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Abstract—This paper presents a novel XR and Deep Learning-

based IoMT solution for the COVID-19 telemedicine diagnostic, 

which systematically combines VR/AR remote surgical 

plan/rehearse hardware, customized 5G cloud computing and 

deep learning algorithms to provide real-time COVID-19 

treatment scheme clues. Compared to existing perception therapy 

techniques, our new technique can significantly improve 

performance and security. System collected 25 clinic data from the 

347 positive and 2270 negative COVID-19 patients in the Red Zone 

by 5G transmission. After that, a novel ACGAN-based intelligent 

prediction algorithm is conducted to train the new COVID-19 

prediction model. Furthermore, The Copycat network is employed 

for the model stealing and attack for the IoMT to improve the 

security performance. To simplify the user interface and achieve 

excellent user experience, we combined the Red Zone’s guiding 
images with the Green Zone’s view through the AR navigate clue 

by using 5G. The XR surgical plan/rehearse framework is 

designed, including all COVID-19 surgical requisite details that 

were developed with a real-time response guaranteed. The 

accuracy, recall, F1-score and AUC area of our new IoMT were 

0.92, 0.98, 0.95 and 0.98 respectively, which outperforms the 

existing perception techniques with significantly higher accuracy 

performance. The model stealing also has excellent performance, 

with the AUC area of 0.90 in Copycat slightly lower than original 

model. This study suggests a new framework in the COVID-19 

diagnostic integration and opens the new research about the 

integration of XR and deep learning for IoMT implementation. 

Index Terms—IoMT, COVID-19, XR, ACGAN, Security 

I. INTRODUCTION

o date, the Internet of Medical Things (IoMT) technology

has been recognized and widely applied due to its high

performance and practicality. The IoMT enables the application 

of deep learning for automated and accurate prediction of many 

diseases, assisting and facilitating effective and efficient 

medical treatment [1]-[3]. However, there are fewer studies that 

investigate the diagnostic IoMT through telemedicine and deep 

learning-based attacks targeting the services deployed on the 

IoMT devices, particularly the IoMT-based AI services. Since 

the Extended Reality (XR) technology, which includes the 
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Virtual Reality (VR), Augmented Reality (AR) and the Mixed 

Reality (MR) [4]-[6], refer to the real/virtual environments 

generated by computer graphics and wearables has been widely 

applicated in the medical field, especially in the telemedicine 

implementations. 

During the outbreak of pandemic of COVID-19, IoMT can 

even be used to detect main symptoms ubiquitously, by the data 

collection from the infected area and customize the treatment 

plan based on aggregated IoMT data. Inspired by the 

aforementioned approaches, the XR implementation is 

introduced into the COVID-19 Diagnostic IoMT. Furthermore, 

a customized XR-enabled COVID-19 surgical 

planning/rehearse strategy is also being developed. Taking into 

account the previously mentioned deep learning-based IoMT 

platform, a novel deep neural network algorithm has been 

developed to predict the COVID-19 is positive or not by data 

5G data transformation. Apart from that, to achieve a better 

human ergonomics performance, we visualized all the COVID-

19 diagnostic clues from our XR surgical decision system. 

Thirdly, we used a Copycat-based access control system to 

protect the patient’s clinic data used for rendering the XR 

images. We adopted a simplified approach based on Wang D 

[7], which allows electronic medical data to be accessed and 

shared on cloud storage. More specifically, each visit request to 

any patient’s clinic data will be recorded into the customized 

5G cloud together with a timestamp, requestor's ID, patient ID 

and image ID.  

Three original contributions are presented in this paper: 

1. For the first time, the deep ACGAN-based prediction and

telemedicine surgical guiding methods are proposed for the 

COVID-19 diagnostic with 5G IoMT, which supplemented the 

shortage of medical staff and treatment of the Red Zone.  

2. Copycat ACGAN is employed to steal and attack for the

IoMT model to evaluate security performance. The privacy of 

COVID-19 patients has been guaranteed during IoMT data 

transmission. 

3. A novel XR-based COVID-19 surgical plan/rehearse

prototype has been implemented for evaluating the new 

techniques and ideas. This work opens new research on the 
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integration of XR and deep learning for tele-surgical 

applications.  

II. RELATED WORK 

A. XR-based Implementations for telemedicine IoMT 

In order to promote doctors to acquire more information 

conveniently during the operation, the XR-based IoMT strategy 

has been evaluated, which is the first method abovementioned, 

to rebuild the three-dimensional virtual patient from the 

medical images and superimpose it on the real patient in an 

operating room for the 3D surgical guiding [8], [9], [10]. A 

traditional XR system includes two steps – three-dimensional 

reconstruction of anatomically based on CT/MRI images and 

the registration step between the reconstructed model and the 

patient [11]. Although existing communal or software could 

automatically complete the three-dimensional rebuilt step, for 

example, the Osirix, the Mimics, and the 3D slicer, the semi-

automatic manual correction by the professional surgeon, is still 

the most reliable strategy in the clinic applications [12]. The 

Curve (Brain Brainlab AG, Germany) system [13] and the 

Stealth Station are designed to XR navigation of MIS [14]; the 

NavSuite3 (Stryker Corporation, USA) is designed for the spine 

surgery [15]; the Navigation Panel Unit (Storz, Germany) is 

used for the endoscopic surgical navigation [16]; and SCOPIS 

(Scopis, Germany) [17], with the aid of Microsoft HoloLens, 

provides ENT, CMF, neuro, and spine navigation. Nevertheless, 

the critical issues of these commercial systems are implemented 

with either visual-guide or optical-guide mechanisms. In other 

words, the infrared-based NDI Polaris is the vital unit 

supporting all of these navigation schemes. Unfortunately, two 

serious challenges still need to be addressed for the NDI Polaris 

system: firstly, a precise registration between the 3D static 

image-based reconstructed model and the real patient is the 

most challenging issue due to the medical image caused by the 

human respiration. Furthermore, the heterogeneity of the 

lesions; secondly, the IR-based navigation is usually limited by 

the disadvantage of the signal blocking during the real 

operations, surgeons’ operation area should not occlude the 
infrared transmit trajectory which also leads many 

inconveniences in IoMT. To the best of our knowledge, in the 

operation room, a majority of XR guiding surgical applications 

focus on the medial image fusion algorithms and the routing 

planning. Research has not yet introduced many intuitive 

perceptions, such as tactile feedback through the 5G 

transmission, which would significantly improve the accuracy 

of the surgical performance. 

Meanwhile, due to the outbreak of COVID-19, there are 

increasing interest in the telemedicine diagnostic, which can 

provide a treatment plan without exposing doctors and patients 

into the risk of infection [18-19]. Shelton [20] surveys that 

within the first two weeks of the stay-at-home order, the number 

of telemedicine services increased to about 86% or higher in the 

US, except for the hospital in Fayetteville, North Carolina, 

where telehealth consultations increased from 2% to 24%. 

Triantafillou and Rajasekaran [21] suggest that telemedicine 

allows for examination of a patient’s health and helps to educate 

patients virtually on physical examination changes and 

symptom that should prompt a discussion with their physicians. 

Similarly, results from Patel [22] indicates that patient stored 

heath information can provide guidance for future examination. 

Additionally, Li and Jalali [23] deployed an online platform to 

reduce the number of in-person visits thereby lessening face-to-

face contact among patients and physicians, which suggests that 

telemedicine provide an effective triage, screening, and 

treatment method during the COVID-19 pandemic. 

B. AI-based COVID-19 IoMT Platform 

COVID-19 systems can quickly diagnose COVID-19 

pathogens and found different types of attacks [24-28]. In 

addition, DL Inference models were tested. Including acoustic 

emission disturbances to the classifier, launching a black box 

attack using the Clarifai REST API model, and using the back 

door attack to update the model [29]. Gregory B. Rehm 

developed a research-centric CDSS. The device leverages the 

power of the Internet of Things to collect real-time 

physiological data from patients on ventilators and other 

medical devices. To monitor and manage the conditions of 

patients in intensive care units, doctors can prioritize their care, 

aiming to improve diagnosis, prediction, and event recognition 

in intensive care units. Additionally, encrypted files are used to 

ensure the safety of patient information [30]. Chen designed a 

chronic kidney disease prediction system based on the Internet 

of Things (IoMT) platform, an adaptive hybridized deep 

convolutional neural network. CT image data from renal cancer 

were used, and the missing values were processed with median 

estimates. The dual training method of learning and activation 

mechanisms can effectively avoid kidney disease. [31] Lalit 

Garg has designed and proposed a new privacy anonymous 

internet of things model. Moreover, an RFID proof-of-concept 

is provided for this model. The blockchain is used to simulate 

contract deployment and function execution. The model will 

make it easier to identify groups of infected contacts and 

provide mass isolation while protecting individual privacy [32]. 

Vinay Chamola et al. conducted detailed research on the 

Internet of Things, drones, blockchain, artificial intelligence 

and 5G. During the COVID-19 epidemic, the medical internet 

of things can effectively collect, analyze and transmit clinical 

data. Drones ensure minimal human interaction and can also be 

used to reach areas that are unreachable by humans. Robots and 

autonomous vehicles have also contributed significantly to the 

field of automatic disinfection by reducing human contact. 

Artificial intelligence plays an important role in risk prediction 

and prognosis treatment. [33][34] 

C. Cyber-attacks with Deep Learning Network 

When it comes to the Internet of Medical Things (IoMT), we 

should know that there is a very close connection between 

IoMT and the IoT. An idea was put forward by Fang Hu that 

IoMT could be used in the medical industry must be a truth [35]. 

After five years, a healthcare monitoring system had been made 

by V.Jagadeeswari [36] using significant data training, which 

proved the idea, which put forward by Fang Hu had become a 

truth. Nowadays, with an increasing number of cyber-attacks 

have appeared, Talon Flynn [37] discover that IoMT system 

based on a mobile platform is straightforward to be breached by 

various network attacks. A series of evidence can be presented 
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to support our attack model. Deep learning has gained 

prominence in many fields, including computer vision and 

cybersecurity, such as vulnerability detection [38, 39]. In 2014, 

however, Szegedy [40] and follow-up studies [41] 

demonstrated that small changes to the data as images are 

entered can attack deep learning techniques. Subsequently, 

Dalvi [42], Meek and Lowd [43] have proved that in the linear 

classification of spam detection.

 
Fig. 1. Customized design of COVID-19 Diagnostic IoMT through XR and Deep Neural Model, which has been implemented in the prevention and treatment of 

COVID-19 in China. The Red Zone is an epidemiological term, which means the COVID-19 infected area, especially in Wuhan and Hubei. Clinic data is collected 

from the OPC of Red Zone by the cell phone, tablet and laptop. After that, the 5G transmission is employed to transfer and compute the medical data for the 

COVID-19 prediction using the 5G cloud (Alibaba Cloud). Finally, the professional respiratory physician, and the thoracic surgeon from the Green Zone, such as 

Shanghai and Kunming, could make a diagnosis and detailed surgical plan through the IoMT application layer with high efficiency and safety. 

 

Barreno et al. [44] pointed out that with the development of 

cyberattacks, both ML algorithms and DL algorithms can be 

attacked by a malicious adversary. It can be seen from the 

relevant literature that there are three different attack modes of 

adversarial attack, including white-box attack, grey box attack 

and black box attack. The difference between them is how much 

is known about the target model (including data sets, 

parameters/hyperparameters, deep learning models and 

algorithms). Because of the similarity of COVID-19 text data, 

among the many ways of adversarial attacks, the one that can 

have the most impact on our network is the grey box attack. 

Crafted adversarial samples have been used against a Deep 

Neural Network (DNN), aiming to create confrontation 

examples by approaching the decision boundary of the target 

DNN [45]. 

III. NEW SYSTEM DESIGN 

In this section, we addressed the COVID-19 Diagnostic 

IoMT through XR and Deep Neural Model design and 

implementation, as demonstrated in Fig.1. A new KNN based 

ACGAN model is developed to estimate the COVID-19 

prediction accuracy, and the XR platform is employed for the 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3055804, IEEE Internet of

Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

remote diagnoses. After that, the 5G transmission is employed 

to transfer and compute the medical data for the COVID-19 

prediction using the 5G cloud. AR-remote diagnose, and XR 

surgical implementations are developed, we also present the 

evaluation approaches, which evaluate the performances with 

different kinds of deep neural algorithms.  

A. ACGAN-based COVID-19 intelligent network design 

The whole technological process of the ACGAN-based 

COVID-19 intelligent prediction system is demonstrated in 

Fig.2. The real-world clinical data is collected and then some 

preprocessing, including samples wrangling (such as selecting 

the demanding data and setting correct data formats), KNN for 

missing data imputation and resampling techniques for solving 

the problem of imbalance samples between normal subjects and 

COVID-19 subjects in a retrospective cohort. The processed 

training set is employed to train the ACGAN prediction model. 

After that, the well-trained discriminator of ACGAN is used to 

forecasting the samples from the prospective cohort. Finally, 

the interpretability of this system is produced by CEM to give 

an analysis of medical significance. The further descriptions of 

each part of ACGAN-based COVID-19 intelligent prediction 

are provided as follow. 

 

1) KNN for Missing Data Imputation 

A technique widely used for handling with the extremely 

imbalanced distribution of samples is regarded as resampling. 

In resampling, to make up for the imbalanced class, a bias is 

used for reselecting more samples from one class, which has a 

smaller number of data than another type. The process of 

resampling has mainly consisted of two parts: deleting some 

samples from the majority class, which is called under-

sampling, and augmenting samples from the minority class, 

which is called oversampling. 

Due to the influence of elements such as broken system and 

fabricated error, the missing of recording clinical data is 

inevitable. Moreover, much worthwhile information on the 

original data would be lost resulting in the decreases of 

forecasting accuracy and the mistaken research result, if only to 

delete these missing data. In this work, 𝑘-nearest neighbour 

(KNN)-based missing data estimation algorithm is utilized to 

solve this thorny problem. It is more suitable for simply binary 

problems with small-scale and low-dimensional data. Missing 

data is imputed by occurring rather than constructed data, which 

preserves the original structure of data. As a non-parametric and 

non-mapping imputation method, the condition of model 

misspecification can, to a great extent, be avoided. In the KNN, 

the 𝑘 samples nearest to the missing sample are searched from 

all complete instances in the dataset, and then the corresponding 

missing value is padded with the mean value of these using the 

mean value samples. In KNN, the (𝑋, 𝑌, 𝑍) is defined as the 

features of samples, and then their k nearest neighbors are 𝐷𝑘 ={(𝑋𝑘 , 𝑌𝑘 , 𝑍𝑘)|𝑗 = 1, 2, … , 𝑘} . The KNN estimator can be 

described as follow: 𝑌 = argmax𝑣( ∑ 𝐶(𝑌𝑗 = 𝑛)(𝑋𝑘,𝑌𝑘,𝑍𝑘)∈𝐷𝑘 )  
where 𝑋𝑘 is the target sample, 𝑌𝑗 is a missing feature in 𝑋, 𝑍𝑘 is 

the classification which is 0 or 1 in the current task, 𝑛 represents 

the value within the range of the 𝑌 and 𝐶(𝑌𝑘 = 𝑛) represents a 

discriminant function that outputs 0 or 1 depending on its 

argument is false or true. 

In order to choose the k samples nearest to the target sample, 

the similarity between the target sample and the corresponding 

k nearest samples must be minimum. And the commonly-used 

approach called Minkowski distance (or its variants) is given as 

follows, 𝐷𝑖𝑠(𝑖, 𝑗)= √|𝑥𝑖1 − 𝑥𝑗1|𝑞 + |𝑥𝑖2 − 𝑥𝑗2|𝑞 + ⋯+ |𝑥𝑖𝑝 − 𝑥𝑗𝑝|𝑞𝑞 , (𝑥𝑖𝑝∈ 𝑋𝑖 , 𝑥𝑗𝑝 ∈ 𝑋𝑗)  
Where 𝑞 represents a positive integer, which is the Minkowski 

coefficient, Minkowski distance is defined as Manhattan 

distance, when 𝑞 = 1 and it described as Euclidean distance 

when 𝑞 = 2.  In the current system, the 𝑞 = 1 is used. 

 

2) Deep Training Module Design 

Deep learning techniques are widely used in medical 

application, prediction, and retrieval domains, promising 

excellent performance in classification fields. The Auxiliary 

Classifier Generative Adversarial Networks (ACGAN) was 

further improved on the basis of the CGAN through the 

incorporation of the idea of mutual information in InfoGAN 

[46]. Unlike traditional generative networks which are based on 

the unsupervised models, the supervised learning method is 

used in the generated adversarial concept. Furthermore, the 

internal structure of ACGAN adds the portion is embedding the 

class information into the input of the generator and compares 

with traditional CGAN.  The additional task for ACGAN is to 

classify the category of samples by expanding an auxiliary 

judgement layer in discriminator, which can output the class 

labels of input samples [47]. Due to the speciality of the 

network, the objective function of ACGANs is divided into two 

part: the log-likelihood of the correct source 𝐿𝑆  and the log-

likelihood of the correct class 𝐿𝐶 . 𝐿𝑆 = 𝐸[log 𝑝 (𝑠 = 𝑟𝑒𝑎𝑙|𝑋𝑟𝑒𝑎𝑙)] + 𝐸[𝑙𝑜𝑔𝑝(𝑠 = 𝑓𝑎𝑘𝑒|𝐺(𝑧))] 𝐿𝑦 = 𝐸[log 𝑝 (𝑌 = 𝑦|𝑋𝑟𝑒𝑎𝑙)] + 𝐸[𝑙𝑜𝑔𝑝(𝑌 = 𝑦|𝐺(𝑧))] 
Where 𝑔  represents the created clinical sample. The 

discriminator 𝐷 is trained to find the maximum of 𝐿𝑆+𝐿𝑦, while 

the generator is trained to find the maximum of 𝐿𝑌 − 𝐿𝑆. 
3) Contrastive explanations method for prediction system 

Contrastive explanations method (CEM) is an AI novel 

algorithm created and implemented by IBM research, which 

can provide contrastive explanations for black-box models such 

as deep neural networks well-known as black-box models. 

CEM can be effectively used to create meaningful descriptions 

in different domains that are presumably easier to consume as 

well as more accurate [48]. CEM of looking for the correlation 

positive/negative is expressed as an optimization problem of 

using perturbation variable δ that is used to explain how the 
model’s deep learning model to decide prediction results 

according to the input features. In finding pertinent negatives 

(PN), 𝑋  is defined as the feasible data; (𝑥0, 𝑦0) 𝑥0 ∈ 𝑋  is an 

example where 𝑦0  is the class label predicted by a neural 

network model; 𝑥 ∈ 𝑋 is a modified example which is defined 

as a perturbation variable 𝛿  applied to 𝑥0 : 𝑥 = 𝑥0 +  𝛿  and 𝑦𝛿  is the corresponding prediction results. For any natural 
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Fig. 2. The ACGAN-based COVID-19 intelligent prediction network: the real-world clinical data is collected, and then some preprocessing including samples 

wrangling (such as selecting the demanding data and setting correct data formats). KNN algorithm is used for imputing missing data by finding the k closest 

neighbors to the observation with missing data. After that, imputing them based on the non-missing values in the neighbors. KNN for missing data imputation and 

resampling techniques for solving the problem of imbalance samples between normal subjects and COVID-19 subjects in a retrospective cohort. The processed 

training set is employed to train the ACGAN prediction model. After that, the well-trained discriminator of ACGAN is used to forecasting the samples from a 

prospective cohort. Finally, the interpretability of this system is produced by CEM to give an analysis for medical significance.  

 

example 𝑥, CEM dedicates to find an interpretable perturbation 

and thus study the difference between the 𝑎𝑟𝑔𝑚𝑎𝑥𝑖[𝑃𝑟𝑒𝑑(𝑥0)]𝑖  and 𝑎𝑟𝑔𝑚𝑎𝑥𝑖[𝑃𝑟𝑒𝑑(𝑥0 + 𝛿)]𝑖  where 𝑃𝑟𝑒𝑑(∙) is the output consisting of prediction probabilities for 

all classes. The implementations of CEM finding PN are 

formulated as follow: 

 min𝛿∈𝑋/𝑥0 𝑐 ∙ 𝑓𝑘𝑛𝑒𝑔
(𝑥0, 𝛿) + 𝛽‖𝛿‖1 + ‖𝛿‖22 + 𝛾‖𝑥0 + 𝛿 −𝐴𝐸(𝑥0 + 𝛿)‖22 

Where 𝑓𝑘𝑛𝑒𝑔(𝑥0, 𝛿)  is an objective function designed to 

encourage 𝑥  to be predicted as a different class than 𝑦0 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖[𝑃𝑟𝑒𝑑(𝑥0)]𝑖. [𝑃𝑟𝑒𝑑(𝑥0, 𝛿)]𝑖 represents the 𝑖-th class 

probabilities of 𝑥, 𝑘 refers to confidence parameter controlling 

the separation between [𝑃𝑟𝑒𝑑(𝑥)]𝑦0 and 𝑚𝑎𝑥𝑖≠𝑡0 [𝑃𝑟𝑒𝑑(𝑥)]𝑖, 𝛽‖𝛿‖1 and ‖𝛿‖22 called elastic net regularizer, 

which is used for efficient feature selection in high-dimensional 

learning problems [38]. ‖𝑥0 + 𝛿 − 𝐴𝐸(𝑥0 + 𝛿)‖22  is an 𝐿2 

reconstruction error of 𝑥 evaluated by auto encoder, 𝑐, 𝛽 and 𝛾 

are the associated regularization coefficients. 

B. XR-Based COVID-19 remote diagnosis platform.  

1) COVID-19 Patient-specific CT 3D Rendering 

The CT images for the visual rendering is reconstructed 

based on the patient-specific clinic images data, which 

developed with the platform of the Integrated Development 

Environment (IDE) of VS2015. A 55-year-old male COVID-19 

patient is demonstrated with two days history of pharyngalgia, 

headache, rhinorrhea and fever. He did not contact any COVID-

19 patients, without the history of hypertension and with a 30-

year smoker. The patient's chest CT scan (February 8, 2020) 

demonstrated the unilateral peripheral distribution of ground-

glass opacities, as shown in Fig.3. Laboratory investigations 

illustrated that elevated higher count of neutrophil (9.2×109/L, 

normal range, 2.0-7.5×109/L), white blood cell count 

(3.62×109/L, normal range, 4-10×109/L), and lymphocyte 

count was slightly reduced at 0.42×109/L (normal range 0.8-

4.0×109/L). We imported patients’ CT images first, use the 

DICOM format image to reconstruct a surgical simulation 

demo. Four professional thoracic surgeons manually corrected 

the COVID-19 infection region of interest after that, 

segmentation functions like threshold and area growing are 

employed here to the ROI extraction. Four professional thoracic 

surgeons from the Hua Shan Hospital and Yunnan First 

People’s Hospital are invited to revise the auto-segmentation 

result with manual correction, which is demonstrated in Fig 3. 

The images into 3D mesh model were employed the marching 

cube algorithm to reconstruct, after the superfluous mesh 

cleaning and Laplacian smoothing processing to keep the ribs, 

renal, skin and the lesion for the interventional biopsy surgery. 

2) XR surgical Visual-haptic Implementation 

The VATS-XR systems developed in this article mainly 

include the development of hardware and software. Fig. 3. 

shows the framework of the system. The tactile and visual are 

two important indicators of the system. For visual aspects, the 

OpenHaptic plugin calls feedback devices to interact with 

virtual objects, such as collision detection and soft tissue cutting 

and deformation. For visual elements, interactive objects are 

rendered more realistically by shader language, to make it close 
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to the real physical model. UGUI is used to design the UI 

interface design of the system. These functions were finally 

implemented in Unity3D. Surgical instruments and force 

feedback devices are connected through the linker. The operator 

holds the surgical instrument to bring the three axes of the 

power feedback device to perform corresponding 

transformation operations. When the clip of the virtual surgical 

instrument interacts with the virtual object, the computer calls 

the force feedback device through the OpenHaptic plugin 

(Geomagic, USA) to give the corresponding driving force, 

thereby giving the operator a real tactile sense. HTC VIVE and 

Logitech camera are used to realize XR display methods. 

 
Fig. 3. XR COVID-19 surgical IoMT simulator framework: the first part is the 

COVID-19 patient-specific medical image processing from the clinic data 

collection. The second part is the XR visuo-haptic reconstruction with the 

medical data. The third part is the audio rendering procedure, stored the audio 

details of OR-based heart monitor, anesthesia and breathing apparatus, and line 

four is the surgical environment reconstruction. 

 

3) 3DUI Design 

Referring to the GPS navigation interface, we developed a 

Haptic-XR based 3DUI with the XR device and the main parts 

of the UI included in both visual and haptic intro-operation 

details. Three main kinds of XR display technologies during the 

operation have been presented; compared to the video-based 

and projection-based XR navigation system, the see-through 

display system using a semi-transparent free-form lens to 

reflect the digital content overlapped with the patient on the 

near-eye micro-display provided an intuitional and portable 

surgical experience. In this paper, we chose the see-through XR 

display pattern with the Microsoft HoloLens mixed reality 

head-mounted display (HMD). Since the C-arm image or 

ultrasound image is the essential navigational clues during the 

intentional surgery, we put the real-time CT images on the 

central left part of the 3DUI, as demonstrated in Fig 3. For the 

real-time XR, the navigation interface is constructed in the top 

right of the UI, which is the manipulation platform for the 

Haptic-XR surgical simulator. We introduced this module to 

mimic the real operation in OR. Apart from these two 

components, the coronal, sagittal and axial CT images 

synchronously display the needle track during the surgical 

simulation as a part of XR navigation. Referring to the GPS 

interface, we integrated the navigation clues in the bottom of 

the 3DUI, which includes the operation time, intervention depth, 

force limitation, speed limitation, the matching layer of the 

tissue, and the warning of mis-puncture during the surgery, as 

demonstrated in the bottom of Fig. 4. 

 
Fig. 4. Diagram of the general software architecture of the Haptic-XR based 

3DUI with the IoMT device integrative implementation. Visual rendering 

pipeline conducted from the organ 3D reconstructed and the surgical 

environment simulation, haptic rendering includes the soft tissue deformable 

modeling and the force rendering. IoMT system integrated both visual and 

haptic rendering by the human-computer interaction system. 

C. Model Stealing Attack to the New IoMT Platform 

In this section, we'll show you how to train an imitation 

network (Copycat network) by stealing labels from the original 

network (Auxiliary Classifier GANs). In this paper, model 

stealing attacks mainly use the fake natural dataset to steal 

labels from the ACGAN and put these labels and the dataset 

into the imitation network. From Fig.4, we can conclude that 

this process mainly consists of two steps. The first step is to 

create a training dataset that has a similar structure to the 

original dataset, but they come from different problem domains 

(PD). So, the dataset we have chosen is different from the 

original dataset. Obviously, in the second step, we must use the 

labels and the pseudo dataset to train our model (In this paper, 

we choose the ACGAN as a copycat model.).  

Even though the dataset obtained from the first-line hospital 

is used in the original network, we can still download a similar 

COVID-19 dataset from the public source and then change its 

data structure to have a similar structure with the original 

dataset. By doing this, we can be stealing the corresponding 

label from the original model. 

Next, we will explain the assignability of adversarial samples. 

Suppose that the adversary is interested in classifying the wrong 

example and producing a hostile sample 𝜔∗⃗⃗ ⃗⃗   different from the 

model in which the class is assigned to the legal input �⃗⃗� . In the 

following optimization formula, we can achieve this: 𝜔∗⃗⃗ ⃗⃗  = �⃗⃗� + 𝜃�⃗⃗⃗�  where 𝜃�⃗⃗⃗� = 𝑎𝑟𝑔min�⃗⃗� 𝑔(�⃗⃗� + 𝛼 ) ≠ 𝑔(�⃗⃗� ) 

Misleading example 𝜔∗⃗⃗ ⃗⃗  , deliberately 𝑔  calculation model. 

However, adversarial samples are often incorrectly classified as 𝑔′ instead of 𝑔 in practice. For the convenience of discussion, 
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the concept of transferability of adversarial samples is 

formalized: 𝛱𝑌(𝑔, 𝑔′) = |{𝑔′(�⃗⃗� ) ≠ 𝑔′(�⃗⃗� + 𝜃�⃗⃗⃗� ⃗⃗⃗⃗  ⃗: �⃗⃗� ∈ 𝑌)}| 
Set 𝑌  represents expected input distribution solved by the 

model 𝑔 and 𝑔′. in the task. We divide the transferability of 

adversarial samples into two variables to describe the models (𝑔, 𝑔′). The first is the transferability within the technology. 

The transferability between different parameter initializations 

of the same technology or training models of other datasets (for 

example, 𝑔 and 𝑔′ are deep learning networks or both support 

vector machines (SVM)) has been defined. Second, for cross-

technology transferability, two technologies can be used to train 

models (for example, 𝑔 is a deep learning network and 𝑔′ is 

SVM). 

IV. RESULTS 

A. KNN-ACGAN Learning Accuracy 

Based on the prospective cohort, the results toward COVID-

19 prediction for KNN-ACGAN and the other four models 

(KNN-SVM, KNN-RF, KNN-DNN, KNN-CNN) are reported 

in Table I and Fig.5 (a). The evaluation metrics include 

Precision, Recall and F1-score. As shown in Table I and Fig.5 

(a), the highest values indicate that our proposed KNN-

ACGAN model has the best prediction performance compared 

to KNN-SVM, KNN-RF, KNN-DNN and KNN-CNN. 
TABLE I 

PERFORMANCE COMPARISON BETWEEN THE PROPOSED KNN-

ACGAN MODEL AND THE FOUR GENERAL PREDICTION METHODS 

Model Precision Recall F1-score 

KNN-SVM 0.75 0.98 0.85 

KNN-RF 0.63 0.95 0.75 

KNN-DNN 0.81 1.00 0.89 

KNN-CNN 0.77 0.98 0.86 

KNN-ACGAN 0.92 0.98 0.95 

SVM: Support vector machine; RF: Random forest; DNN: Original deep neural 

network; CNN: Convolution neural network. 

 

To evaluate the forecasting performance of KNN imputation 

for missing data, we performed a comparison between the 

KNN-based prediction model and the average-based prediction 

model. The area under the ROC curve (AUC) of the comparison 

result is shown in Fig. 6. In terms of ROC, KNN-based models 

obtain promotions compared to average-based models. Table II 

and Fig.5 (b) report the detailed promotion of the comparison 

of KNN-based models and average-based models under three 

performance criteria. It visually shows that all KNN-based 

predictive models have more significant improvement in 

performance than KNN-based models. 
TABLE II 

THE PROMOTION OF KNN-BASE PREDICTION MODEL COMPARED 

TO AVERAGE-BASED PREDICTION MODEL IN PRECISION, RECALL 

AND F1-SCORE 

KNN-based 

model vs. 

Average-

based model 

SVM RF DNN CNN ACGAN 

Pprecision 0.03 -0.05 0.42 0.33 0.16 

Precall 0.02 0.41 0.00 -0.02 0.01 

PF1-score 0.02 0.12 0.24 0.18 0.07 𝑃𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝐾𝑁𝑁 − 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝐴𝑣𝑒𝑟𝑎𝑔𝑒  

 

B. Stealing Model Performance for the New IoMT Platform 

There are some evaluation indicators and corresponding 

parameters shown in Table III and Fig.7 (a). A higher number 

on the same scale indicates better performance for the model. 

The F1-score for normal people and COVID-19 patients in the 

Table III are0.99 and 0.88, respectively., which indicates that 

the original network has a strong performance in predicting 

COVID-19 and non-COVID-19 data.  
TABLE III 

VALUES OF DIFFERENT INDICATORS OUTPUTTED BY THE TARGET MODEL. 

Object Precision Recall F1-score Support 

NORMAL 1.00 0.97 0.99 68 

COVID-19 0.78 1.00 0.88 7 

Macro avg 0.89 0.99 0.93 75 

Weighted avg 0.98 0.97 0.97 75 

Accuracy ― ― 0.97 75 

 

TABLE IV and Fig.8 (b) shows the different performance 

indicators that copycat network outputs after training with 

stolen labels and the corresponding dataset. Because we 

selected data between PD and non-Problem Domain (NPD) 

Fig. 5. The experimental results: (a) The Precision, Recall and F1-score comparison between the proposed KNN-ACGAN model and four other general prediction 

methods (SVM: Support vector machine; RF: Random forest; DNN: Original deep neural network; CNN: Convolution neural network.). It can be seen from this 

figure that KNN-ACGAN outperforms other traditional models in precision and F1-score, while the recall is slightly lower than KNN-DNN model; (b) The 

performance promotion of KNN-based prediction model compared to average-based prediction model in the criterions of precision, recall and F1-score. It can be 

computed in the following equation:𝑃𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝐾𝑁𝑁−𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝐴𝑣𝑒𝑟𝑎𝑔𝑒 .It is noticeable in this figure that almost all models had a performance improvement 

(from 0.02 to 0.42) when model used KNN imputation, except for the recall of CNN, recall of DNN and the precision of RF. 
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when we selected the Copycat dataset, we still got a 79% 

accuracy rate with many irrelevant data effects. Based on 

TABLE III and TABLE IV, we can observe that the copycat 

network achieves approximately to the results of the original 

data. 
TABLE IV 

VALUES OF DIFFERENT INDICATORS OUTPUTTED BY THE COPYCAT MODEL. 
Object(copycat) Precision Recall F1-score Support 

NORMAL 1.00 0.77 0.87 196 

COVID-19 0.38 1.00 0.55 28 

Macro avg 0.69 0.88 0.71 224 

Weighted avg 0.92 0.79 0.83 224 

Accuracy ― ― 0.79 224 

V. DISCUSSION 

In order to develop an intelligent and trustworthy COVID-19 

Diagnostic IoMT through XR and deep neural network, the XR 

based framework has been conducted. Based on the training 

results, the COVID-19 can be accomplished diagnose with or 

without assistance, so that visual feedback and numerical 

feedback are provided. Offering includes displaying a real-time 

3D representation of the surgical implementations. 

A. Performance by ACGAN-based COVID-19 IoMT 

As shown in Table I, the proposed KNN-ACGAN model has 

excellent performance. Compared with the CNN model, the 

precision and F1-score on the KNN-ACGAN increased by 15% 

and 9%, respectively. Compared with the DNN model, the 

precision and F1-score on the KNN-ACGAN increased by 11% 

and 6%, respectively. It indicates that the ACGAN model can 

obtain more accurate features and more precise prediction 

results after the preprocessing of KNN for missing data and the 

resampling processing in training. We used KNN (k=1) to fill 

up the missing data and the oversampling to solve the problem 

of imbalance samples. In Fig. 5 and TABLE II, where the 

performance of KNN is evaluated, the AUC of the KNN-based 

models has increased by 1%-8% compared with average-based 

models. Moreover, except for the Pprecision of KNN-RF and the 

Precall of KNN-CNN, all the KNN-based models have a 

promotion in which PF1-score have increased by 2%-24%, Precall 

have increased by 2%-41% and Pprecision have increased by 3%-

41%. More promising information can be obtained from the 

confusion matrix in Fig 6. All the experiments demonstrate that 

KNN-ACGAN is a promising technology that can be used 

effectively in COVID-19 prediction.   

Fig. 6. The ROCs and AUCs of SVM, RF DNN, CNN and ACGAN prediction models based on different data imputation method (left: average imputation; right: 

KNN imputation). For the figures, we can easily observe that prediction accuracies improve for all models when using KNN-based imputation method (with 

increase from 0.1 to 0.8 in terms of AUC area), and ACGAN model have the best prediction result in both imputation methods, reaching the 0.97 and 0.98 AUC 

area on average imputation and KNN imputation, respectively.  

(b) (a) 

Fig 7. The detailed performance for prediction model: (a)KNN-ACGAN; (b)Copycat. (Normal represents the predicted performance in normal people; 

COVID represents the predicted performance in COVID-19 patients; Macro is the macro average performance in test data; And Weight the weighted average 

performance in train data.).  
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Fig. 8. The confusion matrix for different algorithms: (a) AVG-SVM, (b) KNN-

SVM, (c) AVG-RF, (d) KNN-RF, (e) AVG-DNN, (f) KNN-DNN, (g) AVG-

CNN, (h) KNN-CNN, (i) AVG-ACGAN, (j) KNN-ACGAN. We can see from 

Fig.10 that it is hardly for KNN-ACGAN to misjudge with 6 errors in total 448. 

 

In the offline process, we use real-world clinical COVID-19 

data to train the proposed KNN-ACGAN model. After 

optimizing and adjusting the model parameters, the model is 

saved. The new experiments with the protected model are 

performed in the online application. According to the predicted 

feedback, whether the patients are infected are predicted and 

displayed on the monitor. Besides, the interpretability based on 

CEM can provide the importance for the clinical features, 

which gives the KNN-ACGAN model the medical insight and  

ensure the reliability of our proposed COVID-19 intelligent 

prediction system. 

 
Fig. 9. The interpretation to the KNN-ACGANs with respect to how the clinical 

feature influences their decision for whether a patient is infected with COVID-

19. It can be seen from Fig.6 that lymphocyte quantity, mitochondria quantity 

and whether patients have above symptoms (from Neutrophil to no previous 

features) are the top-3 risk factors affecting the model to estimate the 

probability of patients getting COVID-19. 

B. Performance by IoMT Stealing Model 

As shown in Fig 10, the obfuscated matrix is an error matrix 

that can be used to evaluate the performance of supervised 

learning algorithms. Therefore, we can see more clearly that the 

prediction set is a mixed part of the real set through the 

confusion matrix. We can see from Figure 9, True Positive (TP) 

and False Negative (FN) account for a large proportion in the 

confounding matrix, among which TP accounts for the largest 

proportion, which has been directly reflected that the ACGAN 

network can accurately predict the data of patients with and 

without COVID-19. 

 
Fig. 10. Confusion matrix diagram based on the ACGAN model and ROC curve 

using different models for data prediction. It can be seen that Copy DNN has a 

better performance with the AUC area of 0.90, which is only 0.08 lower than 

that of KNN-ACGAN model. Moreover, regarding the confusion matrix, all the 

patients with COVID-19 are tested correctly, while a few numbers of ordinary 

people are tested for COVID-19. 

 

The Receiver Operating Characteristic (ROC) curve is drawn 

according to a series of different dichotomies (cut-off values or 

determining thresholds), unlike traditional evaluation methods, 

the ROC curve does not need to divide experimental results into 

two categories for statistical analysis, and all points on the curve 

reflect the same receptivity. The ROC curve is judged by which 

line in the curve can get the fastest and most infinitely close to 

an ordinate of 1, indicating that the model represented by that 

curve will work best. As we can see from Figure 10, KNN-

ACGAN can have the best effect on the classification of new 

crown data. ACGAN can more accurately predict the data of 

COVID-19 patients and non-COVID-19 patients by combining 
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the results of the ROC curve and confounding matrix. At the 

same time, the copycat network can also achieve similar effects 

to the original network. 

VI. CONCLUSION 

In this paper, we proposed a Trustworthy and Intelligent 

COVID-19 Diagnostic IoMT through XR and deep neural 

networks. We developed a customized novel ACGAN-based 

intelligent prediction algorithm that was addressed to learn a 

new COVID-19 prediction model. Apart from that, to achieve 

a better human ergonomics performance, we visualized all the 

navigational clues from our Haptic-AR guide system. We are 

among the first to apply deep learning for the COVID-19 IoMT 

prediction and remote surgical plan cues, which may provide a 

new strategy for COVID-19 therapy. In the future, we will 

improve this IoMT system in both hardware design and deep 

learning algorithms promotion, aims to create a platform for 

both academia and industry to the COVID-19 track and 

treatment. 
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