Trustworthy Access Control with Untrustworthy Web Servers

Tim Wilkinson, Dave Hearn and Simon Wiseman
Defence Evaluation and Research Agency
Malvern, England

{t.wilkinson,d.hearn,s.wiseman} @eris.dera.gov.uk

Abstract

If sensitive information is to be included in a shared
web, access controls will be required. However, the
complex software needed to provide a web service is
prone to failure. To provide access control without
relying on such software, encryption can be used. Bob
is a prototype system that supports complex access
control expressions through the transparent use of
encryption.

1. Introduction

The business benefit of an Intranet web is that

information is available to those that need it in a timely

fashion. However, most large organisations have some
information that is considered sensitive and is not

needed by all users. For example, Human Resources
data might need sharing amongst members of the HR
department, while other people are prevented from

accessing it.

Existing solutions to this problem, for example [1],
rely on complex web server software working correctly
and being configured correctly, which means there is
considerable risk that the controls will fail. In many
commercial organisations, as long as the information
remains on the company Intranet, the risks involved
will be worth taking, given the relatively limited
damage that would be caused if the controls fail.
However, an organisation which handles particularly
sensitive data, such as health care records or defence
intelligence information, may find the risk
unacceptable.

With increased use being made of electronic commerce
to make trading more efficient, the boundaries of an
Intranet are fast being eroded. Increasingly, an
organisation will host some proprietary information

belonging to its trading partners on its Intranet and

© British CrownCopyright 1999

these partners may need some access to the Intranet in
order to conduct business. Typically, the partners will
be in competition with each other and the host
organisation would need to ensure that the information
belonging to one partner is not revealed to another
(either accidentally or deliberately). Should an access
control failure occur, damage to the host organisation's
reputation might lead to lost business and even claims
for damages. In these circumstances, a commercial
organisation may find the risk of complex access
control software failing hard to justify to the
shareholders or potential customers.

One way of controlling access to information in a web
without relying on the web server software is to use
separate servers for information of different
sensitivities. Unfortunately this solution does not scale
when many combinations of information sensitivity
and user trustworthiness are required.

The only way a single untrusted web server can be
used to handle information of different sensitivities is

to remove responsibility for access control and
separation from the server software. This can be
achieved by encrypting documents, in a key not
available to the server, before they are given to the
server. This removes access control responsibilities
from complex web server software and becomes a
matter of distributing data decryption keys

appropriately. Unfortunately, the general problem of
key distribution is by no means a simple task, but some
options are described in section 3.

This paper describes a prototype system called Bob
that uses an encryption based approach to provide
trustworthy access control in a web based on
untrustworthy web servers. Bob was initially

developed by the Defence Evaluation and Research
Agency (DERA) for the UK Ministry of Defence. The

concept, however, is a generic one and additional work

has shown how Bob can be used to protect Electronic
Patient Recordsin amedical environment.

In the next section the basic access control scheme is
described, then the problem of key distribution is
discussed. The question of how the release of
information into the web is controlled is then tackled as
well as possible ways of reconciling the conflicting
requirements of data discovery and confidentiality.
Finally, techniques for handling dynamically created
content are considered.

2. Access Control

2.1 Access Control Expressions

The access control scheme can be described in terms of
groups, each containing a number of users. These
groups will usually represent a particular business
function, project or trading partner. Each file accessed
through the web server is labelled with an Access
Control Expression (ACE), which indicates those users
who are permitted to observe thefile.

An ACE is a formula defined in terms of groups
combined with operators "&" and "', which are ’and’
and 'or’ respectively. Files with an ACE of the form "X
& Y" can be observed by any user who is in group X
and group Y, while files with ACEs of the form "X |
Y" can be observed by any user who is either in group
XorgroupY.

Complex ACE formulae can be used, and some
examples are shown below:

ACE required groups
X&Y&Z XYZ
X & (Y]|2) XY or XZ

WI|X)&(Y|Z2) WY or WZor XY or XZ

Suppose an organisation had a number of departments
that handle sensitive information, including
Engineering (ENG) and Finance (FIN). In addition, the
organisation handles sensitive information belonging to
its customers, who include ACME and DERA. A group
would be created for each department and for each
customer, and staff would be placed in these groups
according to the departments for which they work and
the customers that they serve.

Now sensitive engineering data about work for ACME
would be labelled "ENG & ACME". An engineer who
was not working on the ACME project would not be in
the ACME group and so would be unable to see this
data. Similarly, sensitive financial data about work for
ACME would be labelled "FIN & ACME".

However, if the organisation were working on a joint
project for ACME and DERA, the engineering details
might be labelled "ENG & (ACME | DERA)", in
which case any engineer working on an ACME (or
DERA) project will be able to see details of the joint
project as well. Alternatively, the data might be
labelled "ENG & ACME & DERA", in which case
only engineers who work on both ACME and DERA
projects would be able to see the data.

2.2 Access Mediation

The ACE applied to a file accessed through the web
server is not in itself used to mediate access. Instead,
when the fileis released into the server its ACE is used
to determine the way the file's data is encrypted. The
scheme uses a mixture of symmetric and asymmetric
cryptography as follows.

When a file is released, a new symmetric key is
generated and this is used to encrypt the file. This key
is caled the file's data key. The resulting encrypted
data is prepended with a header before being released
to the web server. The header contains the information
that alows legitimate recipients to decrypt the
encrypted data.

An asymmetric key pair is generated for each group in
the access control scheme. This key pair is used to
distribute afile's data key to those who are permitted to
observe the file. One key of the pair is akey encrypting
key and the other is a key decrypting key. The
encrypting key is used to release information to the
group, and the decrypting key is used by members of
the group to observe data released to them.

In the simple case where the ACE is just a single
group, the file's data key is encrypted using the group’s
encryption key. The result is placed in the header along
with the file's ACE, as shown in figure 1. The way in
which the data key is encrypted in genera is explained
in Annex A.

ACE

original MIME type

data key encrypted in group
encryption keys

file’s data encrypted in data
key

To observe afile, the ACE in the header is examined

to determine how the encrypted data key should be
recovered. In the simple case, where the labdl is just a
single group, the group's decryption key is used to
recover the file’s data key from the header. Once the
data key is obtained, the file's data can be decrypted. If
the group’s decryption key is not available, because the
user is not a member of the group that is permitted to
observe the file’s data, there is no way the file's data
can be accessed.

When HTTP is used to retrieve a file from a web
server, the reply includes information about the type of
the file. This information is included in the HTTP

Content-Type reply header field, whose format is a
MIME type. Standard web servers use so-called
‘mailcap’ files to determine, on the basis of file

extension, which MIME type is to be associated with
each file they deliver. In Bob, all encrypted files are
given an extension of “.bob” and a MIME type of

“application/x-bob” is associated with this.

When Bob format data is decrypted, in a manner that is
described later, the type of the result is changed to the
original type taken from the header. This means the
browser knows how to handle the data in the normal
way.

2.3 Protecting the Group Keys

Most applications of public key cryptography assume

that a user's application software can be trusted to
protect keys from disclosure and to use them only in

accordance with the user’'s wishes. Here, however, the
assumption is that complex web server software cannot
be trusted, and so the same level of distrust must be
levelled at the workstation applications. Thus a group’s

decryption key must not be made available to a user's
ordinary application software, as this could pass the
key to other users who are not part of the group.

Figure 1: Format of protected file

The solution is shown in Figure 2. An HTTP
decryption proxy is installed on the user's workstation
and access controls provided by the workstation’s
operating system are set so that the proxy has access to
a file containing the user's group decryption keys, but
the user's application software is denied any access to
this file. The access controls are also used to protect
the proxy’s binary image and configuration data from
modification. The need for operating system access
controls to protect the use of -cryptographic
mechanisms is discussed fully in [2].

The job of the decryption proxy is to transparently
decrypt any encrypted data retrieved from a web server
and to restore the original MIME type of the data. The
proxy is trusted to keep the group decryption keys and
all document keys private, regardless of what data it
handles (for example, it defends against buffer overrun
problems).

The user's web-enabled applications, including their
browser, would be configured with the local decryption
proxy as their web proxy, while the decryption proxy
would be configured to chain-on to the network's real
web proxy if one is required.

A group’s decryption key is protected so that an
application cannot pass it on to users who are not in the
group, as this would give the recipient access to all
files released to the group. Similarly, a file's data key
is protected, otherwise this would give the recipient
access to the particular file. However, once a file has
been decrypted and given to an application, the
cryptography does not stop the application passing the
decrypted data to another user. This is part of the
general problem of controlling the release of data while
using untrustworthy application software, which is
discussed in section 4.

Server

All group
encryption

Web proxy

f

User’s group’s
decryption |) (Decryption
keys proxy
Web
browser
Workstation

Protecting a file’s data key from disclosure also affords
extra protection to the group decryption key. A user in
possession of a document key, and the same key
encrypted with a group encryption key, has the
potential to mount a brute force attack to obtain the
group decryption key. With a single document key, the
user has only a small amount of information on which
to base their attack, but if they can find several
documents released to the same group, the brute force
effort required will decrease.

Application software used by authors to create web
content must be prevented from modifying group
encryption keys. This is because the application, which
must be considered untrustworthy, could gain access to
all data subsequently released by replacing the group
encryption key with one for which it knows the
corresponding group decryption key. Since there is no
need for anyone to know the encryption key, it seems
prudent to keep it private as well as to prevent its
modification.

Note that, having protected both the encrypting and
decrypting keys from disclosure and modification, it
would be possible to use symmetric cryptography for
the group keys. The advantage of asymmetric
cryptography, however, is that it gives extra protection
in the event that proxies are compromised. For
example, should a server's group encryption keys be
divulged, no data is compromised if asymmetric
cryptography is used.

} Web server

keys

Encryption

proxy

Server

Web
authoring

Workstation

Figure 2: Overall architecture

Web content is typically created on a workstation and
uploaded into the web server using FTP or HTTP. The
process of releasing web content can be controlled by
placing a proxy, for the appropriate protocol, between
the web authoring application and the web server. This
encryption proxy needs access to the all the group
encryption keys, so it can encrypt a released file in
accordance with its ACE. The encryption proxy is
trusted to allow the group encryption keys to be
modified only under strictly controlled circumstances,
discussed in the next section. In addition, the proxy
keeps the encryption keys private, though this is less
important.

Figure 2 shows the placement of the encryption proxy
in the current Bob implementation. As an alternative,

the proxy could be placed on the user’s workstation,

which has the advantage of protecting the data’s from
eavesdropping as it passes from workstation to server.
The disadvantage, however, is that the encryption keys
need to be more widely distributed.

In order to know how the file's data should be
encrypted, the encryption proxy needs to know the
file's ACE. The way this is conveyed from the web
authoring software running on the user's workstation to
the proxy is discussed in section 4.

If encryption is to be used for access control, the
problem of key revocation and replacement must be
addressed. Key replacement will be needed
occasionally to defray the risk of key compromise, and
may also be performed on demand when keys are

known to have been compromised. Keys might be
compromised because proxies fail to hold the keys
securely, the Public Key Infrastructure (PKI) might fail
to deliver them securely, or a brute force attack might
be successful.

A group key can be replaced by creating a new group
identity and associated key pair. All users in the
affected group can then be put in the new group, and
the new decrypting key distributed accordingly. Then,
al files with ACEs that mention the affected group are
found and their ACEs are updated to replace the
affected group with the new group. In addition, the
data key is recovered and re-encrypted in accordance
with the new ACE. Once al files have been processed,
the original group is redundant and users can be
removed from it. Performed in this way, group key
replacement need not be completed as an atomic action
and may even be carried out as a background task,
depending upon urgency.

An individual document key can be changed easily. It
is simply a matter of recovering the origina file data
key, using the decrypting key of some group which can
access it, decrypting the data, and replaying the normal
process associated with publishing.

3. Key Distribution

3.1 Public Key Infrastructure

The decrypting group keys of the groups to which a

user belongs, need to be distributed privately to the
decryption proxy on the user's workstation. One way
of achieving this is to make use of public key
technology. Each proxy would be identifiable by a
distinguished name and associated public key, most
likely wrapped together into an identity certificate. The
proxy would hold the complementary private key in
private local storage. An administrator wishing to place
a consumer group decryption key into a proxy would
obtain the identity certificate corresponding to the
proxy. After verifying the certificate, the public key
contained within it can be used to encrypt a group key
for forwarding to the proxy. Only a holder of the
proxies’ private key can unwrap the group key.

At this point the message containing the hidden group
key can be presented to the user of the system by, for
example, electronic messaging. Once the message has
been inserted into the proxy, the proxy can unwrap the
message to reveal the group key and place it in private
storage. Additional fields could be associated with the
key, such as a time after which the key is invalid.

There is still an issue of how the proxy’'s private key is
made available to the proxy initially. In organisations
that prefer central key generation, the private key could
be physically or electronically delivered to the proxy in

a secure manner, and then imported through a trusted
import function. Alternatively, the proxy could
generate its own private key at installation time, and
export the corresponding public key for signature by a
certification authority.

3.2 Key distribution with NT security

While the ultimate solution is to distribute keys
through a public key infrastructure, as discussed above,
a lighter-weight alternative is possible using the
security mechanisms of a networked operating system.
These mechanisms only work in well-managed closed
networks, so the technique will not always be

applicable, but where the operating system’s
environmental assumptions hold it is perfectly
adequate.

A key distribution scheme for Bob has been
implemented using the security functionality provided
by Windows NT. The relevant features are Services
and Named Pipes.

A Named Pipe is a communications pipe mechanism

whose use is subject to NT security in much the same
way as files. A server process on one machine can
create a named pipe and set its access control list so
that only processes running under certain user accounts
can connect to it. When a client process does connect
to the pipe, the server process can establish the identity
of the client account.

A Service is a process that is started when a machine
boots and generally runs under a special system
account, rather than one associated with a particular
user. Ordinary users may subsequently log-in to the
machine and the service continues to run.

More details about these features and a description of
how they can be used to build systems for handling
sensitive information is given in [3].

Figure 3 shows the general arrangement of processes
and services used to distribute group keys. A simple
database of group decryption keys is stored on a key
server host. The decryption proxy on each workstation
is installed as a service and this runs under a special
system account. These proxies obtain the user's group
keys from a process, the Key Server, using a Named
Pipe. The Key Server could reside on the web server
host, though it would be better to install it on a more
tightly controlled machine.

The decryption proxy runs as soon as the workstation
boots. Whenever it detects that a user has logged-on to
the workstation, the proxy connects to the key server's
Named Pipe and sends the account name of the user
who has just logged on. The key server obtains alist of
groups to which the user belongs and then returns a list
of decryption keys for these groups to the decryption

proxy.

Once the decryption proxy receives the list of group
keys for the user, it can transparently decrypt any
encrypted data returned from the web server. However,
the proxy must ensure that any incoming connections
are not from a remote workstation, in case a user in a
different group islogged-on there.

The access control lists on the key server’s Named Pipe
are set so that only the service account used by the
decryption proxies can access it. A user's application
processes therefore cannot obtain any decryption keys
from the web server.

4. Controlling Release

On a well-managed web site, files are not changed in
an ad-hoc way. Subsets of web pages and links are
updated or otherwise modified, and then uploaded to
the server in a publishing operation. It is within this
publishing function that access control requirements
can be stated and release can be sanctioned.

The first step in publishing is for an author to create
one or more documents for publication. Each
document needs to have an ACE associated with it.
The way this is done depends upon the application
used and the environment in which it runs. A ssimple
version might use Microsoft Word to create the
documents, in which case the ACEs can be held as
document properties. If the workstation provides

Decryption getKeys(username) —})
proxy ‘— group keys
named pipe T
All group
Web decryption
browser keys
Workstation Server

Figure 3: Distributing keys using NT security

support for labelled documents, the ACEs could be
derived from the security labels of the documents. The
Bob demonstration does this, using NT workstations
augmented with Deep Purple [4] to provide the
labelled documents.

Once the documents have been assembled, they must

be released to the web server. Since the assumption is

that application software is not sufficiently trustworthy

to protect documents from disclosure, the release
process must be controlled. In Bob, release is handled

by a trustworthy service running on the user's NT
workstation. Ordinary applications can request this
service to release files to the web server. To defend
against an application making inappropriate requests to
release some data, the user is asked to confirm each
request.

The release service obtains the user’s sanction using a
trusted path interface, to avoid the sanction being
spoofed by an application. A trusted path interface is
supported directly by Deep Purple, which uses NT's
standard access controls on Desktops to implement it.
As part of the release sanction, the user is asked to
confirm the ACE for the product to be released. This
prevents the application from changing the ACE after
the user has set it and before the file is released.

The release service may also check the content of the
files to be released to ensure that no data is hidden
from the casual reader. This is important as an
application may attempt to leak data by hiding it in
files that are to be released. While checking for hidden
text, the service may also generate a summary of the
file's content. This can be presented to the user when
they are asked to confirm the release, so that an
application that attempts to change the data being
released may be discovered.

For example, suppose an author prepares a web “page”
comprising some HTML text and two images in GIF
format. The release service can check that the
application has not hidden sensitive data in comment
tags in the HTML, and if any is found the user can be
warned not to release the data. In the trusted path
dialogue, which asks the user to confirm the release
request, the “page” would be summarised, so the user
can see the number of paragraphs of text and the
number of images being released. If this summary is
not as expected, the user has a chance of rejecting the
confirmation request.

The release sanction can be obtained separately for
each “page”, or a single sanction for all the “pages” to
be released as one “product” can be obtained. Whilst
the former is in principle more secure it could also be
seen as an inconvenience. It is common for users to
take more care over a single operation than one they
need repeat many times. Hence better overall security
might be obtained by adopting a more relaxed
approach in which one update involving several
“pages” is sanctioned as a whole.

Assuming the user confirms the intention to release the
data, the release service proceeds to upload the files to
the encryption proxy on the server. It is important to
prevent applications directly uploading data to the
server's encryption proxy, as this would provide them
with a way of leaking data. This protection can be
achieved by using cryptographic techniques, but in a
closed NT based environment named pipes can be
used.

5. Searching and Dynamic Content

The usual approach to information discovery is to
allow web sites to be indexed by a search engine, and
to allow users browsing the site to search the indexes.
The Bob approach is to protect sensitive data from
complex web servers that are hard to trust. Search
engines are also complex software, and at present there
seems to be no reason to trust them more than a web
server.

Hence it is not appropriate to provide search engines
with sensitive data in plain text, and yet it is pointless

to provide them with the data in an encrypted form

because they then cannot index it. Thus a balance
needs to be struck between confidentiality of

information and the ability to locate information.

Data that all users are permitted to view need not be
encrypted. A search engine can then be used to index
this unencrypted data and allow it to be searched,
without the complex software being trusted. If, as part

of the process of preparing sensitive documents for the
server, the author creates an abstract which is visible to
all, the abstract can be made available via the search
engine and would provide a means for information
discovery. The abstract can include a link to the
encrypted document, so that it is readily available to
any user that is a member of the intended audience.

Another issue is dynamic content, where web pages are

generated on demand based on the data in a database.
For example, when a user browses a dynamic page, a

CGI script may access a database and create some
HTML that is returned to the user.

With Bob, the script passes the appropriate request to
the database, but the sensitive results are returned as
encrypted Bob files. These are embedded indirectly
into the generated web page by using HTML
<OBJECT> tags. Each <OBJECT> tag is a link to an
encrypted result, but the data referred to is displayed in
place in the web page, rather than being shown as a
hyperlink. Thus if the user's groups are such that they
can access all the results, the page is completely filled
in, while if they are not some fields will display an
error message.

The Bob encryption process could be included in the
database engine, by exploiting the Object Relational
features of Oracle 8 or Informix IUS [5], or a separate
trusted server process could be interposed between the
scripts and the database. Alternatively, the sensitive
data could be encrypted before it is placed in the
database. This has the advantage that the database
engine need not be trusted to handle the sensitive data
properly, but the disadvantage is that the data cannot
be searched or manipulated (e.g. projection) within the
database.

Independently of when the data is encrypted, its release
into the database must be sanctioned, as the producer is
not involved when the data is served out to a requestor.
Techniques for doing this using object-relational
database engines are discussed in [5].

6. Performance

The use of encryption as an access control mechanism
adds an overhead to the release of documents into the
web server and to their retrieval by a browser.

Consider first the simple case, where an ACE contains
just one group. The release of a document requires that
a data key is generated, the file is encrypted in the data
key and the data key is encrypted in the group key. To
retrieve a document, the data key must be decrypted
using the group key and the file must be decrypted

using the data key. Overdl, the impact on performance
is negligible and no noticeable delay is introduced.

In the general case, however, the overhead can be
much higher. When a document is released, the data
key must be encrypted using a group key many times.
The number of encrypts using some group key is the
number of elements in the ACE. This could be
noticeable in terms of performance and latency, but
any decrease would be negligible compared to the
overhead of checking whether the document is suitable
for release.

The overhead can sometimes be reduced as some
ACEs can be re-written to have fewer terms while
retaining the same meaning in terms of access control.
For example, the ACE (A&B)|(A&C) can be re-written
as A& (BJC), and this requires one less encrypt.

Generally, retrieving a document with a complex ACE

is faster than releasing it. This is because there are
many different collections of group keys that permit

the data key to be recovered, and it is possible to
choose the smallest such collection, to which the user
belongs, by consulting the file’s label. For example,
suppose the ACE is (A&B)|(C&D&E)|(F&G) and the
user is in groups C through G. By consulting the label
in the file’s header, it is possible to determine that only
two decrypts are required, using the keys of groups F
and G, whereas seven encrypts would have been
needed to release the file.

Although there is a performance overhead introduced
by the decryption of the file's data key, this can be

performed in parallel with the transmission of the file’s

encrypted data. Thus this introduces no delay when
retrieving a file with a long ACE.

7. Similar products

Although the use of encryption to protect access to
resources is not a new idea, the technique employed in
Bob has three significant features.

First, the encryption and decryption is not visible to the
end-users. Contrast this with the Formfogkoduct
from General Network Services, Here, when a user
attempts to retrieve an encrypted document they are
presented with a dialog box asking them what action
should be taken.

Second, Bob’s access control scheme supports
complex access control expressions. Various
cryptographic envelope schemes, for example IBM's

! http:/www.gns.ca/

Crytoloped and DigiBox from InterTrudt also use
encryption to control the distribution of data, but in
contrast to Bob these control access simply by
controlling the distribution of decryption keys to
individuals.

Third, the encryption in Bob is used in a way that

removes the need to trust complex, and hence
untrustworthy, software. In common with other

cryptographic access control solutions, Bob does not
need to trust the web server, but unlike some other
solutions it also does not need to place trust in the
client's browser and associated plug-ins. Instead,
Bob’s implementation minimises the need to trust
software hosted on the workstation, limiting it to just

that which handles keys.

8. Conclusions

Web server and browser software is complex and its
security features are prone to failure or
misconfiguration, and hence cannot be trusted to
handle sensitive information appropriately. Bob avoids
this problem by ensuring that the web server only
handles encrypted data and that release of data from
the browser is carefully controlled. With Bob access
control in the web is reliant upon:
operating system access
workstations and servers;
» the correct operation of the special encryption and
decryption proxies;
ensuring released data is labelled with an
appropriate access control expression;
» the generation and distribution of the group
encryption and decryption keys.

controls in the

Using encryption to protect information does not solve
all the problems, because it is necessary to defend the
cryptographic elements from misuse by the
untrustworthy servers and applications [2]. The basic
protection mechanisms needed in the workstations and
servers are found in Windows NT and Unix, but initial
key distribution remains a difficult problem to solve in
general. Key distribution in a closed NT environment
is, however, straightforward.

The Bob solution does not remove the need for trusted
software, but it reduces the scale considerably. Rather
than trusting web servers and browsers, including all
their plug-ins, only the encryption and decryption
proxies and the release server need to be trusted. These
are quite easy to trust as they are small and simple.

2 http://ww.software.ibm.com/security/cryptolope/
% hitp://www.intertrust.com/

Controlling the release of data into the server is not a
trivial problem, because to be effective the controls
must be closely integrated with web authoring
application software. Such software is relatively
immature, but progress in standardising distributed
web authoring and versioning extensions to HTTP*
should simplify the design of the release service and
make it more widely applicable.

Finaly, the addition of access controls into a web
conflicts with the natural intention of aweb to be freely
accessible. This creates considerable tension, as
evinced by the problems associated with search
engines. This aspect of the problem is worthy of more
research.

9. References

[1] “Role Based Access Control for the World Wide Web”,

J.Barkleyet al, Procs. 2t) National Information

Systems Security Conference, Baltimore, October 1997.

[2] “The Inevitability of Failure: The Flawed Assumption
of Security in Modern Computing Environments”,
P.Loscoccat al, Procs. 2% National Information
Systems Security Conference, Crystal City, October
1998.

[3] “Adding Security Labelling to Windows NT”,
S.Wiseman, Information Security Technical Report,
Vol 3, Num 3, Elsevier 1998.

[4] “Private Desktops and Shared Store”, B.Pomeroy and
S.Wiseman, Procs. £4Annual Computer Security
Applications Conference, Scottsdale, Decenif$98.

[5] “Securing an Object Relational Database”, S.Lewis and

S.Wiseman, Procs. T3nnual Computer Security
Applications Conference, San Diego, Deceni#97.

! http://www.i cs.uci .edu/publietf/webdav/

Annex A: Encrypting File Keys

A file's header contains the file's ACE and the file's
data key encrypted in a way determined by the file's
ACE. The function for encrypting the data key of afile
D whose ACE is A is denoted H(D,A), and is defined
asfollows:

A is the concatenate operator

H(D, G) = es(D)

H(D, x|y)=H(D.,x) * H(D.y)

H(D, G & x) =eg(H(D,x))

H(D, (xly) & 2) =H(D, (x & 2) [(y & z))
where

D isthefile datakey

Gisasimple ACE of one group

X,y and z are arbitrary ACEs

eg(0) istheresult of encrypting a in the

encrypting key associated with group G

To observe a file, it must be decrypted using its data
key. This can be recovered from the file's header if
certain group decrypting keys are known. The ACE
determines which combinations of group decrypting
keys permit the data key to be recovered.

The function that is used to recover a data key from the
encrypted data E and ACE A in the header is denoted
R(E,A). This either retrieves the decryption key or
returns an error. It is defined as follows:

R(E, G) = If user in G then dg(E) elsefail
R(Ex”" Ey, x|y) = either R(Ex, x)
or R(Ey,y)
or fail if both fail
R(E, G & x) = R(dg(E),x)
where
E, Ex and Ey are encrypted key data from the
header
G isasimple ACE of one group
x andy are arbitrary ACEs
ds(o) istheresult of decrypting a in the
decrypting key associated with group G

