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Abstract
Embedded systems are increasingly pervasive, interdepen-
dent and in many cases critical to our every day life and
safety. Tiny devices that cannot afford sophisticated hard-
ware security mechanisms are embedded in complex control
infrastructures, medical support systems and entertainment
products [51]. As such devices are increasingly subject to
attacks, new hardware protection mechanisms are needed to
provide the required resilience and dependency at low cost.

In this work, we present the TrustLite security architec-
ture for flexible, hardware-enforced isolation of software
modules. We describe mechanisms for secure exception
handling and communication between protected modules,
enabling seamless interoperability with untrusted operating
systems and tasks. TrustLite scales from providing a simple
protected firmware runtime to advanced functionality such
as attestation and trusted execution of userspace tasks. Our
FPGA prototype shows that these capabilities are achievable
even on low-cost embedded systems.

1. Introduction
Embedded systems increasingly permeate our information
society. Usage profiles, credentials and sensitive documents
accumulate in various devices around us, from footwear and
media players to smart TVs and smartphones [16, 44]. Print-
ers, network routers and other inconspicuous equipment are
repeatedly the subject of exploitation and abuse, jeopardiz-
ing the security of large IT infrastructures and the data en-
trusted to them [9, 10, 51, 52]. In applications such as auto-
motive electronics and medical implants, the security of tiny,
resource-impoverished embedded devices can be critical for
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the safety of users and bystanders [8, 18]. In this context, the
strong isolation of critical software from complex peripheral
drivers and protocol stacks, the binding of sensitive data to
known system states and the automated validation of remote
platform software stacks can provide fundamental security
capabilities and facilitate the automated, secure operation of
interdependent embedded systems.

While technologies such as secure co-processors [49],
firmware security services [32] or verifiable execution of
measured code (trusted execution) [4, 17] are commonly de-
ployed in more capable systems such as laptops and even
smartphones, for many embedded systems economic incen-
tives drive towards lower-cost solutions requiring minimal
resources. Indeed, even well-established features such as
caching, virtual memory and user/superuser separation are
often not included at these design points to minimize pro-
duction cost and energy consumption. Instead, the software
requirements are typically determined at design time and im-
plemented using the cheapest available hard- and software.

To provide strong security assurance in low-cost embed-
ded systems, a recent line of research [2, 11, 46] investi-
gates an extension of memory access control to depend on
the currently executing CPU instruction address. In partic-
ular, the authors of SMART [11] demonstrate that a simple
measurement routine in ROM with exclusive access to a pro-
tected secret key can provide remote attestation and trusted
execution. On the other hand, Sancus [38, 46] proposes ad-
ditional CPU instructions that can be used to setup trusted
software modules at runtime. For this purpose, they imple-
ment multiple memory protection regions, each containing
a code and data section. An extended processor instruction
set enables dynamic measurement and loading of code into
protected regions in order to query the protection status of
modules and request tokens for authenticated communica-
tion between processes.

However, neither SMART nor Sancus solve the problem
of handling memory access violations and hardware inter-
rupts. Instead they rely on the hardware to reset the CPU
and sanitize all memory. Moreover, the rather basic access
control logic of SMART supports neither the update of the
attestation code nor its key and interaction between multiple
protected modules is very slow. On the other hand, Sancus
restricts applications and incurs rather high hardware cost by



implementing the loading, measurement and runtime identi-
fication of protected modules in the trusted CPU.

With TrustLite, we present a generic security architecture
for low-cost embedded systems that allows OS-independent
isolation of specific software modules with different trade-
offs for assurance vs. flexibility. This allows manufacturers
and security providers for the first time to implement cus-
tom security services such as remote management, secure
updates, remote attestation and authentication services for a
broad range of devices and independently of the respective
deployed OS and application software. This is particularly
interesting for low-cost embedded devices, where the hard-
ware and software environment is highly dynamic, the cost
of secure operating systems or hardware protection is a sig-
nificant factor and a case-by-case evaluation of the individ-
ual target platforms is prohibitively expensive.

Contribution. We present TrustLite, a generic hardware
security architecture for flexible and efficient software iso-
lation on low-cost embedded devices. We introduce an
Execution-Aware Memory Protection Unit (EA-MPU) as
a generalization of recent memory protection schemes for
low-cost devices. Programmed in software, our EA-MPU
allows a flexible allocation and combination of memory and
peripheral I/O regions without burdening the CPU. We solve
the problem of information leakage on platform reset by
introducing a simple Secure Loader sequence, which can
optionally also provide a root of trust for attestation and
trusted execution. We also propose a modified CPU excep-
tion engine, enabling the preemptive scheduling of trusted
tasks by an untrusted OS. Our architecture supports update
of software and security policy in the field and works inde-
pendently of the CPU instruction set, facilitating code re-use
and fast deployment.

A major strength of TrustLite is that it can be instanti-
ated in several ways, providing different security features at
different cost points, all of which can be programmed and
evaluated independently of the main OS and software stack.

2. Problem and Assumptions
We consider a low-cost System on Chip (SoC) in the range
of 100,000 gate equivalents, including on-chip memory and
basic peripherals such as timers, interfaces for external com-
munication peripherals and possibly cryptographic accelera-
tors. As is the case with most embedded devices, we assume
that the CPU boots from a hardwired, well-known location in
non-volatile memory, such as Programmable ROM (PROM),
and that any peripheral access is implemented with Memory-
Mapped I/O (MMIO).

Observe that, in contrast to more costly and relatively
power-hungry mobile or desktop systems, the considered
target platform has no hardware support for virtualization,
a secure firmware runtime or enhanced security features
such as trusted execution. In particular, we do not assume a
secure co-processor or CPU security extensions that provide

additional privilege levels and execution modes (e.g., [3, 4,
17, 39]). Instead, the class of devices considered in this work
may potentially be used as part of a programmable secure
co-processor or smart card.

Despite strong economic incentives to minimize develop-
ment and production costs, it is desirable that such platforms
offer certain security services such as remote reporting of the
software, secure software updates and possibly the ability
to deploy and update security-sensitive services such as au-
thentication or e-payment systems. Current platforms do not
offer this capability, and a trusted OS approach incurs high
costs for security evaluation of new drivers or protocols.

2.1 Terminology
We denote static (machine) code and associated data and
meta-data as a program. Programs are typically designed for
a particular functionality of some overall application sce-
nario. In comparison, a task describes the runtime state of
a program, software or firmware, including its CPU state,
call stack and other volatile data. The Trusted Computing
Base (TCB) of a task is the set of components (hardware and
software) that must be secure to assure the unmodified exe-
cution of that task. Tasks which are designed and believed to
implement a particular security mechanism are trusted tasks
and we refer to them as trustlets.

The owner of a platform is authorized to install and mod-
ify the TCB, tasks and trustlets of that platform as desired,
but may not (always) be the entity that is in physical control
of the platform.

2.2 Adversary Model
The adversary’s goal is to compromise trustlets on the plat-
form which are not owned by the adversary and do not have
any trustlets issued by the adversary in their TCB.

For this purpose, we assume that the adversary has full
control over the untrusted OS and tasks running on the plat-
form. Furthermore, the adversary can convince the platform
owner to deploy arbitrary code in form of additional trustlets.
However, trustlets and bootstrapping routine are assumed to
operate correctly, i.e., their API contains no exploitable soft-
ware bugs. The adversary also controls all communication
with the platform and can eavesdrop, manipulate and inter-
cept any communication messages. However, it is assumed
that any deployed cryptographic mechanisms are secure.

We assume that the high levels of integration achievable
with modern IC fabrication processes render chip-level inva-
sive attacks such as tampering, on-chip bus probing, extract-
ing keys from on-chip memory or fault injection out of scope
for economically motivated attackers and that mitigations
are in place against side-channel leakage through power,
electromagnetic emissions or timing behavior [15, 26, 27].

2.3 System Requirements
Low-cost embedded devices are used in many different sce-
narios. Typical requirements are fast cold start, low power



consumption and real-time processing constraints. In many
cases it is desirable to update the software in the field, and
the enabling of third party secure applications such as au-
thentication and payment plug-ins is increasingly important.
For security, the platform should prevent trustlets from tam-
pering with each other and enable software environments
with a minimal common TCB. In more detail, we pose the
following security requirements:

Data Isolation: Trustlets are isolated in the sense that no
other software on the platform can modify their code.
Trustlet data can be read or modified by other trustlets
according to the system policy.

Attestation: Trustlets can inspect and validate the local
platform state without other software being able to ma-
nipulate the procedure.

Trusted IPC: Trustlets can inspect and validate other trust-
lets on the platform and establish a mutually authenti-
cated and confidential communication channel.

Secure Peripherals: Trustlets can be provided with exclu-
sive access to platform peripherals, such that other soft-
ware cannot interfere in that interaction.

In particular, secure peripherals were shown to be es-
sential for many applications scenarios, such as providing
secure user input/output for explicit confirmation of online
transactions [6, 13, 53]. Additionally, we believe that the fol-
lowing functional requirements are essential for providing a
practical and versatile security solution:

Fast Startup: The security extensions should not signifi-
cantly impact the bootstrapping delay, e.g., by having to
measure large amounts of code or perform cryptographic
operations at platform or trustlet initialization.

Protected State: To support fast invocation and switching
between trustlets, the platform should allow trustlets to
maintain a protected software state during inactivity.

Field Updates: The solution should allow updates to code,
data and security policy after deployment.

Fault Tolerance: It should be possible to interrupt trustlets
on unexpected errors or timeout.

3. The TrustLite Security Architecture
In the following we present the base components and proce-
dures of the TrustLite security architecture and explain how
they contribute to the memory protection and trusted execu-
tion of isolated software tasks.

3.1 Architecture Overview
The high-level hardware and software architecture of Trust-
Lite is illustrated in Figure 1. The platform consists of a Sys-
tem on Chip (SoC) with (possibly insecure) external periph-
erals. Inside the SoC boundary, a CPU core is integrated with
at least one PROM, alarm timer, and some limited amount

CPU MPU PROM

RAM Timer

Secure Loader

Embedded OS

App BApp A

Attest ...ePay

Ext.
DRAM

Secure SoC boundary

I/O
Crypto Periph-

erals

Trustlets

Figure 1. High-level architecture of a TrustLite platform.

of RAM. A Memory Protection Unit (MPU) enforces access
control on all memory accesses, including regular memory
as well as memory-mapped device I/O (MMIO). Depending
on the application, a number of additional components may
be included in the SoC, including cryptographic accelera-
tors, display adapters and communication interfaces.

On top of the trusted SoC, a Secure Loader is responsible
for loading all desired trustlets and their critical data regions
into on-chip memory. Additionally, it programs the MPU to
protect the trustlet memory regions as well as its own code
and data regions from unauthorized access. This approach
allows, for example, measured launch procedures [39] to
be implemented without additional dedicated hardware sup-
port, although some usages may warrant hardware accelera-
tors such as a signature verification engine.

The configured code and data regions are recorded in the
Trustlet Table, a write-protected table in on-chip memory,
such that they can be looked up and validated by individual
trustlets or attestation routines. Only then does the Secure
Loader continue to load and execute untrusted software,
such as the embedded OS.

Note that external DRAM will not typically be used for
confidential trustlet data in this approach. Instead this ex-
tended bulk memory can be used to support a larger un-
trusted OS and applications stack, or public code and data
requiring only integrity protection. Moreover, we emphasize
that the Secure Loader itself is only active at initialization
time. It only configures the hardware memory protection and
optionally initializes a chain of trust for remote attestation
and trusted execution before delegating control to actual run-
time code, such as an untrusted OS.

In the following we discuss the key components of this ar-
chitecture in more detail, before discussing the initialization
and interaction of trustlets in Section 4.

3.2 Memory Protection Unit (MPU)
To realize flexible and OS-independent memory access con-
trol at low cost, we employ a generalized execution-aware
MPU design, which also considers the address of the cur-
rently executing instruction when validating a particular data
or code access.

An MPU can be seen as a lightweight Memory Manage-
ment Unit (MMU). However, MMUs are primarily designed



to implement paging and virtual memory, which in turn can
be used to realize access control on physical memory. As
such, MMUs impose a large management overhead in form
of page tables, which map virtual to physical memory pages
and manage their respective access rights. As the page ta-
bles typically reside in external, off-chip memory, lookups
can incur significant and variable processing delays, which
is unacceptable in many real-time application scenarios.

In contrast, an MPU is primarily designed for lightweight
access control and does not provide virtual memory. For
this purpose, available physical memory is organized into a
number of memory protection regions with associated access
permissions. The access control rules are not kept in main
memory but in local registers available to the MPU. Hence
the number of protection regions is determined at production
time, e.g., by instantiating an MPU with 12 or 16 such region
registers [5, 22, 48].

To support a larger number of protected OS tasks, an
MPU is typically combined with CPU privilege levels such
as supervisor and user mode execution. In this way, the OS
can program the MPU rules for the next respective task
to be scheduled. However, a major drawback of this ap-
proach is that the embedded OS and the facilities it imple-
ments, such as hardware drivers, communication protocols
and other complex abstraction facilities, becomes a single
point of failure for platform security enforcement, reducing
the resilience of the overall platform to malicious attacks.

3.2.1 Execution-aware Memory Protection
Existing MPU implementations enforce execute and read-
/write access control for different CPU privilege levels on a
set of memory regions. For code execute permissions, ad-
dresses generated by the CPU’s instruction fetch unit are
checked against the programmed access control rules, while
for data read/write permissions data addresses generated by
the instruction execute unit are monitored.

We enhance this mechanism by providing a means to link
code regions to data regions, thus making the permission
check execution-aware. In addition to validating the data ad-
dress generated by the instruction execute unit, the instruc-
tion address of the executing instruction is also considered.
The resulting scheme is illustrated in Figure 2, where the
MPU not only validates data accesses (object, read/write/ex-
ecute) but additionally considers the currently active instruc-
tion pointer (curr_IP) as the subject performing the access.

Hence, our execution-aware MPU can be programmed to
autonomously enforce a fine-grained access control based
on individual executing code regions. Figure 3 illustrates
an example access control matrix that can be programmed
and enforced by our MPU, showing three subjects “TL-
A”, “TL-B”, “OS” and several memory regions they can be
given access to, including their own respective code and data
regions as well as the memory-mapped registers of, e.g., the
MPU and Timer peripherals. By comparison, a regular MPU
can only distinguish between user and supervisor access, and
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Figure 2. Block diagram of an Execution-Aware MPU.

requires the OS to program the correct user-level access rules
for the respective next scheduled task.

3.2.2 Memory Protection Faults
When the MPU detects a protection violation, a CPU ex-
ception is raised and handled as in regular MPU designs. In
particular, the MPU protection fault invalidates the execut-
ing instruction and thus also any associated (speculatively
allowed) data reads and instruction fetches. The CPU ex-
ception engine flushes the pipeline and diverts execution to
the designated exception handler, providing the violating in-
struction address and requested data access as arguments.

3.3 Peripheral Access
The typical approach for interacting with platform peripher-
als is that access is limited to one or more privileged tasks.
These tasks then implement a low-level hardware driver and
provide a more abstract interface to other applications, regu-
lating access and multiplexing available hardware resources.

TrustLite directly supports this paradigm and extends it
to allow any trustlet to exclusively control an arbitrary set
of hardware peripherals, without depending on the OS or
other privileged code. Due to the flexible access control pro-
vided by our execution-aware MPU, trustlet code regions
can be associated with a number of data regions. Since all
peripheral access is implemented using Memory-Mapped
I/O (MMIO), i.e., in the form of read/write accesses to mem-
ory address space, access to individual hardware peripherals
is provided by the MPU in the same way as any other mem-
ory access. For this purpose, the Secure Loader simply de-
fines the MMIO address space of the respective peripheral as
an additional read/write data region of the trustlet. This ac-
cess is usually exclusive, enabling the trustlet to implement
multiplexing and access control as desired.

As an example, consider the access control definitions
for the MPU and Timer address regions in Figure 3. Using
MMIO, the MPU is configured by writing to the appropriate
memory regions denoted as “flags” and “regions” of the
MPU peripheral. Hence, the MPU can also be configured to
deny any further access to its own registers by configuring
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Figure 3. Example memory protection table, defining vari-
ous memory regions and access permissions for two trustlets
A and B as well as an OS.

the appropriate MMIO region as read-only. We use this in
the Secure Loader in Section 3.5 to prevent modification of
the MPU by the OS or other software.

As another example, Figure 3 also shows a timer periph-
eral which can be programmed to call a particular function
pointer (handler) after a configurable number of timer ticks
(period). Timers are often used by an OS to interrupt the
CPU and, e.g., switch to the OS task scheduler. By config-
uring the read-write access of this peripheral, the device can
thus be setup to leverage or disable such an OS scheduler.

Observe that this capability can be applied to a variety of
peripherals and usages, enabling trustlets that implement se-
cure user I/O [53] or access cryptographic accelerators. By
comparison, the Sancus task model requires that all mem-
ory and MMIO accessible for a trustlet are wired into the
same contiguous data region, which is unusual and requires
close coordination between hardware design, software de-
velopment and usage [38].

3.4 TrustLite Exception Engine
Previous works [11, 38, 46] on memory protection assumed
that trusted applications are non-interruptible, resetting the
platform on unexpected errors and operating in a coopera-
tive multitasking environment. However, modern embedded
systems often have strong requirements with regard to fault
tolerance and responsiveness, and fundamentally require ef-
ficient hardware interrupts and software fault handling.

In the following, we propose a modified CPU exception
engine that maintains the memory isolation of tasks even in
the case of hardware and software exceptions. This allows
trustlets to leverage (trusted or untrusted) central scheduling
services and exception handlers, without affecting the in-
tegrity and confidentiality of their data. In particular, Trust-
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...
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"A"

stack
stack
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"OS"

0xA-0xB

0xE-0xF

ID Code Region Stack
SPA

SPOS

...

[OS code]

......

state

(4) call(ISR) [program code]

Figure 4. Exceptions save CPU state to current stack before
launching handlers.

Lite instantiations with a secure exception engine allow
trustlets to be managed by an untrusted embedded OS, sim-
ilar to other untrusted OS tasks executing on the platform.

3.4.1 Isolating Exceptions
When handling CPU exceptions such as faults, traps and in-
terrupts, typical computing platforms only perform the min-
imal tasks of saving the stack and instruction pointer be-
fore executing the corresponding (software) exception han-
dler. Depending on the type of exception, such handlers may
then only save the particular CPU registers required to per-
form their operation, and restore them before handing con-
trol back to the task.

However, this procedure opens trustlets to information
leakage attacks. In a preemptive multitasking environment,
trustlets can be interrupted at any time, leaking potentially
sensitive information from the CPU registers into the excep-
tion handlers and OS. To exclude the OS exception handlers
from the TCB of our trustlets, we modify the CPU excep-
tion engine to store the stack and instruction pointer, as well
as general purpose registers into the protected data region of
the interrupted trustlet.

The detailed scheme is illustrated in Figure 4. When
detecting an exception, existing exception handlers typically
store the stack pointer, instruction pointer and CPU flags
together with any additional exception information on the
OS or other higher-privilege stack. The address of this stack
is taken from a well-known location, such as the Task State
Segment (TSS) on current x86 CPUs. Depending on the
type of exception, the control flow is then redirected to the
appropriate Interrupt Service Routine (ISR) as indicated by
the Interrupt Descriptor Table (IDT). To provide isolation of
trustlets in the face of untrusted ISRs, we modify this scheme
as shown in Figure 4. In particular, the hardware exception
engine first (1) stores the CPU state to the current (task or
other) stack SPA, (2) stores SPA to the Trustlet Table, into
the row matching the currently executing instruction pointer
region, and then clears all general-purpose registers. Only
then is the OS stack pointer SPOS restored in step (3),
unless already executing from the OS region, and the regular



operation of the exception engine can continue by writing
the faulting IP value as well as additional error codes onto
the new stack SPOS . The appropriate ISR in called step (4).

3.4.2 Return from Exception
Restarting an interrupted trustlet is performed simply by
jumping to its respective entry point and does not require ad-
ditional hardware logic. However, the trustlet must take care
to restore its stack pointer SPA as the very first instruction,
since that instruction may already be followed by another ex-
ception leading the exception engine to store the CPU state
to the wrong stack1.

Note that the ISR and OS can distinguish the source of an
exception simply by looking up the faulting IP in the trustlet
table, and ensure an appropriate re-entry. Hence this design
supports ISRs which directly return to the trustlet as well as
approaches where the ISR defers to the task scheduler to po-
tentially launch other trustlets and tasks before continuing
the originally interrupted trustlet. Additionally, the reported
faulting IP of trustlets can be sanitized to always point to the
trustlet’s entry vector to avoid information leakage. Our cur-
rent analysis shows that the approach also works with nested
interrupts, where an ISR may be interrupted by another ISR.

Observe that the Trustlet Table is similar to the Task State
Segment (TSS) introduced in the Intelr 80386 CPUs, and
thus well within the scope of modern low-cost platforms.
However, while x86 hardware task switching is designed for
hardware acceleration, our Trustlet Table and modified ex-
ception handler are fundamental security features. In com-
parison to the previously proposed asynchronous exit in
Intelr Software Guard Extensions (Intelr SGX) [35], the
entry and exit of individual trustlets is implicitly determined
by matching the instruction pointer against the defined EA-
MPU regions and does not require new CPU instructions.

3.5 Secure Initialization and Reset
In the following we describe the Secure Loader, which per-
forms the secure initialization and configuration updates of
trustlets and allows an efficient platform reset.

The first process launched by the CPU upon platform
reset is a platform initialization procedure that is typically
loaded from a hard-wired location in memory. We realize a
Secure Loader by having this initialization procedure protect
itself using the MPU’s memory access control. This ensures
that the Secure Loader can at most be updated by itself,
and not by any other software launched at a later time. The
routine then loads one or more trustlets into memory and sets
up the respective memory protection rules before launching
the main OS.

Figure 5 illustrates the detailed interaction with the plat-
form’s Programmable ROM (PROM) and RAM. After per-
forming basic platform initialization such as clearing the

1 Since the MPU will typically not be configured to allow such accesses,
this misbehavior leads to a memory protection fault, effectively terminating
the trustlet.
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Figure 5. Bootstrapping Trustlets and OS from PROM.

MPU access control registers in step (1), step (2) initiates
the detection and loading of any trustlets found in PROM.
For each trustlet, the Loader parses the trustlet’s meta-data
and sets up the appropriate memory regions in RAM. The
Loader then performs a static initialization of the trustlet,
setting up its stack, instruction pointer and rewriting the code
to restore its stack from the correct location in the Trustlet
Table. Additionally, the global Trustlet Table is populated
with the identifier, MPU regions and initial stack pointer of
each loaded trustlet (cf. Figure 4).

In step (3), the Secure Loader programs the MPU in or-
der to enforce the access control requested by the individual
trustlets. For instance, code regions will usually be write-
protected and data regions restricted to be read/writable only
for the respective trustlet, as illustrated in Figure 3. Finally,
the MPU regions themselves are locked from further unau-
thorized access by defining their locations in memory (as
well as the MMIO locations of the corresponding MPU reg-
isters) as read-only. In this way, trustlets and even the OS are
unable to interfere with the protection enforced by the MPU.

The OS may be started in step (4) to drive untrusted plat-
form peripherals and implement any non-critical function-
ality. An OS can also be made trustlet-aware by inspecting
the local Trustlet Table created by the Secure Loader, and
registering any identified trustlets similarly to regular tasks
managed by the OS. This allows the OS to invoke trustlets
by calling into their appropriate entry points or manage the
invocation of trustlets using the OS scheduler.

Observe that the initialization code is reliably executed
at platform reset, and can efficiently reconstruct and re-
establish the required memory protection rules. This allows
a more efficient bootstrapping compared to prior solutions
such as SMART and Sancus, which require the hardware to
sanitize all volatile memory on platform reset [11, 38].



3.6 Important Instantiations
We point out that the presented hardware architecture allows
for several different instantiations, depending on the desired
functionality, security level and performance.

Apart from the obvious aspect of scaling the number of
MPU regions and thus available trustlets, designers may de-
cide to hardwire certain MPU regions and memory locations
to provide “hardware trustlets” similar to the ROM-based
implementation of SMART. However, we expect that the se-
cure initialization routine will be typically used to initialize
load-time or “firmware trustlets” with the benefit that de-
vices can be reprogrammed for different applications or even
updated in the field. The secure exceptions engine can be in-
cluded if interruptible “usermode trustlets” are desired, e.g.,
to enable preemptive scheduling or for the isolated execution
of third party, perhaps not fully trusted, code.

The Secure Loader can be extended to provide Secure
Boot, i.e., to validate signatures of software components be-
fore their execution. Alternatively, designers may also use
the Secure Loader to implement a minimal root of trust for
measurement and reporting, e.g., by instantiating it as a hard-
ware trustlet that also implements measurement and report-
ing facilities. In either case the platform may require addi-
tional secure key storage and cryptographic hardware accel-
erators to meet the performance and security requirements.

Naturally, trustlets may also be deployed without any
attestation infrastructure at all, e.g., to provide an OS-
independent remote management service similar to Intelr

Active Management Technology (Intelr AMT) [32].

4. Trustlet Invocation and Communication
In the following we describe how trustlets are invoked and
how they securely communicate with other trusted or un-
trusted tasks.

4.1 Memory Layout and Entry Vectors
The memory layout of a trustlet is defined by the set of mem-
ory regions and associated read, write and execute permis-
sions granted by the MPU. A trustlet is therefore defined by
a code region with associated entry vector, as well as one or
more data regions which may be accessible to one or more
trustlets at the same time and with different access rights.
While most of these memory regions are fairly standard and
self-explanatory, the entry vector requires a more detailed
discussion as it is important for understanding how other-
wise isolated trustlets can interact in TrustLite.

At its core, the entry vector is a code section of the
overall trustlet code that may also be executed by other
tasks or trustlets. It consists of one or more well-defined
entry points which enable other tasks to call a particular
sub-function of the trustlet, while at the same time assuring
that a trustlet’s own code execution (and thus the right to
access private sub-functions and sensitive data) is limited to
a particular set of entry functions. The entry vector is then

defined and enforced as one of the memory regions in the
MPU access control table, as illustrated by the “entry” areas
for the trustlets A and B in Figure 3. In this way, only the
trustlet itself can execute its complete program code region,
while certain other tasks and trustlets may only execute code
from the entry vector. Hence, the entry vector is the external
interface of a trustlet and should be programmed with great
care to avoid information leakage and other exploitation.

Figure 6 shows the two fundamental entry functions of a
trustlet, continue() and call(). After initialization by the
Secure Loader, continue() is used to continue the regular
execution of the trustlet by replacing the current CPU state
with previously stored values, as illustrated in the pseudo-
code of “Trustlet A” in Figure 6. The functions are called
simply by jumping to their position in code memory, with
possible arguments in CPU registers.

Note that multiple call() entry points can be provided
for more efficient Inter-Process Communication (IPC). More-
over, the entry functions of trustlets have similar security and
functional requirements as ISRs implemented in typical op-
erating systems. Consequently, we also list the ISRs of the
OS as part of its entry vector in Figure 6.

4.2 Inter-Process Communication
Any isolation-based security system is limited by the need
of applications (tasks) to communicate efficiently. In the fol-
lowing we discuss how untrusted tasks can communicate
with trustlets while otherwise maintaining memory isola-
tion. We also present a new mechanism for secure commu-
nication between trustlets, a local trusted channel protocol
that allows efficient communication without trusted security
kernels or hypervisors.

The fundamental assurance we require to achieve this
kind of secure IPC, without a mutually trusted supervising
entity (such as a security kernel), is that trustlets never exit.
More specifically, a memory region assigned to a trustlet
at boot time should not be re-used for other purposes until
system reset. According to our Secure Loader setup (cf.
Section 3.5), this assumption holds implicitly as no runtime
entity is allowed to reconfigure the MPU2.

4.2.1 Unprotected Communication
Typically, IPC is realized using message queues in the op-
erating system, and tasks are notified by the OS when new
messages are available. Messages can also be used to ne-
gotiate shared memory regions, allowing tasks to efficiently
communicate large amounts of data.

Since any information transferred to or from untrusted
tasks is implicitly already accessible to the respective un-
trusted parties, we can adopt the existing OS facilities to re-
alize unprotected IPC in TrustLite. The main difference in
our design is that, to maintain memory isolation between

2 Observe that such an entity may still be introduced, and in this case must
have a notion of existing tasks and mediate IPC. However, in this case the
trust relationships are similar to those of a microkernel OS, cf. [19, 40].
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Figure 6. OS schedules Trustlet A using untrusted IPC. A then performs a local attestation of Trustlet B and establishes a
mutually authenticated channel with B.

OS and trustlets, we realize signaling and short messages
with trustlets in a Remote Procedure Call (RPC) fashion,
by jumping to the respective trustlet entry points with ar-
guments in CPU registers.

As illustrated in Figure 6, trustlets and OS are equipped
with at least one IPC entry point call(type, msg, sender)
for calling particular handler functions of type type to pro-
cess message msg. The handler of the message may simply
queue the signal in a message buffer reserved in the trust-
let data region, or directly process received messages (syn-
chronous IPC). The caller may also define a pointer sender
to indicate the task and entry point to which the result of the
call should be returned or which should be continued after
queuing msg.

In addition to direct message transmission via CPU reg-
isters, larger messages can also be transmitted indirectly, by
referring to their location in memory as part of msg. For this
purpose, the trustlet’s meta-data should indicate the size and
participating tasks for any desired shared memory regions,
such that the Secure Loader can configure appropriate ac-
cess rules in the MPU. Ideally, the program code of the de-
sired participants should be in adjacent memory regions. In
this way, only one code and data region register is needed
to provide all authorized tasks with access to the particular
memory region, whereas otherwise four or more MPU re-
gions would have to be allocated.

Observe that the ability to realize fine-grained isolation
and shared memory is heavily limited by the number of
MPU region registers available in the particular platform.
However, the nature of the trustlets suggests that the num-
ber of information flows per trustlet is fairly limited and pre-
dictable, and the considered low-cost application scenarios
require only a limited flexibility.

4.2.2 Communication between Trustlets
Re-using OS facilities for IPC is cost-effective, but exposes
exchanged data to manipulation, interception or injection
attacks by untrusted components. Moreover, the receiver of
a call has no assurance about the sender of an IPC. For
secure and mutually authenticated communication between
trustlets, we propose a simple handshake protocol to enable
local trusted channels.

Our design allows trusted IPC to be initiated with a one
round handshake, as illustrated in the communication be-
tween trustlet A and B in Figure 6. To start communication,
the initiator (“Trustlet A”) may first perform a local platform
inspection to ensure the correctness of the platform config-
uration and MPU security policy enforcement for the task
or trustlet to be contacted (“Trustlet B”, responder). For this
purpose, the initiator uses the responder’s identifier or other
meta-data to look it up in the Trustlet Table and determine its
memory location and relevant code entry points. Using this
information, the initiator may perform an additional sanity
check by validating the correct isolation of the responder’s
memory regions in the MPU registers. The initiator may also
validate a cryptographic hash of the responder’s program
code to ensure that its code was not maliciously modified,
has the latest patch level etc. This can be done by requiring
read access to the responder’s program code for the initiator,
or by having a trusted third party such as the Secure Loader
measure the trustlet’s code region at load time and store it
in a well-known location such as the Trustlet Table. Note
that memory reads of the MPU registers, Trustlet Table or
program code are secure from manipulation by third parties.
Since the MPU does not provide virtual memory, an inter-
ruption followed by a remapping of the memory region is
not possible.



Once the initiator completes its local attestation of the
platform and the peer IPC trustlet, it sends a syn() message
containing the identifier “A” of the initiator, “B” of the re-
sponder and a nonce NA. On receiving the syn(), responder
B may in turn perform a local attestation of the initiator A
and on success respond with a corresponding ack(), con-
taining the elements of the initial syn() as well as a nonce
NB chosen by the responder.

Since the identity of message receivers is ensured by
the use of code entry points and secure exception handling,
and since the peers can ensure with local attestation that
their respective IPC receivers will not disclose the nonces, a
cryptographic session token tkA,B ← hash(A,B,NA, NB)
can then be used to authenticate subsequent messages in
either direction.

Similarly to untrusted IPC, trusted IPC can also be used
to validate the configuration of a shared memory region.

5. Evaluation
Depending on the requirements of the application scenario,
TrustLite may be deployed in a variety of configurations. In
the following, we discuss a minimal and full instantiation
of TrustLite in more detail and compare them against two
previously proposed low-cost trusted computing solutions,
SMART [11] and Sancus [38].

5.1 Prototype Implementation
We implemented our extensions on the Intelr Siskiyou Peak
research platform [42]. Siskiyou Peak is a 32-bit, 5 stage
pipeline, single-issue architecture targeted primarily at em-
bedded applications. The processor is organized as a Har-
vard architecture with separate buses for instruction, data
and memory-mapped IO spaces and is fully synthesizable.
The target technology was a Xilinx Virtex-6 FPGA. In par-
ticular, we realized execution-aware memory protection by
linking the respective code and data regions provided by the
stock MPU as illustrated in Figure 2, using the first four
bytes of each code region as its respective entry vector. Ad-
ditionally, a 32 bit register storing the secure stack pointer
location of each trustlet is associated with each code region
to facilitate secure exception handling. Our modified excep-
tion engine logic required only minimal modifications, since
the process of pushing the CPU state on the stack is largely
similar to the regular exception engine behavior.

On the software side, we deployed a homegrown OS
due to lack of an available open source embedded OS with
support for userspace tasks and memory protection. We fit-
ted the kernel’s bootstrapping routine to work as a Secure
Loader, programming the EA-MPU and protecting itself
from later modifications by the runtime OS code. Currently,
we use a linker script for the GNU C compiler to arrange
code and data regions in the memory image such that they
can be recognized and protected by the Secure Loader.

TrustLite Sancus
Regs LUTs Regs LUTs

Base Core Size 5528 14361 998 2322
Extension Base Cost 278 417 586 1138
Cost per Module 116 182 213 307
Exceptions Base Cost - - - -
Except. per Module 34 22 - -

Table 1. FPGA resource utilization of execution-aware
memory protection per security module and comparison
with Sancus [38].

5.2 Hardware Extensions Cost
Table 1 lists the hardware cost of TrustLite in terms of FPGA
registers and LUTs. In particular, we list the hardware over-
head of the full execution-aware MPU extension in terms
of cost per security module and extrapolated base cost with
zero supported protection regions. To enable a better com-
parison with prior work, we consider a security module to
consist of two associated MPU regions, one for code and
one for the data of the security module, although our imple-
mentation also supports multiple code and data regions per
module. We should point out that Sancus extends an open
source version of the 16-bit TI MSP430 microcontroller
while our implementation platform is a 32-bit architecture.
In terms of FPGA resource utilization, the unmodified San-
cus MSP430 core consumes 998 registers and 2322 LUTs in
Xilinx Spartan-6. Our targeted 32-bit core consumes 5528
registers and 14361 LUTs in Xilinx Virtex-6 (this figure also
includes a 16550 UART). Both Virtex-6 and Spartan-6 share
a 6-input LUT architecture and organize these in ’slices’
containing 4 LUTs with 8 registers; comparisons between
Sancus and TrustLite at the LUT/register or slice level are
therefore appropriate.

We now consider the base and per module cost of the se-
curity extensions. TrustLite’s fixed costs are 50% of Sancus
while the per module cost is roughly 40% less. It should be
pointed out the disparities in hardware costs between Trust-
Lite and Sancus are to some extent a result of differing archi-
tectural features. Sancus implements a set of instruction set
extensions and instantiates a hardware hash implementation
which accounts for the increased base cost. While a hash im-
plementation (hardware or software) is not strictly required
by TrustLite, there is ample base cost margin to absorb a
hardware hash such as Spongent, which has been shown to
consume 22 Spartan-6 slices in a representative implemen-
tation [30]. Note also that the TrustLite EA-MPU supports a
wider 32-bit address space. Scaling our EA-MPU to support
the narrower MSP430 16-bit datapath would roughly result
in a further 50% saving in FPGA resources.

At the per-module level a 128-bit MAC key is cached by
Sancus resulting in a module storage cost of 128 bits which
accounts for a significant portion of the register cost. For
usages where performance is not a concern, moving to on-



the-fly module key generation would result in a 128 register
saving for Sancus, however the hardware cost for TrustLite
remains competitive when scaling to a 16-bit data path is
taken into account.

To better illustrate the impact of our proposed architec-
ture, Figure 7 plots the total hardware cost in FPGA slices3

as a function of the number of supported security modules,
irrespective of the employed underlying core. This is rea-
sonable since our EA-MPU is portable to many other pro-
cessors, performing essentially the same logic with similar
effort, as evidenced by several regular MPUs implementa-
tions available today [5, 22, 48]. As can be seen in Fig-
ure 7, the overhead of Sancus protected software modules
rises quickly to twice of the cost of their underlying open-
MSP430 core, allowing them to fit only 9 protected modules
at a design point where TrustLite supports 20.

Table 1 also shows that the additional overhead of se-
cure exception handling is very low, with the additional fixed
costs even staying within the error margin of the probabilis-
tic FPGA synthesis. Figure 7 better illustrates the slightly in-
creased cost of adding module protection with secure excep-
tions. Hence, our approach of managing trustlets in a mul-
titasking environment with central scheduling and software
fault handling appears quite practical.

The rather low fixed cost of our extensions also justifies
instantiations with only only one or two protected modules.
In particular, a SMART-like system can be instantiated by
merging the security-sensitive SMART code with that of
our Secure Loader (which does not require entry points on
its own), thus creating a protected attestation and trusted
execution service using only a single protected module. With
a hardware overhead of only 394 slice registers and 599 slice
LUTs, such an instantiation can be very attractive compared
to the original SMART instantiation that requires an extra
4kB ROM and does not allow software updates [11].

5.3 Runtime Overhead of Memory Protection
As already observed in prior work [38], memory region
range checks can be parallelized such that they do not in-
crease memory access time which is in the processor criti-
cal path. However, the logic which generates the collective
memory access exception logarithmically increases in depth
with the number of checked memory regions. We experi-
enced no timing closure problems with up to 32 memory
protection regions.

The overhead of initializing trustlets in the Secure Loader
is also minimal, requiring only three additional writes to
MPU registers for each protection region to define the start,
end and permission of that region. Alternatively, the MPU
access control rules may also be hard-wired into the MPU to
further simplify the instantiation and provide additional se-
curity assurances. Note that even such limited instantiations

3 A slice in Xilinx Spartan-6 or Virtex-6 contains 4 6-input LUTs and 8
registers.
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may still be configured to allow software updates, by declar-
ing the code region of a trustlet as writable to itself or to a
separate software update service.

Overall, TrustLite enables multiple alternative instantia-
tions with an overall bootstrapping and memory access over-
head that is insignificant or not present at all.

5.4 Runtime Overhead of Exception Handling
The only hardware-dictated runtime overhead in TrustLite
comes from the (optional) secure exception engine. Since the
regular exception engine performs only the minimum work
necessary and delegates the OS to store and restore general
purpose registers, our modified flow of storing and clearing
the complete CPU state before switching into the Interrupt
Service Routine (ISR) yields a notable runtime overhead by
the exception hardware.

In particular, the unmodified exception engine requires
about 21 CPU cycles from recognizing the exception to ex-
ecuting the first ISR instruction, which includes the main
work of restoring the OS stack and storing the exception er-
ror parameters together with the interrupted execution state
onto that stack. On top of this flow, our secure exception en-
gine flow takes another 2 cycles to recognize that a trustlet
is being interrupted, 10 cycles to store all but the ESP reg-
isters onto the trustlet (instead of OS) stack, and 9 cycles
to clear all general purpose registers and store the ESP into
the Trustlet Table (cf. Section 3.4). Overall, our secure ex-
ception handler thus incurs a runtime overhead of 21 cycles
or 100% of the regular exception flow when interrupting a
trustlet, and 2 cycles otherwise.

Considering that a 32-bit i486 CPU takes at least 107 cy-
cles for context switching and larger processors typically re-
quire significantly more, we believe this overhead is reason-
able [20]. Furthermore, observe that task interruption is of-



ten followed by the invocation of the OS scheduler. For our
hardware-protected trustlets, the software would be working
to manage already cleared CPU registers, thus wasting CPU
cycles in the time critical ISR and scheduler code. As part
of our future work, we therefore plan to investigate how ISR
and OS optimizations can further reduce the average over-
head of trustlet exceptions.

6. Security Considerations
In the following we informally argue how TrustLite meets
each of the system and security requirements in Section 2.3.

Data Isolation. As a low-end platform without multipro-
cessing and virtual memory, TrustLite achieves data isola-
tion simply by memory access control. Hardware prevents
unauthorized software from accessing trustlet code and data,
restricting it to the explicitly provided code entry points of
the respective trustlet. Our secure exception engine extends
this separation into the CPU register files, ensuring that no
data is unintentionally leaked on context switch. Like all
known memory protection schemes, the approach is vulnera-
ble to software exploitation attacks which may subvert trust-
let code to leak information [50]. However, while TrustLite
assists in reducing the vulnerability of trustlets by minimiz-
ing their overall software complexity (TCB), advanced soft-
ware protection is outside the scope of this work and we in-
stead refer to our assumption in Section 2.2 that trustlet code
is correct.

Attestation. Building on a physical memory address space
with full isolation of trustlets from other software, TrustLite
ensures that the OS or other software cannot manipulate the
outcome of memory read accesses of the MPU register set
or other trustlet’s code regions. Hence, any software with
the required read permissions can inspect relevant system
state and perform actions depending on the outcome of this
inspection, without other software being able to interfere.

Trusted IPC. Since TrustLite establishes trustlets at plat-
form initialization time and ensures their protection until
system reset, a single inspection and validation of another
trustlet’s code and meta-data is sufficient to establish its
identity, integrity and entry points for IPC. Moreover, since
IPC with other tasks consist essentially of a jump instruc-
tion into their respective code entry region, the receiver iden-
tity and message confidentiality are directly enforced by the
CPU. Trusted IPC, consisting of a confidential and mutu-
ally authenticated local channel with integrity verification of
either endpoint can therefore be established using a single
round-trip protocol, as described in Section 4.2.2.

Secure Peripherals. The unique memory isolation archi-
tecture of TrustLite enables a simple and direct extension
to secure peripheral access based on Memory-Mapped I/O
(MMIO). This enables the construction of secure device
drivers and extends trusted software execution to assured in-
teraction with device users or other aspects of a platform’s

environment. For future work, we want to extend this se-
cure interaction to (possibly untrusted) devices with Direct
Memory Access (DMA) capability, which were shown to be
problematic for certain security architectures [41].

Fast Startup. While prior works [11, 38] require the hard-
ware to purge all volatile memory on platform reset, our
Secure Loader allows secure re-initialization of the mem-
ory protection rules before invoking untrusted software and
only needs to clear data regions that should be re-allocated to
other software. Moreover, TrustLite allows the measurement
of trustlet code regions on demand, reducing the platform
initialization overhead.

Protected State. Similar to other more recent approaches
to trusted execution [35, 38], TrustLite allows trustlets to
maintain a transient execution state across invocations. This
significantly reduces the activation latency of trustlets, re-
sulting in reduced power consumption and better application
performance and user experience.

Field Updates. TrustLite security extensions are inde-
pendent of the CPU instruction set and completely pro-
grammable by software. This enables updates to any trusted
or untrusted software, security policy and potentially also
the Secure Loader itself.

Fault Tolerance. Our secure exception engine and secure
peripherals enable TrustLite instantiations that tolerate soft-
ware faults in trustlets or even in the OS. In particular, Trust-
Lite trustlets can cooperate with an untrusted OS but may
also implement ISRs and hardware drivers on their own, thus
preventing trivial denial-of-service attacks that affect several
prior works [11, 34, 38, 47].

Overall, TrustLite achieves all security and functional re-
quirements while being comparable or better than previously
proposed solutions.

7. Related Work
Memory protection is perhaps the oldest hardware security
mechanism in computing. Currently deployed systems typ-
ically use an MMU or MPU to prevent less privileged soft-
ware from manipulating foreign memory. Alternatively, the
Intelr 80286 introduced memory segmentation where the
hardware associates segments with a two bit privilege level
and prevents access by software unless it is running at least
at the same privilege level. Execution-Aware Memory Pro-
tection is fundamentally different from these concepts as it is
not based on privilege levels but directly associates code and
data regions in memory. This allows us to provide a large
number of isolated software modules which are isolated in-
dependently of the OS or another trusted software runtime.

CPU Extensions. Several works also proposed CPU ex-
tensions to protect the execution of software. Aegis [47]
loads code from untrusted memory and performs integrity



verification and memory encryption in the CPU. Alterna-
tively, it was proposed to extend the code of trusted software
modules with integrity check values that are automatically
verified by the CPU once loaded into its cache registers [12].
Intelr Trusted Execution Technology (Intelr TXT) [17]
and AMD Pacifica [1] introduce a secure re-initialization
of the CPU at runtime. Intelr Software Guard Extensions
(Intelr SGX) [35] provides hardware-protected execution
of multiple concurrent userspace applications. However,
these existing works focus on PCs, rich mobile platforms
and servers.

Secure Hypervisors and Kernels. A large amount of re-
search considers how to extend and improve software pro-
tection based on newly introduced privilege-based protec-
tion facilities [4, 37]. Higher privilege modes can be used by
a secure hypervisor or OS kernel to provide strong isolation
of certain critical software modules [19, 25, 31, 33, 36, 40],
assuming that sufficient attention is paid to reduce the com-
plexity of the privileged secure OS or hypervisor [7, 21, 53].
We believe that a secure and minimal OS kernel can be of
great benefit for increasing the resilience of TrustLite sys-
tems, while at the same time TrustLite can be useful for se-
curity kernels to simplify and automate software isolation.

Software-based Attestation. Software-based attestation
exploits the computational limitations of a platform to en-
sure that only a particular algorithm can be executed within
a given time frame. The scheme has been applied to a variety
of platforms and use-cases, including sensor networks, vot-
ing machines and trusted key deployment [14, 28, 29, 45].
Since purely software-based attestation must assume any
stored keys to be compromised, several works also consider
the combination of software-based attestation with hardware
trust anchors [23, 24, 28, 43, 46]. However, even if assum-
ing a minimal hardware trust anchor, the scheme requires
a temporary full utilization of the platform’s computational
capacity, and is unable to sustain more than one trusted ex-
ecution environment. Hence, software-based attestation ap-
pears more suitable for attestation of legacy devices or initial
trust establishment for platforms without trusted attestation
keys and certificates.

SMART. SMART [11] enables remote attestation and
trusted execution on low-cost systems using a custom access
control on the memory bus. Specifically, they only allow
access to a particular secret key in memory if the current
CPU instruction pointer points to a trusted code region in
ROM. The instruction pointer in turn may only point into
this trusted code if it previously also pointed into the same
region or if it currently points to the very beginning of that
code. As a result, the secret key is only accessible by the
trusted code in ROM, and can be used to prove to other par-
ties that the ROM code has been executed correctly, e.g., has
performed a measurement of some local software.

While our memory access control model is inspired by
SMART, we extend and generalize it in several ways. Instead
of deploying an attestation and trusted execution routine in
ROM with custom instruction pointer restrictions, TrustLite
realizes a generic, programmable access control logic, en-
abling a large variety of software programs that can be up-
dated in the field. Moreover, TrustLite supports concurrent
execution of trusted applications whereas SMART requires
applications to store and restore their state on each invoca-
tion, resulting in significant overhead.

Sancus and SPM. Software-Protected Modules (SPM) [46]
proposes new CPU instructions that allow tasks to be mea-
sured and loaded into protected memory regions and to
query the status of other task’s memory protection. As-
suming publicly readable program code segments, protected
tasks can then inspect and attest each other in physical mem-
ory. Sancus [38] implements and extends SPM for the open-
MSP430 CPU. They store measurements of loaded tasks in
protected registers and provide special instructions to au-
thenticate and accelerate task IPC.

Similarly to TrustLite, SPM enforces certain code en-
try points for communication and multi-tasking. However,
IPC and inspection of other tasks is simpler in TrustLite
since our EA-MPU protection rules persist until platform
reset. Furthermore, our more generic handling of memory
protection regions allows trustlets to have multiple code
and/or data regions, enabling secure peripheral access and
simple shared memory constructions. In contrast to Sancus
and SPM, TrustLite also supports the secure interruption of
trusted tasks, and our Secure Loader solves the problem of
sanitizing memory after platform reset by simply restoring
the required access protection rules.

8. Limitations
We acknowledge that TrustLite also suffers from certain lim-
itations. Notably, the limited number of supported memory
protection regions in the MPU and the fact that trustlet mem-
ory regions cannot be re-allocated without a platform reset.
Considering the typically very targeted and tight require-
ments on low-end embedded systems, we believe that these
limitations are reasonable as they allow a simplified (low-
cost) design of the memory protection and IPC subsystems.
In particular, MPUs are well established in embedded sys-
tems and the software stack of such systems is usually very
carefully adapted for the particular use case. Since most of
the security mechanisms in TrustLite are programmable in
software, a vendor may also deliberately deploy a hardware
platform that does not support all possible usages simultane-
ously but instead detects the desired scenario and establishes
the required software stack and protection facilities in a sec-
ond boot phase during deployment.



9. Conclusion
We have presented TrustLite, a new security architecture for
providing trusted computing functionality on low-cost em-
bedded systems. Our design represents a new alternative for
isolating secure applications, providing trusted execution,
OS interoperability and secure peripheral access.

Our architecture is enabled by a generalized memory pro-
tection scheme, combining an execution-aware memory pro-
tection unit (EA-MPU) with a secure exception engine that
protects the task state from untrusted exception handlers.
Our Secure Loader provides a simple yet flexible establish-
ment and update of the platform’s security policy, prevents
memory leakage after platform reset and can be extended
to act as a root of trust for remote attestation and trusted
execution. Depending on the application scenario and cost
constraints, TrustLite can be instantiated in several config-
urations, from providing a single atomic firmware security
service to isolating userspace tasks in a preemptive multi-
tasking environment.

For future work, we want to investigate the integration
of cryptographic accelerators with TrustLite and evaluate its
impact on IPC performance and context switching.
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