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Abstract Trusted Computing gives rise to a new supply of trusted third parties on which

distributed systems can potentially rely. They are the secure system components

(hardware and software) built into nodes with Trusted Computing capabilities .

These trusted third parties may be used for supporting communications in dis

tributed systems. In particular, a trusted third party can check and certify the data

sent from anode A to anode B, so that B can have some confidence in the prop

erties of the data despite A's possible incompetence or malice. We present and

explore this application of Trusted Computing, both in general and in specific

instantiations .

1. INTRODUCTION

Trusted third parties can be useful in a variety oftasks in distributed systems.

For instance, certification authorities are helpful in associating public keys with

the names of users and other principals; in multi-player games, servers can

contribute to preventing some forms of cheating; and smart-cards with lim

ited resources may rely on trusted, off-card servers for verifying downloaded

bytecode dass files. Unfortunately, resorting to trusted third parties is not al

ways practical, as it typically results in deployment difficulties, communication

overhead, and other costs. Moreover, well-founded trust is scarce in large-scale

distributed systems, and so are reliable trusted third parties .

This paper considers new trusted third parties that may appear in general

purpose computing platforms as a result of several current efforts. Those ef

forts include substantial projects in industry, such as the work of the former

Trusted Computing Platform Alliance (TCPA) and its successor the Trusted

Computing Group (TCG), and Microsoft's Next Generation Seeure Comput

ing Base (NGSCB, formerly known as Palladium) [England et al., 2003]. They

also include research projects such as XOM [Lie et al., 2000] and Terra [Gar-

Y. Deswarte et al. (eds.), Security and Protection in Information Processing Systems
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finkel et al., 2003]. The trusted third parties are the secure system components

(hardware and software) built into nodes with Trusted Computing capabilities.

These trusted third parties can contribute to both secrecy and integrity prop

erties in distributed systems. In particular, when two nodes A and B communi

cate, the trusted third party embedded in A can check and certify the messages

that Asends to B. This verification may have a variety of meanings-it can

for example ensure the well-formedness of data fields, the absence of known

viruses, the safety of mobile code, or the validity of certificate chains. The

verification can offer security guarantees to B, often more efficiently than if B

performed the check itself. Although the verification clearly depends on A's

secure system components, it is protected against malfunctions in the rest ofA,

and can prevent their spread to B. The description and study of this scenario

are the main contents of this paper.

The next section discusses efforts such as TCPA, the appearance of new

trusted third parties, and (briefly) the applications that they may enable. Sec

tion 3 sets out our assumptions. Section 4 explains the use of a trusted third

party for verified communications. Section 5 considers some examples, and

section 6 summarizes benefits and drawbacks. Section 7 develops an exam

ple . Seetion 8 diseusses extensions in which data is partly secret or generated

by the trusted third party. Section 9 concludes. An extended version of this

paper contains additional details and outlines more general mechanisms for

verified communications, relying on machinery for remote invocation and on

extensible runtimes.

2. NEW TRUSTED THIRD PARTIES?

Next we identify more precisely the new third parties described in the in

troduction, and consider whether they should be trusted. We also discuss the

applications (some old, some new) that may rely on this trust.

2.1 The new third party

With systems such as NGSCB, a computing platform includes a protected

execution environment, with protected memory, storage, and 1/0. The platform

is open in that it can run arbitrary programs like today's ordinary PCs, but

those arbitrary programs should not compromise the security kerneI or any

subsystem under its protection. Moreover, the security kernel can authenticate

the programs, and it in turn can be remotely authenticated.

Therefore, the security kernel may serve as a trusted third party for an inter

action in a distributed system. Conveniently, this trusted third party is local to a

node . In particular, the security kernel may assist a remote principal in interac

tions with the rest of the node, which may be arbitrarily corrupted. Moreover,

the security kernel may communicate directly with a local human user, through
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Figure 1. A typicaIpieture of a system with NGSCB

secure I/O; it may therefore assist the user in its interactions with the rest of

the node.

A subsystem protected by the security kernel mayaIso play the role of

trusted third party. Through standard delegation techniques (e.g., [Lampson

et al., 1992]), the protected subsystem can act on behalf of the security kernel

and its clients. The main advantage of relying on a protected subsystem is to

retain, to the extent possible, the simplicity, manageability, and security of the

kernel proper.

Figure I is a typicaI picture of a system with NGSCB. It shows a system

with two sides: a Ieft-hand side with arbitrary software (not necessarily trusted)

and a right-hand side with secure system components, including an operating

system and user-mode code.

2.2 Applications

This trusted third party can contribute to security in distributed systems, in

several ways. The trusted third party can contribute to secrecy properties, for

example holding secrets for auser, and presenting those secrets only to appro

priate remote servers. The secrets would be kept from viruses that may come

with arbitrary programs. The trusted third party can also contribute to integrity

properties, for example checking incoming and outgoing data. In particular,

as suggested in the introduction and explained in section 4, the trusted third

party embedded in anode A can check and certify the messages that Asends
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to another node B. The trusted third party can protect B against Ns incompe

tence or malice, for example against Ns viruses. While the secrecy properties

have received a fair amount of attention, we believe that the opportunities and

problems related to integrity are also important. They are the focus of this

paper. One may wonder also about availability properties-for example, ask

ing whether the trusted third party can help protect against denial-of-service

attacks. We address availability only indirectly (see seetion 6).

Trusted Computing is often narrowly associated with protecting movies and

other proprietary content on commodity platforms, but it enables other signif

icant applications. Several of those applications remain in the broad realm of

Digital Rights Management (DRM). For instance, users may want to attach

rights restrietions to their e-mail messages and documents; protected execu

tion environments can help in enforcing those restrietions. Similarly, however,

it has been argued that protected execution environments enable censorship

and other worrisome applications [Anderson, 2003b]. Beyond DRM, NGSCB

could be employed for secure document signing and transaction authoriza

tion [England et al., 2003], for instance. Notwithstanding such intriguing

ideas , it appears that the thinking about applications remains active, and far

from complete. One of the goals of this paper is to contribute to this thinking.

2.3 Limits on trust

TCPA, TCG, and NGSCB have been rather controversial. While they are as

sociated with the phrases "Trusted Computing" or "Trustworthy Computing",

they have also been called "Treacherous Computing" [Stallman, 2002]. Rely

ing on them in the manner described in this paper will perhaps be considered

naive. Even putting aside any consideration of treachery, trust should not be

absolute, but relative to a set of properties or actions, and it is dangerous to

confuse trusted and trustworthy.

Following Anderson [Anderson, 2003a], we mostly use an acronym rather

than "Trusted Computing" or a similar name . We pick SCB, which may stand

for "Seeure Computing Base" (or "Sneaky Computing Base") because the de

scriptions in this paper focus on NGSCB, as we explain in seetion 3. Byan

SCB we loosely mean a collection of system components, hardware and soft

ware, including a security coprocessor with cryptographic keys and capabil

ities, a microkemel or other operating system, and possibly some protected

subsystems running on top of these . Section 3 lists our assumptions more

specifically.

The trust that one places on an SCB may be partly based on the properties

of its hardware. If this hardware is easy to subvert, then assurances by the

SCB may be worthless. On the other hand, a modest level of tamper-resistance

may be both achievable and sufficient for many applications. First, attacks
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on hardware (unlike buffer-overflow attacks, for instance) are not in general

subject to large-scale automation . Moreover, many nodes (and their SCBs)

are in physical environments in which serious tampering is hard or would be

easily detected-for example, in shared workspaces and data centers. In other

environments , a key question is whether the people who are in a position to

perform the tampering would benefit from it. Whenever the SCB works on

behalf of users, defending them from viruses and other software attacks, we

may not need to worry about protecting the SCB from the users.

Trust in an SCB mayaiso be partly based on trust in its developer, its ad

ministrators, and other principals. For instance, if Acme makes chips with em

bedded secret keys, and issues certificates for the corresponding public keys,

then the chips are reasonable trusted third parties only if Acme can be trusted

to manage the secret keys appropriately. Thus, Acme is a trusted third party

too. However, trust in Acme may be based on an open review, and may be

further justified if Acme never has direct access to the secret keys.

On this basis, it seems reasonable or at least plausible that SCBs would be

trusted third parties-and even trustworthy third parties-in specific contexts.

3. ASSUMPTIONS

We focus on NGSCB partly because of its practical importance, partly for

the sake of concreteness, but most of the paper applies verbatim to other sys

tems such as XOM; it mayaiso apply to future versions ofthese systems, which

continue to evolve. This section presents the main assumptions on whieh we

rely.

We expeet that the SCB in a system is able to eommunieate with other parts

ofthe system, typieally at a modest eost; in particular, this eommunieation may

be through local memory. In addition, we make the following assumptions:

• Authentieity: The capability ofmaking assertions that can be verified by

others (Ioeal or remote) as eoming from this SCB, or from an SCB in a

partieular group. For instanee, in a eommon design, the SCB holds a sig

nature key that it ean use for signing statements; a certification authority

(perhaps operated by the SCB's manufacturer, owner, or adelegate) is

sues eertifieates for the eorresponding publie key, associating the publie

key with this SCB or with a group of trusted SCBs.

• Proteetion: Proteetion from interferenee from the rest of the system

when performing loeal eomputations.

Two additional assumptions are not essential, but sometimes eonvenient:

• Persistent state: The SCB may keep some persistent state aeross runs.

This state may be as simple as a monoton ie counter. Using this mono

tonie counter, the SCB may implement meehanisms for maintaining
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more complex state. In particular, assuming that the SCB has a mono

tonic counter, it can maintain other state on untrusted storage, using dig

ital signatures and encryption; the counter should be incremented, and

its value attached to the state, whenever an update happens , thus offering

protection against replay attacks .

• Weak timeliness : The SCB has secure means to know the time, to within

the precision allowed by network and scheduling delays. In particular,

the SCB may get the correct time signed by a trusted network time server

TS for which it knows the public key. In each exchange with TS, the

SCB would challenge TS with a fresh nonce (for example by applying a

one-way hash function to a secret plus a monotonie counter) . Network

and scheduling delays may lead the SCB to accept an old value for the

time, but never a future value. Without this assumption, the SCB can

include nonces as proofs of timeliness for its assertions to on-line inter

locutors. The nonces would be provided as challenges by those inter

locutors . The assumption removes the need for the challenge messages .

4. VERIFIED COMMUNICATIONS WITH
ANSCB

In this section we show how an SCB can serve as a trusted third party for

checking and certifying communications. First, in section 4.1, we review ex

amples of input verification, and their importance for security. Then, in sec

tion 4.2, we explain how these examples can rely on SCB support. Later sec

tions are concemed with refining the examples, discussing benefits and draw

backs, and generalizing.

Throughout this paper, we emphasize communications that involve pro

grams at their endpoints. Accordingly, we often refer to the sender as the

caller and to the receiver as the callee . However, many of the ideas and tech

niques that we present do not require that the messages being exchanged are

calls to program functions; they apply more broadly to arbitrary messages in a

distributed setting.

4.1 Checking inputs

When a program receives data, it is prudent that it verify that the data has

the expected properties before doing further computation with it (e.g., [Howard

and LeBlanc, 2003]). These verifications may for example include:

• Checking that an argument is ofthe expected size, thus thwarting buffer

overflow attacks.

• Checking that a graph is acyclic, so as to avoid infinite loops in later

graph manipulations.
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• Checking that an argument is of the expected type or structure .

• Checking the validity of a "proofof work" (evidence that the sender has

performed some moderately hard computation, of the kind suggested for

discouraging spam; e.g., [Dwork and Naor, 1992; Jakobsson and Juels,

1999]).

• Checking that cryptographic parameters have particular properties (often

number-theoretic properties) needed for security [Anderson and Need

harn, 1995, Principle 6].

• Checking that a set of credentials forms a chain and implies some ex

pected conclusion, for example that the sender is a member of a group.

Further, interesting examples arise in cases where the data is code (or may

include code):

• Checking that the data does not contain one of a set of known viruses.

• Checking that a piece of mobile code is well-typed. This mobile code

might be written in a source language, an intermediate language, or in

binary. As in Java Virtual Machines [Lindholm and Yellin, 1999] and

the Common Language Runtime (CLR) [Box et al., 2002], the typing

provides a base level of security. With some research type systems

(e.g., [DeLine and Fahndrich, 2001; Myers, 1999]), the typing may en

sure further properties, such as compliance with resource-usage rules

and secure information-flow properties .

• Checking the legality of a logical proof that a piece of mobile code sat

isfies some property, for example an application-specific safety prop

erty, termination, or an information-flow property. Research on proof

carrying code [Necula, 1997] explores these ideas.

• More speculatively, checking that compiled mobile code is a correct im

plementation of a given source program (that is, that the compiler did

not make amistake in a particular run). Research on translation valida

tion [Pnueli et al., 1998] explores these ideas.

As these and other examples illustrate, authenticating the origin of data is

often essential, but further checking can be essential too. In particular, the

checking can serve in preventing the spread of infections from senders to re

ceivers.

Some checking may be done automatically by standard machinery in dis

tributed systems; for example, remote procedure call (RPC) machinery can en

force simple typing properties before delivering arguments to remotely invoked
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Figure 2. A verified input

procedures. Such automatie checking is particularly justified for generic prop

erties that are easy to verify. On the other hand, application-specific properties

and properties that are expensive to verify tend to be treated on a case-by-case

basis .

4.2 Using an SCB

Suppose that a piece of code relies on a certain property of its inputs, and

that therefore this property should be checked. The checking can happen at

the code's boundary or deeper inside the code. It could also happen at the

caller, though in general the caller may not know what property to ensure, and

crucially the caller cannot always be trusted.

Having an SCB in the caller leads to a new possibility, depicted in Figure 2:

the SCB can serve as a trusted third party that is responsible for the checking,

and that certifies that the checking has succeeded.

This certification consists in a signed assertion that the call (including its

arguments) satisfies a given property. The signed assertion should contain a

proofof timeliness, such as a timestamp or a nonce . The signature may simply

be a public-key digital signature. When the SCB and the consumer of the

signature share a secret, on the other hand, the signature may be an inexpensive

MAC (message authentication code). This MAC may be applied automatically

if caller and callee communicate over an authenticated channel, such as can be
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implemented on top of the SSL and SSH protocols . This authenticated channel

has another clear benefit: proving the identity of the caller to the callee.

When it receives a certificate, the callee should check that it matches the

call, that it is timely, that it claims the expected property, and also that it is

issued by a sufficiently trusted SCB. All these checks but the last should be

straightforward. Checking that the certificate is issued by an appropriate SCB

is a classical authorization problem (a matter of trust rather than of remote

integrity verification). When the SCB is identified with a public key, the public

key may be in a group of keys trusted for the purpose. On the other hand,

the SCB may prove only that it is a proper SCB in a certain group, without

revealing its exact identity; this case is more elaborate but does not introduce

new difficulties.

There is no requirement that the callee have an SCB. However, an SCB at

the callee can provide a secure environment in which to perform the checks

just described; it can also serve for certifying properties of communications in

the opposite direction, such as the result (if any) of the call.

There remains the problem of letting the caIler's SCB know what property

to check. This information may be hard-wired on a case-by-case basis. In

general, it is attractive to envision that the property would be advertised along

with the interface to the code being called. Much like the caller learns about the

existence of the code entry point, and about the expected types and semantics

of arguments, the caller should learn about the expected properties of these

arguments.

Using an SCB for checking inputs has a number of desirable features, as

weIl as some potentially problematic ones. Before we discuss them, however,

it is useful to consider a few instantiations of the method for particular checks.

5. EXAMPLES

Next we consider four examples, both because oftheir intrinsic interest and

in order to elucidate general features ofthe method described in section 4.2.

5.1 Typechecking

In the simplest example, the SCB of the caller typechecks the caIl, and

writes a corresponding certificate.

For simple typing properties ofsmall arguments, this example is wasteful. If

the caIler's SCB and the callee are not already communicating on an authenti

cated channel, then the callee may need to check some public-key certificates;

when typechecking is simple and fast, trading it for a public-key operation is

hardly attractive.

As arguments get larger, delegating the typechecking to the caIler's SCB

becomes more reasonable. For instance, suppose that the caller is uploading a
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large amount of data into the callee's database, and that this data is supposed

to be in a particular format. In general, checking or imposing this format may

require some processing and some buffering. Ifthe caller's SCB can guarantee

that the format is obeyed, then the callee may need to compute a message digest

(relatively fast) and perform at most one public-key operation, independently

of the size of the data, without any buffering.

Delegating the typechecking to the caller's SCB also becomes more reason

able for complex typing tasks. For instance, the callee may be relieved to avoid

the task of checking that a piece of XML conforms to a particular schema, or

that a piece of mobile code is well-typed. Indeed, the typechecking of mobile

code can be fairly expensive, to the point where it is difficult or impossible on

resource-constrained environments.

In arecent paper [Leroy, 2002], Leroy discusses the cost oftraditional byte-

code verification on Java cards, and also discusses alternatives . Leroy writes:

bytecode verification as it is done for Web applets is a complex and expensive

process, requiring large amounts of working memory, and therefore believed to

be impossible to implement on a smart card.

The alternatives include both off-card verification and the combination of off

card code transformations with easier on-card verification. Leroy ingeniously

develops this latter alternative. On the former alternative, Leroy writes :

The drawback ofthis approach is to extend the trusted computing base to include

off-card components. The cryptographic signature also raises delicate practical

issues (how to deploy the signature keys?) and legal issues (who takes liability

for a buggy applet produced by faulty off-card tools?).

Having the off-card verification done in the ealler's SCB mitigates these eon

cerns:

• Extending the trusted computing base to an SCB appears less problem

atic than extending it to an arbitrary machine with arbitrary software and

arbitrary viruses.

• The deployment of SCBs should include the deployment of their keys

and of certifieates for those keys.

• The off-card verifier ean be chosen by the eonsumer of the code, or a

delegate, and the SCB ean guarantee that it is this verifier that it runs.

Therefore, the SCB would not be liable for a faulty verifier. (However,

other parties would still have to be responsible for more fundamental

infrastructure failures such as bugs in SCBs or leak of the master secret

keys.)

Moreover, any work done in the caller's SCB needs to be done only once, while

work done at the consumer needs to take place onee per eonsumer (and even
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more often when consumers obliviously download the same piece of mobile

code multiple times).

In addition to smart-cards, servers can also be resource constrained. In the

design ofbusy servers that deal with many clients, one typically shifts as much

work as possible to the clients. In our case, the client's SCB would be respon

sible for checking code uploaded to the server (servlets). For instance, when

the server is a database, and its data cannot be sent to the client because ofpri

vacy considerations or sheer size, the client may upload code to run against the

data; the client's SCB could ensure the safety of the code. More broadly, the

client's SCB could also ensure that the code confonns to any server policies.

In short, although there exist clever alternatives, typechecking in the caller's

SCB appears as a viable approach to an actual problem. Although it is not

always advantageous, it does have some appealing properties, and it can be a

good choice.

5.2 Proof checking

Research on proof-carrying code develops the idea that mobile code should

be accompanied by proofs that establish that the code satisfies logical prop

erties. As a special case, the properties may represent basic guarantees such

as memory-safety, which can also be obtained by typechecking. However,

proof-carrying code is considerably more general. As suggested above, the

properties may include application-specific safety properties, termination, and

infonnation-flow security properties. For example, a proof may guarantee that

the code uses only certain limited resources, or that it does not leak pieces of

private user data. Such properties may be attractive whether the receiver of the

code is a resource-constrained personal smart-card or a busy database server.

Although the verification of proofs is typically simpler than their construc

tion, it is not a trivial task. It is roughly as hard as typechecking (discussed in

section 5.1), and in fact proof checking can be fonnulated as a kind of type

checking. In addition, proofs can be bulky, creating communication overhead.

For example, arecent paper [Henzinger et al., 2002] that treats device-driver

properties includes proof sizes, for instance up to 156 KB of proof for a pro

gram of around 17 KLOC. Other proof encodings are possible (e.g., [Necula,

200 I]), and may lead to a reduction of proof sizes by an order of magni

tude. While these encodings are both insightful and effective, they can lead

to slower proof checking,and in any case the proofs often remain much larger

than signed statements. For example, a proof for the hotjava code takes 354

KB [Necula, 2001], substantially less than the code itself(2.75 MB), but more

than a thousand times the size of a signature; checking the proof took close

to one minute on a 400 MHz machine, much more than checking a signed

statement.
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Altematively, with our approach, the SCB of the code producer could be

responsible for checking the proof. The proofcould be constructed outside the

SCB, by whatever means, and given to the SCB with a cheap, local memory

transfer, rather than network communication. The SCB could then transmit

an assertion that the proof exists, in a certificate, rather than the proof itself.

The consumer of the code would simply check the certificate rather than the

proof. Leroy's concems about off-card bytecode verification apply also to this

scenario, though again the use of an SCB should mitigate them and offer some

advantages.

To date, there is only limited experience in the deployment and use ofproof

carrying code technology. Therefore any assessment of the use ofSCBs in this

context may remain rather speculative. Nevertheless, as for typechecking, this

use ofSCBs appears as a sensible and potentially attractive variant.

5.3 Certificate checking

For access control in distributed systems, the reference monitor that eval

uates arequest typically needs to consider digitally signed certificates and

assemble evidence on whether the request should be granted. If the request

comes from a source S ·and it is for an operation 0 on a target object T, the

certificates may for example say that S is a member of a group G, that G is

included in another group G', that all members of G' can perform 0 on objects

owned by a principal P, and that P does in fact own T. Examples with chains

of 5-6 certificates are not uncommon in some systems (e.g., [Clarke et al.,

2001; DeTreville, 2002]) . The certificates may be obtained by a variety of

methods (pushed or pulled); selecting the relevant certificates and assembling

them into a proof can be difficult. Therefore, several systems have, to various

extents, shifted the work of providing proofs to the sources of requests [Wob

ber et al., 1994; Appel and FeIten, 1999; Bauer et al., 2002]. Nevertheless, the

checking ofproofs remains in the reference monitor.

Using an SCB, we can go further: the source of arequest need not present a

pile of certificates or even a proof, but rather its SCB can provide a certificate

that it has checked a proof. (In addition, the SCB should present certificates

to establish its trustworthiness, and the reference monitor should check them,

but these certificates may be trivial, and in any case they should not vary much

from request to request.) Thus, the task of the reference monitor becomes

simpler.

This approach could also have privacy advantages: the source's SCB need

not reveal all the source's certificates-including the exact identity ofthe sour

ce and its group memberships-as those are processed locally. Private infor

mation about the source can thus be kept from the reference monitor, and also

from any parties that somehow succeed in compromising the reference mon-
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itor, which may not have an SCB. Conversely, the reference monitor may be

able to disclose its access-control policy to the source's SCB without making

it public . (However, this disclosure is not essential: the SCB may provide only

a partial proof if it does not know the access-control policy, so the approach

applies in that case also.) Clearly, realizing this privacy advantage may require

additional machinery, such as specifications of privacy properties that control

the flow of certificates; the development ofthis machinery is perhaps interest

ing but beyond the scope of this paper.

While the explanation above concems a reference monitor that evaluates a

request, much the same applies to an on-line authority that issues certificates

for example, an authority that issues a certificate of membership in a group G

to anyone who proves membership in another group G' .

More generally, the protected environment of an SCB appears as an appeal

ing place for certificate processing and manufacturing. With some care, its

weak timeliness properties should be adequate for this application .

5.4 Virus confinement and communications
censorship?

Preventing the spread ofviruses is an eminently worthy application ofSCBs.

Because viruses can in general attack anti-virus software, it is attractive to run

that software under the protection ofSCBs. In particular, when two nodes com

municate, either or both can use their SCBs to check and certify the absence of

known viruses in the data they exchange.

One may ask, however, whether any negative applications of SCBs might

make them unattractive overall. In particular, the same infrastructure that

blocks viruses could weIl be used for censoring other kinds of contents . Fortu

nately, communications censorship-at least in the form described here-can

be avoided. First, there may be legal protections against it. Hardware attacks

on SCBs mayaIso defeat censorship, though they negate protection against

viruses at the same time. Finally, censorship may be avoided at the software

level, since communications between consenting nodes can circumvent SCBs.

(We note however that there has been prior discussion of other forms of cen

sorship, in which local files would be deleted [Anderson, 2003b].)

6. ASSESSMENT

In light of the preceding examples, we see that the shift of checking to the

sender's SCB has a number of consequences, some of them rather attractive:

• The work is done at the sender, not the receiver. Therefore, we may not

mind if there is quite a lot of work. In particular, we remove one op

portunity for denial-of-service attacks on the receiver. This point is only

significant if the work is substantial (more expensive than whatever sig-



304

nature verification is required). It may be particularly significant when

the receiver is a resource-constrained device such as a smart-card or a

server.

• Any auxiliary data needed for the checking is communicated only 10
cally, not to the receiver across a network. This feature can result in

simplifications and efficiency gains (as in the proof-carrying code ex

ample), and possibly also in privacy gains (as in the certificate-checking

example).

• If the data is sent to multiple destinations, the checking of each property

needs to be done only once at the sender, not once at every destination.

(For example, the data might be mobile code being widely distributed,

as discussed above.)

• The receiver should trust the sender's SCB. Specifically, if that SCB is

somehow compromised (say, with a hardware attack), the checking may

be circumvented. On the other hand, the receiver need not trust the rest

of the sender, which may be incompetent, compromised, or malicious.

Some of these features are also obtained when the checking is done by a

trusted third party placed at a firewall or at another machine managed by trusted

system administrators. In comparison, using an SCB may increase concems

about hardware attacks. On the other hand, it may reduce any concems about

administrators, it saves communication, and it does not require special infras

tructure.

7. AN EXAMPLE, STEP BY STEP

As a more concrete example, suppose that a server offers a generic comput

ing service, initially with the following interface:

public void compute(p

f

i

o

Principal,

Code,

FileName,

FileName)

Here f is code to be executed (possibly in binary format), i a source of inputs

for the code, 0 adestination for the outputs, and p the identity of the invoking

principal. The secure-communication machinery can guarantee that p is not

spoofed [Lampson et al., 1992]. Intemally, the server may check p against ac

cess controllists, for example those for i and o. The server mayaIso check that

it is safe to run f , somehow-for example, by checking f for known viruses

and also by relying on any types and other evidence of safety included with f.

With our approach, the interface may specify the requirements of the call,

leaving their verification to the caller's SCB:
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public void compute(p Principal,

f Code,

i FileName,

o FileName)

requires p says safe(f),

p says may-read(p,i),

p says may-write(p,o),

GoodSCB(p)

For simplicity, this interface identifies the principal p with its SCB. It is how

ever easy to write versions in which the SCB need not put its full author

ity behind the call, in particular by requiring only that p be of the form "s

quoting r" [Lampson et aL, 1992], for some SCB s and some identity r:

public void compute(p Principal,

f Code,

i FileName,

o FileName)

requires for some r, s.

p = (s quoting r),

GoodSCB(s),

s says safe(f),

s says may-read(p,i),

s says may-write(p,o)

Such requirements are particularly appropriate when r represents a piece of

code at the dient. Even when the SCB and its user are trustworthy (so in

particular the user does not attempt hardware attacks on the SCB), some dient

code may not be.

When a dient p imports this interface, it also leams about the requirements

that calls should satisfy. When the dient wishes to call compute (p, f , i, 0) , it

somehow finds proofs of safe (f), may-read (p, L), and may-write (p, 0) .

The proofofsafe (f) may consist ofa logical proofofsome property off and

a certificate that associates the predicate name "safe" with this property. The

proofs of may-read (p , L) and may-write (p , 0) may be assertions signed by

a trusted authority, perhaps by the server itself. In all cases, further certifi

cates may be required, for instance certificates for the keys ofthe authorities in

question, and certificates that place p, f, i, and 0 in particular groups.

The dient provides this material to its SCB, along with the data for the

call. The SCB can then verify and assert safe (f); it can similarly assert

may-read (p , L) and may-read (p ,0) . The dient should present these signed

assertions along with its call, and with a certificate that its SCB is in the group

GoodSCB. Upon receipt of the call, the server automatically verifies that the

SCB's assertions match its requirements before launehing the execution off.
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The server can be even more forthcoming on its expectations. In partic

ular, it can provide some information on how safe (f ), may-read (p , i) ,

may-write(p,o), and GoodSCB(s) may be established. For instance, the

server could supply a piece of code that implements safe, and a rule that

implies that (in its view) if s is a good SCB and r is a good program then s

quoting r may read i and write o. These can also be attached to the interface

that the dient imports.

8. EXTENSIONS

In this section we briefly consider variants and extensions of the ideas de

scribed above.

A first, minor extension consists in taking into account auxiliary state that

the SCB may keep. For instance, an SCB can certify network requests from

its host up to some number (say, 1,000) per day. The requests may include

calls on web services, such as search engines, and also requests to send e-mail

(via SMTP) or to create free e-mail accounts. Of course, the requests can be

broken into classes, with a different limit for each. Anyone that receives a non

certified request would have reason to suspect that it is generated by a program

rather than a human user, and may disregard it or give it low priority. For this

example, the SCB can simply rely on monotonic counters.

As this example shows, one advantage of performing checks at the caller's

SCB is that the SCB can rely on any relevant auxiliary state it can keep. The

state may not readily be available at the callee.

In further extensions, an SCB may do more than checking data: it can supply

all or part of an input. The SCB can thus guarantee that the input is generated

in a certain way. For example, the SCB can guarantee that the input is gen

erated with a particular protocol stack; by running a particular compiler; with

inlined safeguards that enforce a security policy, such as an inlined reference

monitor [Erlingsson and Schneider, 2000]; with a particular application (for

example, with a trusted tax-preparation package); by completing a particular

form; or directly by auser, through secure I/O. Although these seenarios may

be attractive, some of them may require running substantial pieces of code on

the SCB. These seenarios often tend to fit into a fairly controlled approach to

systems, which enforces not only what hosts say but also why they say it (what

code they run).

In addition, the SCB can help when the input in question contains sensitive

information (such as personal medical records). The SCB may be in charge of

holding the sensitive information, and occasionally encrypting it and sending it

to designated parties, or displaying it on a trusted output device. In such exam

ples, the SCB is involved not in order to guarantee how the data is generated,

but in order to protect its secrecy.
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9. CONCLUSIONS

Trusted Computing gives rise to a new supply of potential trusted third

parties. These trusted third parties may find a variety of applications in dis

tributed systems-keeping sensitive personal information, preventing cheating

in games, and possibly many more. In this paper we investigate the use of

these trusted third parties for verified communications. We consider several

instances ofremote input checking, such as remote typechecking, proofcheck

ing, and certificate checking.

Despite the lively controversy on Trusted Computing, and despite the sub

stantial progress in the development of its basic machinery, there remains much

room for further thinking and experimentation. In particular, this thinking and

experimentation should shed more light on the potential uses of this techno1

ogy, which are important whether one prefers Trusted, Trustworthy, or Treach

erous Computing.
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