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Trustworthy Coordination of Web Services
Atomic Transactions

Honglei Zhang, Hua Chai, Wenbing Zhao, Member, IEEE,

P. Michael Melliar-Smith, Member, IEEE, and Louise E. Moser, Member, IEEE

Abstract—The Web Services Atomic Transactions (WS-AT) specification makes it possible for businesses to engage in standard

distributed transaction processing over the Internet using Web Services technology. For such business applications, trustworthy

coordination of WS-AT is crucial. In this paper, we explain how to render WS-AT coordination trustworthy by applying Byzantine Fault

Tolerance (BFT) techniques. More specifically, we show how to protect the core services described in the WS-AT specification,

namely, the Activation service, the Registration service, the Completion service and the Coordinator service, against Byzantine faults.

The main contribution of this work is that it exploits the semantics of the WS-AT services to minimize the use of Byzantine Agreement

(BA), instead of applying BFT techniques naively, which would be prohibitively expensive. We have incorporated our BFT protocols

and mechanisms into an open-source framework that implements the WS-AT specification. The resulting BFT framework for WS-AT is

useful for business applications that are based on WS-AT and that require a high degree of dependability, security, and trust.

Index Terms—Atomic transactions, distributed transactions, service-oriented computing, Web Services, dependability, security, trust,

encryption, authentication, Byzantine fault tolerance.

Ç

1 INTRODUCTION

DRIVEN by the need for business collaboration and
integration, more and more applications are being

deployed over the Internet using Web Services technology.
Many such applications involve distributed transaction
processing. To provide interoperability among transactional
Web Services, the Web Services Atomic Transactions (WS-
AT) specification [18] was developed by a consortium of
companies (led by Microsoft and IBM) and was recently
adopted by OASIS as one of the Web Services standards.

According to the WS-AT specification, the Coordinator
offers a set of services to the Initiator and the Participants of
a transaction, namely, the Activation service, the Registra-
tion service, the Completion service, and the Coordinator
service. The Activation service creates a Coordinator object
and a transaction context for each new transaction. The
Registration service admits a Participant into the transac-
tion. The Completion service initiates the distributed
commit of the transaction at the request of the Initiator.
The Coordinator service coordinates the Participants to
commit or abort the transaction atomically.

The objective of the research presented in this paper is to
harden these WS-AT services so that they are trustworthy,
even in the presence of Byzantine faults [17], within the
untrusted environment of the Internet.

One might expect that theWS-AT services could be easily
rendered Byzantine fault tolerant by replicating the WS-AT
services and ensuring Byzantine Agreement (BA) of the
replicas on every operation using an existing Byzantine Fault
Tolerance (BFT) algorithm, such as the Practical Byzantine
Fault Tolerance (PBFT) algorithm [9]. However, such an
approach is not practical, because executing Byzantine
agreement on every operation is prohibitively expensive, as
our experimental results in Section 5 show.

The main contribution of this paper is a lightweight BFT
framework for trustworthy coordination of Web Services
Atomic Transactions that exploits the semantics of the WS-
AT interactions to achieve better performance than a
general-purpose BFT algorithm that is naively applied.
We recognize that not every operation in WS-AT requires
Byzantine agreement among the Coordinator replicas and,
thus, that the total number of Byzantine agreements needed
in a typical transaction can be sharply reduced.

More specifically, our BFT framework uses a lightweight
protocol instead of running an instance of Byzantine
agreement for registration of each Participant. The protocol
utilizes, at each Participant, the collection of registration
acknowledgments from a quorum of Coordinator replicas,
and a round of message exchange at the start of the two-
phase commit protocol. These mechanisms ensure that, if a
nonfaulty Participant has registered with the Coordinator,
the Participant is included in the two-phase commit.
Moreover, if the number of Participants is large, these
mechanisms reduce the overhead dramatically.

In addition, our BFT framework introduces a decision
certificate into the transaction outcome notification during
the two-phase commit, to limit the malicious impact of a
(not yet detected) Byzantine faulty replica on the Partici-
pants (and other replicas). The decision certificate makes it
possible to run a single instance of Byzantine agreement on
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the decision of the transaction outcome during two-phase
commit, instead of running an instance of Byzantine
agreement for each Participant on the vote of that
Participant. For transactions with a large number of
Participants, the decision certificate improves the perfor-
mance significantly. Furthermore, because the decision
certificate includes the signed votes of the Participants, it
enables accountability. For example, if a faulty Participant
votes to commit a transaction, but aborts the transaction
locally, other Participants can hold it accountable, because
of the signed votes they have.

For convenience, we choose to use the PBFT algorithm [9]
for Byzantine agreement in the implementation of our BFT
framework. Other BFT algorithms [1], [2], [7], [16], [33]
potentially offer better performance during normal opera-
tion and/or more robustness under various kinds of attacks.
Most of these algorithms could be used in our BFT
framework instead of PBFT, without significant changes
other than the implementation of the BFT algorithm itself.

Finally, our work focuses on trustworthy coordination of
distributed transactions for Web Services. It is not our
objective to provide a Byzantine fault tolerance framework
for database systems, as [27], [32] do.

2 BACKGROUND

2.1 Web Services

The Web Services technologies comprise a set of standards
that enable automated machine-to-machine interactions
over the Internet. The key Web Services technologies are
the eXtensible Markup Language (XML) [6], the Simple
Object Access Protocol (SOAP) [14], and the Web Services
Description Language (WSDL) [11].

XML is designed to facilitate self-contained, structured
data representation and transfer over the Internet. The
extensibility of XML makes it the essential building block
for Web Services. Extensibility refers to the ability to
introduce additional features and functionalities. XML is
extensible in that it allows users to define their own tags.

SOAP can be used either to conduct remote procedure
calls or to exchange XML documents over the Internet. A
SOAP message contains a SOAP Envelope and a SOAP
Body. A SOAP message often contains an optional SOAP
Header element, and sometimes contains a Fault element if
an error occurs. Typically, HTTP is used to transport SOAP
messages over the Internet.

WSDL is an XML-based language used to describe Web
Services. For each Web Service, the corresponding WSDL
document specifies the available operations, the relevant
messages, and a set of endpoints to reach the Web Service.
Due to its use of XML, WSDL is also extensible.

2.2 Web Services Atomic Transactions
Specification

The Web Services Atomic Transactions standard specifies
two protocols (the 2PC protocol and the Completion
protocol) and a set of services. These protocols and services
together ensure automatic activation, registration, propaga-
tion, and atomic termination of a distributed transaction
based on Web Services. The 2PC protocol [34] is run
between the Participants and the Coordinator, and the

Completion protocol is run between the Coordinator and

the Initiator. The Initiator is responsible for not only starting

the distributed transaction but also ending it.
The Participants register with the Coordinator when they

become involved in the transaction. The 2PC protocol

commits a transaction in two phases. During the first phase

(the Prepare phase), the Coordinator disseminates a request

to all of theParticipants so that they canprepare to commit the

transaction. If a Participant is able to commit the transaction,

it prepares the transaction for commitment and responds

with a Prepared vote; otherwise, the Participant responds

with an Abort vote. When a Participant responds with a

Preparedvote, it enters theReady state.AParticipantmust be

prepared to either commit or abort the transaction. A

Participant that has not responded with a Prepared vote can

unilaterally abort the transaction. When the Coordinator has

received votes from every Participant, or a predefined

timeout has occurred, the Coordinator starts the second

phase (the Commit/Abort phase) by notifying the Partici-

pants of the outcome of the transaction. The Coordinator

decides to commit a transaction if it has received Prepared

votes from all of the Participants during the first phase;

otherwise, it decides to abort the transaction.
On the Coordinator-side, the services comprise:

. Activation service. The Activation service creates a
Coordinator object and a transaction context for each
transaction. Essentially, the Activation service be-
haves like a factory object that creates Coordinator
objects.

. Registration service. The Registration service allows
the Participants and the Initiator to register their
endpoint references.

. Completion service. The Completion service allows
the Initiator to signal the start of the distributed
commit.

. Coordinator service. The Coordinator service runs
the 2PC protocol, which ensures atomic commitment
of the distributed transaction.

The Activation service is used for all transactions. It is

provided by a single object, which is replicated in our BFT

framework. When a distributed transaction is activated, a

Coordinator object is created. The Coordinator object

provides the Registration service, the Completion service

and the Coordinator service. The transaction context

contains a unique transaction id and an endpoint reference

for the Registration service, and is included in all request

messages sent during the transaction. The Coordinator

object is replicated in our BFT framework.
At the Initiator, the service comprises:

. CompletionInitiator service. The CompletionInitia-
tor service is used by the Coordinator to inform the
Initiator of the final outcome of the transaction, as
part of the Completion protocol.

At a Participant, the service comprises:

. Participant service. The Participant service is used
by the Coordinator to solicit votes from, and to send
the transaction outcome to, the Participant.



The phases of a distributed transaction using a confor-
mant WS-AT framework are shown in Fig. 1 with a banking
application adapted from [4] and used in our performance
evaluation (note that this example is for illustration purposes
only and in practice, Accounts A and Bmight not be exposed
as Web Services). In this example application, the bank
provides an online bankingWeb Service that a customer can
access. The transaction is started as a result of the customer’s
invoking a Web Service of the bank to transfer an amount of
money from one account to another.

2.3 Byzantine Fault Tolerance

Byzantine fault tolerance refers to the ability of a system to
tolerate Byzantine faults. A Byzantine fault is an arbitrary
fault, which might be a hardware fault, or a software fault
caused by an intrusion into the system. Byzantine fault
tolerance can be achieved by replicating the server and by
ensuring that all server replicas reach agreement on each
input despite Byzantine faulty replicas and clients. Such an
agreement is referred to as a Byzantine agreement (BA) [17].

In the implementation of our BFT framework, we use the
Practical Byzantine Fault Tolerance algorithm of Castro and
Liskov [9]. We provide here a synopsis of the PBFT
algorithm during normal operation. The PBFT algorithm is
executed by a set of 3f þ 1 replicas and tolerates f Byzantine
faulty replicas. One of the replicas is the primary, and the
rest of the replicas are the backups. The normal operation of
the PBFT algorithm involves three phases. During the first

phase (the Pre-Prepare phase), the primary multicasts, to the
backups, a Pre-Prepare message containing the client’s
request, the current view number, and the sequence number
of the request. A backup verifies the Pre-Prepare message
and ordering information (used to order messages and
nondeterministic operations) by checking the digital signa-
ture, the view number, and the sequence number. If the
backup accepts the message, it starts the second phase (the
Prepare phase) by multicasting, to the other replicas, a
Prepare message containing the ordering information and
the digest of the request message being ordered. A replica
waits until it has collected matching Prepare messages from
2f other replicas. It then starts the third phase (the Commit
phase) by multicasting a Commit message to the other
replicas. The Commit phase ends when a replica has
received matching Commit messages from 2f other replicas.
At this point, the request message is ordered and ready to be
delivered to the server application.

3 SYSTEM MODEL

We consider a composite Web Service that utilizes
individual Web Services provided by different organiza-
tions or departments within the same organization, similar
to the example shown in Fig. 1. We assume that an end user
accesses the composite Web Service through a Web browser
or invokes the Web Service directly through a stand-alone
client application. For each request from an end user, a

Fig. 1. The sequence diagram for the banking application using Web Services Atomic Transactions.



distributed transaction is created to coordinate the interac-
tions with other Web Services. For simplicity, we assume a
flat distributed transaction model (i.e., a distributed
transaction does not involve nested transactions [13]). The
distributed transaction is supported by a conformant WS-
AT framework such as the Kandula framework [4].

The composite Web Service provider is the Initiator of
the transaction. We assume that the Initiator is stateless
because typically it provides only a front-end service for the
clients and delegates the work to the Participants. The
Initiator starts and terminates the transaction. The Initiator
also propagates the transaction to other Participants using a
transaction context in the requests.

We assume that, for each transaction, a distinct Co-
ordinator object is created. The lifetime of the Coordinator is
the same as that of the transaction it coordinates. Moreover,
we assume that the Coordinator runs separately from the
Initiator and the Participants. Although it is common
practice to collocate the Initiator with the Coordinator,
such an approach might not be desirable for two reasons.
First, collocating the Initiator and the Coordinator tightly
couples the business logic with the transaction coordination
mechanism, which is desirable neither from the software
engineering perspective (it is harder to test) nor from the
security perspective (it defies the defense-in-depth princi-
ple). Second, the Initiator typically is stateless and, thus, can
be rendered fault tolerant more easily than the Coordinator,
which is stateful. This difference naturally calls for the
separation of the Initiator and the Coordinator.

We assume that the Initiator and the Coordinator are
subject to Byzantine faults and, thus, they are replicated. To
tolerate f faulty Coordinator replicas during a transaction,
3f þ 1 Coordinator replicas are required. We assume that
the Initiator is stateless and, hence, only 2f þ 1 Initiator
replicas are required to tolerate f faulty Initiator replicas.

The Participants in a transaction are not replicated and
can be Byzantine faulty. In the presence of Byzantine faulty
Participants, our BFT framework ensures that nonfaulty
Coordinator replicas agree on the same decision regarding
the outcome of the transaction, as do nonfaulty Participants.
It is impossible to achieve atomic commitment for all
Participants in a distributed transaction, if some of the
Participants are Byzantine faulty. The 2PC protocol im-
plicitly assumes that the Participants are trustworthy. That
is, if a Participant votes to commit/abort a transaction, it is
indeed prepared to do so, and it tries to commit a
transaction whenever it can. A Byzantine faulty Participant
might vote to abort a transaction, or to commit a transaction
but abort the transaction locally, or it might choose not to
register and not to participate in the two-phase commit. We
do not attempt to address whether it makes sense to
consider the possibility of a Byzantine faulty Participant.
Furthermore, in most real-world applications, replication of
the Participants is not very realistic. As for other BFT
algorithms/protocols, we assume that the clients can be
Byzantine faulty.

Each message exchanged between the Coordinator and
the Initiator or a Participant is protected by a security token.
The security token can be a digital signature, or a message
authentication code.

We assume that each Coordinator replica and each
Participant has a public/private key pair. The public keys
of the Participants are known to all Coordinator replicas
and vice versa, whereas their private keys are kept secret.
We assume that each pair of entities that might exchange
messages has a shared symmetric key, so that the entities
can use a message authentication code as the security
token. We assume that the adversaries have limited
computing power, which prevents them from breaking
the private encryption keys and the digital signatures of
nonfaulty replicas.

4 BFT COORDINATION FOR WS-AT

Our BFT framework comprises a suite of protocols and
mechanisms that protect the services and infrastructure of
WS-AT coordination against Byzantine faults. The BFT
Activation protocol ensures that the same transaction id for
a transaction is chosen by nonfaulty Activation replicas. The
BFT Registration protocol involves no inter-replica commu-
nication and guarantees that a nonfaulty Participant
registers with at least 2f þ 1 Coordinator replicas. The
Byzantine agreement on the registration set (i.e., the set of
Participants involved in the transaction) is deferred to, and
combined with, the agreement on the transaction outcome
in the BFT Completion and Distributed Commit protocol.

There exist a number of well-known general-purpose
BFT algorithms [1], [2], [7], [9], [16], [33]. In principle, most
of them can be adapted to ensure Byzantine agreement in
our BFT framework, although it is easier to adapt those that
support the leader-follower-based replication approach,
such as PBFT [9] or Zyvvya [16]. Instead of ensuring
Byzantine agreement on the total ordering of requests, those
algorithms can be easily modified to guarantee Byzantine
agreement on the key values (i.e., transaction id, registration
set, and transaction outcome) needed for trustworthy WS-
AT coordination. In our protocol descriptions, we assume
such an adapted algorithm is used.

The liveness of our protocols also depends on the
underlying (adapted) Byzantine agreement algorithm.
Because the modification might not be obvious, we present
here how we adapted the PBFT view change algorithm for
our purposes.

Furthermore, for clarity in the descriptions and the
associated diagrams of our protocols, we assume that the
underlying Byzantine agreement algorithm requires 3f þ 1

replicas to tolerate f faulty replicas, so that it is compatible
with the requirement needed for other operations in our
protocols. Our protocols will, of course, work if more than
3f þ 1 replicas are used for Byzantine agreement.

In our protocols, a multicast message is in fact sent point-
to-point from the sender to each intended receiver. As such,
if digital signatures are not used, a message authentication
code between the sender and each receiver is used, instead of
an authenticator [9]. For brevity, we use the symbol � to
denote the token, which could be either a digital signature, or
a message authentication code (without detailed indexes).

4.1 BFT Activation

The Activation service of WS-AT creates a new Coordinator
object for each new transaction.Different Coordinator objects



do not share data and their initial states are not dependent on
the order inwhich they are created. Consequently, there is no
need to order Activation request messages.

An important part of the state of the Coordinator object is
the transaction id. The transaction id is unique, i.e., no two
transactions have the same transaction id. For security
reasons, the transaction id is derived from a random
number, so that the transaction id cannot be predicted
and, thus, subverted, as described below. Byzantine
agreement is needed to ensure that each nonfaulty Activa-
tion replica assigns the same transaction id to a transaction.

However, one should not trust the primary Activation
replica to create the transaction id. Because the UUID is
random, a backup Activation replica is in no position to
verify that the UUID proposed by the primary is random,
and cannot prevent a Byzantine faulty primary from using a
deterministic algorithm to generate the UUID. Without
additional security protection, the use of a predictable
transaction id opens the door for an adversary to take over a
nonfaulty Coordinator and hijack a communication session
with the Participants, similar to the Mitnick attack [25] (the
transaction id is analogous to the initial TCP sequence
number). Such hijacking can lead to nonatomic transaction
commitment at different Participants (and other undesir-
able consequences). Even though this type of attack can be
defeated by applying other security mechanisms, such as
digital signatures, the use of a random transaction id during
activation is a good defense-in-depth strategy.

To cope with the use of random numbers for Activation,
our BFT protocol employs an additional round of message
exchange to ensure that the final random number used to
generate the transaction id is collectively determined by a
quorum of Coordinator replicas. The collective determina-
tion of the transaction id (instead of delegating the task to
the primary replica) is important because it prevents a
Byzantine faulty primary from colluding with an adversary
to cause nonatomic transaction commitment.

Fig. 2 shows our BFT protocol for the Activation service. A
nonfaulty client sends a request message to all Initiator
replicas. The requestmessagehas the form<CREQ; o; t; c>�c ,
where o is the operation to be executed by the Initiator, t is a
monotonically increasing timestamp, c is the client’s id, and
�c is c’s security token for the message.

An Initiator replica accepts the request and sends back a
reply (when the transaction is completed) if the request is
properly protected by a security token, and the Initiator
replica has not already accepted a request with a timestamp
that is greater than or equal to t from the same client. If the
request carries an obsolete timestamp, the Initiator replica
retransmits the reply if it finds the reply in its message log.
The client does not deliver the reply until it has collected
f þ 1 matching replies from the Initiator replicas.

On receiving a request message from a client, an Initiator
replica starts a distributed transaction and multicasts an
Activation request to all Activation replicas. The Activation
request has the form <ACTIVATION; v; t; c; k>�k , where v

is the current view number, t is the timestamp, c is the
client’s id, k is the Initiator replica’s id, and �k is k’s security
token for the message.

An Activation replica logs the Activation request if the
message is properly protected by a security token and the
Activation replica has not accepted a request with a time-
stamp that is greater than or equal to t from the Initiator
replica in view v. When the Activation replica receives
Activation request messages, with matching t and c, from
f þ 1 distinct Initiator replicas, it accepts the Activation
request. This requirement ensures that the Activation
request comes from at least one nonfaulty Initiator replica.

An Activation replica then generates a UUID and
multicasts a UUID Exchange message to all of the other
replicas. The message has the form <UUID-EXCHANGE; v;

id; d; uuidi; i>�i , where v is the current view, id is the tuple
< t; c > that identifies the activation instance, d is the digest
of the Activation request, uuidi is replica i’s proposed UUID,
i is the replica’s id, and �i is i’s security token for the
message.

An Activation replica accepts a UUID Exchange message
if the replica is in view v, the message is properly protected
by a security token, and d matches the digest of the
Activation request. When the Activation primary replica
has generated its own UUID Exchange message and has
accepted UUID Exchange messages from 2f backup
replicas, it combines the set of 2f þ 1 UUIDs by performing
a bit-wise exclusive-or operation on the set of UUIDs, which
is a provably secure combination method [35]. It then

Fig. 2. BFT Activation protocol.



initiates a Byzantine agreement for the set of <i; uuidi>

tuples, together with the combined UUID.
At the end of the Byzantine agreement, a replica derives

the transaction id tid from the combined UUID, creates a
Coordinator object for the tid, and sends an Activation
response to the Initiator replicas. The Activation response
has the form <ACTIVATION-REPLY; t; c; v; C; i>�i , where
t and c are the timestamp and client id included in the
Activation request, v is the view number, C is the
transaction context, i is the replica’s id, and �i is i’s security
token for the message.

An Initiator replica logs the Activation response if it is
properly signed, and t and c match those in the Activation
request. The Initiator replica accepts the Activation re-
sponse if it has logged matching Activation responses from
f þ 1 distinct Activation replicas. Doing so ensures the
validity of the Activation response because it comes from at
least one nonfaulty replica.

4.2 BFT Registration and Transaction Propagation

To ensure atomic termination of a distributed transaction, it
is essential that all nonfaulty Coordinator replicas agree on
the set of Participants involved in the transaction. Such
agreement can be achieved by running a Byzantine
agreement instance among the Coordinator replicas when-
ever a Participant registers itself. However, doing so incurs
too much overhead to be practical. Consequently, we defer
the Byzantine agreement on the Participant set until the
Distributed Commit phase and combine it with the
Byzantine agreement for the transaction outcome. During
the Registration phase, we run a lightweight BFT Registra-
tion protocol with no inter-replica communication, as
shown in Fig. 3.

In our BFT Registration protocol, a Participant accepts a
request from an Initiator replica when it has collected
matching requests from f þ 1 distinct Initiator replicas. One
of those messages must have been sent by a nonfaulty
Initiator replica, because at most f Initiator replicas are
faulty. Consequently, a faulty Initiator replica is prevented
from excluding a Participant from the transaction (e.g., by
not including it in the transaction context in the request), or
from including a process that should not be a Participant.

To register, a Participant multicasts a Registration request
to the Coordinator replicas and waits to receive acknowl-
edgments from 2f þ 1 distinct Coordinator replicas. Because

at most f Coordinator replicas are faulty, at least f þ 1

nonfaulty Coordinator replicas must have accepted the
Registration request.

If a Participant registers successfully and completes its
execution of the Initiator’s request, it multicasts a normal
response to the Initiator replicas. Otherwise, it multicasts an
exception (possibly after recovering from a transient fault)
to the Initiator replicas. If an Initiator replica receives an
exception from a Participant, or times out a Participant, it
aborts the transaction.

An Initiator replica also registers with the Registration
service. This registration is similar to that of the Partici-
pants. Because at most f Initiator replicas are faulty, at least
f þ 1 Initiator replicas register successfully.

4.3 BFT Completion and Distributed Commit

The normal operation of the BFT Completion and Dis-
tributed Commit protocol is illustrated in Fig. 4. When an
Initiator replica successfully completes all operations within
a transaction before a timeout, it multicasts a Commit
request to the Coordinator replicas; otherwise, it multicasts
a Rollback request. A Coordinator replica accepts the
Commit or Rollback request when it has received matching
requests from f þ 1 distinct Initiator replicas.

On accepting a Commit request, a Coordinator replica
starts the Registration Update phase by multicasting, to
the Coordinator replicas, a Registration Update message
including the registration records of the Participants
known to itself. The purpose of this phase is to ensure
that, if a nonfaulty Participant has registered successfully,
all nonfaulty Coordinator replicas have a record of its
registration. The Registration Update message has the
form <REGISTRATION-UPDATE; tid; RS; i>�i , where tid

is the transaction id, RS is the set of registration records, i
is the replica’s id, and �i is i’s security token for the
message. Each record in the set RS is a registration record
Rj ¼ ðtid; jÞ�j , where j is the Participant id.

When a Coordinator replica has collected Registration
Update messages from 2f other replicas, it checks to see if it
has missed any registration records. (It is possible that a
replica has missed a registration record, because a Partici-
pant is required to obtain acknowledgments from only 2f þ
1 Coordinator replicas.) The Coordinator replica adds a
missing registration record if the record is present in the RS
set. The Registration Update phase is then concluded.

Fig. 3. BFT registration and transaction propagation protocol.



Next, the Coordinator replica starts the first (Prepare)
phase of the standard 2PC protocol. A Participant defers
accepting a Commit/Rollback request until it has collected
matching requests from f þ 1 distinct Coordinator replicas
to ensure that the request came from a nonfaulty Coordi-
nator replica. At the end of the first phase of the 2PC
protocol, the Byzantine agreement algorithm is run, so that
all nonfaulty Coordinator replicas agree on the same set of
Participants and the same transaction outcome. This phase
is followed by the second (Commit/Abort) phase of the 2PC
protocol. If the Coordinator replica receives a Rollback (i.e.,
an Abort) request, the first phase of the 2PC protocol is
skipped because its result is Abort. However, the Byzantine
agreement phase is still needed to ensure that all nonfaulty
replicas agree on the same transaction outcome.

When the Distributed Commit phase is completed, the
Coordinator replicas notify the Initiator replicas of the
transaction outcome. An Initiator replica accepts a
Commit/Abort notification message if it has collected
matching Commit/Abort notification messages from f þ 1

distinct Coordinator replicas. Similarly, a Participant
accepts a Commit/Abort notification message if it has
collected matching Commit/Abort notification messages
from f þ 1 distinct Coordinator replicas. Doing so ensures
that the Commit/Abort notification message comes from a
nonfaulty Coordinator replica.

For Byzantine agreement, the primary Coordinator
replica must include its decision certificate C as evidence
for its decision on the transaction outcome, where C

contains a set of records, one for each Participant. The
record for Participant j contains a registration record Rj ¼
ðtid; jÞ�j and a vote record Vj ¼ ðtid; voteÞ�j . The tid is
included in each registration record and vote record, so that
a faulty primary Coordinator replica cannot reuse an
obsolete registration or vote to force a transaction outcome
against the will of a nonfaulty Participant.

A backup Coordinator replica suspects the primary
Coordinator replica and initiates a view change unless the
registration records in C are either identical to, or form a
superset of, its local registration records, and the proposed

transaction outcome is consistent with the registration and
vote records.

At the end of the Byzantine agreement phase, a
Coordinator replica runs the second (Commit/Abort) phase
of the 2PC protocol, where the decision outcome is sent to
each Participant. A Participant accepts a decision notifica-
tion when it has collected matching decision notifications
from f þ 1 distinct Coordinator replicas.

4.4 View Changes

The Activation service and the Completion and Coordinator
services each employ a primary replica and use inter-replica
communication. For these services, a View Change algo-
rithm is necessary to maintain liveness. Neither the Initiator
object nor the Registration services have a primary replica,
and they do not use inter-replica communication. Thus, a
View Change algorithm is not necessary for the Initiator
object and the Registration service.

To prevent a faulty primary fromhindering the liveness of
the Activation protocol or the Completion and Distributed
Commit protocol, or disseminating conflicting information
to different replicas, a View Change algorithm is used. A
backup replica initiates a view change when it cannot
advance to the next phase within a reasonable time, or when
it detects that the primary has sent conflicting information. A
ViewChange algorithm is used to select a newprimarywhen
the existing primary is suspected to be Byzantine faulty.

Because the modifications needed to adapt an existing
View Change algorithm might not be obvious, we elaborate
how to adapt the View Change algorithm of PBFT [8]. Like
[16], we choose to use digital signatures rather than
message authentication codes to protect messages ex-
changed for the view change because, with message
authentication codes, the View Change algorithm is much
more complicated and achieves only a little less latency. The
additional overhead of using digital signatures for View
Change messages is relatively small because, typically, the
fault detection time (i.e., view change timeout value) is
much larger than the latency for a successful view change

Fig. 4. BFT completion and distributed commit protocol.



round. If the first attempt at view change does not complete,
then the fault detection time needs to be increased.

According to PBFT [8], on suspecting the primary, a
replica multicasts a View Change message. On receiving a
View Change message, a replica that has not suspected the
primary logs the message if it determines that the message
is valid. When the replica has received valid View Change
messages from f þ 1 distinct replicas, it multicasts its own
View Change message even if it has not suspected the
primary. When the primary for the new view receives valid
View Change messages for the new view from 2f þ 1

distinct replicas (including itself), it installs the new view
and multicasts a New View message.

4.4.1 BFT Activation

For the BFT Activation protocol, the View Change message
has the form <VIEW-CHANGE; vþ 1; tid; P ; i>�i , where
vþ 1 is the new view number, tid is the transaction id, P
contains information regarding the current state of the
replica, i is the replica’s id, and �i is i’s signature for the
message. The contents of P are defined in terms of id ¼
<t; c> (the identifier of the activation instance, with
timestamp t and client id c) and uuidi (the UUID proposed
by replica i), as follows:

- If replica i has not yet reached the Pre-Prepared state
in view v0 � v, P is the tuple <v0; id; uuidi>.

- If replica i has reached the Pre-Prepared state in
view v0 � v, P is the tuple <v0; id; U>, where U is the
set of tuples <uuidi; i> originally sent by 2f þ 1

replicas and included by the primary of view v0 in
the UUID-Exchange message.

- If replica i has reached the Prepared state in view
v0 � v, P contains the tuple <v0; id; U> and the
matching Prepare messages sent by 2f other replicas
in view v0.

The primary of view vþ 1 accepts a View Change
message, provided that v0 � v, tid is the expected transaction
id, and themessage is properly signed. If the primary of view
vþ 1 finds that a UUID-Exchange message is missing, it
requests retransmission from the corresponding replica.

When the primary of view vþ 1 has collected View
Change messages from 2f other replicas, it reconstructs the
state (described below), installs the new view vþ 1, and
multicasts a New View message. The New View message
has the form <NEW-VIEW; vþ 1; tid; V ; U; p>�p , where vþ
1 is the new view number, tid is the transaction id, V

contains the tuples for the View Change messages received
from 2f þ 1 distinct replicas for view vþ 1, U reflects the
constructed state (described below), p is the primary’s id,
and �p is p’s signature for the message. Each tuple in V has
the form <i; d>, where i is the replica’s id and d is the digest
of the corresponding View Change message. The contents
of U are determined as follows:

- If the new primary has received a valid View Change
message containing a Prepare record, it uses the same
U as in the Prepare record, which is the set of
<uuidi; i> tuples from 2f þ 1 distinct replicas.

- If the new primary has received one or more valid
View Change messages containing a Pre-Prepare

record, it selects the one with the highest view
number and uses theU in that ViewChangemessage.

- Otherwise, the new primary constructs U as the set
of <uuidi; i> tuples based on the View Change
messages it received from 2f þ 1 distinct replicas.

When a backup receives a New View message, it verifies
the message by following essentially the same steps used by
the primary to determine U . If the backup accepts the New
View message, it multicasts a Prepare message to the other
replicas. It then proceeds as in normal operation.

4.4.2 BFT Completion and Distributed Commit

For the BFT Completion and Distributed Commit protocol,
the View Change message has the form <VIEW-CHANGE;

vþ 1; tid; P ; i>�i , where vþ 1 is the new view number, tid is
the transaction id, P contains information (described below)
regarding the current state of the replica, i is the replica’s id,
and �i is i’s signature for the message. The contents of P are
determined as follows:

- If replica i has not reached the Pre-Prepared state
in view v0 � v, it uses its own decision certificate C

as P .
- If replica i has reached the Pre-Prepared state in

view v0 � v, P is the tuple <v0; tid; O; C>, where v0 is
the view number, tid is the transaction id, O is the
transaction outcome, and C is the decision certificate
proposed by the primary in view v0.

- If replica i has reached the Prepared state in view
v0 � v, P contains the tuple <v0; tid; O; C> and the
matching Prepare messages from 2f distinct replicas
in view v0.

The primary of view vþ 1 accepts a View Change
message if v0 � v, tid is the expected transaction id, and the
message is properly signed.

When the primary of view vþ 1 has collected View
Change messages from 2f other replicas, it reconstructs the
state (described below), installs the new view vþ 1, and
multicasts a New View message. The New View message
has the form <NEW-VIEW; vþ 1; tid; V ;O;C>�p , where vþ
1 is the new view number, tid is the transaction id, V

contains the tuples for the View Change messages received
from 2f þ 1 distinct replicas for view vþ 1, O and C reflect
the constructed state (described below), and �p is p’s
signature. Each tuple in V has the form <i; d>, where i is
the sending replica’s id and d is the digest of the
corresponding View Change message. The contents of O

and C are determined as follows:

- If the new primary has received one or more valid
View Change message containing a Prepare record,
and none of those Prepare records conflicts, it uses
the same outcome O and the same decision
certificate C in the New View message as in the
Prepare record.

- Otherwise, the new primary constructs a set of voting
records by examining the voting records in the
decision certificate in the View Change message. If
the new primary finds a voting record that it did not
receive, it adds the record to the decision certificateC.
If the new primary finds conflicting voting records



from the same Participant (i.e., a Participant sent a
Prepared vote to one Coordinator replica and an
Abort vote to another Coordinator replica), it aborts
the transaction (i.e., it sets the outcomeO to Abort and
includes the conflicting votes from the offending
Participant in the decision certificate C as evidence of
foul play), because the integrity of the transaction can
no longer be guaranteed.

When a backup receives the New View message, it
verifies the message by following basically the same steps
used by the primary. If the backup accepts the New View
message, it multicasts a Prepare message to the other
replicas. It then proceeds as in normal operation.

5 PERFORMANCE EVALUATION

We have implemented our BFT protocols and mechanisms
for Web Services Atomic Transactions and incorporated
them into the Kandula framework [4], which is a Java-
based, open-source implementation of the WS-Transaction
1.1 specification, including both WS-AT and Web Services
Business Activities (WS-BA). The extended framework uses
the WSS4J implementation (version 1.6) of the Web Services
Security Specification [5] and the Apache Axis 1.1 SOAP
Engine [3]. Most of the BFT mechanisms are implemented
using Axis handlers that are plugged into the framework
without affecting other components. Some of the Kandula
code is modified to enable control of its internal state and
BFT delivery of requests at the Initiator, the Coordinator,
and the Participants.

For Byzantine fault tolerance, all messages exchanged
are protected with a message authentication code (referred
to as the HMAC digital signature in WSS4J) during normal
operation with the exception of the vote messages from the
Participants. The vote messages are signed to ensure
accountability, with timestamped digital signatures (re-
ferred to as the RSA digital signature in WSS4J) during view
changes. For the HMAC digital signature, SHA1 is used.
For the RSA digital signature, the key size is 1,024 bits
(SHA1 is used for the message digest).

To demonstrate the benefits of using our BFT framework
for WS-AT over the naive application of a traditional BFT
algorithm, we implemented an adapted version of the
Practical Byzantine Fault Tolerance algorithm [9]. In this
reference BFT implementation, in addition to a round of
Byzantine agreement for the Activation and Registration
requests, a round of Byzantine agreement is used for each
vote message from a Participant during the first phase of
the two-phase commit protocol, to ensure consistency
among the Coordinator replicas.

We have evaluated the performance of our BFT frame-
work both in a Local-Area Nework (LAN) testbed and in a
Wide-Area Network (WAN) testbed (i.e., PlanetLab). The
LAN testbed consists of 14 HP BL460c blade servers
connected by a Cisco 3020 Gigabit switch. Each blade
server is equipped with two Xeon E5405 (2 GHz) processors
and 5 GB RAM, and runs the 64-bit Ubuntu Linux server
operating system. For the fault scalability experiment, up to
four virtual machines are launched on each physical node,
because we do not have an adequate number of physical

nodes for experiments with higher replication degree. Each
virtual machine runs the 32-bit Ubuntu Linux server
operating system with 1 GB RAM allocated to it.

The hardware specifications of the PlanetLab nodes vary
significantly. The nodes we chose to use are generally
equipped with Intel Core 2 Duo CPUs (2 GHz to 2.6 GHz).
Note that the nodes in PlanetLab are shared among many
users, and we have no control over the actual load on the
CPU and available physical memory.

The test application is the banking application, described
in Section 2.2. For the f ¼ 1 study, there are three Initiator
replicas, hosted on three distinct nodes, and four Coordi-
nator replicas, hosted on four distinct nodes. The Partici-
pants and the clients are not replicated, and are distributed
among the remaining nodes. Each client invokes a fund
transfer operation on the banking Web Service within a loop
without any “think” time between consecutive calls. The
clients’ request messages and the corresponding response
messages range from 3 to 10 KB in size. In each run, 1,000
samples are obtained. The end-to-end latency for the fund
transfer operation is measured at a client. The latencies for
the Activation and Distributed Commit services are
measured at the primary Coordinator replica. The through-
put of the Distributed Commit service is measured at an
Initiator replica for various numbers of Participants and
concurrent clients.

5.1 Performance Evaluation in a LAN

End-to-end latency and throughput for f ¼ 1. The end-to-end
latency results in the LAN for f ¼ 1 are shown in Fig. 5a.
These results are obtained for four different configurations.

1. The test application is used as is, without any
modification (labeled “Unmodified Application” in
the figure).

2. The test application is modified so that all messages
exchanged within each transaction are protected by
a message authentication code (labeled “With
HMAC” in the figure).

3. The test application with the Coordination services
is protected by our BFT mechanisms (labeled “With
Our BFT” in the figure).

4. The test application with the Coordination services
is protected by naively applying the adapted PBFT
algorithm in the reference implementation (labeled
“With Ref. BFT” in the figure).

In all four configurations, the end-to-end latency is
measured in the presence of a single atomic transaction.

As can be seen from Fig. 5a, the end-to-end latency with
our lightweight BFT framework is significantly greater than
that for the unmodified application. However, this increase
is mainly due to the use of the message authentication code,
as revealed by the high end-to-end latency when only the
HMAC signature is used. Thus, we use this configuration as
the baseline for comparison. The high cost of the HMAC
signature is somewhat surprising. We believe that this high
cost is due to the use of WSS4J. In WSS4J version 1.6, the
same APIs are provided to sign and verify an XML
document using either the HMAC signature or the RSA
signature. Unnecessary operations must have been intro-
duced for the HMAC signature by that design choice.



As expected, the end-to-end latency for the reference BFT
implementation is much greater than that for our BFT
framework, as shown in Fig. 5a. For each transaction, the
reference BFT implementation incurs the following addi-
tional overhead: 1) one round of Byzantine agreement for
each Registration request, which our BFT framework
avoids, 2) one round of Byzantine agreement for each vote
message during two-phase commit, compared to our BFT
framework which requires only one Byzantine agreement
for each transaction regardless of the number of Partici-
pants. Consequently, as the number of Participants in-
creases, the absolute overhead of the reference BFT
implementation increases much more than that of our BFT
framework. The relative overhead of our BFT framework
(with respect to the performance of configuration (2)) ranges
from about 45 percent with 2 Participants per transaction to
about 25 percent with 10 Participants per transaction. On the
other hand, the relative overhead for the reference BFT
implementation hovers around 100 percent in all cases.

The throughput results in the LAN for f ¼ 1, in number
of transactions per minute, for transactions with 2, 5, and 10
Participants are shown in Figs. 5b, 5c, and 5d. Compared
with the baseline configuration (the application with
HMAC), the throughput reduction for our BFT framework
ranges from about 45 percent with 2 Participants per
transaction to about 15 percent with 10 Participants per
transaction. This reduction is expected because of the
increased processing time at the Coordinator (for message
protection and verification). Not surprisingly, the through-
put reduction with the reference BFT implementation ranges
between 50 and 60 percent, which is much more significant
than the throughput reduction for our BFT framework.

Fault scalability. The fault scalability of our BFT frame-
work is assessed with f (i.e., the number of faults tolerated)
between 1 and 5 (i.e., the total number of Coordinator
replicas is 4, 7, 10, 13 to 16). The end-to-end latency
scalability result is obtained using a single client that issues
one transaction at a time. As can be seen from Fig. 6a, the
end-to-end latency increases slightly nonlinearly with f .
The increase in the latency with f arises from two factors:
1) the increased number of security operations (message
digital signing and verification), and 2) the increased time to
form a quorum. Note that the use of virtual machines has a
significant negative impact on the overall performance.
Compared to the f ¼ 1 results obtained using the physical
nodes, the end-to-end latency increased by approximately
35 percent (for f ¼ 1), and the peak throughput (for f ¼ 1) is
reduced by approximately 20 percent, as shown in Fig. 6b.
We suspect that this nonlinear increase in the latency for
large values of f is probably due to resource contention (the
number of processing cores and available physical memory
are much more limited in a virtual machine). To avoid
clutter, we show only the results for 2, 5, and 10 Participants
(per transaction) in Fig. 6.

The peak throughput fault scalability results, shown in
Fig. 6b, are obtained by varying the number of concurrent
transactions. The sharp reduction in throughput as f

increases for the 2 and 5 Participants per transaction cases
is somewhat unexpected. Further profiling of our prototype
reveals that the time it takes to digitally sign or verify a
message in the virtual machine is about 2-3 times that in the
physical node. Consequently, the throughput is severely
limited by the higher number of security operations for
larger values of f . One might wonder why the throughput

Fig. 5. End-to-end latency and throughput of the test application in a LAN.



reduction is much less prominent for the 10 Participants per
transaction configuration. The reason is that the runtime
overhead incurred at a replica for the same f is similar
regardless of the number of Participants (i.e., the overhead
is only weakly dependent on the number of Participants),
and the throughput for the 10 Participants per transaction
configuration is already quite low.

The throughput results with respect to different numbers
of concurrent transactions for f ¼ 1 to 5 (only the 5
Participants per transaction case is shown to avoid clutter)
is shown in Fig. 6c. Because the performance using the
virtual machines is quite different from that using the
physical nodes, the baseline throughput results (i.e., non-
replicated with HMAC only) are also shown for comparison.

Fault recovery. The fault recovery time for the primary
replica includes both the time to detect failure of the
primary and the time for the primary view change. The
fault recovery time depends heavily on the timeout value
used to detect failure of the primary. In the LAN

experiments, we used a timeout value of 500 ms. The
observed fault recovery time ranges from about 550 ms to
about 1 sec (from when the primary process is killed until a
new view is installed). This large jitter is mainly due to the
uncertainty in the detection time of the primary failure by
the different replicas. To eliminate this uncertainty and
highlight the operational cost of our View Change protocol,
we introduced an additional control interface so that a
replica can be triggered to initiate a view change remotely.

In the experiments, a controlling process kills the primary
process and immediately directs all remaining replicas to
initiate a view change. The view change latency is measured
at a backup replica (for the new view) by finding the
difference between the time the replica sent a View Change
message and the time it received and verified the New View
message. The experiments are performed for two different
scenarios: 1) the primary is killed during Activation, and
2) the primary is killed during Distributed Commit. The
results for the view change latencywith different numbers of
Participants are summarized in Fig. 7a. For scenario (1), the
latency is independent of the number of Participants and is
about 52 ms. For scenario (2), the latency increases slightly
with the number of Participants, because both the View
Changemessage and theNewViewmessage are largerwhen
there are more Participants. Note that the view change
latency does not include the fault detection time.

5.2 Performance Evaluation in a WAN

In the WAN experiments, four PlanetLab nodes located at
four distinct locations (harvard.edu, howard.edu, mcgillpla-
netlab.org, colostate.edu) are chosen to run the Coordinator
replicas. The average round-trip time (as measured by the
“ping” program) between the primary and each backup is

Fig. 6. Fault scalability results in a LAN.

Fig. 7. View change latency (a) in a LAN and (b) in a WAN.



approximately 40 ms. Similarly, PlanetLab nodes located at
various locations are chosen to run the Participants. The
round-trip time between a replica and a Participant varies
from 20 ms to 100 ms.

End-to-end latency and throughput for f ¼ 1. The end-to-
end latency results in the WAN for f ¼ 1 are summarized in
Fig. 8a. As can been seen in the figure, the relative overhead
for our BFT framework compared to the baseline is similar
to that in the LAN (about 40 percent), and the same is true
for the reference BFT implementation.

The throughput results in the WAN for f ¼ 1 are shown
in Figs. 8b, 8c, and 8d. The baseline throughput is reduced
by about 25 to 45 percent compared with that in the LAN
due to the greater message transmission time (the network
bandwidth in PlanetLab is significantly less than that in our
LAN testbed) and the longer processing time (the CPUs in
PlanetLab are generally less powerful than those in our
LAN testbed). Thus, the throughput reduction with respect
to the baseline is more moderate for both our BFT
framework and the reference BFT implementation. For our
BFT framework, the throughput reduction ranges from 15
to 20 percent. For the reference BFT implementation, the
throughput reduction ranges from 35 to 55 percent.

Fault scalability. The fault scalability results are summar-
ized in Fig. 9. Similar to the LAN results, the end-to-end
latency increases nonlinearly with f (shown in Fig. 9a);
however, the increase in the latency with f is much more
prominent compared with that in the LAN. We attribute the
larger increase in the latency with f to the much increased
time to form a quorum for larger values of f , because the
communication delay in the WAN is several orders of
magnitude larger than that in the LAN. This speculation is

supported by the fact that much larger latency is observed
when there are more Participants.

The peak throughput is somewhat less dependent on f

compared with the end-to-end results, as shown in Fig. 9b.
The reason is that unlike the end-to-end latency, the peak
throughput is not sensitive to the long communication delay
in the WAN. For completeness, the throughput results with
respect to different numbers of concurrent transactions for
f ¼ 1 to 5 for five Participants are shown in Fig. 9c.

Fault recovery. As in the LAN, the fault recovery time for
the primary replica in the WAN, without using the special
control interface (see Section 5.1), is largely determined by
the timeout value used to detect failure of the primary. Due
to the greater uncertainty of communication, we chose to
use 2 sec as the timeout value. This choice leads to a large
fault recovery time, ranging from about 2 sec to several
seconds. With the special control interface, the view change
latency (which does not include the fault detection time)
ranges from about 110 ms (for Activation) to about 160 ms
(for Distributed Commit) with 10 Participants per transac-
tion, as shown in Fig. 7b.

6 RELATED WORK

The problem of BFT distributed commit for atomic
transactions has been previously addressed [22], [29].
Mohan et al. [22] proposed the first such protocol, which
extended the 2PC protocol with a Byzantine agreement
phase on the transaction outcome among the Coordinator
and the Participants in a root cluster. Such an approach has
several limitations. First, transaction atomicity is guaran-
teed only for Participants in the root cluster. Second, every

Fig. 8. End-to-end latency and throughput of the test application in a WAN.



Participant in the root cluster must know the cluster
membership, which might not be the case for Web Services
Atomic Transactions, because one Participant does not
necessarily know the other Participants. In contrast, our BFT
framework requires Byzantine agreement among only the
Coordinator replicas. Rothermel and Pappe [29] addressed
the challenges of ensuring distributed commit for atomic
transactions in open distributed systems, where Partici-
pants can be compromised. They assume that the root
Coordinator is trusted, which obviates the need to replicate
the Coordinator for Byzantine fault tolerance. However,
such an assumption does not apply to Web Services that
operate over the untrusted environment of the Internet.

There exists a number of general-purpose Byzantine
fault tolerance algorithms/protocols [1], [2], [7], [8], [9], [10],
[16], [23], [33], and group communication systems that
handle Byzantine faults [12], [15], [24], [28]. Although they
can be readily used to ensure BFT transaction coordination
for WS-AT, they would incur unacceptable overhead if they

were used naively, as shown in this paper. Essentially, our
work demonstrates how to minimize the number of
Byzantine agreement instances needed in a transaction by
exploiting the semantics of Web Services Atomic Transac-
tions and, thus, significantly improves the performance.

The system-level research closest to our work includes
Thema [21] and Perpetual [26]. Thema is a BFT system for
replication of multitier Web Services. Perpetual is a BFT
system for n-tier and service-oriented architectures, that not
only provides replication but also enforces fault isolation.
Both are designed for general-purpose Web Services
applications and, as such, they lack the mechanisms
designed for WS-AT transaction coordination for reducing
the runtime overhead as described in this paper.

The other line of system-level research related to our
work is that of [27], [32]. Both works address replication of
stand-alone database systems, whereas our work focuses on
the trustworthy coordination of distributed transactions
and does not address database replication.

The idea of collective determination of the transaction id
in our paper is inspired by common practices in security
protocols, especially by the work on contributory group key
agreement [30], [31].

Finally, like Byzantine quorum systems [19], [20], our
BFT framework relies on the use of quorums. However,
there are differences. In particular, our BFT Registration
protocol requires only f þ 1 nonfaulty replicas to receive a
Registration request, but it still requires Byzantine agree-
ment on the set of registration records (deferred to the
Completion and Distributed Commit protocol). Moreover,
by exploiting the semantics of the WS-AT specification,
our BFT framework employs Byzantine agreement only
where it is needed. Thus, it achieves better performance
than if such a Byzantine quorum system were used
(naively) to provide trustworthy coordination of Web
Services Atomic Transactions.

7 CONCLUSION

In this paper, we have addressed the problem of trust-
worthy coordination of Web Services Atomic Transactions.
We have described a suite of protocols and mechanisms
that protect the WS-AT services and infrastructure against
Byzantine faults. The main contribution of this paper is that
it shows how to avoid naively applying a general-purpose
BFT algorithm (i.e., totally ordering all incoming requests at
the replicated Coordinator), by exploiting the semantics of
WS-AT operations to reduce the number of Byzantine
agreements needed to achieve atomic termination of a Web
Services Atomic Transaction. The cost savings are sub-
stantial when the number of Participants is large.

We have incorporated our BFT protocols andmechanisms
into anopen-source framework that implements the standard
WS-AT specification. The augmented WS-AT framework
shows only moderate runtime overhead. It outperforms a
reference implementation, that naively applies the PBFT
algorithm to the WS-AT coordination problem, in both LAN
andWANenvironments. The augmentedWS-AT framework
is particularly useful for business applications based on
transactional Web Services that require a high degree of
dependability, security and trust.

Fig. 9. Fault scalability results in a WAN.
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