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Abstract: Nowadays, there is an increasing number of cameras placed on mobile devices connected

to the Internet. Since these cameras acquire and process sensitive and vulnerable data in applications

such as surveillance or monitoring, security is essential to avoid cyberattacks. However, cameras on

mobile devices have constraints in size, computation and power consumption, so that lightweight

security techniques should be considered. Camera identification techniques guarantee the origin

of the data. Among the camera identification techniques, Physically Unclonable Functions (PUFs)

allow generating unique, distinctive and unpredictable identifiers from the hardware of a device.

PUFs are also very suitable to obfuscate secret keys (by binding them to the hardware of the device)

and generate random sequences (employed as nonces). In this work, we propose a trusted camera

based on PUFs and standard cryptographic algorithms. In addition, a protocol is proposed to protect

the communication with the trusted camera, which satisfies authentication, confidentiality, integrity

and freshness in the data communication. This is particularly interesting to carry out camera control

actions and firmware updates. PUFs from Static Random Access Memories (SRAMs) are selected

because cameras typically include SRAMs in its hardware. Therefore, additional hardware is not

required and security techniques can be implemented at low cost. Experimental results are shown to

prove how the proposed solution can be implemented with the SRAM of commercial Bluetooth Low

Energy (BLE) chips included in the communication module of the camera. A proof of concept shows

that the proposed solution can be implemented in low-cost cameras.

Keywords: cameras on mobile devices; camera security; camera identification; trusted cameras;

physically unclonable functions (PUFs); SRAM PUFs

1. Introduction

Cameras are employed in many applications that require high security, like the widely used

surveillance systems. Nowadays, many networked cameras are not part of closed circuit television

(CCTV) systems or closed image sensor networks. Instead, they are connected to larger and public

networks such as the Internet. This implies an increase of the security risks because cameras are

attractive targets for cyberattacks [1]. In addition, many cameras are not static, but they are placed on

mobile devices since current daily life is featured by mobility. The problem is that cameras on mobile

devices have constraints in size, computational capabilities, and power consumption, so that their

security has to be achieved at low cost [2].
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Inclusion of cameras in mobile devices has spread their application domains. In military applications,

for example, tiny cameras are included on the helmets of troops to help soldiers in the battlefield.

Cameras can identify the objects in front of the soldiers to detect threats and to share information among

them and the officers in charge of the mission. In novel surveillance applications, spy drones with

cameras are being increasingly used by police units, government sectors or officials and military forces.

Cameras in civil action applications related to sports such as cycling, surfing, running, etc., are highly

demanded. The Internet of Things cameras, such as baby monitors or telecare cameras, and the

cameras used in medical devices, such as endoscope cameras, are also being increasingly used [3,4].

Since in most of the above-mentioned applications the receivers do not see the scenes that the

camera is capturing, they have to trust in the camera. A requirement of any trusted communication is

the authentication of the sending point, that is, the receiver should be able to verify that the received

images have been captured by a previously identified camera. This is the first link of a digital chain of

custody. Camera identification is an important branch of multimedia forensics that aims to associate

specific captures to the source camera from which they were taken. As a matter of fact, digital

content can be used as evidence in judicial proceedings provided that the camera is proven to have

been capturing the criminal activity. Camera identification is also interesting to avoid counterfeiting

cameras. Counterfeiting is a big problem, not only for original camera manufacturers, who can lose lot

of money, but also for consumers, because the lower quality of fake cameras increases the probability

of application failures.

In many cases, the information acquired by the camera is sensitive. This happens if they are used

by police or military forces, or if they can threat personal privacy and anonymity (since it is possible,

for example, to track and identify people with digital cameras). Attackers may want to intercept the

information transmitted by the camera in order to gain information. In these cases, not only camera

identification is required for trusted communication but also information encryption is required to

avoid sniffing attacks. Confidentiality of the images is also imposed by legal regulations in order to

preserve sensitive personal data [1].

In addition, if information sent by a camera is not authenticated, man-in-the-middle attacks can

be carried out. The images can be altered and false images can be injected to show a situation that

replaces the real scene. An example of man-in-the-middle attack is the facial reenactment described

in [5], where the content of the video captured by a camera is modified in real time before being

received (the facial expressions of a target actor are changed by the expressions of a source actor).

There are also popular software tools, like Virtual Webcam, ManyCam or Magic Camera, which are

able to modify the images captured and to simulate real-time captures. To avoid man-in-the-middle

attacks, information integrity is required.

Another well-known cyberattack is to take the remote control of the camera and to record data

without the knowledge and permission of the camera’s owners. For example, the control of a camera

connected to the Internet is usually taken by obtaining the password employed for the WiFi connection.

These attacks are produced even if the cameras are in the stand-by (or energy-saving) mode because

they are designed to maintain a wireless connection in any circumstance, for example by using the

Bluetooth communication module. A well-known Distributed Denial-of-Service (DDoS) attack was

performed in October 2016 by means of installing the Mirai malware on a large number of devices [6].

In this case, remotely controlled bots, mostly Internet-connected cameras, were employed to spread

the malware. In order to avoid this, the firmware (the code) to be executed by the camera should be

proven to be authentic [7–9].

Many techniques have been proposed for camera identification in the last two decades [10–27].

An identifier is extracted and associated with a camera as a fingerprint that makes it distinguishable

from another one (of the same brand or even of the same model). Camera identifiers are features that

can be extracted from three types of sources: (1) metadata assigned to the camera; (2) captures from

which to obtain characteristics defined by the electronics components and processing algorithms of the

camera; and (3) electronic components from which to extract intrinsic characteristics of the camera
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hardware. In the latter case, Physically Unclonable Functions (PUFs) have been reported to generate

unique, distinctive and unpredictable identifiers produced by the manufacturing process variability of

the hardware [28]. In contrast to metadata (which are externally assigned to the camera), or identifiers

extracted from the captures (which depend on the type of external scenes), hardware-based PUFs are

intrinsic to the camera and are directly extracted from the camera hardware [23–27]. These PUFs allow

adding security functionalities at a low cost, without burdening the processing unit of the camera.

This is why this paper presents a camera identification technique using hardware-based PUFs.

Encryption algorithms should be selected carefully to provide real-time performance with low-cost

cameras on mobile devices, which have constrained computing and memory resources. Digital Rights

Management (DRM) schemes are widely used to protect video streams on the Internet, but they employ

cryptographic techniques that are computationally intensive for low-cost cameras. Cryptographic

techniques (symmetric and asymmetric) are the standard techniques to provide security. The symmetric

cryptography techniques, which employ the same key to cipher and decipher, have the problem

of secret key communication through non-secure channels, and the vulnerability to repudiation

attacks, because they do not use digital signatures. On the other side, the asymmetric techniques,

which employ a pair of public–private keys for each communication extreme, are computationally

more complex than symmetric techniques, particularly for multimedia data, and require larger key

sizes (generally, the double). Hence, asymmetric techniques are usually employed to interchange

keys through non-secure communication channels and to create digital signatures (which provide

non-repudiation), and symmetric techniques are used to cipher and decipher the data [1,29,30]. Several

solutions based on chaos theory, cellular automata and DNA computing have been reported to

authenticate encrypted images [31]. However, since they do not follow cryptographic standards,

their security can be compromised [32]. This is why this paper focuses on standard and symmetric

cryptographic techniques.

The contribution of this work is the proposal of a lightweight solution for trusted cameras based

on binding the software executed in the camera to the hardware of the same camera (without inclusion

of additional hardware). The solution is designed as a complete cryptographic solution that provides

camera identification, information confidentiality and integrity, as well as a protocol that protects the

communication with the camera, which is particularly interesting to carry out trustworthy camera

control actions and firmware updates. PUFs are extracted from the Static Random Access Memories

(SRAMs) included in the camera hardware to generate the physical identity of the camera, to obfuscate

cryptographic keys, and to obtain nonces (numbers used only once). In summary, the proposed solution

provides: (a) authentication by guaranteeing the origin of the data through the camera identifiers

extracted from PUFs; (b) information confidentiality by ciphering the messages with secret keys that

are not stored in the camera but reconstructed whenever needed with the identifiers extracted from

PUFs; (c) information integrity by means of Message Authentication Codes (MACs); and (d) freshness

in the communication through the nonces extracted from PUFs. Experimental results obtained from

the SRAM-based PUFs found in the low-cost cameras validate the proposal. A proof of concept shows

that the proposed solution can be implemented in low-cost cameras.

A preliminary version of this work appears in [27]. This work does not provide details of the

operation modes of the camera and does not describe any communication protocol with the camera.

A standard off-the-shelf SRAM is used as PUF, which is not included in any unit of the camera,

and experimental results are provided for the PUF working at nominal operation conditions.

The new contributions of this paper are the following. It summarizes the camera identification

techniques proposed in the literature and mentions the motivations to select SRAM PUFs as camera

identifiers. This is the focus of Section 2. Section 3 details the algorithms executed in enrollment

and normal operation phases to generate camera identifiers, nonces and secret keys which are

employed in standard cryptographic algorithms. A trustworthy communication protocol is proposed

in Section 4 which satisfies authentication, confidentiality, integrity, and freshness by means of

authenticated encryption and key derivation techniques based on the trusted cameras previously
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described. This paper employs as PUF the SRAM included in the communication unit of the camera and

more exhaustive experimental results are included, particularly with the PUF working at non-nominal

operation conditions. These experimental results concerning reliability, uniqueness, unpredictability

and randomness of the identifiers and nonces extracted from the SRAM PUF are shown and discussed

in Section 5. A prototype of a low-cost trusted camera is presented also in Section 5 as a proof of

concept. Finally, conclusions are given in Section 6.

2. Summary of Camera Identification Techniques

Several camera identification techniques have been reported in the literature. The simplest ones

employ metadata, related to information stored in the camera about the conditions of the image

acquisition. The most common metadata are Exif (Exchangeable images file format), which usually

include the version of the camera software, the image resolution, date and time and, in some cases,

the GPS coordinates of the image acquisition. A main drawback of these techniques is to be very

vulnerable to malicious attacks. The metadata file can be modified easily, for example by using

multimedia processing tools. A similar approach is to assign a specific number to each camera,

for example, identifying a camera by its MAC (Media Access Control) address. However, a MAC

address can also be faked easily.

Other techniques extract identification features from the camera captures, taking advantage that

the software and hardware components of the camera leave traces in the content of the images [10].

Identification features can be extracted from statistical information, color components, image quality

metrics, and frequency domain of the images. Generally, several features are combined to obtain more

accuracy in identification. A feature selection algorithm is usually employed to consider the most

representative features, and a complex classification process, generally based on a Support Vector

Machine (SVM), is applied. In [10], 16 statistical, 12 color, 40 quality, and 81 wavelet features are

considered. The 16 statistical values (mean, median, maximum, minimum, variance, kurtosis and

skewness) are computed for rows and columns, as well as their ratio (between rows and columns).

The 12 color features are extracted from the pixels’ average values for each RGB channel, correlation

pairs between RGB bands, neighbor distribution center of mass for each color band, and energy ratios

between RGB pairs. In order to detect the 40 quality differences in brightness, sharpness and color

quality, measures based on the pixels differences, correlation and spectral distance are taken. Prior to

the computation of the image quality metrics, a filtering should be applied to reduce the noise of the

original image (for example, a Gaussian filter to perform image smoothing). The 81 wavelet features

are obtained from the pattern noise image (from 3 color channels × 3 wavelet components × 9 central

components). Therefore, this approach requires high computing resources.

Deep learning is also applied to camera identification, specifically for identification of the

manufacturer and the model of the camera. In [11], a fixed high-pass filter suppresses image content

(such as interferences caused by image edges and textures) and extracts low-level features. The filter is

applied to each color channel separately. Then, a wavelet-based denoising filter is applied and the

resulting image is fed to a Convolutional Neural Network. In [12], the fixed high-pass linear filter

is replaced by a nonlinear filter. The feature maps produced by a set of constrained convolutional

filters concatenated with the nonlinear feature residuals are then passed to a regular convolutional

layer. The approaches based on deep learning require not only higher computing resources than the

previously commented approach but also big databases for training.

The lens system of a camera has been also employed to generate identifiers since they can

introduce distinctive aberrations, such as astigmatism, spherical, coma, radial distortion, field

curvature, chromatic aberrations, or dust particles. The drawback of these aberrations is that their

permanence in time is reduced, which limits its use as camera fingerprints [13].

Other authors consider the interpolation algorithms used to obtain the Color Filter Array (CFA).

The configuration of the CFA filters, the demosaicing algorithm, and the color processing techniques
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introduce significant differences between cameras of different manufacturers. However, this approach

is not efficient at differentiating between different models from the same manufacturer [13].

Regarding identification techniques based on the image sensor, the most extended ones employ the

Sensor Pattern Noise (SPN). It is the spatial pattern formed by the minor changes in the intensity of the

pixels caused by the imperfections of the sensor manufacturing process, including the inhomogeneity

of silicon wafers. In [14], the dark current noise component (also called Fixed Pattern Noise, FPN) is

employed. The dark current noise is a signal collected from the sensor when it is not exposed to light

and, thus, dark current can only be extracted from dark frames. This limits the method because camera

identification is not possible from regular (non-dark) frames. In addition, some consumer cameras

suppress this noise automatically by subtracting a dark frame from every image they take. The most

used noise component is named Photo Response Non Uniformity (PRNU) [15], which is determined by

the different sensitivity of the pixels to light. Not every pixel of the sensor is identical and will therefore

respond differently to the same amount of light. The amount of photons converted in electrons by

the pixels is associated with the photosensitive area and the presence of imperfections in the sensor

chip. Thus, the PRNU is a multiplicative factor of the photoelectron number. In order to determine

the PRNU of a camera, the first step is the application of an averaging operation to several images.

In a second step, the noise is extracted from the averaged frame by applying a filtering operation.

The performance of the PRNU extractor depends on the choice of that filtering. Wavelet transform,

sparse 3D transform-domain collaborative filtering or context-adaptive interpolation algorithms

are considered in the literature. Then, the noise pattern is obtained by subtracting the averaged

frame without the noise from the averaged frame with the noise. In addition, spectrum equalization

algorithms are considered to detect and suppress the peaks created by other artifacts (such as CFA

patterns), which are similar in cameras of the same model or brand and thus survive the averaging

operation. Once the approximated PRNU noise is obtained, the presence of the reference pattern in the

image is evaluated by using correlation.

PRNU is effective when the images have good quality and are acquired under specific conditions.

Since the noise contains not only the PRNU information but also traces of scene details, flat-field

images (e.g., blue sky) are preferred. However, flat-field images are not always available and images

with varying scene details have to be considered. In this case, the impact of scene details should

be suppressed by averaging a higher number of images [16]. In addition, the use of PRNU is not

very efficient in low-quality cameras because they can introduce noise components that affect the

PRNU estimation [17].

From a computational point of view, the dimensionality of PRNUs is as large as the original

image. Thus, the storage space, the time to access the memory, and the matching complexity are

considerable. In order to reduce PRNU dimensionality, decision trees [18], binarization [19], PCA

(Principal Component Analysis) and LDA (Linear Discriminant Analysis) techniques [20], and random

projections [16,21] have been applied. In the case of decision trees, the number of matchings is

reduced but matching errors tend to increase when a large number of PRNUs are stored. Binarization

reduces the storage in memory, but it degrades the matching accuracy due to information loss. PCA

and LDA are applied to extract more compact PRNU representations. The disadvantage of this

proposal is that the system needs to be re-trained if PRNUs from new cameras have to be included.

Dimensionality is also reduced by means of random projections, which are not based on learning and

do not require training. However, since the subspace is randomly selected, the representation is not

optimal and the matching accuracy is compromised. Despite the complexity of the PRNU extraction

process, the separation between intra-class (measurements from the genuine camera) and inter-class

distributions (measurements from impostor cameras) is not complete [20].

The use of high frequency components of the PRNU pattern estimated from raw photos acquired

in controlled conditions is proposed in [22] as a weak PUF. In the enrollment phase, PRNU information

compressed with adaptive random projections is used to obfuscate a random binary sequence encoded
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with polar codes and to generate a secure sketch. In the authentication phase, only the genuine camera

is able to recover the original binary sequence from the secure sketch.

Recent works propose the use of Physically Unclonable Functions (PUFs) to extract bit strings

from the response of specific hardware components included in the camera. These bit strings can be

employed as camera identifiers because PUFs allow generating unique, distinctive and unpredictable

identifiers produced by the manufacturing process variability of the hardware [28].

In [23], the response of the pixels in a charge-coupled device (CCD) to a defined incident light is

used as PUF. The light source is conceived to be integrated into the camera circuit in combination with

a movable opaque cover to prevent undesirable incident light on the CCD. The analog electrical signals

emitted by the pixels are converted into digital signals which are employed as camera identifiers.

The disadvantage of this proposal is that extra hardware modules should be included in the camera.

In [24], PUFs are extracted from Dark Signal Non-Uniformity (DSNU) in CMOS image sensors.

The PUF response is a binary string extracted from the pixel array. Each response bit is obtained

by comparing the reset voltages of two pixels. The output bit is ‘0’ or ‘1’ depending on which reset

voltage is larger. The selection of the pixel pairs is determined by a digital input challenge and a seed

that initializes a Linear Feedback Shift Register (LFSR). The input challenge selects the first pixel and

the second pixel is selected by encrypting (XOR-ing) the input challenge with an LFSR-based stream

cipher. The pixel pair is selected for the PUF response if their reset voltage difference is greater than a

predefined threshold Pth, so as to ensure that the output bit is stable. Given an input challenge and a

seed, the Hamming Distance between the PUF response obtained and the PUF response stored in a

server is calculated. If the distance is sufficiently small, the camera is correctly identified. This approach

requires additional hardware because a switch transistor should be included in each pixel of the image

sensor (the measurements cannot be obtained directly from commercial CMOS image sensors). Another

disadvantage is that the proposal for authentication is based on extracting the seed of the LFSR from

features of captured images that are sent to the central monitor for authentication. However, if the

images suffer some modification, the seed is not well recovered and authentication fails. In addition,

the threshold Pth is technology dependent and should be determined empirically. For lower Pth values,

the number of challenge response pairs is higher, but the PUF reliability is worse. In contrast, for higher

Pth values, the PUF reliability is better but the number of challenge response pairs is lower.

The proposal in [25] is similar to [24] but oriented to DVS (Dynamic Vision Sensor) cameras.

In order to isolate the PUF response and to prevent the DVS events from interfering with the PUF

operation, three transistors are added to each pixel. This issue introduces more complexity than the

previous proposal.

In [26], camera identifiers are based on PUFs extracted from ideally exact ring oscillators (ROs).

Two ROs are selected using multiplexers and their frequencies are quantified with two counters.

Both counters stop when another reference counter reaches a predefined value. The values of the two

counters are compared and a response bit is generated depending on the positive or negative value

of the difference. The disadvantage of RO-based PUFs is that additional hardware (the ROs) should

be specifically included in the camera. In [26], ROs are implemented in a trusted visual sensor node

based on a field programmable gate array (FPGA). Another drawback is the extra power consumption

required by the ROs to generate the PUF response.

Most camera identification techniques summarized above are not integrated under a complete

standard cryptographic solution. The camera identifier is generated to authenticate the origin of the

images but there are no specific proposals that describe exhaustively how the camera could satisfy not

only authentication but also confidentiality, integrity, and freshness.

In this work, we present a trusted camera based on SRAM PUFs extracted from the hardware

modules of the camera, without extra hardware required (SRAMs are readily present in many parts of

a camera), with very low extra power consumption, with a lightweight processing cost, and integrated

into a complete cryptographic solution.
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3. A Proposal of Trusted Cameras Based on SRAM PUFs

The proposed trusted cameras are identified by their SRAM PUFS. The extraction of PUFs from

SRAMs is based on the start-up values obtained by powering up the memory. Each SRAM cell is a

bistable circuit whose logic memory functionality comes from two cross-coupled inverters. A write

operation forces the SRAM cell to transition towards one of the two stable states (‘0’ or ‘1’). If the cell is

powered-up and no write operation is carried out, the positive feedback between the two inverters

leads the cell to the start-up value imposed by the inverter which begins to conduct. Ideally, the two

inverters are identical, but the random variations in the manufacturing process make them different so

that one of them is the first to conduct in each cell. Manufacturing process variations are unique of

each SRAM, unpredictable, and difficult to be cloned physically or modeled mathematically. Hence,

the bit strings composed of SRAM start-up values meet the requirements of PUF responses [28,33–35].

SRAM PUFs can be found in the hardware components of a camera so that no extra hardware is

required, which is an advantage compared to the use of the other PUFs commented on in the previous

section. The components of a camera (as illustrated in Figure 1) are the following: (1) the sensing

unit where the image sensor performs the captures and converts the optical image to an electronic

signal; (2) the processing unit (with the main processor), which applies different types of operations

(compression or adjustments of brightness, sharpness or contrast, etc.); and (3) the communication

unit, which includes input and output ports to receive or send data by employing a communication

protocol (particularly Bluetooth and WiFi in the case of cameras on mobile devices). However, typically,

there are SRAMs in the three units. Our proposal is to use the SRAM in the communication unit as

SRAM PUF. Current cameras on mobile devices use wireless communications based on a combination

of WiFi and Bluetooth Low Energy (BLE). WiFi is activated to establish communications at a high

speed. However, it is much more costly in terms of power consumption. Hence, when the camera is

not transmitting data, the communication module activated is the BLE in order to maintain the camera

connected in a low power consumption mode. When the BLE is activated, the start-up values of its

SRAM are collected as PUF responses.
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Figure 1. Block diagram of a trusted camera based on SRAM PUFs.

The proposed trusted cameras have two main operation modes: registration or enrollment and

normal operation mode. The registration or enrollment is required by any camera identification

techniques in order to register the camera by its identifiers or other parameters related to them.

Our proposal is to employ standard cryptographic techniques in the normal operation mode and

identify the camera by its SRAM PUF, so that only a genuine camera with its SRAM PUF and its

non-sensitive information stored in its non-volatile memory is able to reconstruct the cryptographic

key. The non-sensitive information is related to the physical identity of the camera as will be described

in the following.
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3.1. Enrollment Phase

The use of cryptographic techniques with a lightweight processing cost requires the generation

not only of good identifiers but also of nonces. Hence, the proposed trusted cameras are registered

with the following steps. The first step is to select the SRAM cells that provide generally the same

start-up value, which will be named herein as STB cells. For that purpose, the simple processing

described in Algorithm 1 and proposed in [33] is carried out. Most of the SRAM cells are STB cells.

They are considered in the STB_mask. However, the inverters of some cells are very similar so that

their start-up values change due to noise, thus providing flipping bits. These cells change its values in

each start-up and they are not selected for identifiers. Particularly, those which usually change their

start-up values, for example half of the time, are selected to generate the nonces. They are named

herein as RND cells. In Algorithm 1, the number of start-up value changes for each cell is accumulated

in the STB_counter. If the STB_counter is M/2 for a cell, the cell is considered in the RND_mask,

and when it is zero, it is considered in the STB_mask.

Algorithm 1 Pseudo-code of STB and RND masks extraction

Require: Number of measurements M

for i = 1 to M do

power down and up the SRAM

if i = 1 then

save the start-up values

else

for all the cells of SRAM do

compare the start-up value of the cell with the stored one

if cell value does not change then

do not increase the count for the cell in STB_counter

else

increase the count for the cell in STB_counter

end if

end for

end if

end for

for all the cells of SRAM do

if its count in STB_counter is 0 consider the cell in the STB_mask

if its count in STB_counter is M/2 consider the cell in the RND_mask

end for

reset all STB_counters to zero

return STB_mask, RND_mask

The second step of the enrollment phase is to select the STB cells that provide a debiased PUF

response, which will be named herein as ID cells. This step is needed because a requirement to ensure

the unpredictability property of a PUF is that the number of zeros and ones in the PUF response should

be the same. For that purpose, the simple processing described in Algorithm 2 is carried out. It applies

the pair-output von Neumann (2O-VN) debiasing technique proposed in [36].

Algorithm 2 Pseudo-code of 2O-VN debiasing

Require: STB_mask

power down and up the SRAM

apply the STB_mask and obtain response from N STB cells

for j = 1 to N/2 do

if start-up-value-of-cell(2j) 6= start-up-value-of-cell(2j-1) consider both cells in ID_mask

end for

return ID_mask
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The third step of the enrollment phase is to generate the Helper Data needed to apply a Code

Offset-based Helper Data algorithm as described in [37]. Code Offset-based Helper Data algorithms

employ Error Correcting Codes (ECC) to generate non-sensitive information, known as Helper

Data, from sensitive data such as a cryptographic key and noisy data such as the PUF response.

The complexity of the ECC is higher as the noise (flipping bits) in the PUF response is higher [33]. Since

ID cells do not provide usually flipping bits (they are STB cells), a simple repetition ECC is employed,

as can be seen in Algorithm 3.

The last step of the enrollment phase is to store the non-sensitive information generated

(the ID_mask, RND_mask, and Helper Data) in the non-volatile memory of the camera. The sensitive

information (the start-up values of the SRAM cells and the cryptographic key) are not stored anywhere.

Hence, this solution is more robust to attacks than approaches that directly store the cryptographic key

or the camera identifiers (for example the metadata).

Algorithm 3 Pseudo-code of Helper Data generation

Require: Cryptographic Key K = [k1, . . . , ka], ID_mask

power down and up the SRAM

apply the ID_mask and obtain response from ID cells

each bit of the key is repeated r times: Kcoded = [k11, . . . , k1r, . . . , ka1, . . . , kar]

ID = concatenation of the start-up values of a · r ID cells

Helper Data = ID
⊕

Kcoded

return Helper Data

There are hardware modules that include protection, known as Trusted Platform Modules

(TPMs), which store and process sensitive data in a software protected domain (ARM TrustZone [38],

Texas Instruments M-ShieldTM [39], or Intel®Software Guard Extensions [40]). However, they are

more power hungry and expensive than the standard non-volatile memories used in our proposal.

In addition, several techniques have been reported to attack and extract data from them [41] and

malware has been demonstrated to be run in these hardware enclaves [42].

3.2. Normal Operation Phase

In addition to authentication and freshness (given by the camera identifiers and nonces extracted

from SRAM PUFs), the proposed trusted cameras employ standard cryptographic algorithms to

provide confidentiality and integrity.

Confidentiality is achieved by symmetric ciphering. According to how the data are ciphered,

ciphers can be classified into block and stream ciphers. Block ciphers process blocks of bits while

stream ciphers encrypt bits individually. Among block ciphers, AES (Advanced Encryption Standard)

was approved in 2001 as a US federal standard (FIPS PUB 197) and then it was included in the

ISO/IEC 18033-3 standard. Hence, AES is the dominant symmetric-key algorithm in many commercial

applications. In particular, many cameras on mobile devices include a hardware module that

implements AES.

Integrity of the messages is achieved by Message Authentication Codes (MACs). MACs are

usually employed to obtain authentication tags (or cryptographic checksums). Block ciphers or hash

functions can be employed to obtain MACs. In practice, the most popular approach is to use a block

cipher such as AES in Cipher Block Chaining (CBC) mode, according to NIST 800-38A [43]. In this

mode, the first iteration of the MAC algorithm is computed with the secret key, an Initialization Vector

(IV) and the first block of the data to encrypt. The subsequent plaintext blocks are XOR-ed with the

previous ciphertext block before they are encrypted. The MAC of the message in CBC-MAC is the

output of the last round. Chaining mode is preferred to encrypt long messages such as images because

each ciphertext block produced not only depends on the plaintext block (and the secret key) but also
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on the preceding blocks. If each block is encrypted independently instead of using chaining mode,

encrypting the same plain text using the same key produces the same cipher text.

The proposed trusted cameras employ AES-CBC as standard authenticated encryption algorithm.

CBC mode requires a 128-bit IV and a key with a default size of 128 bits. The IV should never be

reused under the same key because it leaks some information about the first block of the plain text.

In addition, the IV must be also unpredictable at encryption time. If an attacker knows the IV (or the

previous block of the cipher text) before the next plain text is specified, the attacker can try to obtain

the plain text of some block that was encrypted with the same key before, which is known as the TLS

(Transport Layer Security) CBC IV attack.

The novelty of our proposal is that the start-up values of the SRAM included in the camera are

employed to reconstruct the secret key of 128 bits and to generate the 128 bits for the IV. Whenever

the key is required, the key reconstruction step is carried out as described in Algorithm 4. At key

reconstruction, new start-up values are obtained from the ID cells used in the enrollment phase (known

by the information in the ID_mask). The start-up values will not be exactly the same as the response

used at the Helper Data generation but very similar because a low bit flipping may happen. Hence,

using them and the stored Helper Data, a noisy version of the encoded secret key is obtained. Then,

the decoder of the ECC is able to recover the cryptographic key. In normal operation mode, the required

nonces are obtained from the start-up values of the RND cells, using the information in the RND_mask.

Algorithm 4 Pseudo-code of key reconstruction

Require: Helper Data, ID_mask

power down and up the SRAM

ID = new concatenation of the start-up values of the a · r ID cells

Kcoded = Helper Data
⊕

ID

K = ECC(Kcoded)

return K

4. A Proposal of Trustworthy Communication Protocol with the Trusted Cameras

Let us consider a typical scenario in which a base station communicates with the camera in

the mobile device in order to request the acquisition of images, to update its firmware, etc. Let us

assume an adversarial model in which the attacker has full control of the communication link, that is,

can modify messages, inject message forgeries, replay previously sent messages, or interrupt the

communication. In addition, let us assume that the attacker has the capability to reach the camera

physically and obtain the information stored in it. Not only the base station should prove that the

camera is trusted but also the camera should prove that the base station and its requests are trusted so

as to avoid cyberattacks aimed at malicious uses of the camera.

The trustworthy protocol proposed herein takes advantage of the camera operation modes

to implement a secure communication between the camera and the base station considering the

adversarial capabilities assumed above. It follows the model of secure channels introduced in [44],

in which communications over insecure links are protected through sessions with two stages. First,

the camera and the base station establish an authenticated and shared secret session key. Second,

the session key is used with symmetric-key cryptographic functions to protect the integrity and

confidentiality of the transmitted information.

As in many other protocols, there is an initial phase that is run prior to the initiation of any

communication and that produces the required initial information without any adversarial attacks.

The camera executes a first enrollment phase during the manufacturing process and the first symmetric

key is established between the camera and the base station, assuming no attacks. The first key

established for the camera C is denoted as KC
0 . The camera executes Algorithm 3 and stores the Helper

Data, denoted as HDC
K0, in the non-volatile memory. Once the first enrollment is finished, the camera
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can be employed in its application context. The base station identifies the camera as the one which

employs the key KC
0 .

Figure 2 illustrates the proposed protocol between a camera C and the base station. The notation

used in Figure 2 to describe the operations and the message exchanges is the following:

• [a ‖ b] represents the plaintext “a” concatenated with the plaintext “b”.

• [c]K represents the plaintext “c” encrypted by AES-CBC using the key “K”.

• MACK(d) represents the authentication tag of the message “d” using CBC-MAC with the key “K”.

• “i” represents a randomly initialized index which increases by 1 both in the sender and the

receiver simultaneously after each message exchange is successfully completed.

• nonceB and nonceC represent, respectively, random numbers generated by the base station and

the camera.
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The symmetric keys and the IVs of the AES-CBC are refreshed based on the nonces generated for

each session. Hence, in order to initiate a communication between the camera and the base station,

they authenticate each other by their knowledge of KC
old and then derive a new session key KC

new and a

new initialization vector IVC
new. In Figure 2, the key agreement is carried out in Steps 1 and 2. A Key

Derivation Function (KDF) that follows NIST recommendations is employed (in our case, it is based

on AES) [45]. This function uses the previous key KC
old, a nonce sent by the base station, nonceB, and a

nonce sent by the camera, nonceC. In a generic session, a new key and IV are derived from the old ones

as in Equations (1) and (2), respectively:

KC
new = AESKC

old

(

nonceB
⊕

nonceC
)

, (1)

IVC
new = AESIVC

old

(

nonceB
⊕

nonceC
)

. (2)

The interchanged messages are composed of an index (i) and a request (in the case of the base

station) or a response (in the case of the camera). This is shown in Steps 3 and 4 in Figure 2. For example,
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the message in Step 3 can be the request of updating the firmware together with the firmware to update.

The messages are ciphered with AES-CBC by the symmetric keys (KC
old at the key agreement and KC

new

in the subsequent steps). In addition, the messages are authenticated with CBC-MAC.

AES-CBC is semantically secure or plaintext-indistinguishable, that is, given a target ciphertext

and two candidate plaintexts, the attacker cannot guess the right plaintext with probability significantly

better than 1/2 [44,46]. If the attacker listens all the transmitted information, nothing can be

distinguished, since there are no equal plaintexts (they have different indexes) and the keys and IVs

change in every session in unpredictable way. In addition, CBC-MAC resists chosen message attacks.

Hence, since the proposed protocol applies the encrypt-then-authenticate method, it implements

a secure channel, as demonstrated in [44] and analyzed in [46]. If the attacker has full control of

the communication link, any modification of messages, injection of forgery, or replay of messages

is detected by the recipient. The message index helps to avoid injection or replay attacks and to

detect interruptions.

The camera, when receives a genuine message, is able to decipher it and to verify its integrity.

If the message contains a request of images, the camera acquires the images. If the message contains

a request of firmware update, the camera updates the firmware. Whenever the camera receives a

fake message (the camera cannot decipher it) or an altered one (it does not verify authentication tag),

the camera ignores it.

If the base station does not receive any response to its request after time Tout, it considers that the

reply message is lost or that the camera has not received the message. In that case, the base station

resends the same message until it receives the reply message that contains the index increased or until

surpassing a given number of trials.

In order to reconstruct the new session key, the camera executes Algorithm 3 to generate the new

Helper Data HDC
Knew from their SRAM PUF and the new key. Then, it removes HDC

Kold and stores

HDC
Knew in Step 4, once it knows the base station has employed the new key. Similarly, in Step 5,

the base station removes KC
old and stores KC

new for the next communication with camera C, once it knows

the camera has already refreshed the key. The IV is public information that is stored without protection.

If the attacker reaches the camera physically and reads the information stored in the non-volatile

memory, only Helper Data and Masks can be read, but no information about secret keys can be

obtained. The focus herein is the security of the camera. The security of the base station is outside

the scope of this paper. It is assumed that the base station has enough resources to implement a high

security strategy.

Assuming physical access to the camera, the only way to extract information about the secret keys

is to apply side-channel attacks such as Differential Power Analysis (DPA) attacks to the AES or MAC

algorithms while they are operating. To avoid them, the hardware implementing those primitives in

the camera should be resistant to those attacks.

5. Experimental Results of the Proof of Concept

5.1. Evaluation of Identifiers Extracted from SRAM PUFs Included in Cameras

As commented above, many cameras on mobile devices use wireless communications based

on a combination of WiFi and Bluetooth Low Energy (BLE). WiFi instead of BLE is activated when

communication at high speed is required (for transmission of images and videos). When the camera

does not require WiFi, BLE is activated instead to maintain the camera connected in a low power

consumption mode. In order to evaluate if cameras can be identified unequivocally by the SRAM PUFs

available in their BLE chips, the CC2541 BLE chips from Texas Instruments were analyzed. Among the

SRAMs included in the BLE chip, the 8-KB SRAM from the Intel 8051 microcontroller was selected

as PUF. The Intel 8051 microcontroller is also able to access 256-KB of in-system-programmable flash

through a memory arbitrator block. The Helper Data, ID-Mask, and RND_mask are stored in that

non-volatile memory.
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A firmware was developed with the IAR Embedded Workbench to characterize the SRAM PUF

in the BLE chips. The CC-Debugger from Texas Instruments was employed, connected to the BLE

chip through I2C and to a PC through USB. The MSP430TM microcontroller from Texas Instruments

was employed to power down and up the BLE chip so as to extract automatically the start-up values

of the SRAM. The SRAM PUF was evaluated extensively in five BLE chips, taking 56,000 bits per

SRAM (7000 bytes). The environmental conditions that affect mostly the start-up values of SRAMs are

temperature and changes in ramp-up time (i.e., the time to reach power supply voltage value after

power-up) [34], but it is supposed that the ramp-up time cannot be modified because the on-chip

voltage regulator cannot be tampered. In order to evaluate the reliability of the PUF under variations in

temperature, three temperature values (5 ◦C, 25 ◦C and 75 ◦C) were considered and 120 measurements

were taken for each temperature. The climatic chamber ACS EOS 200TC was employed to control the

ambient temperature.

The ID_ and RND_masks for each BLE chip were created with the first 20 measurements at 25 ◦C,

executing Algorithm 1. The resting 100 measurements at all the temperatures were employed for

evaluation. The target of this methodology is to evaluate how a camera, whose enrollment phase is

carried out at nominal conditions (at 25 ◦C), works under different temperature conditions.

The advantages of selecting the STB cells of SRAM cells at enrollment phase are illustrated in

Figure 3. In this figure, 32,768 cells were considered for each SRAM PUF, organized as 16 different

responses with 2048 bits. Figure 3a shows the distribution of Hamming Distances (HD) calculated

for pairs of PUF responses when all the SRAM cells are considered to generate the responses (STB as

well as non-STB cells). HD computes the number of bits that are different in two PUF responses.

The fractional HD, as illustrated in Figure 3, refers to the percentage of bits that are different in two

PUF responses. The distribution of Hamming Distances calculated for responses from the same SRAM

cells (known as genuine distribution in identification applications and intra HD distribution in the

PUF literature) is shown on the left. The distribution of Hamming Distances calculated for responses

from different SRAM cells (known as impostor distribution in identification applications and inter

HD distribution in the PUF literature) is shown on the right. In Figure 3a, the intra HD distribution

corresponds to comparisons of responses from the same SRAM cells at the three temperatures by

considering all the possible combinations. The inter HD distribution is the fusion of all the possible

comparisons between cells from different SRAMs.
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Figure 3b shows the distribution of Hamming Distances calculated for pairs of PUF responses

when only the STB cells are considered to generate the responses (filtered with the STB_mask calculated

at 25 ◦C). The minimum percentage of STB cells found was 73.59% (which means a minimum of 41,213

STB cells for the cells evaluated in each SRAM). In Figure 3b, like in Figure 3a, 32,768 STB cells were
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considered for each SRAM PUF, organized as 16 different responses with 2048 bits. The intra HD

distribution, at the left, contains two peaks. The distribution with the peak closer to 0 corresponds

to the comparisons of responses at 25 ◦C. The other part of the intra HD distribution is related to

comparisons of responses at different temperatures. Compared with Figure 3a, bit flipping is reduced

in the genuine responses, as desired in reliable PUFs. Regarding the inter HD distribution, it is more

compact than without applying classification. In any case, it can be seen that the inter HD distribution

is not centered at 0.5, which means that the PUF responses do not contain the same number of ones

and zeros.

After applying the debiasing with Algorithm 2, the ID cells are found. 2O-VN Debiasing is very

simple computationally, but it eliminates many cells. The minimum percentage of ID cells found among

STB cells was 35.55% (which means a minimum of 14,651 ID cells for the cells evaluated in each SRAM).

Figure 4 shows the distribution of Hamming Distances calculated for pairs of PUF responses when only

the ID cells are considered to generate the responses. In this figure, 11,648 ID cells were considered for

each SRAM PUF, organized as 16 different responses with 728 bits. The intra HD is shown on the left

and the inter HD distribution is illustrated on the right. The intra HD distribution is similar to the

result in Figure 3b since ID cells are STB cells. Thus, bit flipping is reduced and it is possible to extract

reliable identifiers from the same camera. Regarding the inter HD distribution, there is a considerable

improvement when using ID instead of STB cells because the distribution is centered at 0.5. Thus,

identifiers from different cameras are very different. As a matter of fact, the Hamming Weight (defined

as the percentage of ones in the PUF responses) has an averaged value of 49.55%, which means that

distribution of ones and zeros is uniform, as required in unpredictable PUFs.

Sensors 2018, 18, x FOR PEER REVIEW  14 of 21 

 

cells were considered for each SRAM PUF, organized as 16 different responses with 728 bits. The 
intra HD is shown on the left and the inter HD distribution is illustrated on the right. The intra HD 
distribution is similar to the result in Figure 3b since ID cells are STB cells. Thus, bit flipping is 
reduced and it is possible to extract reliable identifiers from the same camera. Regarding the inter 
HD distribution, there is a considerable improvement when using ID instead of STB cells because the 
distribution is centered at 0.5. Thus, identifiers from different cameras are very different. As a matter 
of fact, the Hamming Weight (defined as the percentage of ones in the PUF responses) has an 
averaged value of 49.55%, which means that distribution of ones and zeros is uniform, as required in  
unpredictable PUFs. 

 

 
Figure 4. Fractional Hamming Distances obtained from the PUF responses considering only ID cells. 

5.2. Obfuscation of Secret Keys by SRAM PUFs Included in Cameras 

As described in Algorithm 3, Helper Data are generated from XOR-ing the PUF response with 
the secret encoded with a repetition ECC. Hence, Helper Data do not leak information about the 
secret if the PUF response is highly random. A necessary feature of random PUF responses is to be 
uniform, which is achieved by considering ID cells, as shown above. 

Another way to evaluate the randomness of k PUF responses with a ∙ r bits is to calculate the 
minimum entropy as: 𝐻  = ∙ ∙ ∑ 𝑙𝑜𝑔 (𝑝 )∙  , (3)

where 𝑝  is the maximum probability of the i-th bit taking logic value ‘0′ or ‘1′ in the k  
responses [33]. If 𝐻  is 1, the k PUF responses are 100% independent and there are no correlations 
between the bits in different responses. This is the ideal situation to generate Helper Data that are 
quite independent and do not reveal information about the secret. 

The minimum entropy of the impostor responses shown in Figure 4, corresponding to nominal 
operating conditions (25 °C), calculated as in Equation (3), is 91.92%. This means that the secrets are 
almost fully obfuscated because the responses are highly random. 

Considering PUF responses with ID cells generated at nominal operating conditions, we have 
studied the Helper Data generated by employing either the same secret key for all the cameras or a 
different secret key for each camera. In both cases, the Helper Data associated with each camera are 
different. Figure 5 illustrates the inter HD distributions of both Helper Data. An interesting result is 
that they are very similar (they are centered at 0.5 within a similar range). Therefore, if an attacker 
could extract the Helper Data of the cameras, he/she could not know if they are associated or not to 
the same secret key. 

Figure 4. Fractional Hamming Distances obtained from the PUF responses considering only ID cells.

5.2. Obfuscation of Secret Keys by SRAM PUFs Included in Cameras

As described in Algorithm 3, Helper Data are generated from XOR-ing the PUF response with the

secret encoded with a repetition ECC. Hence, Helper Data do not leak information about the secret if

the PUF response is highly random. A necessary feature of random PUF responses is to be uniform,

which is achieved by considering ID cells, as shown above.

Another way to evaluate the randomness of k PUF responses with a·r bits is to calculate the

minimum entropy as:

Hmin =
1

a·r
·∑ a·r

i=1 log2(pimax), (3)

where pimax is the maximum probability of the i-th bit taking logic value ‘0’ or ‘1’ in the k responses [33].

If Hmin is 1, the k PUF responses are 100% independent and there are no correlations between the bits

in different responses. This is the ideal situation to generate Helper Data that are quite independent

and do not reveal information about the secret.
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The minimum entropy of the impostor responses shown in Figure 4, corresponding to nominal

operating conditions (25 ◦C), calculated as in Equation (3), is 91.92%. This means that the secrets are

almost fully obfuscated because the responses are highly random.

Considering PUF responses with ID cells generated at nominal operating conditions, we have

studied the Helper Data generated by employing either the same secret key for all the cameras or a

different secret key for each camera. In both cases, the Helper Data associated with each camera are

different. Figure 5 illustrates the inter HD distributions of both Helper Data. An interesting result is

that they are very similar (they are centered at 0.5 within a similar range). Therefore, if an attacker

could extract the Helper Data of the cameras, he/she could not know if they are associated or not to

the same secret key.Sensors 2018, 18, x FOR PEER REVIEW  15 of 21 
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As described in Algorithm 4, the decoder of the ECC should cope with the noise of PUF responses

to reconstruct the secret key without failures from the Helper Data. The bit flipping of a start-up

value can be modeled essentially as a Bernoulli trial, which takes value ‘1’ (if the bit changes) with

probability p and a value of ‘0’ (if the bit does not change) with probability 1 − p. If the n bits obtained

from the start-up values of n cells are assumed to be independent, the probability of finding t flipping

bits (or errors) in them is given by a binomial distribution. Hence, the probability that a PUF response

of n bits contains more than t flipping bits is given by:

Ptotal = 1 −
t

∑
i=0

(

n

i

)

·pi·(1 − p)n−i. (4)

The probability Ptotal provides the failure probability in reconstructing a bit of the secret key

when using an ECC with n-bit codewords and capacity to correct up to t errors, with p estimated by

the average fractional HD of the genuine population [33,37]. For a given Ptotal , the number of errors

(flipping bits) to be corrected and, hence, the complexity of the ECC, decreases as the value of the

average fractional HD for the genuine population gets lower. This is why using only ID cells instead

of all SRAM cells is advantageous.

The average fractional value of intra HD distribution obtained with ID cells (shown in Figure 4

above) is 0.0261. If this value is employed for p in Equation (4), an 8-bit repetition Error Correcting

Code (with n = 8 and t = 3) gives a probability of failure in reconstructing a bit of the secret

key K of 2.99 × 10-5 (according to the operation 1-binocdf (3, 8, 0.0261) in MATLAB 2017b from

MathWorks®). Therefore, the probability to find some error in a 128-bit secret key is 0.0038 (1-binocdf

(0, 128, 2.99 × 10−5)). For a 16-bit repetition Error Correcting Code, Equation (4) is evaluated by

considering n = 16 and t = 7 since the probability of failure in reconstructing a bit of the secret key
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K would be equivalent to the probability that 8 bits of Kcoded differ from Kcoded in eight bits or more.

The resulting value for the probability is 2.30 × 10−9 (according to the operation 1-binocdf (7, 16,

0.0261)). Therefore, the probability to find some error in a 128-bit secret key is 2.94 × 10−7 (1-binocdf

(0, 128, 2.30 × 10−9)). Hence, a 16-bit repetition Error Correcting Code is selected since an error rate of

10−6 is considered by many authors as a conservative value that fulfills the requirements of most of

the typical security applications [37,47].

In order to evaluate experimentally, the key reconstruction step with a 16-bit repetition ECC,

the 100 measurements from the five BLE chips and the three temperatures were employed to reconstruct

the secret key from the Helper Data associated with each device and calculated with the same secret

key. The Hamming Distances calculated between the correct secret key and the reconstructed secret

key when a genuine camera is employed (the secret key is reconstructed with the Helper Data and the

PUF response of a genuine camera) are all zero, as shown on the left side of Figure 6. On the other side,

the Hamming Distances calculated between the correct secret key and the reconstructed secret key

when an impostor camera is employed (the secret key is reconstructed with the Helper Data of another

camera and the PUF response of the impostor camera) are not zero but are centered at 0.5, as shown on

the right side of Figure 6.
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Table 1 shows a comparison with other proposals in the literature also aimed at securing cameras

with hardware-based PUFs [24–26]. Our proposal is preferred whenever the hardware of the camera

cannot be designed specifically to integrate the PUF into the image sensor [24,25] or into the controller

of the virtual sensor node [26]. Our proposal can be applied to any camera on a mobile device by

registering it and updating its firmware with the proposed trustworthy protocol described in Section 4

in order to execute the algorithms described in Section 3.

Table 1. Comparison with other proposals using hardware-based PUFs.

Proposal
Worst-case Average

Intra HD (%)
Average Inter HD (%) Results Specific Hardware

Frame-based image
sensor [24]

12 (Pth = 0)
0.2 (Pth = 80)

49.37
Experimental, with variations of

nominal conditions
Required

Event-based image
sensor [25]

3.70 49.96
Simulated, with variations of

nominal conditions
Required

Trusted visual
sensor node [26]

1.40 ~49.0
Experimental, with no variations

of nominal conditions
Required

This work 2.61 49.67
Experimental, with variations of

nominal conditions
Not required

In all of the proposals shown in Table 1, the PUF uniqueness, evaluated by the average inter HD,

shows a value close to the ideal value of 0.5. The PUF reliability, evaluated by the worst-case average

intra HD, changes more. In [24], a high reliability can be obtained by increasing the threshold Pth.
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For that purpose, Pth should be empirically determined and adjusted based on the characterization of

the sensor fabrication process. In [25], reliability was calculated with simulation results considering

variations of the operation conditions. In [26], reliability was measured with only nominal operation

conditions. Reliability of our proposal (measured experimentally under variations of nominal operation

conditions) can be further improved if the extraction of STB_mask considers measurements at all

the range of temperatures, as described in [33]. Anyway, since the achieved reliability is good and

can be managed by a simple repetition ECC, only measurements at nominal temperatures have been

considered in Algorithm 1 in order to carry out the enrollment phase faster. The computational cost of

applying a repetition ECC is much lower than applying BCH codes, as employed by other authors [25].

5.3. Evaluation of Nonces Extracted from SRAM PUFs Included in Cameras

The RND_masks for each BLE chip were created with the first 20 measurements at 25 ◦C, executing

Algorithm 1. The RND cells were the cells taking ‘0’ ten times and ‘1’ the other ten. The minimum

number of RND cells found in the BLE chips was 265 (0.47% of the 56,000 bits evaluated). This quantity

is enough to generate the 128-bit nonces.

The sequences generated by the same RND cells at different start-ups (considering 10 BLE chips)

were compared in pairs to calculate the average fractional Hamming distances. The result was 0.48,

which is almost the ideal value of 0.5 for random sequences. The minimum entropy calculated as in

Equation (3) with 100 measurements (from 1 to 100 start-ups) from the RND cells of one of the devices

at nominal temperature converges to 75%, as shown in Figure 7.
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The 100 sequences generated by the RND cells of one BLE chip after 100 power-up measurements

at nominal temperature was evaluated by the NIST test suite for randomness [48]. The result of

applying the frequency, forward and backward cumulative sums, and runs NIST tests to these

sequences are shown in Table 2. The frequency test measures if the number of ones and zeros in

the sequences are approximately the same as would be expected for a truly random sequence. This test

is passed if the Hamming weight of the nonces tended to be 0.5, that is, the number of ones and zeros

tended to be the same and there is no bias. The cumulative sums of the bits in the subsequences that

can be formed from the complete sequence (considering ‘1’ and ‘−1′ values) should be zero, as in the

complete sequence. In the forward mode, the subsequences are formed from the beginning to the

end of the complete sequence, and, in backward mode, the subsequences are formed from the end to

the beginning. The cumulative test measures if the subsequences of an unpredictable sequence are

also unpredictable. The runs test measures if the oscillation among substrings of consecutive ones

and consecutive zeros is too fast or too slow.Columns 1–10 in Table 2 correspond to the frequency of

p-values (the unit interval is divided into ten discrete bins). Column 11 is the p-value that arises via

the application of a chi-square test. Each NIST test is statistical and the p-values of a set of sequences
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are obtained. The proportion of sequences that pass a statistical test should fall inside the confidence

interval (in this case, it is of 99%). Column 12 is the proportion of binary sequences that passed.

The minimum pass rate for each statistical test is approximately 96 for a sample size of 100 binary

sequences. Therefore, the bit strings provided by the RND cells of the BLE chips passed the basic NIST

tests for randomness.

Table 2. Basic NIST tests evaluated for the sequences provided by RND cells.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-value Proportion Statistical Test

12 9 11 7 6 20 8 10 6 11 0.085587 96/100 Frequency
9 10 6 9 8 12 3 17 15 11 0.090936 96/100 CumulativeSums(fw)
10 7 8 6 7 22 4 9 12 15 0.003201 96/100 CumulativeSums(bw)
15 8 11 12 10 9 9 14 10 6 0.494392 98/100 Runs

These measurements prove that BLE chip was able to generate nonces with 128 bits to be employed

in the initialization vector and the key derivation functions.

5.4. Proof of Concept of a Trusted Camera

A low-cost camera based on Raspberry Pi 2 model B was developed as a proof of concept.

It employs an 8-megapixel sensor (Raspberry Pi Camera Module v2), which can provide video as well

as still photographs. As BLE communication, it employs the CC2541 module connected to the GPIOs

(General Purpose Input/Outputs) of the Raspberry. Figure 8a shows a photograph of the prototype.
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Picamera library for Python was used to work with the sensor module. The RPi.GPIO library

allows working easily with the GPIO to power down and up the BLE chip and to extract the start-up

values of the SRAM. A firmware implements the algorithms described in Section 3 to carry out the

enrollment and normal operation phases. The PyCrypto library was used to manage the block cipher

AES using a 128-bit secret key to encrypt and decrypt data as well as the CBC mode using a 128-bit

initialization value.

As an example, an image taken by the camera and its corresponding ciphered result are illustrated

in Figure 8b,c, respectively. The Tkinter library was employed to develop a Graphical User Interface to

visualize the results.

6. Conclusions

The security of the control actions and firmware updates of a camera is increased by the proposal

of a trusted camera and a communication protocol based on SRAM PUFs. The solution has been

carefully designed to satisfy the constraints of low-cost cameras included in mobile devices by selecting

lightweight and standard cryptographic algorithms and by avoiding additional hardware. We have

analyzed SRAM PUFs extracted from commercial BLE chips which can be typically included in

the communication module of a camera. Camera identifiers extracted from these BLE chips allow

obfuscating sensitive 128-bit secret keys into non-sensitive Helper Data. Only the genuine trusted
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camera can recover the secret key from the Helper Data when it is required (thus, authentication is

satisfied). In addition, 128-bit nonces are extracted from the SRAMs of the BLE chips. The secret keys

and the IVs generated are employed for the standard authenticated encryption algorithm AES-CBC.

Nonces are employed to derive session information by means of a Key Derivation Function based on

AES. Confidentiality and integrity are satisfied by means of the authenticated encryption. Freshness is

satisfied by means of the derivation of session information. The evaluation of the SRAM PUFs extracted

from the BLE chips proves the properties of uniqueness, reliability, randomness and unpredictability.

In spite of considering measurements from the BLE chips under temperature variations and a simple

repetition Error Correcting Code, the secret keys are recovered perfectly. As a proof of concept,

a Raspberry Pi-based mobile camera was developed, which contains the BLE chip as a communication

unit that could be powered down and up to extract the SRAM PUF. In this work, we have detailed

a security solution based on SRAM PUFs oriented to low-cost cameras. However, since SRAMs are

included in many devices, the proposed solution can be applied to other low-cost devices. This will be

considered as future lines of this work.
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