state and prove the first global con-
vergence result. (We refer to [ABG05] for the proof, which differs little from
the Euclidean case.) Note that this theorem is presented under weak as-
sumptions; stronger but arguably easier to check assumptions are given in
Proposition 4.5.

Theorem 4.2 Let {xk} be a sequence of iterates generated by Algorithm 1
with ρ′ ∈ [0, 1

4). Suppose that f is C1 and bounded below on the level set (14),

that f̂ is radially L-C1 (Definition 4.1), and that ‖Hxk
‖ ≤ β for some

constant β. Further suppose that all approximate solutions ηk of (7) satisfy
the Cauchy decrease inequality (15) for some positive constant c1. We then
have

lim inf
k→∞

‖grad f(xk)‖ = 0.

To further show that all accumulation points of {xk} are stationary
points, we need to make an additional regularity assumption on the cost
function f . The global convergence result in R

n, as stated in [NW99, The-
orem 4.8], requires that f be Lipschitz continuously differentiable. That is
to say, for any x, y ∈ R

n,

‖gradf(y) − gradf(x)‖ ≤ β1‖y − x‖. (17)

A key to obtaining a Riemannian counterpart of this global convergence
result is to adapt the notion of Lipschitz continuous differentiability to the
Riemannian manifold (M, g). The expression ‖x − y‖ in the right-hand
side of (17) naturally becomes the Riemannian distance dist(x, y). For the
left-hand side of (17), observe that the operation gradf(x) − gradf(y) is
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not well-defined in general on a Riemannian manifold since grad f(x) and
grad f(y) belong to two different tangent spaces, namely TxM and TyM .
However, if y belongs to a normal neighborhood of x, then there is a unique
geodesic α(t) = Expx(tExp−1

x y) such that α(0) = x and α(1) = y, and we
can parallel transport grad f(y) along α to obtain the vector P 0←1

α grad f(y)
in TxM , to yield the following definition.

Definition 4.3 (Lipschitz continuous differentiability) Assume that (M, g)
has an injectivity radius i(M) > 0. A real function f on M is Lipschitz con-
tinuous differentiable if it is differentiable and if, for all x, y in M such that
dist(x, y) < i(M), it holds that

‖P 0←1
α grad f(y) − grad f(x)‖ ≤ β1dist(y, x), (18)

where α is the unique geodesic with α(0) = x and α(1) = y.

Note that (18) is symmetric in x and y; indeed, since the paralel transport
is an isometry, it follows that

‖P 0←1
α grad f(y) − gradf(x)‖ = ‖gradf(y) − P 1←0

α gradf(x)‖.

Moreover, we place one additional requirement on the retraction R, that
there exists some µ > 0 and δµ > 0 such that

‖ξ‖ ≥ µd(x, Rxξ), for all x ∈ M, for all ξ ∈ TxM, ‖ξ‖ ≤ δµ (19)

Note that for the exponential retraction discussed in this paper, (19) is
satisfied as an equality, with µ = 1. The bound is also satisfied when R is
smooth and M is compact (Corollary 4.6).

We are now ready to show that under some additional assumptions, the
gradient of the cost function converges to zero on the whole sequence of
iterates. Here again we refer to Proposition 4.5 for a simpler (but slightly
stronger) set of assumptions that yield the same result.

Theorem 4.4 Let {xk} be a sequence of iterates generated by Algorithm 1.
Suppose that all the assumptions of Theorem 4.2 are satisfied. Further sup-
pose that ρ′ ∈ (0, 1

4), that f is Lipschitz continuously differentiable (Defini-
tion 4.3), and that (19) is satisfied for some µ > 0, δµ > 0. It then follows
that

lim
k→∞

grad f(xk) = 0.
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Proof.
We refer to [ABG05] for a full proof. The general idea is similar to the

Euclidean case. Given and index m such that grad f(xm) 6= 0, it is shown,
using the Lipschitz continuous differentiability property, that there is a ball
around xm, whose radius depends on ‖grad f(xm)‖, in which ‖grad f(x)‖ ≥
1
2‖grad f(xm)‖. A particularity of the Riemannian case is that the radius
of the ball is required to be smaller than the injectivity radius i(M), so
that the Lipschitz continuous differentiability bound (18) applies. Because
of Theorem 4.2, the iterates must eventually leave the ball at an iterate l+1.
It is then shown that the decrease of the cost function f between xm and
xl+1 is bounded below by an expression that vanishes only if ‖grad f(xm)‖
vanishes. In the proof of this intermediate result, we have to be mindful
that, in contrast to the Euclidean case, ‖ηk‖ is in general different from
dist(xk, Rxk

ηk); we use (19) to fall back to a suitable bound. As in the
Euclidean case, the proof is concluded by observing that since f is bounded
below on the level set, the decreases of f must go to zero, hence ‖grad f(xm)‖
converges to zero.

�

Note that this theorem reduces gracefully to the classical R
n case, taking

M = R
n endowed with the classical inner product and Rxξ := x + ξ. Then

i(M) = +∞ > 0, R satisfies (19), the Lipschitz condition (18) reduces to
the classical expression, which subsumes the radially L-C1 condition.

The following proposition (proved in [ABG05]) shows that the regularity
conditions on f and f̂ required in the previous theorems are satisfied under
stronger but possibly easier to check conditions. These conditions impose a
bound on the Hessian of f and on the “acceleration” along curves t 7→ Rtξ.
Note also that all these conditions need only be checked on the level set
{x ∈ M : f(x) ≤ f(x0)}.

Proposition 4.5 Suppose that ‖grad f(x)‖ ≤ βg and ‖Hess f(x)‖ ≤ βH for
some constants βg, βH , and all x ∈ M . Moreover suppose that

‖D
dt

d
dt

Rtξ‖ ≤ βD (20)

for some constant βD, for all ξ ∈ TM with ‖ξ‖ = 1 and all t < δD, where D
dt

denotes the covariant derivative along the curve t 7→ Rtξ (see [dC92, Ch. 2,
Prop. 2.2]).
Then the Lipschitz-C1 condition on f (Definition 4.3) is satisfied with βL =
βH ; the radially Lipschitz-C1 condition on f̂ (Definition 4.1) is satisfied for
δRL < δD and βRL = βH(1 + βDδD) + βgβD; and the condition (19) on R is
satisfied for values of µ and δµ satisfying δµ < δD and 1

2βDδµ < 1
µ
− 1.
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In many practical cases, the cost function and the retraction are smooth
and the Riemannian manifold is compact. This is a comfortable situation,
as the next result shows. (A proof is given in [ABG05].)

Corollary 4.6 (smoothness and compactness) If the cost function f
and the retraction R are smooth and the Riemannian manifold M is com-
pact, then all the conditions in Proposition 4.5 are satisfied.

4.2 Local convergence

We now state local convergence properties of Algorithm 1-2 (i.e., Algorithm 1
where the trust-region subproblem (7) is solved approximately with Algo-
rithm 2). We first state a few preparation lemmas. We refer to [ABG05] for
proofs.

As before, (M, g) is a complete Riemannian manifold of dimension d,
and R is a retraction on M (Definition 2.1). The first lemma is a first-
order Taylor formula for tangent vector fields (similar Taylor developments
on manifolds can be found in [Smi94]).

Lemma 4.7 (Taylor) Let x ∈ M , let V be a normal neighborhood of x,
and let ζ be a C1 tangent vector field on M . Then, for all y ∈ V ,

P 0←1
γ ζy = ζx + ∇ξζ +

∫ 1

0

(

P 0←τ
γ ∇γ′(τ)ζ −∇ξζ

)

dτ, (21)

where γ is the unique minimizing geodesic satisfying γ(0) = x and γ(1) = y,
and ξ = Exp−1

x y = γ′(0).

We use this lemma to show that in some neighborhood of a nondegenerate
local minimizer v of f , the norm of the gradient of f can be taken as a
measure of the Riemannian distance to v.

Lemma 4.8 Let v ∈ M and let f be a C2 cost function such that grad f(v) =
0 and Hess f(v) is positive definite with maximal and minimal eigenvalues
λmax and λmin. Then, given c0 < λmin and c1 > λmax, there exists a neigh-
borhood V of v such that, for all x ∈ V , it holds that

c0dist(v, x) ≤ ‖grad f(x)‖ ≤ c1dist(v, x). (22)

We need a relation between the gradient of f at Rxξ and the gradient of f̂x

at ξ.
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Lemma 4.9 Let R be a retraction on M and let f be a C1 cost function on
M . Then, given v ∈ M and c5 > 1, there exists a neighborhood V of v and
δ > 0 such that

‖grad f(Rξ)‖ ≤ c5‖grad f̂(ξ)‖

for all x ∈ V and all ξ ∈ TxM with ‖ξ‖ ≤ δ, where f̂ is as in (12).

Finally, we need the following result concerning the Hessian at stationary
points.

Lemma 4.10 Let R be a C2 retraction, let f be a C2 cost function, and
let v be a stationary point of f (i.e., grad f(v) = 0). Then Hess f̂v(0v) =
Hess f(v).

Away from the stationary points, the Hessians Hess f(x) and Hess f̂x(0x)
do not coincide. They do coincide if a “zero acceleration” condition (23) is
imposed on the retraction. This result will not be used in the convergence
analysis but it can be useful in applications, as explained after (10).

Lemma 4.11 Suppose that

D

dt

(

d

dt
Rtξ

)

|t=0 = 0, for all ξ ∈ TM, (23)

where D
dt

denotes the covariant derivative along the curve t 7→ Rtξ (see [dC92,

Ch. 2, Prop. 2.2]). Then Hess f(x) = Hess f̂(0x).

We now state and prove [ABG05] the local convergence results. The first
result states that the nondegenerate local minima are attractors of Algo-
rithm 1-2. The principle of the argument is closely related to the Capture
Theorem, see [Ber95, Theorem 1.2.5].

Theorem 4.12 (local convergence to local minima) Consider Algorithm 1-
2—i.e., the Riemannian trust-region algorithm where the trust-region sub-
problems (7) are solved using the truncated CG algorithm with stopping cri-
terion (11)—with all the assumptions of Theorem 4.2. Let v be a nonde-
generate local minimizer of f , i.e., grad f(v) = 0 and Hess f(v) is positive
definite. Assume that ‖H−1

xk
‖ is bounded and that (19) holds for some µ > 0

and δµ > 0. Then there exists a neighborhood V of v such that, for all
x0 ∈ V , the sequence {xk} generated by Algorithm 1-2 converges to v.

Now we study the order of convergence of the sequences that converge to a
nondegenerate local minimizer.
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Theorem 4.13 (order of convergence) Consider Algorithm 1-2 with stop-
ping criterion (11). Suppose that R is a C2 retraction, that f is a C2 cost
function on M , and that

‖Hxk
− Hess f̂xk

(0k)‖ ≤ βH‖grad f(xk)‖, (24)

that is, Hxk
is a sufficiently good approximation of Hess f̂xk

(0xk
). Let v ∈ M

be a nondegenerate local minimizer of f , (i.e., grad f(v) = 0 and Hess f(v)
is positive definite). Further assume that Hess f̂x is Lipschitz-continuous at
0x uniformly in x in a neighborhood of v, i.e., there exist βL2 > 0, δ1 > 0
and δ2 > 0 such that, for all x ∈ Bδ1(v) and all ξ ∈ Bδ2(0x), there holds

‖Hess f̂x(ξ) − Hess f̂x(0x)‖ ≤ βL2‖ξ‖, (25)

where ‖ · ‖ in the left-hand side denotes the operator norm in TxM defined
as in (16).
Then there exists c > 0 such that, for all sequences {xk} generated by the
algorithm converging to v, there exists K > 0 such that for all k > K,

dist(xk+1, v) ≤ c (dist(xk, v))min{θ+1,2} (26)

with θ > 0 as in (11).

Proof. In the detailed proof [ABG05], we show that there exist ∆̃, c0, c1, c2, c3, c
′
3, c4, c5

such that, for all sequences {xk} satisfying the conditions asserted, all
x ∈ M , all ξ with ‖ξ‖ < ∆̃, and all k greater than some K, there holds

c0dist(v, xk) ≤ ‖grad f(xk)‖ ≤ c1dist(v, xk), (27)

‖ηk‖ ≤ c4‖gradmxk
(0)‖ ≤ ∆̃, (28)

ρk > ρ′, (29)

‖grad f(Rxk
ξ)‖ ≤ c5‖grad f̂xk

(ξ)‖, (30)

‖gradmxk
(ξ) − grad f̂xk

(ξ)‖ ≤ c3‖ξ‖
2 + c′3‖grad f(xk)‖ ‖ξ‖, (31)

‖gradmxk
(ηk)‖ ≤ c2‖gradmxk

(0)‖θ+1, (32)

where {ηk} is the sequence of update vectors corresponding to {xk}. In
particular, (27) comes from Lemma 4.8 and (30) follows from Lemma 4.9.
With these results at hand the proof is concluded as follows. For all k > K,
it follows from (27) and (29) that

c0dist(v, xk+1) ≤ ‖grad f(xk+1)‖ = ‖grad f(Rxk
ηk)‖,
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from (30) and (28) that

‖grad f(Rxk
ηk)‖ ≤ c5‖grad f̂xk

(ηk)‖,

from (28) and (31) and (32) that

‖grad f̂xk
(ηk)‖ ≤ ‖gradmxk

(ηk) − grad f̂xk
(ηk)‖ + ‖gradmxk

(ηk)‖

≤ (c3c
2
4 + c′3c4)‖gradmxk

(0)‖2 + c2‖gradmxk
(0)‖1+θ,

and from (27) that

‖gradmxk
(0)‖ = ‖grad f(xk)‖ ≤ c1dist(v, xk).

Consequently, taking K larger if necessary so that dist(v, xk) < 1 for all
k > K, it follows that

c0dist(v, xk+1)

≤ ‖grad f(xk+1)‖ (33)

≤ c5(c3c
2
4 + c′3c4)‖grad f(xk)‖

2 + c5c2‖grad f(xk)‖
θ+1 (34)

≤ c5((c3c
2
4 + c′3c4)c

2
1(dist(v, xk))

2 + c2c
1+θ
1 (dist(v, xk))

1+θ)

≤ c5((c3c
2
4 + c′3c4)c

2
1 + c2c

1+θ
1 )(dist(v, xk))

min{2,1+θ}

for all k > K, which is the desired result.
�

The constants in the proof of Theorem 4.13 can be chosen as c0 < λmin,
c1 > λmax, c4 > 1/λmin, c5 > 1, c3 ≥ βL2, c′3 ≥ βH, c2 ≥ 1, where
λmin and λmax are the smallest and largest eigenvalue of Hess f(v) respec-
tively [ABG05]. Consequently, the constant c in the convergence bound (26)
can be chosen as

c >
1

λmin

(

(

βL2/λ2
min + βH/λmin

)

λ2
max + λ1+θ

max

)

. (35)

A nicer-looking bound holds when convergence is evaluated in terms of the
norm of the gradient, as expressed in the theorem below which is a direct
consequence of (33)-(34).

Theorem 4.14 Under the assumptions of Theorem 4.13, if θ +1 < 2, then
given cg > 1 and {xk} generated by the algorithm, there exists K > 0 such
that

‖grad f(xk+1)‖ ≤ cg‖grad f(xk)‖
θ+1

for all k > K.
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Nevertheless, (33)-(34) suggests that the algorithm may not perform well
when the relative gap λmax/λmin is large. In spite of this, numerical experi-
ments on eigenvalue problems have shown that the method tends to behave
as well, or even better than other methods in the presence of a small relative
gap [ABG06].

5 Applications

In this section, we briefly review the essential “ingredients” necessary for
applying the RTR-tCG method (Algorithm 1-2) and we present two exam-
ples in detail. These examples are presented as illustrations: comparing
the resulting algorithms with existing methods and conducting numerical
experiments is beyond the scope of this paper. For the problem of comput-
ing extreme eigenspaces of matrices, numerical experiments show that the
RTR-tCG algorithm can match and sometimes dramatically outperform ex-
isting algorithms; experiments, comparisons and further developments are
presented in [ABG04b, ABG06, ABGS05]. Other applications that would
lend themselves nicely to an RTR approach include reduced-rank approxi-
mation to matrices, the Procrustes problem, nearest-Jordan structure, trace
minimization with a nonlinear term, simultaneous Schur decomposition, and
simultaneous diagonalization; see, e.g., [HM94, LE00].

5.1 Checklist

The following elements are required for applying the RTR method to opti-
mizing a cost function f on a Riemannian manifold (M, g): (i) a tractable
numerical representation for points x on M , for tangent spaces TxM , and for
the inner products gx(·, ·) on TxM ; (ii) choice of a retraction Rx : TxM → M
(Definition 2.1); (iii) formulas for f(x), grad f(x) and the approximate Hes-
sian Hx that satisfies the properties required for the convergence results in
Section 4.

Choosing a good retraction amounts to finding an approximation of the
exponential mapping that can be computed with low computational cost.
Guidelines can be found in [CI01, DN04]. This is an important open research
topic.

Formulas for grad f(x) and Hess f̂x(0x) can be obtained by identification
in a Taylor expansion of the lifted cost function f̂x, namely

f̂x(η) = f(x) + gx(grad f(x), η) +
1

2
gx(Hess f̂x(0x)[η], η) + O(‖η‖3),
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where grad f(x) ∈ TxM and Hess f̂x(0x) is a linear transformation of TxM .
In order to obtain an “approximate Hessian” Hx that satisfies the approx-
imation condition (24), one can pick Hx := Hess(f ◦ R̃x)(0x) where R̃x is
any retraction. Then, assuming sufficient smoothness of f , R and R̃, the
bound (24) follows from Lemmas 4.8 and 4.10. In particular, the choice
R̃x = Expx yields Hx = ∇grad f(x). If M is an embedded submanifold of
a Euclidean space, then ∇ηgrad f(x) = πDgrad f(x)[η] where π denotes the
orthogonal projector onto TxM .

5.2 Symmetric eigenvalue decomposition

Let M be the orthogonal group,

M = On = {Q ∈ R
n×n : QT Q = In}.

This manifold is an embedded submanifold of R
n×n. It can be shown that

TQOn = {QΩ : Ω = −ΩT }; see, e.g., [HM94]. The canonical Euclidean
metric g(A, B) = trace(AT B) on R

n×n induces on On the metric

gQ(QΩ1, QΩ2) = trace(ΩT
1 Ω2). (36)

A retraction RQ : TQOn → On must be chosen that satisfies the proper-
ties stated in Section 2. The Riemannian geodesic-based choice is

RQQΩ = ExpQQΩ = Q exp(QT (QΩ)) = Q exp(Ω)

where exp denotes the matrix exponential. However, the matrix exponential
is numerically expensive to compute (the computational cost is comparable
to solving an n × n eigenvalue problem!), which makes it essential to use
computationally cheaper retractions. Given a Lie group G (here the orthog-
onal group) and its Lie algebra g (here the set of skew-symmetric matrices),
there exist several ways of approximating exp(Ω), Ω ∈ g, by an R(Ω) such
that R(Ω) ∈ G if B ∈ g; these techniques are well known in geometric
integration (see, e.g., [CI01] and references therein) and can be applied to
our case where G is the orthogonal group On. For example, exp(Ω) can be
approximated by a product of plane (or Givens) rotations [GV96] in such a
way that R is a second order approximation of the exponential; see [CI01].
This approach has the advantage of being very efficient computationally.

Consider the cost function

f(Q) = trace(QT AQN)
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where A and N are given n×n symmetric matrices. For N = diag(µ1, . . . , µn),
µ1 < . . . < µn, the minimum of f is realized by the orthonormal matrices
of eigenvectors of A sorted in increasing order of corresponding eigenvalue;
see, e.g., [HM94, Section 2.1]. Assume that the retraction R approximates
the exponential at least to order 2. With the metric g defined as in (36), we
obtain

f̂Q(QΩ) := f(RQ(QΩ)) = trace((I+Ω+
1

2
Ω2+O(Ω3))T QT AQ(I+Ω+

1

2
Ω2+O(Ω3))N)

= f(Q)+2trace(ΩT QT AQN)+trace(ΩT QT AQΩN−ΩT ΩQT AQN)+O(Ω3)

from which it follows

Df̂Q(0)[QΩ] = 2trace(QT AQΩN)

1

2
D2f̂Q(0)[QΩ1, QΩ2] = trace(ΩT

1 QT AQΩ2N −
1

2
(ΩT

1 Ω2 + ΩT
2 Ω1)Q

T AQN)

grad f̂Q(0)= grad f(Q) = Q[QT AQ, N ]

Hess f̂Q(0)[QΩ]= Hess f(Q)[QΩ] =
1

2
Q[[QT AQ,Ω], N ] +

1

2
Q[[N, Ω], QT AQ]

where [A, B] := AB − BA. It is now straightforward to replace these ex-
pressions in the general formulation of Algorithm 1-2 and obtain a practical
matrix algorithm.

An alternative way to obtain Hess f̂Q(0) is to exploit Lemma 4.11 which

yields Hess f̂Q(0) = ∇grad f(Q). Since the manifold M is an embedded Rie-
mannian submanifold of R

n×p, the covariant derivative ∇ is obtained by pro-
jecting the derivative in R

n×p onto the tangent space to M ; see [dC92, Ch. 2,
sec. 1] or [Boo75, VII.2]. We obtain Hess f(Q)[QΩ] = Qskew(Ω[QT QQ, N ]+
[ΩT QT AQ + QT AQΩ, N ], which yields the same result as above.

5.3 Computing an extreme eigenspace of a symmetric defi-

nite matrix pencil

We assume that A and B are n×n symmetric matrices and that B is positive
definite. An eigenspace Y of (A, B) satisfies B−1Ay ∈ Y for all y ∈ Y, which
can also be written B−1AY ⊆ Y or AY ⊆ BY. The simplest example is when
Y is spanned by a single eigenvector of (A, B), i.e., a nonvanishing vector y
such that Ay = λBy for some eigenvalue λ. More generally, an eigenspace
can be spanned by a subset of eigenvectors of (A, B). For more details we
refer to the review of the generalized eigenvalue problem in [Ste01].
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Let λ1 ≤ . . . ≤ λp < λp+1 ≤ . . . ≤ λn be the eigenvalues of the pencil
(A, B). We consider the problem of computing the (unique) eigenspace
V of (A, B) associated to the p leftmost eigenvalues (in other words, V
is characterized by V = colsp(V ) where AV = BV diag(λ1, . . . , λp) and
V T V = I). We will call V the leftmost p-dimensional eigenspace of the pencil
(A, B). Note that the algorithms we are about to present work equally well
for computing the rightmost eigenspace: replace A by −A throughout and
notice that the leftmost eigenspace of −A is the rightmost eigenspace of A.

It is well known (see, e.g., [SW82, ST00]) that the leftmost eigenspace
V of (A, B) is the minimizer of the Rayleigh cost function

f(colsp(Y )) = trace((Y T AY )(Y T BY )−1) (37)

where Y is full-rank n × p and colsp(Y ) denotes the column space of Y . It
is readily checked that the right-hand side only depends on colsp(Y ).

The domain M of the cost function f is the set of p-dimensional sub-
spaces of R

n, called the Grassmann manifold and denoted by Grass(p, n).
A difficulty with the Grassmann manifold is that it is not directly defined
as a submanifold of a Euclidean space (in contrast to the orthogonal group
considered in Section 5.2). The first action to take is thus to devise a matrix
representation of the elements of Grass(p, n) and its tangent vectors. This
can be done in several ways.

A possibility is to rely on the one-to-one correspondence between sub-
spaces and projectors; this idea is detailed in [MS85]. Another possibil-
ity is to rely on the definition of Grass(p, n) as a quotient of Lie groups;
see [EAS98] and references therein. Yet another possibility is to rely on
coordinate charts on the Grassmannian (see, e.g., [HM94, Section C4]); this
approach is appealing because it uses a minimal set of variables, but it has
the drawback of relying on arbitarily fixed reference points.

A fourth way, which we will follow here, is to consider Grass(p, n) as
the quotient R

n×p
∗ /GLp of the locally Euclidean space R

n×p
∗ (the set of full-

rank n× p matrices) by the set of transformations that preserve the column
space. This approach was developed in [AMS04]. The principle is to allow
a subspace to be represented by any n × p matrix whose columns span
the subspace; that is, the subspaces are represented by bases (which are
allowed to be nonorthonormal, although in practical computations it is often
desirable to require some form of orthonormalization). This representation
is particularly appropriate in the scope of numerical computations. The
set of matrices that represent the same subspace as a matrix Y ∈ R

n×p
∗

is the fiber Y GLp = {Y M : det(M) 6= 0}. The vertical space at Y is
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VY = {Y M : M ∈ R
p×p}. A real function h on Grass(p, n) is represented by

its lift h↑Y = h (colsp(Y )). To represent a tangent vector ξ to Grass(p, n) at
a point Y = colsp(Y ), first define a horizontal space HY whose direct sum
with VY is the whole R

n×p; then ξ is uniquely represented by its horizontal
lift ξ↑Y defined by the following two conditions: (i) ξ↑Y ∈ HY and (ii)
Dh(Y)[ξ] = Dh↑(Y )[ξ↑Y ] for all real functions h on Grass(p, n). Therefore,
the horizontal space HY represents the tangent space TYGrass(p, n).

In this section, with a view to simplifying the derivation of the gradient
and Hessian of the Rayleigh cost function (37), we define the horizontal
space as

HY = {Z ∈ R
n×p : Y T BZ = 0},

which reduces to the definition in [AMS04] when B is the identity. We then
define a noncanonical metric on Grass(p, n) as

gY(ξ, ζ) = trace
(

(Y T BY )−1ξT
↑Y ζ↑Y

)

. (38)

From now on, the definitions of the gradient, Hessian and Riemannian con-
nection will be with respect to the metric (38). We will use the retraction

RY(ξ) = colsp(Y + ξ↑Y ) (39)

where Y = colsp(Y ).
For the Rayleigh cost function (37), using the notation

PU,V = I − U(V T U)−1V T (40)

for the projector parallel to the span of U onto the orthogonal complement
of the span of V , we obtain

f̂Y(ξ) = f(RY(ξ)) = trace
(

(

(Y + ξ↑Y )T B(Y + ξ↑Y )
)−1 (

(Y + ξ↑Y )T A(Y + ξ↑Y )
)

)

= trace
(

(Y T BY )−1Y T AY
)

+ 2trace
(

(Y T BY )−1ξT
↑Y AY

)

+ trace
(

(Y T BY )−1ξT
↑Y

(

Aξ↑Y − Bξ↑Y (Y T BY )−1(Y T AY )
))

+ HOT

= trace
(

(Y T BY )−1Y T AY
)

+ 2trace
(

(Y T BY )−1ξT
↑Y PBY,BY AY

)

+ trace
(

(Y T BY )−1ξT
↑Y PBY,BY

(

Aξ↑Y − Bξ↑Y (Y T BY )−1(Y T AY )
))

+ HOT,

(41)

where the introduction of the projectors do not modify the expression since
PBY,BY ξ↑Y = ξ↑Y . By identification, using the noncanonical metric (38), we
obtain

(grad f(Y))↑Y =
(

grad f̂Y(0)
)

↑Y
= 2PBY,BY AY (42)
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and
(

Hess f̂Y(0Y)[ξ]
)

↑Y
= 2PBY,BY

(

Aξ↑Y − Bξ↑Y (Y T BY )−1(Y T AY )
)

. (43)

Notice that Hess f̂Y(0Y) is symmetric with respect to the metric, as required.
We choose to take

HY = Hess f̂Y(0Y). (44)

Therefore, the approximation condition (24) is trivially satisfied. The model (7)
is thus

mY(ξ) = f(Y) + gY(grad f(Y), ξ) +
1

2
gY(HYξ, ξ)

= trace
(

(Y T BY )−1Y T AY
)

+ 2trace
(

(Y T BY )−1ξT
↑Y AY

)

+ trace
(

(Y T BY )−1ξT
↑Y

(

Aξ↑Y − Bξ↑Y (Y T BY )−1Y T AY
))

.

(45)

Since the Rayleigh cost function (37) is smooth on Grass(p, n)—recall
that B is positive definite—and since Grass(p, n) is compact, it follows that
all the assumptions involved in the convergence analysis of the general RTR-
tCG algorithm (Section 4) are satisfied. The only complication is that we do
not have a closed-form expression for the distance involved in the superlinear
convergence result (26). (Since the metric (38) is different from the canonical
metric, the formulas given in [AMS04] do not apply.) But since B is fixed
and positive definite, the distances induced by the noncanonical metric (38)
and by the canonical metric—(38) with B := I—are locally equivalent,
and therefore for a given sequence both distances yield the same rate of
convergence.

We have now all the required information to use the RTR-tCG method
(Algorithm 1-2) for minimizing the Rayleigh cost function (37) on the Grass-
mann manifold Grass(p, n) endowed with the noncanonical metric (38). This
yields the following matrix version of the inner iteration. (We omit the hor-
izontal lift notation for conciseness.) We use the notation

HY [Z] = PBY,BY (AZ − BZ(Y T BY )−1Y T AY ). (46)

Note that the omission of the factor 2 in both the gradient and the Hessian
does not affect the sequence {η} generated by the tCG algorithm.

Algorithm 3 (tCG for (A, B)) Given two symmetric n × n matrices A
and B with B positive definite, and a B-orthonormal full-rank n× p matrix
Y (i.e., Y T BY = I).

27



Set η0 = 0 ∈ R
n×p, r0 = PBY,BY AY , δ0 = −r0;

for j = 0, 1, 2, . . . until a stopping criterion is satisfied, perform the iteration:

if trace
(

δT
j HY [δj ]

)

≤ 0

Compute τ > 0 such that η = ηj + τδj

satisfies trace
(

ηT η
)

= ∆;
return η;

Set αj = trace
(

rT
j rj

)

/trace
(

δT
j HY [δj ]

)

;

Set ηj+1 = ηj + αjδj;

if trace
(

(

ηj+1
)T

ηj+1
)

≥ ∆

Compute τ ≥ 0 such that η = ηj + τδj satisfies trace
(

ηT η
)

= ∆;
return η;

Set rj+1 = rj + αHY [δj ];

Set βj+1 = trace
(

rT
j+1rj+1

)

/trace
(

rT
j rj

)

;

Set δj+1 = −rj+1 + βj+1δj;
end (for).

According to the retraction formula (39), the returned η yields a candi-
date new iterate

Y+ = (Y + η)M

where M is chosen such that Y T
+ BY+ = I. The candidate is accepted or

rejected and the trust-region radius is updated as prescribed in the outer
RTR method (Algorithm 1), where ρ is computed using m as in (45) and f̂
as in (41).

The resulting algorithm converges to eigenspaces of (A, B)—which are
the stationary points of the cost function (37)—, and convergence to the left-
most eigenspace V is expected to occur in practice since the other eigenspaces
are numerically unstable. Moreover, since V is a nondegenerate local min-
imizer (under our assumption that λp < λp+1), it follows that the rate of
convergence is min{θ + 1, 2}, where θ is the parameter appearing in the
stopping criterion (11) of the inner (tCG) iteration.

This algorithm is further developed in [ABGS05]. Relations with other
methods are investigated in [ABG06].

6 Conclusion

We have proposed a trust-region approach for optimizing a smooth function
on a Riemannian manifold. The method improves on the well-known Rie-
mannian Newton method of Smith and Udrişte in three ways. First, the
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exponential mapping is relaxed to general retractions with a view to reduc-
ing computational complexity. Second, a trust-region safeguard is applied
for global convergence. Third, early stopping of the inner iteration (yielding
inexact solutions of the trust-region subproblems) is allowed under criteria
that preserve the convergence properties of the overall algorithm. Taken in-
dependently, none of these concepts is new; the novelty is their combination
in a general algorithm for optimization on manifolds, aimed at numerical
efficiency with reliable global behavior, and supported by a detailed conver-
gence analysis.
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