
Trustworthy Proxies

Virtualizing Objects with Invariants⋆

Tom Van Cutsem1⋆⋆ and Mark S. Miller2

1 Vrije Universiteit Brussel, Belgium
2 Google Research, USA

Abstract. Proxies are a common technique to virtualize objects in object-oriented

languages. A proxy is a placeholder object that emulates or wraps another tar-

get object. Both the proxy’s representation and behavior may differ substantially

from that of its target object.

In many OO languages, objects may have language-enforced invariants associ-

ated with them. For instance, an object may declare immutable fields, which are

guaranteed to point to the same value throughout the execution of the program.

Clients of an object can blindly rely on these invariants, as they are enforced by

the language.

In a language with both proxies and objects with invariants, these features in-

teract. Can a proxy emulate or replace a target object purporting to uphold such

invariants? If yes, does the client of the proxy need to trust the proxy to uphold

these invariants, or are they still enforced by the language? This paper sheds light

on these questions in the context of a Javascript-like language, and describes the

design of a Proxy API that allows proxies to emulate objects with invariants, yet

have these invariants continue to be language-enforced. This design forms the

basis of proxies in ECMAScript 6.

Keywords: Proxies, Javascript, reflection, language invariants, membranes

1 Introduction

Proxies are a versatile and common abstraction in object-oriented languages and have

a wide array of use cases [1]. Proxies effectively “virtualize” the interface of an object

(usually by intercepting all messages sent to the object). One common use case is for

a proxy to wrap another target object. The proxy mostly behaves identical to its target,

but augments the target’s behavior. Access control wrappers, profilers, taint tracking [2]

and higher-order contracts [3] are examples. Another common use case is for a proxy

to represent an object that is not (yet) available in the same address space. Examples

include lazy initialization of objects, remote object references, futures [4] and mock-up

objects in unit tests.

Objects in object-oriented languages often have invariants associated with them,

i.e. properties that are guaranteed to hold for the entire lifetime of the object. Some

of these invariants may be enforced by the programming language itself. We will call

⋆ Draft manuscript. To appear in Proceedings of ECOOP’13.
⋆⋆ Postdoctoral Fellow of the Research Foundation, Flanders (FWO).

these language invariants. Examples of such language invariants include immutable

object fields, which are guaranteed to point to the same value throughout the object’s

lifetime; or, in a prototype-based language, an immutable “prototype” link pointing to

an object from which to inherit other properties. Clients of an object can blindly rely on

these invariants, as they are enforced by the language (that is: the language provides no

mechanism by which the invariants can ever be broken). Such invariants are important

for developers to reason about code, critical for security, and useful for compilers and

virtual machines.

In a language with both proxies and objects with language invariants, these features

interact. Can a proxy virtualize an object with language invariants? Can it wrap a target

object with language invariants and claim to uphold these invariants itself? If so, does

the client of the proxy need to trust the proxy to uphold these invariants, or are they still

enforced by the language? This paper sheds light on these questions in the context of

Javascript, a language that features both proxies and objects with language invariants.

Contribution We study the apparent tradeoff between the needs of a powerful in-

terposition mechanism that may break language invariants versus the desire to maintain

these invariants. The key contribution of this paper is the design of a Proxy API that

allows proxies to virtualize objects with invariants, without giving up on the integrity

of these invariants (i.e. they continue to be enforced by the language). To emphasize

this, we call these proxies trustworthy. We call out the general mechanism of our API,

named invariant enforcement, that is responsible for this trustworthiness.

Paper outline In Section 2, we illustrate how the issues highlighted above came up

in the design of a Proxy API for Javascript. We go on to describe the general principle

by which our Proxy API enforces invariants. To study this mechanism in detail, we

introduce λTP, an extension of the lambda calculus featuring proxies, in Section 3. We

then employ proxies to build various access control abstractions in Section 4. This will

allow us to discuss the advantages and drawbacks of our API (Section 5). We end with

an overview of the implementation status (Section 6) and related work (Section 7).

2 Trustworthy Proxies: the case of Javascript

The questions addressed in this paper initially arose while the authors were designing

a Proxy API for Javascript3. We first highlight the problems we encountered in com-

bining proxies with Javascript’s language invariants, and subsequently describe how the

Javascript Proxy API deals with these issues.

2.1 Language Invariants in Javascript

Javascript is known as a dynamic language, primarily because its core abstraction –

objects with prototype-based inheritance – is extremely flexible. Consider the following

object definition:

var point = { x: 0, y: 0 };

3 To be precise: for ECMAScript 6, the next standard version of Javascript.

This defines a point object with x and y properties. Javascript objects have very

weak language invariants: new properties can be added to existing objects at any time

(point.z = 0;), existing properties can be updated by external clients (point.x = 1;), or

even deleted (delete point.x;). This makes it challenging for developers to reason

about the structure of objects: it is always possible that third-party client objects will

modify the object at run-time.

ECMAScript 5 (ES5) [5] added new primitives that allow one to strengthen the

invariants of objects, making it possible to more easily reason about the structure of

objects, by protecting them from unintended modifications. Figure 1 depicts a simplified

state diagram of an ES5 object.

start

Non-
extensible

Object.preventExtensions or

Object.freeze
Extensible

Partially
configurable

Configurable
Non-

configurable

all properties frozenstart

freeze
property

Object.freeze or

[if extensible]
property added

less invariants more invariants

Fig. 1. Simplified state diagram of an ES5 object.

ECMAScript 5 defines two independent language invariants on objects:

Non-extensibility Every ES5 object is born in an extensible state. In this state, new prop-

erties can be freely added to the object. One can make an object obj non-extensible by

calling Object.preventExtensions(obj). Once an object is made non-extensible,

it is no longer possible to further add new properties to the object. Once an object is

non-extensible, it remains forever non-extensible.

Non-configurability Every ES5 object is born in a configurable state. In this state, all

of its properties can be updated and deleted. It is possible to freeze individual properties

of an object, for instance:

Object.defineProperty(point,"x",{writable:false,configurable:false});

This freezes the point.x property so that any attempt to update or delete that prop-

erty will fail. Once a property is frozen, it remains forever frozen.

An object can evolve to become both non-extensible as well as non-configurable.

Such objects are called frozen objects. ES5 even introduces an Object.freeze prim-

itive that immediately puts an object into the frozen state, by marking the object as

non-extensible, and marking all of its properties as frozen. For example, after calling

Object.freeze(point), the point object can no longer be extended with new prop-

erties, and its existing properties can no longer be deleted or updated.

To detect whether an object is frozen, one can call Object.isFrozen(point).

Once the programmer has established that the point object is frozen, she can be sure

that point.x will consistently refer to the same value throughout the object’s lifetime.

Abstracting from the details of Javascript, these language invariants have two im-

portant characteristics: a) they are universal, i.e. they hold for all objects, regardless of

their “type” and b) they are monotonic: once established on an object, they continue to

hold for the entire lifetime of the object.

It are these characteristics that lend the language invariants their power to locally

reason about objects in a dynamic language such as Javascript. Because the invariants

are universal, they hold independent of the type of objects. Because the invariants are

monotonic, they hold independent of pointer aliasing [6]. This monotonicity can be

observed in the state diagram: there are no operations that take an object from a higher-

integrity state to a lower-integrity state4. Hence, previously established invariants will

continue to hold even if unknown parts of the program retain a reference to the object.

To focus on the essence, throughout the rest of this paper, we will simplify the

exposition by combining the two ES5 language invariants (non-extensibility and non-

configurability) and only considering non-frozen versus frozen objects. While we will

focus on the specific invariants of frozen Javascript objects, the underlying principles

should apply to any language-enforced invariant that is universal and monotonic.

2.2 The Problem: proxies can’t safely uphold language invariants

Let us now consider how frozen objects interact with proxies. To this end, we will make

use of a proposed Proxy API for Javascript on which we reported earlier [7]. Below

is the definition of a proxy that simply forwards all intercepted “operations” (such as

property access, property assignment, and so on) to a wrapped object:

function wrap(target) {

var handler = {

get: function(proxy, name) { return target[name]; },

set: function(proxy, name, value) { target[name] = value; },

... // more operations can be intercepted (omitted for brevity)

};

var proxy = Proxy.create(handler);

return proxy;

}

The function Proxy.create takes as its argument a handler object that imple-

ments a series of traps. Traps are functions that will be invoked by the proxy mech-

anism when a particular operation is intercepted on the proxy. For instance, the ex-

pression proxy.foo will be interpreted as handler.get(proxy, ”foo”). Similarly, the

expression proxy.foo = 42 leads to a call to handler.set(proxy, ”foo”, 42).

4 A non-configurable object can be made partially configurable again by adding a new property,

but only if the object is extensible. All of its existing frozen properties remain frozen.

From inspecting this code, it is clear that a proxy returned by the wrap function will

behave the same as its target object. The key question is whether

Object.isFrozen(target) then implies Object.isFrozen(proxy)? That is, does

the proxy automatically acquire the language invariants of its target object?

The answer unfortunately is no. Whether or not the proxy still upholds the tar-

get’s invariants depends on the implementation of the trap functions, and answering this

question is in general undecidable. What is more: the fact that proxy is a proxy for the

target object is only implicit in the above program: the proxy object does not even

possess a direct reference to the target object. It just happens to be a proxy for it be-

cause the trap functions have closed over the target variable, and decided to forward

the intercepted operations to the object stored in this variable. In fact, it is perfectly

reasonable to create proxy objects that don’t forward anything to any target object at all

(the objects represented by such proxies would be entirely virtual).

Let us illustrate this point by creating an alternative version of wrap that probably

does not uphold its target object’s invariants:

function wrapRandom(target) {

var handler = {

get: function(proxy, name) { return Math.random(); },

...

};

var proxy = Proxy.create(handler);

return proxy;

}

If we now call var proxy = wrapRandom(Object.freeze(point)), passing the

frozen point object as the target, then proxy.x may yield a different number each

time it is dereferenced. That is hardly the behavior one would expect of a frozen object,

so Object.isFrozen(proxy) must clearly return false.

It turns out that having Object.isFrozen return false for any proxy is the only

safe option. The alternative (returning true) would break the invariant that if an object

is frozen, then one can expect property access to consistently return the same value, as

the above example demonstrates.

By requiring Object.isFrozen to return false for all proxies, we have taken away

some of the virtualization power of proxies, by disallowing them to ever virtualize

frozen objects. This is necessary to ensure the integrity of the invariant associated with

frozen objects (“properties of a frozen object are immutable”).

This is an unfortunate outcome, as there certainly exist legitimate use cases where

the proxy would want to appear as frozen, and where the proxy handler does behave as

a frozen object. One can easily imagine a variant of the wrap function that does some

form of profiling or contract checking, but otherwise faithfully forwards all operations

to its target. Because the proxy cannot faithfully virtualize the frozen invariant of its

target, transparency is lost. Such transparency may be crucial in some applications,

where objects may need to be substituted by proxies without affecting client behavior.

2.3 The Solution: Invariant Enforcement

To overcome the limitation of proxies to virtualize frozen objects, we modified the

initial Proxy API as follows:

– Proxies now refer directly to the target object that they wish to wrap.

– Whenever an operation is intercepted, a trap is called on the handler, as before.

– Before the trap gets to return its result to the client, the proxy verifies whether an

invariant is associated with the intercepted operation on the target object.

– If so, the proxy asserts that the result is consistent with the expected (invariant)

result. A failed assertion leads to a run-time exception, thus warning the client of

an untrustworthy proxy.

Because the proxy now “knows” the target object that the handler wants to virtual-

ize, the proxy has a way of verifying whether a) the target has an invariant and b) the trap

doesn’t violate that invariant. This is the key mechanism by which proxies are enforced

to uphold the target object’s invariants. We call this mechanism invariant enforcement.

It is illustrated graphically in Figure 2.

Operation

intercepted on proxy

Call trap on handler

Target has

invariant for this

operation?

Trap result is

consistent with

invariant?

YesNo

YesNo

Return trap result

Raise exception

Fig. 2. Invariant enforcement in trustworthy proxies.

The wrap function from the previous Section can be rewritten using the new API:

function wrap(target) {

var handler = {

get: function(target, name) { return target[name]; },

set: function(target, name, value) { target[name] = value; },

... // more operations can be intercepted (omitted for brevity)

};

var proxy = Proxy(target, handler);

return proxy;

}

In this version of the API, Proxy has become a function of two arguments and

takes as its first argument a direct reference to the target object for which the proxy

will act as a stand-in. The handler traps remain mostly the same, except that instead of

the proxy, the traps now receive the target as their first argument. Figure 3 depicts

the relationship between the objects, and shows how operations like property access

and update are interpreted by proxies.

targetproxy

handler

proxy.x

meta-level

base-level

proxy.x = 42

handler.get(target,"x")

handler.set(target,"x",42)

Fig. 3. Relationship between proxy, target and handler.

For the proxies generated by this API, it holds that Object.isFrozen(proxy)

if and only if Object.isFrozen(target). That is, such proxies can faithfully

virtualize the frozen invariant of their target. And because of invariant enforcement, the

outcome of the operation is actually trustworthy.

How does invariant enforcement work in the specific case of frozen objects and

property access? When evaluating the expression proxy.x, where proxy refers at

run-time to a proxy object, one can reason about this property access as if the proxy

executed the following code:

// inside the proxy, intercepting proxy.x

var value = handler.get(target, "x");

if (Object.isFrozen(target)) {

var expectedValue = target.x;

if (expectedValue !== value) {

throw new Error("frozen invariant violated");

}

}

return value;

Note that invariant enforcement is a two-step process: first the proxy verifies whether

there is an invariant to be enforced on the target (in this case: is the target frozen?). If so,

then the trap result is verified. It may seem odd that the proxy must first check whether

the target has invariants at interception-time. Can it not determine the target’s invariants

ahead of time? Unfortunately the answer is no, since, in Javascript, objects can come to

acquire new invariants at run-time. For instance, an object becomes frozen only after a

call to Object.freeze. Before that time, the object is not frozen and no invariants

need be enforced5.

To summarize, by redesigning the Proxy API, the apparent tradeoff between proxies

and invariants is resolved. Proxies get to virtualize objects with invariants, but only

if they can provide a target object that “vouches for” these invariants, such that the

result of trap invocations on the handler can be verified. Programmers, secure sandboxes

and virtual machines can all continue to rely on the language invariants, regardless of

whether they are dealing with built-in objects or proxies.

3 The λTP calculus

To study invariant enforcement in more detail, we now turn our attention from Javascript

to a minimal calculus named λTP. While the full Javascript language is fairly large and

complex, at its core lies a simple dynamic language with first-class lexical closures and

concise object literal notation. This simple core is what Crockford refers to as “the good

parts” [8], and it is this core that is modelled by λTP. At this stage, we should warn the

reader that it has not been our goal to accurately formalize Javascript. For an accurate

formalization of Javascript, we refer to [9].

Our goal is to faithfully model in λTP the interaction between proxy, target and han-

dler objects as informally discussed in Section 2.3. We first introduce the core calculus

with proxies that are not trustworthy. We then add support for trustworthy proxies by

revising the semantics.

3.1 Core λTP

Syntax λTP is based on the untyped λ-calculus with strict evaluation rules, extended

with constants, records and proxies. It is inspired by the λproxy calculus of Austin et

al. [2], which models proxies representing virtual values (see Section 7.2).

Values of the core calculus include constants (strings s and booleans b), functions

λx.e and records. Records are either primitive records or proxies. Primitive records

are finite mutable maps from strings to values. A primitive record created using the

expression {s : e} declares zero or more initial properties whose value can be retrieved

(e[e]) or updated (e[e] := e). Proxies are created using the expression proxy e e where

the arguments denote the proxy’s target record and handler record respectively.

Records, like Javascript objects, can be frozen. A frozen record cannot be extended

with new properties and its existing properties can no longer be updated. Records

can be made frozen using the freeze r operator, which corresponds to Javascript’s

Object.freeze primitive. The isFrozen r operator can be used to test whether the

record r is frozen, and models Javascript’s Object.isFrozen(r) primitive.

In Javascript one can enumerate the properties of an object by means of a for-in

loop. λTP similarly features a for (x : e) e′ expression that iteratively evaluates the

loop body e′ with x bound to each property key (a string) of a record e.

5 However, once an invariant on the target object has been established, a smart implementation

could from that point on elide the check for that invariant on future intercepted operations,

since the invariant will hold forever after.

The expression keys r eagerly retrieves all of the property keys of r. As λTP does

not feature lists or arrays as primitive values, we encode the set of property keys of a

record as another record mapping those keys to true.

The calculus further includes a typeof operator inspired by the corresponding op-

erator in Javascript, revealing the type of a value as a string. The typeof operator

classifies any value as either a function, a record or a constant.

The λTP calculus

Syntax

e ::= Expressions

x variable
c constant
λx.e abstraction
e e application
if e e e conditional
e = e equality test
{s : e} record creation
e[e] record lookup
e[e] := e record update
for (x : e) e enumeration
proxy e e proxy creation
freeze e freezing
isFrozen e frozen test
typeof e type test

c ::= s | null | b Constants

b ::= true | false Booleans

Syntactic Sugar

e.x
def
= e["x"]

e.x := e′
def
= e["x"] := e′

x : e
def
= "x" : e

let x = e ; e′
def
= (λx.e′) e

var x = e ; e′
def
= let y = {} ; y.x := θe ; θe′ where θ = [x := y.x]

e ; e′
def
= (λx.e′) e x /∈ FV (e′)

e e′ e′′
def
= (e e′) e′′

λ.e
def
= λx.e x /∈ FV (e)

λx, y.e
def
= λx.λy.e

! e
def
= if e false true

assert e
def
= if e null (null null)

keys e
def
= let r = {} ; for (x : e) r[x] := true ; r

Semantics The runtime syntax of λTP extends expressions with addresses a and enu-

merations enum (x : S) e. The latter denote the continuation of an active record enu-

meration.

λTP SEMANTICS (UNTRUSTWORTHY PROXIES)

Runtime syntax

a, t, h ∈ Address

s ∈ S ⊂ String

v, w ::= c | a Values
e ::= . . . | a | enum (x : S) e Runtime expressions
H ::= a →p (rec f b | fun x e | pxy t h) Heaps
f ::= s →p v Record mapping
E ::= • e | v • | if • e e | {s : v, s : •, s : e} Evaluation contexts

| • = e | v = • | • [e] | v[•] | typeof •
| •[e] := e | v[•] := e | v[w] := • | for (x : •) e
| proxy • e | proxy v • | freeze • | isFrozen •

Reduction rules

H, {s : v} → H[a 7→ rec f true], a a /∈ dom(H), f(s) = v [ALLOCREC]
H, λx.e → H[a 7→ fun x e], a a /∈ dom(H) [ALLOCFUN]
H, a v → H, e[v/x] H(a) = fun x e [APPLY]

H, if true e1 e2 → H, e1 [IFTRUE]
H, if false e1 e2 → H, e2 [IFFALSE]

H, v = w → H, eq(v, w) [EQUAL]
H, a[s] → H, v H(a) = rec f b, f(s) = v [GET]
H, a[s] → H, null H(a) = rec f b, s /∈ dom(f) [GETMISSING]

H, a[s] := v → H[a 7→ rec f [s 7→ v] b], v H(a) = rec f b, b = false [SET]
H, for (x : a) e → H, enum (x : dom(f)) e H(a) = rec f b [STARTENUM]

H, enum (x : ∅) e → H, null [STOPENUM]
H, enum (x : S) e → H, let x = s ; e ; s ∈ S, S′ = S \ {s} [STEPENUM]

enum (x : S′) e
H, freeze a → H[a 7→ rec f true], a H(a) = rec f b [FREEZE]

H, isFrozen a → H, b H(a) = rec f b [ISFROZEN]
H, typeof a → H,"function" H(a) = fun x e [TYPEOFFUN]
H, typeof a → H,"record" H(a) = rec f b [TYPEOFREC]
H, typeof c → H,"constant" [TYPEOFCST]
H, proxy t h → H[a 7→ pxy t h], a a /∈ dom(H) [ALLOCPXY]
H, typeof a → H,"record" H(a) = pxy t h [TYPEOFPXY]

H, a[s] → H, h["get"] t s H(a) = pxy t h [GETPXY]
H, a[s] := v → H, h["set"] t s v ; v H(a) = pxy t h [SETPXY]
H, freeze a → H, h["freeze"] t ; a H(a) = pxy t h [FREEZEPXY]

H, isFrozen a → H, h["isFrozen"] t H(a) = pxy t h [ISFROZENPXY]
H, for (x : a) e → H, for (x : h["enum"] t) e H(a) = pxy t h [ENUMPXY]

H, E[e] → H ′, E[e′] H, e → H ′, e′ [CONTEXT]

A heap H is a partial mapping from addresses a to three types of values: functions,

primitive records or proxies. Functions are represented as funxe where x is the formal

parameter and e is the function body. Records are either primitive records or proxies.

Primitive records are represented as rec f b where f is a partial function from strings

to values representing the record’s properties and b is a boolean indicating whether or

not the record is frozen. Proxies are represented as pxy t h where t is the address of the

proxy’s target and h is the address of the proxy’s handler (both of which should denote

records, not functions).

An evaluation state H, e denotes a heap H and the expression e being evaluated. The

rules for the evaluation relation H, e → H ′, e′ describe how expressions are evaluated

in λTP.

The [EQUAL] rule describes equality of values v and w in terms of an eq primitive,

which may be defined as:

eq(v, w)
def
=







true if v and w denote the same constant c

true if v and w denote the same address a

false otherwise

This primitive represents identity-equality: constants are equal if and only if they

denote the same constant value c; functions, records and proxies are equal if and only

if their addresses a are equal.

The rules [GET] and [GETMISSING] together implement record lookup. If the prop-

erty is not found, null is returned (similar to undefined being returned for missing

properties in Javascript). The [SET] rule implements record update. If a record is up-

dated with a non-existent property, the property is added to the record. Note that the

[SET] rule only allows updates on non-frozen records. It is an error to try and add or

update a property on a frozen record.

The rules [STARTENUM], [STOPENUM] and [STEPENUM] together implement prop-

erty enumeration over records. There are two aspects worth noting about our enumera-

tion semantics: first, enumeration is driven by a fixed snapshot of the record’s properties.

The snapshot includes those properties present when the enumeration starts. Properties

added to the record while reducing a for-expression will not be enumerated during the

same enumeration. Second, the order in which a record’s properties are enumerated is

left unspecified. This is also true of property enumeration in Javascript.

The rule [FREEZE] shows that the freeze operator, applied to a record address

a always yields the same address a, but as a side-effect modifies the heap so that the

record is now marked frozen, regardless of whether it was already frozen.

3.2 Untrustworthy Proxies in λTP

A proxy is created using the expression proxy e e′ where the first expression denotes

the proxy’s target and the second expression denotes the proxy’s handler (both expres-

sions must reduce to an address denoting another record, i.e. either a built-in record or

another proxy). λTP proxies can intercept five operations: record lookup, record update,

enumeration, freezing and frozen tests. The signatures of the trap functions are shown

below:

get :: target → string → result value

set :: target → string → update value → unit

freeze :: target → unit

isFrozen :: target → boolean

enum :: target → keys record

The rules [GETPXY] and [SETPXY] prescribe that record lookup and record update

on a proxy are equivalent to calling that proxy’s get and set traps. Note that the return

value of the set trap itself is ignored: record update always reduces to the update value

v. A similar observation can be made for freezing: the freeze operator always returns

the frozen object and ignores the result of the freeze trap. The isFrozen trap, on

the other hand, is expected to return a boolean indicating the result of the test.

The rule [ENUMPXY] shows that upon enumerating the properties of a proxy, that

proxy’s enum trap is called. This trap is expected to return a set of property names,

encoded as a record. The returned record’s properties are subsequently enumerated.

3.3 Language Invariants

While the above reduction rules capture the essence of what it means for a proxy to

intercept an operation, they do not aim to uphold any language invariants. In other

words: proxies, as currently specified, are not trustworthy. This is easy enough to see:

there is nothing stopping a proxy from returning true from its isFrozen trap, while

still reporting different values over time for its properties via its get trap.

In this Section, we explicitly spell out the invariants of the λTP calculus with re-

spect to frozen primitive records. In the following Section, we then revise the proxy

reduction rules such that proxies obey the same invariants as primitive records, thus

making proxies trustworthy. The invariants of frozen primitive records are as follows:

I1 The properties of a frozen record are immutable. If isFrozen r = true then r[s]
always reduces to the same result value v. This also implies that if r does not have

a property named s, r[s] will always reduce to null.

I2 If the freeze r operator returns successfully, r is guaranteed to be frozen.

I3 Freezing is monotonic: once isFrozen r = false, it remains false thereafter. In

other words: once frozen, a record remains forever frozen.

I4 Enumerating properties using a for-loop over a frozen record r always enumerates

the same set of properties. That is, it enumerates at least all properties defined on r,

and it does not enumerate any properties that do not exist on r.

start

Frozen
freezeNot

Frozen

get

isFrozen

enumerate

freeze

get

set

isFrozen

enumerate

Fig. 4. State chart depicting the valid states of a λTP record.

Figure 4 depicts a state chart illustrating the state of a record, and the effect of

interceptable operations on records on that state.

3.4 Trustworthy Proxies in λTP

In the semantics described thus far, proxies are untrustworthy, meaning that they may

violate the above invariants of primitive records. Below, we introduce a set of updated

reduction rules, which turn λTP proxies into trustworthy proxies.

λTP SEMANTICS (TRUSTWORTHY PROXIES)

H, a[s] → H, let x = h["get"] t s ; H(a) = pxy t h [GETPXY’]
if (isFrozen t)

(assert x = t[s] ; x)
x

H, a[s] := v → H, h["set"] t s v ; H(a) = pxy t h [SETPXY’]
assert (! isFrozen t) ; v

H, for (x : a) e → H, let y = h["enum"] t ; H(a) = pxy t h [ENUMPXY’]
if (isFrozen t)

sameKeys y (keys t)
null ;

for (x : y) e
H, freeze a → H, h["freeze"] t ; H(a) = pxy t h [FREEZEPXY’]

assert (isFrozen t) ; a
H, isFrozen a → H, let x = h["isFrozen"] t ; H(a) = pxy t h [ISFROZENPXY’]

assert (x = isFrozen t) ; x

The rule [GETPXY’] includes a post-condition that asserts whether the return value

of the get trap corresponds to the target’s value for the same property s, but only if

the target is frozen. This assertions contributes to upholding invariant I1. Note that the

proxy target t may itself be a proxy, in which case the expression t[s] in the assertion

will recursively trigger the [GETPXY’] rule, eventually bottoming out when the target

is a primitive record.

The rule [SETPXY’] includes a post-condition that asserts that the target is not

frozen. Again, this assertion ensures invariant I1.

The rule [FREEZEPXY’] includes a similar post-condition, this time testing whether

the target is indeed frozen, if the freeze trap returned successfully. Clients that call

isFrozen r expect r to be frozen afterwards. This guarantees invariant I2.

The rule [ISFROZENPXY’] inserts a post-condition that verifies whether the return

value of the isFrozen trap corresponds to the current state of the target. Any dis-

crepancy in the result could confuse client code: if the isFrozen trap is allowed to

return true while wrapping a non-frozen target, clients would perceive the proxy as

frozen while its get trap could still return arbitrary values, thus breaking invariant

I1. The other way around, if the trap is allowed to return false while wrapping a

frozen target, it may break invariant I3 if it previously already returned true from its

isFrozen trap.

The rule [ENUMPXY’] inserts a post-condition, ensuring that if the proxy wraps

a frozen target, the returned set of to-be-enumerated properties corresponds to the set

of properties of the target itself. This guarantees invariant I4. sameKeys is defined as

follows:

sameKeys r1, r2
def
= for (x1 : r1) assert r2[x1] = true ;

for (x2 : r2) assert r1[x2] = true

sameKeys checks whether two records representing sets of properties denote the

same set of property keys. One can think of the first for-loop as checking whether all

properties that the proxy enumerated are indeed properties of the frozen target, and of

the second for-loop as checking whether the proxy did indeed enumerate all properties

of the frozen target.

Note that the validity of all pre and post-condition checks depends also on the fact

that the assertions compare the trap result against the expected value using the = op-

erator, and that proxies cannot intercept this operator. Thus, proxies cannot directly

influence the outcome of the assertions.

4 Access control wrappers

We now put trustworthy proxies to work by using them to build access control wrappers.

Such wrappers typically perform a set of dynamic checks upon intercepting certain op-

erations, but otherwise try to be as transparent as possible to client objects. If the check

succeeds, the wrapper often simply forwards the intercepted operation to the wrapped

object. Using trustworthy proxies, we can build access control wrappers that uphold the

invariants of wrapped target objects, further increasing transparency for clients.

4.1 Revocable references

A revocable reference is a simple type of access control wrapper. Say an object alice

wants to hand out to bob a reference to carol. carol could represent a precious

resource, and for that reason alice may want to limit the lifetime of the reference she

hands out to bob, which she may not fully trust. In other words, alice wants to have

the ability to revoke bob’s access to carol. Once revoked, bob’s reference to carol

should become useless.

One can implement this pattern of access control by wrapping carol in a forward-

ing proxy that can be made to stop forwarding. This is also known as the caretaker

pattern [10]. In the absence of language-level support for proxies, the programmer is

forced to write a distinct caretaker for each type of object to be wrapped. Proxies enable

the programmer to abstract from the specifics of the wrapped object’s interface and in-

stead write a generic caretaker. Using such a generic caretaker abstraction, alice can

hand out a revocable reference to bob as follows:

var carol = {...};

// caretaker is a tuple consisting of a proxy reference, and a revoke function

var caretaker = makeCaretaker(carol);

var carolproxy = caretaker.ref; // a proxy for carol, which alice can give to bob

bob.use(carolproxy);

// later , alice can revoke bob’s access...

caretaker.revoke(); // carolproxy is now useless

A key point is that as long as the caretaker is not revoked, the proxy is sufficiently

transparent so that bob can use carolproxy as if it were the real carol. There is no

need for bob to change the way he interacts with carol. Indeed, if bob has no other,

direct, reference to carol, bob is not even able to tell that carolproxy is only a

proxy for carol.

Below is an implementation of the makeCaretaker abstraction in λTP:

makeCaretaker
def
= λx.

var revoked = false;
{ref : proxy x {

get : λt, s.assert (!revoked) ; t[s]
set : λt, s, v.assert (!revoked) ; t[s] := v

enum : λt.assert (!revoked) ; keys t }
freeze : λt.assert (!revoked) ; freeze t

isFrozen : λt.assert (!revoked) ; isFrozen t }
revoke : λ.revoked := true}

The argument x to makeCaretaker is assumed to be a record. The function

returns a record r that pairs a proxy r.ref with an associated function r.revoke.

Both share a privately scoped revoked boolean that signifies whether or not the proxy

was previously revoked. The proxy’s handler implements all traps by first verifying

whether the reference is still unrevoked. If this is the case, it forwards each operation

directly to the wrapped target record t.6

A limitation of the above caretaker abstraction is that values exchanged via the

caretaker are themselves not recursively wrapped in a revocable reference. For example,

if carol defines a method that returns an object, she exposes a direct reference to that

object to bob, circumventing alice’s caretaker. The returned object may even be a

reference to carol herself (e.g. by returning this from a method in Javascript). The

abstraction discussed in the following section addresses this issue.

4.2 Membranes: transitively revokable references

A membrane is an extension of a caretaker that transitively imposes revocability on all

references exchanged via the membrane [11].

One use case of membranes is the safe composition of code from untrusted third

parties on a single web page (so-called “mash-ups”). Assuming the code is written in

a safe subset of Javascript, such as Caja [12], loading the untrusted code inside such

a membrane can fully isolate scripts from one another and from their container page.

Revoking the membrane around such a script then renders it instantly powerless.

6 We take the notational liberty of using names like t,s and v for trap parameters, which hint at

the parameters’ type, rather than using strict variable names like x, y and z.

The objective of the membrane is to fully keep the object graph g created by the

untrusted code isolated from the object graph g′ of the containing page. When creating

a membrane, one usually starts with a single object that forms the “entry point” into

g. At the point when the membrane is created, it is usually assumed that apart from a

single reference to the entry point of g, g and g′ are otherwise fully isolated (i.e. there

are no other direct references from any objects in g to any objects in g′ and vice versa).

If this is not the case, then the membrane will not be able to fully enclose and isolate g.

The following example demonstrates the transitive effect of a membrane. The prefix

wet identifies objects initially inside of the membrane, while dry identifies revokable

references outside of the membrane designating wet objects.

var wetA = { x: 1 }

var wetB = { y: wetA }

var membrane = makeMembrane(wetB) // wetB acts as the entry point

var dryB = membrane.ref // a proxy for wetB

var dryA = dryB.y // references are transitively wrapped

dryA.x // returns 1, constants are not wrapped

membrane.revoke() // revokes all dry references at once

dryB.y // error : revoked

dryA.x // error : revoked

The interface of a membrane is the same as that of a caretaker. Its implementation

in λTP is shown in Figure 5. A membrane consists of one or more wrappers. Every

such wrapper is created by a call to the wrap function. All wrappers belonging to the

same membrane share a single revoked variable. Assigning the variable to false

instantaneously revokes all of the membrane’s wrappers.

makeMembrane
def
= λx.

var revoked = false;
let wrap = λy.
if typeof y = "constant"

y
if typeof y = "function"

λz.assert (!revoked) ; wrap (y (wrap z))
proxy y {
get : λt, s.assert (!revoked) ; wrap t[s]
set : λt, s, v.assert (!revoked) ; t[s] := (wrap v)
freeze : λt.assert (!revoked) ; freeze t
isFrozen : λt.assert (!revoked) ; isFrozen t
enum : λt.assert (!revoked) ; keys t } ;

{ref : wrap x
revoke : λ.revoked := true}

Fig. 5. Membranes in λTP.

The wrap function does a case-analysis on y based on the three types of values

in λTP: constants are passed through a membrane unwrapped; functions are wrapped

as functions that transitively wrap their argument and return value; and records are

wrapped using proxies.

Although this implementation does not distinguish them, there are two “directions”

in which a value can flow across the membrane: the argument z to a wrapped function

and the argument v to the set trap are inbound, while the return value of a wrapped

function and the return value of the get trap are outbound. In this version, both inbound

and outbound values get wrapped without distinction.

Note that because the membrane faithfully forwards the freeze and isFrozen

operations (as long as it is not revoked), clients on either side of the membrane can in-

spect whether or not the wrapped object is frozen and act accordingly. Because proxies

are trustworthy, clients can have complete confidence in the outcome of the freeze

and isFrozen operators, even when a membrane is interposed.

4.3 Membranes and frozen objects

The above membrane implementation works fine except for one important detail, which

surfaces when a frozen record crosses the membrane. Things go wrong when code

on either the dry (outside) or the wet (inside) side of the membrane tries to lookup a

property r[s] on a wrapper r for a frozen record t. Instead of getting back a transitively

wrapped value, the program will trip on an assertion.

Recall that the invariant enforcement mechanism inserts a post-condition check

upon evaluating r[s] (rule [GETPXY’]), testing whether its return value is equal to t[s].
However, the get trap of the above membrane abstraction always returns a fresh wrap-

per for the value t[s] of the wrapped, frozen target t. Unless t[s] is a constant, the check

fails since the trap is returning a proxy for t[s], not t[s] itself.

To circumnavigate this issue, rather than letting the proxy wrapper directly wrap the

target on the other side of the membrane, we let it wrap a shadow target, a dummy –

initially empty – record that is initially not frozen. Figure 6 shows the initial state of

such a membrane proxy.

shadow

target s

membrane

proxy for t

handler real target t

Fig. 6. A membrane proxy with a shadow target.

The purpose of the shadow target is to store wrapped properties of a frozen target.

This way, when the handler returns a wrapper for the original target property from

the get trap, the proxy checks the result against the shadow target, not the original

target. Since the shadow target only contains wrapped properties, the invariant check

will succeed. Thus, the membrane now operates correctly on frozen records.

We will henceforth refer to the shadow target simply as “the shadow”, and to the

real target as “the target”. Having introduced a shadow, we now have two records (the

shadow and the target) that can be either frozen or non-frozen. We must ensure that this

“frozen state” of both records remains synchronized. Otherwise, consider a membrane

wrapper with a non-frozen shadow but a frozen target: when a client asks whether such

a wrapper is frozen, the wrapper cannot answer true, as the proxy will check the

answer against the state of the shadow, which is non-frozen.

We employ the following strategy to keep the shadow and the target in sync: as long

as the real target is not frozen, the shadow is also not frozen. In this case, no invariants

on the proxy are enforced, and the proxy is free to return non-identical, wrapped values

from its get trap. There is no need to store these wrapped values on the shadow.

The first time that a proxy must reveal to a client that it is frozen7, the proxy first

synchronizes the state of the shadow with that of the target. It does this by defining

a wrapped property on the shadow for each property on the target, and then freezing

the shadow. Once the shadow is frozen, every time a property is accessed, the value

returned is the wrapper defined on the shadow, not the original value.

start

shadow not frozen
target frozen

freeze

shadow not frozen
target not frozen

isFrozen

isFrozen

shadow frozen
target frozen

shadow frozen
target not frozen

freeze

isFrozen

unreachable state

Fig. 7. State chart depicting the states of a membrane wrapper with a shadow target.

Figure 7 shows a state chart with the allowable states of a membrane proxy with a

shadow target. The four possible states are determined by whether or not either shadow

target or real target are frozen. A transition to the lower right state always implies a

synchronization of the shadow target with the real target before freezing the shadow.

Figure 8 depicts the state of the proxy after synchronization with a target with a

single foo property.

shadow

target s

membrane

proxy for t

handler real target t

t["foo"]

membrane
proxy for

t["foo"]

s["foo"]

Fig. 8. After synchronization, the shadow caches wrapped values of the target.

7 A proxy must reveal that it is frozen when intercepting freeze or when the proxy must

answer true in response to an isFrozen test because the real target is frozen.

makeMembrane
def
= λx.

var revoked = false;
let wrap = λy.
if typeof y = "constant"

y
if typeof y = "function"

λz.assert (!revoked) ; wrap (y (wrap z))
proxy {} {
get : λts, s.assert (!revoked) ; if (isFrozen ts) ts[s] (wrap y[s])
set : λts, s, v.assert (!revoked) ; y[s] := (wrap v)
freeze : λts.assert (!revoked) ; freeze y ; (sync ts y)
isFrozen : λts.assert (!revoked) ; if (isFrozen y) (sync ts y ; true) false
enum : λts.assert (!revoked) ; keys y } ;

{ref : wrap x
revoke : λ.revoked := true}

sync
def
= λts, tr.if (!isFrozen ts)

(for (s : tr) ts[s] := wrap tr[s] ; freeze ts)
null

Fig. 9. Membranes with shadow target in λTP.

A membrane making use of this synchronization strategy between shadow and tar-

get is shown in Figure 9. Note that the first argument passed to proxy is an empty

object {} (the shadow) and not the real target y. Consequently, the first argument passed

to each trap ts denotes the shadow target. In the definition of “sync”, ts similarly stands

for the shadow target while tr stands for the real target.

To conclude this Section, we have shown how membranes can be interposed be-

tween two object graphs while preserving the frozen state of objects across both sides

of the membrane and that operate correctly on frozen objects. The key idea is for a

membrane proxy to not wrap the real target object directly, but rather to wrap a shadow

target that can store wrapped properties of the target object. If the proxy is itself asked

to become frozen, or to reveal that it is frozen via the isFrozen operator, it first

synchronizes the state of its shadow before proceeding. This ensures that no invariant

enforcement assertions will fail on the proxy.

4.4 Identity-preserving Membranes

In the previous Sections, we presented minimal yet useful implementations of the mem-

brane pattern. Nonetheless, these implementations still have a number of issues regard-

ing object identity that practical membrane implementations can and should address.

First, for non-frozen records, the wrappers are not cached, so if a record is passed

through the same membrane twice, clients will receive two distinct wrappers, even

though both wrap the same record. Consider the following λTP expression:

let x = makeMembrane({s : {}}).ref ; (x[s] = x[s])

This expression will always reduce to false since each occurrence of x[s] reduces

to a fresh wrapper for the value of the s property.

Second, no distinction is made between the opposite directions in which a record

can cross a membrane. If a record is passed through the membrane in one direction, and

then passed through the membrane again in the opposite direction, one would expect to

retrieve the original object. However, consider the following λTP expression, where x

denotes a membraned proxy and v denotes a record:

x[s] := v ; let y = x[s] ; (v = y)

This expression will also always reduce to false since y will be a wrapper for

a wrapper for v. In x[s] := v, v is wrapped when it crosses the membrane inwards.

Then, in y = x[s], the wrapped value is wrapped again when it crosses the membrane

outwards. It would be better for these crossings to cancel each other out instead.

These limitations can be addressed by having the membrane maintain extra map-

pings that map proxies to their wrapped values and vice versa. The details are beyond

the scope of this paper. Suffice it to say that in practice the above two problems are

addressable in ECMAScript using WeakMaps8, which are identity hashmaps with the

weak referencing semantics of Ephemerons [13].

5 Discussion

The cost of transparent invariants Membranes, while being a very generic abstraction,

are a useful case study because they aim to transparently interpose between two object

graphs. For the membrane to be adequately transparent, it must be able to accurately

uphold invariants across the membrane.

The invariant enforcement mechanism complicates membranes, as it prevents a

membrane proxy from directly exposing the properties of a frozen target object as

wrapped properties. Instead, we introduced a shadow target to hold the wrapped prop-

erties. This has two costs: first, there is the memory overhead of duplicating all the

properties on the shadow. Second, operations that modify or expose the state of an ob-

ject (i.e. freeze and isFrozen) must explicitly synchronize the state of the shadow

and the real target.

While these overheads are not to be underestimated, we believe they are manageable

in practice. First, we expect the dominant operations on objects to be get and set, not

freeze and isFrozen. Second, wrapped properties are only defined on the shadow

lazily, i.e. only when the proxy is about to reveal that it is frozen for the first time. If a

proxy is never tested for frozenness, the shadow is never even used. Only when a proxy

is revealed as frozen must transitive wrappers for the target properties be defined on the

shadow.

8 See http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps.

Garbage collection In Section 4.1 we introduced revocable references. One of the pri-

mary use cases of such references is to facilitate memory management by reducing the

risk of memory leaks. The idea is that if objects only hold a revocable reference to a cer-

tain resource object, then revoking that reference instantly removes all live references

to the resource, allowing it to be garbage collected.

In our earlier Proxy API [7], a proxy did not store an implicit reference to a target

object. Rather, it was the handler’s responsibility to explicitly manage the reference to

the target object, as shown in the first code snippet in Section 2.2. Upon revoking the

proxy, that reference would be nulled out, allowing the garbage collector to collect the

target object.

In the trustworthy Proxy API introduced here, the proxy holds an implicit reference

to the target object which is not under programmer control. The proxy needs this ref-

erence to perform its invariant checks. Unfortunately this also implies that there is no

way for the handler to null out this reference when the proxy is revoked. Hence, the re-

vocable references introduced in Section 4.1 cannot be used for memory management

purposes.

In Javascript, we solved this problem by providing revocable proxies as a primitive

abstraction. This allows the proxy implementation to null out the references to its target

and handler upon revocation.

Handlers and targets as proxies In Javascript, as in λTP, both the target and the handler

of a proxy can themselves be proxies. The fact that a handler can itself be a proxy is a

property that we have found useful in writing highly generic proxy abstractions. For a

concrete example, we refer to our prior work [7].

The fact that the target of a proxy can itself be a proxy raises questions about the

validity of our invariant enforcement mechanism. If the target is itself a proxy, might

it not be able to return inconsistent results so as to mislead the invariant checks? After

all, invariant enforcement hinges on the fact that the target object cannot lie about what

invariants it upholds. Fortunately, this is not the case. We sketch an informal proof by

induction on the target of a proxy.

First, we note that any chain of proxy-target links must be finite and non-cyclic: the

target of a proxy must already exist before the proxy is created. It is not possible to

initialize the target of a newborn proxy to that proxy itself.

In the base case, a proxy’s target is a regular non-proxy object. Non-proxy objects

by definition uphold language invariants, so the proxy can faithfully query the target for

its invariants. Hence, the handler will not be able to violate reported invariants.

For the inductive step, consider a proxy a whose target is itself a proxy b. By the

induction hypothesis, b cannot violate the invariants of its own target, so that a can

faithfully query b for its invariants. Hence, a’s handler will not be able to violate b’s

reported invariants.

Alternatives to runtime assertions To make proxies trustworthy, we currently rely on

run-time post-condition assertions on the return value of trap functions. Some of these

assertions, most notably those for the keys trap, are relatively expensive, which has

prompted us to look into alternative designs for achieving trustworthy proxies.

One design alternative (proposed to us by E. Dean Tribble) is to ignore the return

value of trap functions altogether, and instead always forward the intercepted operation

to the target object after having invoked the trap. The outcome of the operation on the

proxy is then guaranteed to be the same as the outcome of the operation on the target, so

invariants are preserved. This essentially turns traps into callbacks (event handlers) that

get notified right before performing the operation on the target. Since the notification

takes place before forwarding the operation, the trap may still indirectly determine the

outcome of the intercepted operation by manipulating the target object.

While this design avoids run-time invariant checks, it has the downside of making it

even harder to express virtual object abstractions, as the virtual object is forced to define

a concrete property on the target object for every virtual property that is accessed. As we

have not yet fully explored this design alternative, we will refrain from going into more

detail here. It does teach us that our proposed design is not the only way of achieving

trustworthy proxies, and that there is a broader design space with trade-offs to explore.

6 Availability

Trustworthy proxies are known as “direct proxies” in Javascript. There currently exist

two implementations of direct proxies. The first is a native implementation in Fire-

fox 18. The second is a self-hosted implementation via the reflect.js library9.

reflect.js is a small Javascript library implemented by the first author. The li-

brary implements trustworthy proxies on top of our previously proposed Proxy API for

Javascript [7] which is available natively in Firefox and Chrome. The library essentially

uses untrustworthy proxies to implement trustworthy proxies in Javascript itself. An

implementation of membranes that preserve invariants is shipped with the library.

7 Related Work

For an overview of related Proxy and reflection APIs, we refer to our earlier work [7].

Here, we specifically discuss related work on invariant enforcement in Proxy APIs.

7.1 Chaperones and Impersonators

Chaperones and impersonators are a recent addition to Racket [14]. They are the run-

time infrastructure for Racket’s contract system on higher-order, stateful values.

Chaperones and impersonators are both kinds of proxies. One difference is that im-

personators can only wrap mutable data types, while chaperones can wrap both mutable

and immutable data types. A second difference is that chaperones can only further con-

strain the behavior of the value that it wraps. When a chaperone intercepts an operation,

it must either raise an exception, return the same result that the wrapped target would

return, or return a chaperone for the original result. Impersonators, on the other hand,

are free to change the value returned from intercepted operations.

9 See http://github.com/tvcutsem/harmony-reflect.

Chaperones are similar to trustworthy proxies, in that they restrict the behavior of a

wrapper. A trustworthy proxy that wraps a frozen object is constrained like a chaperone.

It is actually more constrained, since a chaperone is allowed to return a chaperone for

the original value, while trustworthy proxies are not allowed to return a proxy for the

value of a frozen property. Conversely, as long as the wrapped object is non-frozen,

trustworthy proxies are like impersonators and may modify the result of operations.

There are important differences between chaperones and trustworthy proxies, how-

ever. First, as chaperones are allowed to return wrappers for the original values, even

for “immutable” data structures, they avoid the overhead of the shadow target tech-

nique that we employed for membranes. However, this comes at the cost of weakening

the meaning of “immutable”: accessing the elements of an immutable vector, wrapped

with a chaperone, may yield new wrappers each time an element is accessed. Behav-

iorally, the element will be the same (modulo exceptions), but structurally it may have

a different identity. Thus, the invariant that immutable vectors must always return an

identical value upon access is weakened.

Second, trustworthy proxies may both be a chaperone and an impersonator at the

same time. In Racket, a value can be classified as (permanently) mutable or immutable.

This distinction cannot be made in Javascript: not only can objects be “half-mutable”

(cf. the “partially configurable” state in Figure 1), their mutability constraints can also

change at runtime (e.g. by calling Object.freeze). Hence, upon wrapping a Javascript

object, one cannot decide at that time whether to wrap it with a chaperone or an imper-

sonator. That is why trustworthy proxies must use dynamic checks to test whether to

behave as an impersonator (no invariant checks required) or as a chaperone-like proxy

(with restricted behavior).

7.2 Virtual Values

Starting from our initial Proxy API [7], Austin et al. have recently introduced a comple-

mentary Proxy API for virtualizing primitive values [2]. They focus on creating proxies

for objects normally thought of as primitive values, such as numbers and strings. They

highlight various use cases, such as new numeric types, delayed evaluation, taint track-

ing, contracts, revokable membranes and units of measure.

Like trustworthy proxies, virtual values are proxies with a separate handler. The

handler for a virtual value proxy provides a different set of traps. A virtual value can

intercept unary and binary operators applied to it, being used as a condition in an if-

test, record access and update, and being used as an index into another record.

An important difference between the trustworthy proxies API as presented here,

and the virtual values API, is that the latter provides a general isProxy primitive that

tests whether or not a value is a proxy. Our API does not introduce such an explicit

test because it breaks transparent virtualization. As a design decision, we do not want

clients to know or care that they are dealing with proxies for other objects.

For virtual values, the isProxy primitive was added to enable clients to defend

themselves against malicious virtual values, such as mutable strings in a language that

otherwise only has immutable strings. The idea is for clients to defend themselves

against malicious proxies by explicitly testing whether or not the the object they are

interacting with is a proxy. Virtual value proxies have no invariant enforcement.

Trustworthy proxies provide an alternative solution. As trustworthy proxies cannot

violate language invariants, the better way for clients to protect themselves against er-

ratic object behavior is to test whether an object is frozen, rather than testing whether it

is a proxy.

7.3 Java Proxies

The java.lang.reflect.Proxy API [15], introduced in Java 1.3, enables one

to intercept method invocations on instances of interface types. Like the Proxy API

sketched here, a Java proxy has an associated handler object (known as an Invocation-

Handler) to trap invocations. Unlike trustworthy proxies, Java proxies do not neces-

sarily wrap a target object.

The Java Proxy API only supports proxies for interface types, not class types. As

a result, proxies cannot be used in situations where code is typed using class types

rather than interface types, limiting their general applicability. Eugster [1] describes an

extension of Java proxies that works uniformly with instances of non-interface classes,

which, in addition to method invocation, can also trap field access and assignment.

Java proxies have little need for elaborate invariant enforcement. This is partly be-

cause Java provides no operations that change the structure of objects (the fields and

methods of an object are fixed), and partly because Java proxies do not virtualize field

access, so the notion of virtualizing a final field does not arise.

However, there is one invariant on Java proxies that is maintained via a runtime

check: the runtime type of the return value of the InvocationHandler’s invoke

method must be compatible with the statically declared return type of the intercepted

method. If the handler violates this invariant, the proxy implementation throws a Class-

CastException. This makes Java proxies trustworthy when it comes to the return

type of intercepted method invocations.

8 Conclusion

Proxies are a useful part of reflection APIs that enable a variety of use cases, from

generic wrapper abstractions such as membranes and higher-order contracts, to virtual

object abstractions such as remote object references and lazy initialization. In a lan-

guage with both proxies and language invariants, these features interact. If a proxy is

allowed to emulate an object with language invariants, the question arises whether these

invariants are still enforced by the language.

We presented trustworthy proxies, which are proxies that can wrap objects with

(universal and monotonic) language invariants, where these invariants are enforced

through runtime checks by the proxy mechanism. This ensures that proxies cannot cir-

cumvent these invariants, such that developers and the VM itself can continue to rely

on these invariants even in the presence of proxies.

We explored the need for trustworthy proxies in the context of Javascript, and pre-

sented a formal semantics for λTP, an extension of the λ-calculus including trustworthy

proxies. We have shown how abstractions such as transitively revocable references (i.e.

membranes) can be built using trustworthy proxies, achieving a transparent interposi-

tion between two object graphs which accurately represents language invariants on both

sides of the membrane.

Acknowledgements We thank the members of the ECMA TC-39 committee and the

es-discuss community for their detailed feedback on this work.

References

1. Eugster, P.: Uniform proxies for java. In: OOPSLA ’06: Proceedings of the 21st annual con-

ference on Object-oriented programming systems, languages, and applications, NY, USA,

ACM (2006) 139–152

2. Austin, T.H., Disney, T., Flanagan, C.: Virtual values for language extension. In: Proceed-

ings of the 2011 ACM international conference on Object oriented programming systems

languages and applications. OOPSLA ’11, New York, NY, USA, ACM (2011) 921–938

3. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Proceedings of the

seventh ACM SIGPLAN international conference on Functional programming. ICFP ’02,

New York, NY, USA, ACM (2002) 48–59

4. Pratikakis, P., Spacco, J., Hicks, M.: Transparent proxies for java futures. In: Proceedings

of the 19th annual ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications. OOPSLA ’04, New York, NY, USA, ACM (2004) 206–223

5. ECMA International: ECMA-262: ECMAScript Language Specification. Fifth edn. ECMA,

Geneva, Switzerland (December 2009)

6. Fähndrich, M., Leino, K.R.M.: Heap monotonic typestates. In: International Workshop on

Aliasing, Confinement and Ownership (IWACO ’03). (2003) 58–72

7. Van Cutsem, T., Miller, M.S.: Proxies: design principles for robust object-oriented interces-

sion APIs. In: Proceedings of the 6th symposium on Dynamic languages. DLS ’10, ACM

(2010) 59–72

8. Crockford, D.: Javascript: The Good Parts. O’Reilly (2008)

9. Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of javascript. In: Proceedings of

the 24th European conference on Object-oriented programming. ECOOP’10, Berlin, Hei-

delberg, Springer-Verlag (2010) 126–150

10. Redell, D.D.: Naming and Protection in Extensible Operating Systems. PhD thesis, Depart-

ment of Computer Science, University of California at Berkeley (Nov 1974)

11. Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Control and

Concurrency Control. PhD thesis, John Hopkins University, Baltimore, Maryland, USA

(May 2006)

12. Miller, M.S., Samuel, M., Laurie, B., Awad, I., Stay, M.: Caja: Safe active content in sanitized

javascript (June 2008) tinyurl.com/caja-spec.

13. Hayes, B.: Ephemerons: a new finalization mechanism. In: Proceedings of the 12th ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and applica-

tions. OOPSLA ’97, New York, NY, USA, ACM (1997) 176–183

14. Strickland, T.S., Tobin-Hochstadt, S., Findler, R.B., Flatt, M.: Chaperones and imperson-

ators: run-time support for reasonable interposition. In: Proceedings of the ACM inter-

national conference on Object oriented programming systems languages and applications.

OOPSLA ’12, New York, NY, USA, ACM (2012) 943–962

15. Blosser, J.: Explore the Dynamic Proxy API. (2000) http://www.javaworld.com/

jw-11-2000/jw-1110-proxy.html.

