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Abstract
It is widely realised that provenance systems can bene-
fit from greater awareness of security principles and the
use of security technology. In this paper, we argue that
Trusted Computing, a hardware-based method for estab-
lishing platform integrity, is not only useful, but imme-
diately applicable. We demonstrate how existing Trusted
Computing mechanisms can be used for provenance, and
identify the remarkable similarity and overlap between
the two research areas. This is accomplished through
presenting architectural ideas for a trusted provenance
system, and by comparing the respective requirements
and capabilities of trusted systems and provenance sys-
tems.

1 Introduction

Provenance information is essential for maintaining the
integrity of scientific results, particularly those that are
difficult to reconstruct independently. Through it we can
verify the origins of primary source data, how it has sub-
sequently been processed, and create a complete set of
instructions as to how to recreate the final results. Many
systems exist to support the collection of provenance in-
formation in e-Science [2], providing some of the follow-
ing functionality [37]:

• Find ‘the sources of faulty, anomalous processing
outputs.’ [2]

• Allow judgement of data quality [24]

• Support the replication of results

• Maintain the correct attribution of data

• Augment results with additional experimental con-
text

• Enhance trust in scientific results [9]

We postulate that as such provenance information be-
comes more widely available, and more reliance is
placed upon it, there will be an increasing need for strong
guarantees of its accuracy: in information security terms,
many will be concerned with provenance integrity and
therefore with tamper-proofing the systems which record
and process such information.

Meanwhile, research in Trusted Computing is attempt-
ing to provide trustworthy platforms, where the integrity
of data storage and program execution can be assessed
(and enforced) remotely. The aim is to provide secu-
rity and assurance despite the presence of malicious soft-
ware. Longstanding research and development efforts
mean that implementations using a mix of hardware and
software mechanisms are available today, with the hard-
ware components quickly becoming ubiquitous in com-
monplace computing platforms. In this paper we argue
that these new security technologies provide many of the
features that provenance systems require. And because
they have security as a primary design goal, can be used
to implement trustworthy provenance systems with little
additional effort or modification.

The rest of this paper is structured as follows. In Sec-
tion 2 we provide a brief overview of provenance and
discuss Trusted Computing in more detail. We then dis-
cuss the need for trusted provenance in Section 3. Fol-
lowing this, we outline a provenance architecture built on
Trusted Computing technology and standards, highlight-
ing how existing software and specifications can be used,
what modifications would be necessary, and the advan-
tages of doing so. In Section 5 we show that several re-
search problems (and proposed solutions) are common to
both Trusted Computing and provenance, and that both
areas can benefit from collaboration with each other. We
then mention some of the remaining challenges in im-
plementing trustworthy provenance, and finally Section
7 presents our conclusions.



2 Background

2.1 Provenance
‘Provenance’ or ‘lineage’ generally refers to informa-
tion that ‘helps determine the derivation history of a data
product, starting from its original sources’ [37]. In other
words, a record of where data came from and how it
has been processed. This is particularly applicable to e-
Science, as the quality of experimental data is important.
Indeed, Moreau et al. [24] state that:

‘In an ideal world, e-science end users would
be able to reproduce their results by replaying
previous computations, understand why two
seemingly identical runs with the same inputs
produce different results, and determine which
data sets, algorithms, or services were involved
in their derivation.’

The assertions made in a provenance system (p-
assertions) can be categorised in many ways. Cheney
et al [6] refer to ‘how’, ‘why’ and ‘where’ statements,
and Vázquez-Salceda et al. [47] define ‘interaction’, ‘re-
lationship’ and ‘actor state’ categories. The latter being
information about the state of a participant in a workflow
or process that manipulates or creates the original data.

There are several existing systems defined for record-
ing process provenance. We skip a full review, as details
can be found in survey papers [37, 2]. The First Prove-
nance Challenge [25] is a good starting point for com-
parison.

Security and data integrity are becoming increasingly
relevent to provenance, as researchers become more
aware of the threats posed. Several proposed systems use
kernel and file system-level monitoring to protect the col-
lection of provenance information [46, 36], removing it
from the user’s control. Hasan et al. [14] provide a thor-
ough analysis of threats to provenance systems, and have
proposed a system using encryption and chained signa-
tures to provide integrity protection. The authors make a
good point that without a ‘trusted pervasive hardware in-
frastructure’, there will always be potential attacks. We
will demonstrate in this paper that such an infrastruc-
ture can readily be provided by Trusted Computing, and
therefore believe that our paper is complementary to their
work. Similarly, Zhang et al. [48] use hash chains to pro-
vide tamper-evident provenance in databases, and tackle
the issue of providing audit logs of compound objects
rather than just for a linear sequence of operations. They
state that the use of trusted hardware is ‘impractical’ due
to the loosely-organised nature of provenance collection
and sharing. We belive that Trusted Computing is cheap
and pervasive enough to avoid these issues in many sce-
narios. Tan et al [39] have also listed several security

requirements for provenance, discussing signatures on
p-assertions in order to provide integrity guarantees, as
well as accountability. Braun et al. [3] discuss the chal-
lenges of securing provenance data when it may contain
sensitive or confidential information. We are more con-
cerned with the integrity of provenance information in
this paper.

2.2 Trusted Computing and Integrity Re-
porting

Trusted computing is a paradigm developed and stan-
dardized by the Trusted Computing Group [45]. It aims
to enforce trustworthy behaviour of computing platforms
by identifying a complete ‘chain of trust’, a list of all
hardware and software that has been used [22]. This
chain of software can then be compared to a list of known
‘good’ applications, unlike standard approaches - such as
virus scanners - that try to recognise and eliminate ‘bad’
software.

The technologies proposed by the TCG are centered
around the Trusted Platform Module (TPM). In a ba-
sic PC implementation, the TPM is a chip connected to
the CPU. It provides isolated storage of encryption keys
and 16 Platform Configuration Registers (PCRs). These
PCRs can be used to hold integrity measurements, in the
form of 20 byte SHA-1 hash values. They can only be
written to in one way: through the extend() com-
mand. This appends the current register value to the sup-
plied input, hashes it, and stores the result in the PCR. A
PCR value therefore reflects a list of individual hashes.
After n values have been extended into PCRm, the con-
tents will be:

PCRm = SHA1(An ‖ SHA1(...SHA1(A1 ‖ SHA1(A0 ‖ 0))))

In order to work out what individual inputs have been
extended to make the final PCR value, a separate ‘mea-
surement log’ must be kept. This is a list of the items
that have been extended, and may just be a reference to
an executable file. When the log is replayed, by rehash-
ing every entry in order, the final result should match the
value in the PCR, proving that the log is an accurate and
complete history of the programmes run on the platform.
The first two columns in table 1 are a simplified example
of a measurement log. In a real system, there would be
hundreds of measurements stored in 16 or more individ-
ual PCR values.

The limited functionality offered by the TPM is ideal
for recording the boot process of a platform. The idea
being that, starting from the bios, every piece of code
to be executed is first hashed and extended (‘measured’)
into a PCR by the preceding piece of code. Typically
PCRs 0-10 are used for this purpose. This principle is
known as measure before load and must be followed by
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all applications. If so, no program can be executed be-
fore being measured, and because the PCRs cannot be
erased, this means that no program can conceal its exe-
cution from the TPM. The first item in the chain cannot
be independently measured at runtime, and is referred to
as the root of trust for measurement—we would aim for
it to be immutable if possible. A platform is said to sup-
port authenticated boot when it follows this process as it
provides a way for users to authenticate their platform’s
boot sequence against reference values.

In order for users to assess a remote machine, the TPM
supports a feature called remote attestation, which allows
a platform to report the integrity measurements collected
during authenticated boot. When challenged, the TPM
can create a signed copy of its PCR values. The sign-
ing key (‘attestation identity key’, AIK) being demon-
strably linked to a trusted platform, with privacy protec-
tion where necessary. This is then given to the challenger
for inspection, along with the measurement log.

The software running at the platform can be identi-
fied by matching the hash values in the log with refer-
ence data. This requires a list of reference integrity mea-
surements (RIMs) contained within a Reference Mani-
fest Database [41]. These measurements are collected
from their original source: the software and hardware
manufacturers.

Of course, the boot process alone may not be enough
information for a remote user. Details about runtime
state and configuration will also be necessary, and this
is the subject of much Trusted Computing research [12].
This is discussed further in Section 4.4.

The TPM offers other functionality in addition to the
platform configuration registers and attestation. It can
be used to store cryptographic keys in a protected area
of memory, and can provide a secure source of random
numbers. When used with an external time server, it can
also report the current time on the platform through an
internal ‘TickCounter’. The TPM can ‘TickStamp’ arbi-
trary data to assert that it was present on the platform at
that exact time.

2.3 Example attestation and verification
process

When a user challenges a remote platform to attest, the
following steps are performed:

1. The user requests a signed copy of the remote plat-
form’s PCR values.

2. The platform must first obtain an Attestation Iden-
tity Key (AIK) and certificate from a trusted third
party, the Privacy CA. This key will only be certi-
fied if the platform has a suitable TPM. The certifi-

cate is, in essence, a credential proving the validity
of the TPM.

3. The remote platform’s TPM performs the
TPM_Quote() operation, using the AIK, which
exports a signed hash of the requested PCRs (an
‘attestation’). In table 1, this would be a signed
copy of value 0x8A484

4. This is sent to the user, along with the AIK certifi-
cate and a copy of the measurement log (the first
two columns in table 1), which contains a list of all
executables that the platform claims to have run.

5. The user checks that the attestation was signed with
the key pair given on the AIK certificate, and that
the certificate is itself signed by a trusted Privacy
CA. This shows that a real TPM was used, so the
PCR values cannot have been forged without hard-
ware tampering.

6. The measurement log is now replayed, to check that
the final hash value (the result of hashing each en-
try in order) matches the reported contents of the
PCRs. If this is the case, then the log must be an
accurate representation of the execution state of the
platform. From table 1, this means re-calculating
SHA1(0x5D27D‖ SHA1(0xB4898 ‖
SHA1(0x2D207 ‖ 0x00))) and comparing the
result to 0x8A484.

7. Having verified the log, each entry in it must now be
checked to see if it is considered trustworthy. This
will be done by comparison with a known list of ref-
erence measurements (RIMs). In our simplified ex-
ample, if the user knows that 0x2D207 is the hash
of a trustworthy BIOS, 0xB4898 is the hash of the
Grub bootloader and 0x5D27D is the Linux ker-
nel, then they can be sure that only these things are
running. As a result, the platform may be deemed
‘secure’.

3 The Case for Trusted Provenance

Perhaps one of the most significant reasons for keep-
ing provenance information is to provide assurance in
the quality of scientific results [9]. This usually means
protecting against unintentional error, or malfunctioning
equipment. However, for high-profile science, such as
climate change and pharmaceuticals, the risk of inten-
tional, malicious intervention becomes just as important.
In these situations there are threats from outside – organ-
isations and individuals wishing to manufacture results
supporting their interests, or discredit research that dam-
ages their products. Separately, and perhaps more invidi-
ously, the user/researcher may have their own motivation
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Table 1: Example authenticated boot process.
Event Hash PCR Value
BIOS 0x2D207 0x8FC78 =SHA1(0x2D207 ‖ 0x00)
Bootloader 0xB4898 0xE1A9F =SHA1(0xB4898 ‖ SHA1(0x2D207 ‖ 0x00))
Kernel 0x5D27D 0x8A484 =SHA1(0x5D27D ‖ SHA1(0xB4898 ‖ SHA1(0x2D207 ‖ 0x00)))

for falsifying data. We believe that provenance systems
should be able to identify and record these threats. But to
do so reliably, records must be robust and secure. They
must be highly tamper-resistant, making any successful
attack on their integrity infeasible. If provenance records
are not protected, then they cannot provide convincing
evidence of the quality of the data itself.

Clearly, the provenance of results relies upon both
hardware and software—as those who encountered the
Intel Pentium floating point bug [16] learnt to their cost.
In a massively distributed system, such as that provided
by a grid or cloud computing scenario, such concerns are
all the more important—but potentially also give rise to
a significant overhead in metadata management. Such
systems may be located outside the user’s own depart-
ment, perhaps a different university or even on another
continent. They are subject to the oversight of many un-
seen administrators, hardware changes, and software up-
grades and patches.

Moreover, the scope for malicious interaction is great:
too many individuals are involved, and so reliance upon
informal trust relationships is infeasible. Even where all
those participating are honest, there remains the possibil-
ity of viruses and trojans.

Such concerns are illustrated well by the challenges
of ‘public resource computing’ projects such as cli-
mateprediction.net [38]. By distributing computational
tasks to hundreds of thousands of users around the world,
substantial resources can be brought to bear upon a task
like climate modelling—but the results are open to fab-
rication, or the introduction of systematic bias. The du-
plication of tasks can help to reduce this risk, but at the
cost of effectively reducing also the amount of compu-
tational power available. Although one may hope that
well-managed grid resources will give more reliable re-
sults, as the value and impact of those results rises, the
need for supporting evidence grows also.

The situation therefore seems quite hopeless: we are in
a computing scenario in which we must place a high de-
gree of trust in every possible processing platform, with-
out any meaningful guarantee of trustworthiness. This
leaves us open to manipulation, and we cannot consider
reported provenance information any more reliable than
the reported data. This is made worse by the mutable na-
ture of software and data – it is too easy for a malicious
party to alter programmes and records to create believ-

able forgeries. We require some way to retake control,
without losing the advantages of distributed processing.
The simple addition of extra layers of software controls
does not necessarily solve the problem, nor even raise the
bar significantly, if the attacker has sufficient motivation.

Here is a role for Trusted Computing and secure hard-
ware. Designed to provide a small, internal ‘trusted
third party’, the Trusted Platform Module can be used
to record and report the state of the computer in which
it is embedded. This is designed to be immune to attack
by software (which should eliminate the threat of mal-
ware) and can provide exactly the evidence we require
that a computer has not been tampered with. If used for
provenance, it means that any result processed with ille-
gitimately modified software would always be recorded
as such. The means for enhancing platform trust and
for collecting provenance data are closely aligned, and
can therefore be provided by the same mechanism. The
only way to create false records would be to tamper with
the hardware itself, an extremely expensive and time-
consuming task, beyond the capabilities of most. Hav-
ing identified that distributed scientific experiments face
significant threats, and are performed in low-assurance
situations, it seems essential that provenance data be fur-
ther protected to retain the quality and trustworthiness of
computational results.

4 Remote Attestation as a Provenance Sys-
tem

Integrity measurements seem immediately applicable to
two requirements of provenance: identifying which re-
sults have been affected by a known software or hard-
ware error, and for accurately reproducing results. With-
out knowing the exact versions of software that were
used, neither of these things will always be possible. In
the language of some provenance research [6], it can help
answer questions about ‘how’ data has been modified
and unambiguously identify ‘where’ it originated. Infor-
mation about the execution state of a processing node can
be considered ‘actor state’ information in the categories
discussed by Vázquez-Salceda et al. [47].

Remote attestation and provenance systems appear to
use similar techniques to solve related problems. Be-
cause of the similarities between the two fields, in this
section we present a provenance architecture based en-
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tirely on available Trusted Computing software and hard-
ware. While this is not a complete system, and does
not provide answers to many provenance questions, we
demonstrate that certain aspects of provenance can easily
be implemented in this way, with the built-in benefit of
high assurance.

4.1 An attestation-based provenance archi-
tecture

We assume a service-oriented infrastructure, perhaps im-
plemented as a grid or cloud, with a number of remote
platforms performing computations (see Figure 1). Each
machine has a Trusted Platform Module and, when ini-
tially added to the network, they are issued an Attestation
Identity Key (AIK), signed by a certificate authority (Pri-
vacy CA). This key will be used for subsequent attesta-
tions, and uniquely identifies the platform. At this time,
an administrator will record the machine’s original hard-
ware details and software measurements. Much of this
process is defined in the Trusted Computing specifica-
tions [41]. The platform itself uses software that supports
authenticated boot, and the TPM will therefore record all
running executables, usually in the first twelve platform
configuration registers. This, along with the job request
and result, will be the provenance data captured by each
platform.

When the platform receives a job, it does the follow-
ing:

1. Measure a hash of the received job (or, if it is a web
service, the incoming request) into PCR 11 of the
service’s TPM.

2. Execute the job

3. Hash and measure the job result (or reply message)
into PCR 11.

4. Sign PCRs 0-11 with the Attestation Identity Key
and send them to the provenance store, along with
the measurement log. This log contains a list of all
the values extended into each PCR.

The provenance store will receive regular reports from
the processing platforms, consisting of attestations, mea-
surement logs and the results of processed jobs. This
information will be connected to other sources of prove-
nance data, such as the workflow description. As de-
scribed in Section 2.3, the report signatures will be ver-
ified, and the reported PCR values will be checked to
make sure that they correspond to the log. If either of
these steps fail, this implies a software error (or mali-
cious intervention) and jobs should be rerun on a differ-
ent machine. In either case, a copy of the attestation and
log should be recorded in the provenance store.

Result

Job

Job Report: 
(Attestation)
PCR Boot Hash, 
Boot log, 
Request, 
Result

Job ID    ( Request, Result, →
      Boot Hash, Signature )

Boot Hash   [ → RIM1, RIM2, ... ]

Provenance Store

Reference Manifest DB

RIM   (Application, Date, →
Version, Author, … )

Remote 
Service

Remote 
Service

Remote 
Service

User

Stored as

Links to

Sends 
report

Submit job

Job Table

Boot log table

Figure 1: Diagram of an attestation-based provenance
architecture. Remote services process results and at-
test to the provenance store, which saves and links the
measurement logs to a TCG-defined Reference Manifest
Database.

The contents of the measurement log for PCRs 1-10
will contain a list of every piece of software executed
on the platform. This information needs to be stored for
every job. However, if exactly the same software has
been run as on a previous attestation, then the final PCR
hash will be identical. In this case it will suffice to list
all the software once, and link to it from the provenance
database. This means that the majority of entries into
the provenance store just consist of the attestation itself,
and will therefore be extremely small - only a few 20
byte hash values. Of course, a full list of software and
hashes (RIMs) will need to be maintained somewhere.

5



In the TCG model, this would be a Reference Manifest
Database, and there are well-defined schemas for each
entry, as well as protocols for keeping the database up to
date and accessible [41]. Such a system is given in Fig-
ure 1. We note that compacting provenance information
through hash chains has been discussed before by Hasan
et al. [14] and Zhang et al. [48].

Every time a new patch is loaded onto a service ma-
chine, this will result in a new hash and therefore a new
chain of trust being stored. However, the storage over-
head should remain small. Based on data from 2006 to
2009, a typical web service can expect to be updated only
around 22 times a year, with under 500 new hash val-
ues [21]. This is trivial amounts of data, particularly as
most machines will be running near-identical sets of soft-
ware.

4.2 Software and hardware details
Almost all the software and hardware required for im-
plementing the described system is freely available to-
day. TPMs are installed in many business notebooks
and servers, and the Linux kernel now supports Au-
thenticated Boot1. TCG compatible software stacks ex-
ist, including the JTSS2 in Java and TrouSerS3 in C++.
These make writing programs that use the TPM straight-
forward. Reading and extending PCR value in Java, for
example, requires the JTSS libraries, around ten lines
of initialisation code, and then just one line to actually
read or extend. Privacy CA software and an integrity-
measuring Java Runtime Environment is also available
on the JTSS website. The OpenPTS4 ‘Platform Trust
Service’ project provides the infrastructure for creating
integrity measurements, collecting RIMs and connect-
ing to an external software repository. Furthermore, web
service protocols are already defined to maintain com-
patibility with WS- standard [26]. In fact, the only cus-
tom changes to software would involve updating the ser-
vice interface (or grid middleware) to measure incom-
ing requests and outgoing results, and to send attesta-
tions to the provenance database. This should be straight-
forward.

4.3 Advantages
This infrastructure immediately provides several advan-
tages to ad-hoc reporting of platform information. Forg-
ing integrity reports is infeasible, thanks to the secure key
storage provided by the TPM. Because AIKs are stored
in the TPM, and cannot be disclosed, it would be ex-
tremely difficult to assert that a different machine pro-
duced the result. Because of the platform configuration
registers, authenticated boot process and software sup-
port, it also should not be possible to claim that a dif-

ferent version of a particular piece of software was be-
ing used. And as we are measuring the input and out-
put, we can be sure of exactly which software was used
to process a particular job, and what output it produced.
This means that the attested information meets the re-
quirement given by Groth et al. [10] for high integrity
p-assertions. Furthermore, attestations can potentially be
created autonomously, at any point in time, a require-
ment defined by Groth and Moreau [11]. Thanks to the
software and hardware developed, attestations must also
produce a complete record of all software used, at every
stage of platform boot and throughout its use. This in-
cludes firmware, drivers and shared libraries, potentially
a more comprehensive (and accurate) list than other sys-
tems are capable of producing. Jobs can be time stamped,
through use of the TPM’s tick counter. In addition, the
presence of TPM hardware is an opportunity to improve
the security of credentials, as keys can remain protected
from the rest of the system.

All of these benefits come merely by leveraging ex-
isting Trusted Computing techniques. This is significant
because it uses a single technological base to give advan-
tages for both short-term trust and long-term provenance.

4.4 Missing components

The system discussed can be enhanced considerably.
There are some obvious missing features and function-
ality. The attested information gives only the execution
state of the platform, at the level of applications run by
the operating system. Nothing more fine-grained can
be reported. Current implementations will also not re-
measure a program, which means that the precise or-
dering of execution will not be preserved. Other miss-
ing information includes configuration files, environment
variables, generated code, and load information (free
disk space, processor utilisation, and so on). How-
ever, it would be relatively straight-forward to include
all of this information, as it should only be necessary to
modify middleware or adapt an existing system such as
PASS [27] or Provenance Aware Condor [33]. ‘Semantic
Attestation’ also aims to solve this problem [12].

Perhaps more importantly, integrity reports would
need to be mapped to the rest of the information pro-
duced by a full provenance architecture. This includes
records of who accessed data, what the overriding pur-
pose of the request was, and how each individual plat-
form was used in combination for a full process work-
flow. Such information must (in part) be provided by
the end-user, and will need to reference the generated in-
tegrity measurements.

The above system does not provide any easy mecha-
nism for recreating results. While it would be possible to
guarantee that two results came from precisely the same
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software execution, if hardware or software is changed
subsequently, there is no way to re-run with the origi-
nal versions. We suggest that this could be implemented
through saving and restoring virtual machines. Such an
approach would be compatible with the Eucalyptus cloud
computing system [32].

It would also be necessary to include custom de-
veloped software in the Reference Manifest Database
(RMDB), and extend the TCG schema [42] to include in-
formation about how it was built. The provenance store
would also need to be modified suitably to work with a
RMDB and to support searches for all results that used
certain pieces of software.

5 Provenance and Trusted Computing Re-
search: Producing the Same Solutions

Despite the lack of interaction between Trusted Comput-
ing and provenance communities, there is a great deal of
overlap in current research. The security industry is look-
ing for better methods for monitoring a platform’s be-
haviour, a task that provenance systems already focus on:
in many security contexts, prevention is infeasible or pro-
hibitively expensive; detection is often a viable alterna-
tive. Detection of anomalies is therefore of great interest.
Moreover, provenance research is looking to increase the
trustworthiness and integrity of records [13, 39], a well-
established problem in security. In this section we iden-
tify common areas of work, and look at the related (but
perhaps unknown) literature.

5.1 Related research
Both provenance and Trusted Computing are concerned
with monitoring and reporting the state of a machine
used for some high-value (or high risk) function. Huh
and Martin [15] look to provide more detail by intercept-
ing and securely logging I/O requests. In the provenance
domain, PASS [27] provides logging through hooking
system calls, and Clifford et al. [7] provide runtime ex-
ecution logging. Reilly and Naughton [33] have similar
ideas, but use an extension to Condor to perform trans-
parent logging. The work by Huh and Martin will pro-
vide a higher assurance, but the approach taken by Reilly
and Naughton may result in more useful data. A common
theme in this section is that Trusted Computing research
currently focuses on creating comprehensive and high-
integrity results, whereas provenance systems are better
at extracting exactly the information considered relevent,
and are not constrained by security issues.

Tracking data usage is an important functionality of a
provenance system, but has also been approached many
times in Trusted Computing research, with digital rights
management in mind. Proposals by Nauman et al. [30]

would enable ‘measurement, storage and reporting of the
attribute update behavior’ for a data item at a remote plat-
form. This is part of the functionality required for prove-
nance [24], and we can imagine it being integrated with
data derivation graphs. Provenance, access control and
usage control have been linked before, notably by Ni et
al. [31].

The construction of custom executables and their his-
tory has been approached by both areas. In earlier work,
we have used integrity measurement to measure the com-
pilation process in order to produce a trustworthy compi-
lation certificate for an arbitrary programme [20]. This is
similar to the ‘Transparent Make’ functionality provided
by Vahdat and Anderson’s TREC lineage system [46]
and PASS by Muniswamy-Reddy et al. [27]. Again the
goals are different, but both allow users to identify how
an executable was formed and what its dependencies are.
The similarities are notable, as TREC allows dependen-
cies to be specified through Make files, and we provided
the same through ANT build scripts. However, TREC is
general-purpose and has many other applications, operat-
ing constantly through a kernel module intercepting sys-
tem calls. This makes it more suitable for constant use.
Our compilation certificates, on the other hand, are ver-
ifiable and considerably more trustworthy, but must be
run independently of normal processing. Overall, there
is a clear requirement for greater information about com-
piled software in both fields.

For full provenance information, we need to know how
data is stored. The Trusted Compting Group have stan-
dards for ‘Trusted Storage’ [44], providing features such
as disk-encryption, authentication and logging. The log-
ging use case specified by the TCG has forensics and au-
diting in mind [40]. Again, this is similar to the require-
ments for provenance [13] - we would like the ability to
go back through records and establish whether tampering
or unauthorised access occurred. While we are not aware
of any hardware-based related provenance research, se-
cure and audited storage through file system and kernel
support has been mentioned frequently [46, 27, 36].

Both Trusted Computing and provenance systems tend
to involve modification of existing middleware. Condor
has been modified by researchers in both fields [33, 29]
looking to add security and lineage through monitor-
ing and assessing individual platforms. Löhr et al. [19]
proposed new modifications to grid middleware for en-
hanced trustworthiness, and Frew and Slaughter [8] have
demonstrated provenance in the ES3 system. Similarly,
Trusted Cloud Computing [35] and Provenance-Aware
Cloud Computing [28] have both been discussed re-
cently, as well as Service Oriented Architectures [1, 39].
This implies that not only are similar problems being
solved, but in the same context and using the same un-
derlying software and systems.
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5.2 What provenance can gain from
Trusted Computing

We have already discussed the motivation for trusted
provenance, but the use of Trusted Computing has many
potential advantages. Going beyond the enhanced se-
curity and assurance, Trusted Computing research typ-
ically considers a much wider range of factors that can
affect system behaviour. This includes CPU architec-
ture, use of virtualisation, protocols and software. By
taking advantage of this thoroughness, provenance sys-
tems can be more comprehensive and may identify hid-
den factors [8] that will later be useful. Furthermore,
as security problems receive greater attention and fund-
ing, it seems sensible to take advantage of the new hard-
ware and processes that are being implemented and re-
use them for provenance. Trusted Computing is led by a
group of companies (such as IBM, Intel, AMD, and Mi-
crosoft [45]) with significant resources. By introducing
provenance as a requirement, we believe that many of the
tools being developed and used for security can become
immediately useful for provenance.

5.3 What Trusted Computing can gain
from provenance

Provenance research can be used by Trusted Computing
researchers to enhance system security and auditing. In-
tegrity reporting systems lack a framework for evalua-
tion, and require a way of interpreting results. The prove-
nance community is more aware of systems involved
with semantic representation and metadata, which could
be the solution to this problem. Both fields also have the
problem of reporting too much data, and deciding how
best to filter it. We suspect that the provenance commu-
nity are further ahead in storing and querying this kind
of information.

Trusted Computing suffers from another problem that
is better understood in provenance: how to deal with in-
complete data. Remote attestation can only give details
of the current state of a platform, not historical data. Reg-
ular attestations, such as those mentioned in our propos-
als in Section 4 can provide a better history, but what
should happen when a record is missing? How should
this scenario be recorded? Provenance systems are al-
ready designed to work with incomplete information and
composite data sources.

Finally, provenance seems like an excellent use of
Trusted Computing, particularly as many of the criti-
cisms of Trusted Computing are less relevent. The in-
tegrity reporting approach has been criticised as being
fragile when used to make access control decisions, as
any missing software in the reference database will result
in the platform being denied access. However, in prove-

nance, runtime decisions are not as important as storing
a history for later use, so this fragility is less important.

6 Challenges

With all the similarities we have listed, there are still
some challenges. The research directions are different:
the Trusted Computing researchers are currently focused
on improving security through advances in cryptographic
algorithms, and isolation mechanisms. In comparison,
semantic consistency and querying are perhaps more im-
portant for provenance. Furthermore, in provenance the
goal is to gain extra information for later analysis, and
to improve scientific results. And while security can be
considered an enabler of new functionality, many still be-
lieve it to be just about preventing bad things from hap-
pening.

Scientific results will face different threats and attacks
than many other distributed computing techniques, and
a significant challenge is making sure that security does
not reduce usability. In many cases, there may be a rela-
tively low risk to the data, and this should be reflected in
the security architecture. As a result, the use of Trusted
Computing should be as transparent as possible, and re-
quire as little effort for users and developers of appli-
cations (often the same people). An open challenge is
developing a systematic methodology for creating appli-
cations that support provenance and provide high assur-
ance. This may involve combination of recent work on
PrIMe [23] and security development lifecycles [18].

Performance is another issue that could prevent the
adoption of both provenance and security technology.
The TPM is a low-speed chip, and cryptographic opera-
tions (such as attestation) are relatively slow. The authen-
ticated boot process also impacts on performance [34].
However, new versions of the TPM may be faster, us-
ing symmetric cryptography [43] and it is likely that
the hardware manufacturers will be able to increase per-
formance in the future. For the time being, there has
been research looking at improving efficiency [4], and
the provenance architecture we outlined would require
only one attestation per submitted job and platform.

Trusted Computing also relies upon a public key in-
frastructure, for certifying attestation keys and identify-
ing platforms. We have not explored the trust manage-
ment issues in depth in this paper, and there will un-
doubtedly be issues in maintenance and implementation.
Fortunately, scientific grid computing is one domain with
experience in key management on a large scale, and we
are optimistic in solving such problems.
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7 Conclusion

Many of the concerns addressed by Trusted Computing
relate to immediate and short-term policy enforcement
(“shall I share this secret with that software, on that plat-
form?”). Many provenance issues are of a more long-
term nature (“where did this come from; how was it pro-
cessed?”). Yet these are highly-related topics because
they both rely upon the unambiguous (and tamper-proof)
identification of hardware and software.

Existing Trusted Computing systems already provide
much of the required functionality, and in a way that
provides high assurance and makes forgery infeasible.
Furthermore, with the introduction of security systems
using Trusted Computing, the hardware becoming avail-
able, and software libraries and OS infrastructure, the ba-
sic capabilities for collecting highly-assured provenance
data are being built. We have identified several places in
which the two research areas overlap, such as logging,
monitoring, compilation history and secure storage.

We have argued that there is a natural synergy between
the two areas of research, an overlap in both the goals
and the technologies for achieving them, and a strong
prospect for combining the two to give rise to trusted
provenance.
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