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Abstract

The kynurenine (Kyn) pathway is the major route for tryptophan (Trp) metabolism, and it 

contributes to several fundamental biological processes. Trp is constitutively oxidized by 

tryptophan 2, 3-dioxygenase in liver cells. In other cell types, it is catalyzed by an alternative 

inducible indoleamine-pyrrole 2, 3-dioxygenase (IDO) under certain pathophysiological 

conditions, which consequently increases the formation of Kyn metabolites. IDO is up-regulated 

in response to inflammatory conditions as a novel marker of immune activation in early 

atherosclerosis. Besides, IDO and the IDO-related pathway are important mediators of the 

immunoinflammatory responses in advanced atherosclerosis. In particular, Kyn, 3-

hydroxykynurenine, and quinolinic acid are positively associated with inflammation, oxidative 

stress (SOX), endothelial dysfunction, and carotid artery intima-media thickness values in end-

stage renal disease patients. Moreover, IDO is a potential novel contributor to vessel relaxation and 

metabolism in systemic infections, which is also activated in acute severe heart attacks. The Kyn 

pathway plays a key role in the increased prevalence of cardiovascular disease by regulating 

inflammation, SOX, and immune activation.

2. Introduction

Tryptophan (Trp) is the least abundant of all essential amino acids, and it is necessary for 

protein synthesis. The liver metabolizes Trp to maintain serum concentrations of 50–100 

μM. In addition to being one of the building blocks for protein synthesis in humans and 

animals, Trp is the only source of substrate for the production of several important 

molecules.

The major catabolic route of Trp in mammals is the kynurenine (Kyn) pathway, which 

ultimately leads to the biosynthesis of the essential cofactor, nicotinamide adenine 

dinucleotide (NAD+)(1, 2). This pathway accounts for >90% of peripheral Trp metabolism 
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in mammals(3). The Kyn pathway plays an important role in several fundamental biological 

processes, including central nervous system (CNS) disorders(4–8), peripheral disorders(9, 

10), infections(11, 12), immunoregulation(10, 13, 14), and ultraviolet protection and cataract 

formation in the lens(15, 16). Recently, the Kyn pathway has drawn considerable attention 

as an important factor in the pathogenesis of cardiovascular disease (CVD). As 

inflammation, oxidative stress (SOX), and immune activation have been postulated to be 

crucially involved in the pathogenesis of atherosclerosis and CVD, it is important to study 

the possible role of the Kyn pathway in CVD in relation to these contributing factors.

3. Kynurenine pathway

The metabolic fate of Trp is dependent on various factors, including Trp availability and 

enzyme activities, which modulate the synthesis of Trp-derived Kynurenines.

The initial and rate-limiting reaction of the Kyn pathway is the oxidation of Trp to N-

formyl-Kynurenine (Nfk)(1, 17). In liver cells, Trp is constitutively oxidized by tryptophan 

2, 3-dioxygenase (TDO, also known as tryptophan oxygenase and L-tryptophan pyrrolase) 

to Nfk. In other types of cells, Trp can be metabolized to Nfk by an alternative inducible 

enzyme, indoleamine-pyrrole 2,3-dioxygenase (IDO, also known as tryptophan pyrrolase), 

which is transcribed under certain pathophysiological conditions(1, 17–21). Both TDO and 

IDO contain one noncovalently bound iron–protoporphyrin IX per monomer. In addition, 

they belong to the family of oxidoreductases, specifically those acting on single donors with 

O2 as the oxidant and the incorporation of two atoms of oxygen into the substrate 

(oxygenases)(1, 19, 22). The incorporated oxygen does not need to be derived from O2(23). 

Nfk then decomposes spontaneously to formic acid and Kyn. The expression of TDO is 

induced by Trp itself and by steroids, whereas IDO is powerfully induced by 

proinflammatory stimuli and T-helper cell-derived cytokines, such as tumor necrosis factor 

(TNF)-α, interleukin (IL)-6(7, 8, 24), and interferon (IFN)-γ, in several cell types(7, 11, 15, 

16, 25–31).

Following its synthesis by IDO, Kyn can be further metabolized by various enzymes (Figure 

1)(1, 32–34). Kynureninase produces anthranilic acid (AA) from Kyn(35, 36). 

Kynurenine-3-monooxygenase (KMO) converts Kyn into the neurotoxic free-radical 

generator, 3-hydroxykynurenine (3-OHkyn)(37), which can be taken by kynurenine 

aminotransferase (KAT) to produce xanthurenic acid (XA) or by the kynureninase to form 3-

hydroxyanthranilic acid (3-HAA). 3-HAA is further metabolized to the excitotoxin, 

quinolinic acid (QA), which is a powerful excitant and convulsant(38, 39). In addition, KAT 

metabolizes Kyn into kynurenic acid (KYNA)(40), which is a neuroprotective compound 

due to its N-methyl-D-aspartate (NMDA) receptor antagonist properties(39). KYNA 

production can be catalyzed by three aminotransferases: KAT I, KAT II, and mitochondrial 

aspartate aminotransferase (mitAAT). KAT II is expressed predominantly in the rat and 

human brain(33). In human macrophages and microglia cells, IFN-γ enhances the expression 

and activity of KMO(27, 28). A robust increase in KMO expression is associated with high 

levels of TNF-α and IL-6 in the rat brain following a systemic inflammatory challenge, 

although no changes in KAT II expression are observed(24). However, the constitutive 
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expression of KAT II is much higher than KMO in the rat brain (approximately 8-fold higher 

in cortex, and 20-fold higher in the hippocampus) (24).

AS Trp, Kyn, AA, 3-OHkyn and XA readily cross the blood-brain barrier(41–44), the effects 

of systemic Trp on the brain Kyn pathway are in part driven by its peripheral conversion to 

Kyn and 3-OHkyn, and the subsequent entry of these metabolites into the brain. In contrast 

to several other kynurenine pathway metabolites, and because of the polar nature and the 

apparent lack of efficacious transport processes, KYNA, 3-HAA and QA penetrate the 

blood-brain barrier poorly and must be formed locally within the brain (41, 42).

3.1 Major enzymes

3.1.1 Indoleamine-pyrrole 2, 3-dioxygenase—IDO is a heme-containing dioxygenase 

that catalyzes the first and rate-limiting step in the major pathway of L-Trp catabolism in 

mammals. The heme of IDO is essential for enzyme activity, and IDO is purified in an 

inactive state with the heme present as ferric-iron. Its activation requires the single-electron 

reduction of ferric- to ferrous-iron, which facilitates the binding of L-Trp and O2 to the 

active site of the enzyme (Figure 2)(1, 19, 45). The synthesized IDO holoenzyme catalyzes 

the oxidative cleavage of the pyrrole ring of L-Trp to generate Nfk, which is metabolized to 

formic acid and the stable end product, kyn (Figure 1).

IDO is expressed intracellularly in a constitutive manner in the placenta, epididymis, 

prostate, esophagus, intestine, colon, cecum, spleen, thymus, lung, brain, and skin(46–49). 

Notably, the morphological features of many IDO-expressing cells closely resemble those of 

antigen-presenting cells and epithelial cells(46). The tissue distribution and cellular 

localization characteristics of IDO serve two main functions: (1) to deplete Trp in an 

enclosed microenvironment, such as in the epididymal duct lumen, to prevent bacterial or 

viral infection, and (2) to produce bioactive Trp catabolites that suppress T-cell-mediated 

immune responses against self-antigens, fetal antigens, or allogeneic antigens(46, 49).

In most cell types, IDO is induced at the transcriptional level in response to specific 

inflammatory stimuli. IFN-γ is the principal IDO inducer in vitro and in vivo. Exposure to 

IFN-γ increases IDO transcription in myeloid cells [monocyte/macrophages(26–28, 50) and 

dendritic cells (DCs)(25, 29)], fibroblasts(15), endothelial cells(30), epithelial cells(16), 

smooth muscle cells(31), and many tumor cell lines(19, 51, 52). Other inflammatory stimuli, 

such as IFN-α, IFN-β, lipopolysaccharide (LPS), and cytotoxic T lymphocyte-associated 

antigen(CTLA)-4, also induce IDO to a lesser degree than that of IFN-γ(1, 8, 29, 50, 53, 54). 

Depending on the cell type and cytokine milieu, the IDO expression can be modulated by 

molecules, such as IL-4, IL-6, IL-10, TGF-α, prostaglandin(PG) E2, CD40, suppressor of 

cytokine signaling 3, Bin1/amphiphysin/Rvs167 adaptor-encoding protein, and DNAX 

activation protein of 12 kDa(1, 7, 8, 11, 24, 29, 55). Finally, cellular infection with microbial 

agents (e.g., some viruses and other intracellular pathogens)(7, 11, 20, 21, 56, 57) can 

induce IDO in certain cell types. Vascular endothelial cells are the primary site of IDO 

expression in models of malaria infection, and this response is systemic, with the vascular 

endothelium of brain, heart, lung, spleen, and uterus staining positive for IDO(56, 57).
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Once expressed, active IDO depletes L-Trp from local tissue microenvironments and 

promotes the formation of metabolites of the Kyn pathway. The ability of IDO to deprive 

cells of an essential amino acid and to promote the formation of bioactive Kynurenines 

underscores its biological role in many human diseases, including cancer(58–61), chronic 

infectious diseases(11, 51), allergy, autoimmune diseases(29, 51, 54, 62–64), 

neurodegeneration, psychiatric disorders(34, 65–67), and other immunosuppressive 

disorders(9, 10, 40).

Trp catabolism by IDO has been suggested to mediate antiproliferative effects during 

infection(51), especially on infectious microorganisms that may rely on Trp for growth(51). 

Trp-deprived T cells arrest at a mid-G1 phase of the cell cycle(52). In addition, Vassiliou et 

al. have demonstrated that the eicosapentanoic acid (EPA) metabolite-induced increase in 

IDO expression in DCs inhibits T-cell proliferation(68). Then, IDO increases p53 levels, and 

both IDO and p53 inhibit cell proliferation, glucose consumption and glycolysis in 

alloreactive T cells. Besides, lactate production and glutaminolysis are also suppressed by 

IDO(69).

Many studies have shown that IDO overexpression can blunt immune responses to 

neoantigens(29, 62). Cell lines overexpressing IDO limit antigen-specific T-cell responses in 
vitro(51). In murine tumor cell lines, IDO overexpression renders tumor allografts resistant 

to immune rejection in vivo(62). The ectopic expression of IDO protects allogeneic lung 

transplants from rejection(70). Similarly, adenoviral-mediated IDO gene transfer into 

pancreatic islet cells prolongs survival in allogeneic hosts(71). CTLA-4 signaling induces 

IDO, and pre-treatment of mice with the CTLA-4-immunoglobulin to induce IDO 

expression suppressed the rejection of pancreatic islet allografts(53). Then, IDO may 

suppress overactive immune response in the α-GalCer-induced hepatitis model(72). 

Deficiency of IDO exacerbated liver injury in α-GalCer-induced hepatitis. IDO induced by 

proinflammatory cytokines may decrease the number of TNF-α-producing immune cells 

including NK cells and macrophages in the liver. Moreover, recent encouraging results from 

phase II clinical trials of recombinant CTLA-4-immunoglobulin fusion protein in 

autoimmune rheumatoid arthritis (RA)(54) imply that it may be possible to induce IDO 

expression in settings where immunosuppression would be clinically beneficial. Conversely, 

it has shown that IDO inhibitor 1-Methyl-DL-tryptophan (1-MT) alone or in combination of 

methotrexate (MTX) delays the onset and alleviates the severity of joint inflammation in a 

RA mouse model by blocking folate metabolism(64).

IDO is part of the molecular mechanism that contributes to tumor-induced tolerance(58, 59) 

and promotes cancer metastasis by inducing immunosuppressive environment(60). Host DCs 

expressing immunosuppressive IDO are found in tumor-draining lymph nodes, and IDO can 

also be expressed by tumor cells themselves(59). IDO creates a tolerogenic milieu in the 

tumor and tumor-draining lymph nodes by directly suppressing T cells and enhancing local 

regulatory T cell-mediated immunosuppression. It can also function as an antagonist to other 

activators of antitumor immunity(58). Furthermore, in IDO knockout (IDO−/−) mice treated 

with anti-CTLA-4 antibody, a striking delay in B16 melanoma tumor growth and increased 

overall survival have been observed compared to wild-type mice, as well as treated with 

antibodies targeting Programmed death (PD)-1/PD-Ligand 1 and glucocorticoid-induced 
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TNFR family related gene (GITR)(61). This effect is T cell dependent, leading to enhanced 

infiltration of tumor-specific effector T cells and a marked increase in the effector-to-

regulatory T cell ratios in the tumors.

There is evidence of a link between IDO activity and certain psychiatric disorders. Increased 

Trp degradation can induce serotonin depletion and depressive moods(73). Also, the 

downstream metabolites from this pathway, such as 3-OHkyn, QA, and KYNA(43), are 

neuroactive components that can modulate several neurotransmissions, such as 

glutamatergic, GABAergic, dopaminergic, and noradrenergic neurotransmissions. In turn, 

these neurotransmissions can induce changes in the neuronal-glial network and result in 

neuropsychiatric consequences(65). Hyangin et al.(74) have shown that upregulation of IDO 

results in the increased Kyn/Trp ratio and decreased serotonin/Trp ratio in the bilateral 

hippocampus of the brain. Either IDO gene knockout or pharmacological inhibition of 

hippocampal IDO activity attenuates both nociceptive and depressive behavior. In accord 

with this, it has shown(67) the IDO inhibitor Coptisine ameliorates cognitive impairment in 

a mouse model of Alzheimer’s disease.

3.1.2 Tryptophan 2, 3-dioxygenase—TDO is a heme-containing cytosolic enzyme that 

is encoded by TDO2(75). It is ubiquitously found in both eukaryotes (human, rat, and rabbit)

(17, 19) and prokaryotes (Xanthomonas campestris and Pseudomonas fluorescens)(76, 77). 

With the exception of mouse early concepti(78) and rat skin(79), TDO expression in 

mammals is restricted to the liver, where it is degrades L-Trp to ultimately synthesize NAD+ 

and nicotinamide adenine dinucleotide phosphate (NADP+).

TDO catalyzes the first and rate-limiting step of Trp degradation in the Kyn pathway to 

regulate systemic Trp levels(1, 17, 18, 75). It plays a central role in the physiological 

regulation of Trp flux in the human body. TDO is expressed in a significant proportion of 

human tumors(75), and its expression prevents their rejection by immunized mice. In line 

with this, a TDO inhibitor was shown to restore the ability of these mice to reject TDO-

expressed tumors, thus demonstrating its potential in cancer therapy. In addition, TDO is 

potentially involved in the metabolic pathway that is responsible for anxiety-related 

behavior(80). Compared to wild-type mice, TDO-deficient mice showed increased plasma 

levels of Trp, serotonin, and 5-Hydroxyindoleacetic acid in the hippocampus and midbrain. 

A variety of tests, such as the elevated-plus maze and open-field tests, showed anxiolytic 

modulation in TDO-deficient mice. These findings reveal a direct link between TDO and 

Trp metabolism or anxiety-related behavior under physiological conditions.

3.1.3 Kynurenine-3-monooxygenase—KMO is a therapeutically important target on 

the eukaryotic Trp catabolic pathway, where it converts L-Kyn to 3-OHkyn. KMO is a β-

nicotinamide adenine dinucleotide 2′-phosphate (NADPH)-dependent flavin 

monooxygenase, which is localized in the outer mitochondrial membrane in the CNS and is 

predominantly expressed in microglia(81, 82). It exists as an apoenzyme and interacts with 

flavin-adenine dinucleotide to form a holoenzyme, whereas the flavin moiety of the protein 

acts as an electron donor(83). KMO specifically catalyzes the incorporation of one atom of 

oxygen into Kyn in the presence of NADPH as an electron donor.
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Under both physiological and pathological conditions, KMO possesses a high affinity for the 

substrate, with the Km in the low micromolar range(84), suggesting that it metabolizes most 

of the available Kyn to produce 3-OHkyn. Notably, KMO expression increases in 

inflammatory conditions or after immune stimulation(24). The position of KMO at this 

branch point in the pathway makes it a potential therapeutic target for treating 

neurodegenerative disorders, such as Alzheimer’s disease(85) and Huntington’s disease(86). 

Many studies have demonstrated the positive effects of KMO inhibitors in brain injury 

models(87), although poor penetration of the blood-brain barrier is a problem(85).

3.1.4 Kynurenine aminotransferase—The KAT are essential in the Kyn pathway, 

because they produce irreversibly the only endogenous antagonist of the NMDA receptor, 

KYNA, from L-Kyn. In humans, rats, and mice, three proteins (KAT I, II, and III) are 

involved in KYNA synthesis in the CNS(88–90). Most recently, mitAAT from rat and 

human brains has been reported to catalyze the transamination of Kyn to KYNA; this was 

referred to as KAT IV(91). Moreover, KAT I, which is also known as kynurenine-pyruvate 

transaminase, recognizes 3-OHkyn as a substrate to produce XA(92).

These enzymes are distinguished by substrate specificity and other discrete biochemical and 

biophysical characteristics. KAT I and KAT III share similar genomic structures and show 

high sequence identity(90), whereas KAT II has a completely different genomic 

structure(93). KAT I was previously found in glia and neurons, especially in areas for blood 

pressure and heart rate regulation(94). This supports its neuromodulatory role for KYNA in 

NMDA-mediated autonomic function. KAT III and KAT I are both expressed in multiple 

tissues, including the kidney, liver, heart, lung, and neuroendocrine organs, and their 

biological functions overlap(89, 90). KAT II is composed of 13 exons and is most abundant 

in the rat and human brain, whereas mitAAT plays a major role in the mouse brain(91). 

Biochemical and pharmacological data and studies in lesioned brain tissues indicated that 

KAT II, rather than KAT I, is the major biosynthetic enzyme of KYNA in the rat brain(88). 

MitAAT may be involved in a range of physiological and pathological processes that are 

associated with glutamatergic and nicotinergic function. A number of neurobiologically 

relevant issues have unveiled the realization that mitAAT accounts for a quantitatively 

significant proportion of total brain KAT activity(91).

3.1.5 Kynureninase—Kynureninase is a pyridoxal phosphate-dependent enzyme, which 

catalyzes the transformation of 3-OHkyn and Kyn into 3-HAA and AA, respectively(35, 36). 

Humans express one kynureninase enzyme that is encoded by the L-Kyn hydrolase gene 

located on chromosome 2(36). In rats, the enzyme is predominantly located in the 

cytoplasm(34, 95), and it displays higher affinity and maximal velocity towards L-3-OHkyn 

than L-Kyn(34, 36).

This enzyme is crucial in the biosynthesis of nicotinamide nucleotides(34–36) and also gives 

rise to other pathophysiologically important compounds, such as picolinic acid, an enhancer 

of nitric oxide synthase expression(36, 96). Recent evidence suggested that the stimulation 

of kynureninase activity may also represent a relevant response in inflammation. In fact, a 

substantial increase in the activity of kynureninase is observed in several cerebral and 
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systemic inflammatory conditions(97). In addition, IFN-γ has been shown to induce 

kynureninase activity in murine macrophages(28).

3.2 Major metabolites

Most of the kynurenines induce alterations in cellular metabolism that lead to damage and 

cell death (Table 1).

3.2.1 Tryptophan—Trp is one of several amino acids that are essential in mammals and 

cannot be synthesized de novo. It is the rarest and accounts for ~1% of total amino acids in 

cellular proteins. The incorporation of Trp into protein is initiated by tryptophanyl-transfer 

RNA synthetase (TrpRS). TrpRS is the only aminoacyl synthetase that responds to 

inflammatory mediators, such as IFN-γ(98), and the overexpression of TrpRS has been 

postulated to help IDO-expressing cells compensate for the reduction in intracellular Trp.

The structure of which contains a ring that can stabilize radicals through resonance or 

delocalization, thus enabling it to break radical chain reactions and exert antioxidant 

properties(99). The administration of Trp has been shown to decrease experimental 

endotoxic shock-induced lipid peroxidation in rats(100). Of all amino acids, Trp exhibits the 

highest antiradical activity(101). In addition, it is a potent scavenger of radicals that are 

induced by chloramine T or hydrogen peroxide (H2O2)(102).

3.2.2 Kynurenine—Kyn is the first product in the pathway of Trp degradation. It exhibits 

prooxidant effects, and the aerobic irradiation of Kyn produces superoxide radicals and leads 

to cytochrome C reduction(103). Additionally, Kyn is able to photooxidize cysteine, NADH, 

and ascorbic acid in vitro, and this capacity may be directly relevant to photobiological 

processes that occur in the lens in vivo. In particular, these photooxidation processes are 

responsible for the age-related depletion of reduced glutathione and/or formation of H2O2 in 

the lens(104). Several recent studies have shown that Kyn is prone to deamination and 

oxidation, which can result in the formation of α, β-unsaturated ketones that chemically 

react and modify len proteins(15, 16). Such reactions occur mostly at cysteinyl, histidinyl, 

and lysyl residues and contribute to cataract formation(105).

Increased levels of Kyn have been shown to cause cell death through the reactive oxygen 

species (ROS) pathway in nature killer (NK) cells(13) and lower blood pressure in systemic 

inflammation(20, 21). On the other hand, Kyn itself can stimulate the production of nerve 

growth factor in astroglial cells(106) and contribute to early neuronal growth and 

development. Approximately 60% of brain Kyn comes from the periphery, because it can 

readily cross the blood-brain barrier(41–43). In the brain, Kyn is metabolized to KYNA by 

astrocytes(42, 107) and to 3-OHkyn in microglia(108) and macrophages(42, 43).

3.2.3 Anthranilic acid—Although AA is generally accepted to be biologically inactive, it 

can interact with copper to form an anti-inflammatory complex. This complex acts as a 

hydroxyl radical-inactivating ligand able to remove the highly injurious hydroxyl radicals at 

inflammatory sites(109, 110). Nevertheless, an in vitro study using organotypic cultures of 

rat hippocampus has shown that AA (at high mM concentration) may cause 

neurodegeneration. Additionally, the anthranilate has elicited more pronounced effects on 
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active than on resting rate of respiration. These contradictory effects found for AA may be 

due to its capability as a substrate to produce hydroxyl radicals to the 3-HAA 

metabolite(34).

3.2.4 Kynurenic acid—KYNA, an intermediate in the Trp metabolic pathway, is an 

endogenous competitive blocker of the strychnine-insensitive glycine co-agonist site of the 

NMDA receptor(111) and a noncompetitive inhibitor of the α-7 nicotinic acetylcholine 

receptor(112). Accordingly, dysregulation of endogenous KYNA may contribute to the 

physiopathology of several disorders(113–115). Kyn is the substrate for KYNA synthesis, 

which is mediated by KAT. However, levels of KYNA have been documented not only in 

brain tissue(116) and cerebrospinal fluid(117), but also in the periphery(43, 118–122). 

Activation of the PGC-1α1-PPARα/δ pathway increases skeletal muscle expression of KAT, 

thus enhancing the conversion of Kyn into KYNA(43). As opposed to Kyn, KYNA is unable 

to cross the blood-brain barrier and must be formed locally within the brain (41, 42). 

Reducing plasma Kyn protects the brain from stress-induced changes associated with 

depression and renders skeletal muscle-specific PGC-1a1 transgenic mice resistant to 

depression induced by chronic mild stress or direct Kyn administration(43).

Recent work has shown that KYNA is a ligand for the orphan G protein-coupled receptor 

35(GPR35)(123). The activation of this receptor inhibits the release of TNF-α by 

macrophages under LPS-induced inflammatory conditions. In this context, KYNA may exert 

an anti-inflammatory effect(123). Additionally, GPR35 decreases intracellular Ca2+ by 

inhibiting its entrance(124). Therefore, KYNA most likely exerts an effect on the release of 

inflammatory mediators and excitatory amino acids from glial cells. KYNA also activates 

the ligand-activated transcription factor, aryl hydrocarbon, which is a nuclear protein that is 

involved in the regulation of gene transcription and can cause immunosuppression(120).

On the other hand, KYNA is a reducing agent that has been shown to scavenge hydroxyl 

radicals(125) and peroxynitrite. It prevents FeSO4-induced lipid peroxidation and ROS 

production in rat forebrain homogenates and in NMDA receptor-lacking Xenopus laevis 
oocytes, suggesting that the protective effect of KYNA is independent of its activity over 

receptors. In addition, KYNA decreases the formation of hydroxyl radicals that is induced 

by the acute infusion of FeSO4 in the rat striatum(126).

According to Stazka et al., the vascular endothelium is responsible for the production and 

liberation of KYNA(127). Most importantly, KYNA elicits a protective effect against the 

homocysteine (Hcy)-induced inhibition of endothelial cell proliferation and migration. 

Moreover, KYNA protects these cells against Hcy-induced cytotoxicity(128).

Overall, KYNA is an important neuromodulator and an endogenous antioxidant, and its 

protective effect in diverse toxic models may be due to its redox characteristics, in addition 

to its activity on receptors.

3.2.5 3-Hydroxykynurenine

KMO converts Kyn to 3-OHKyn, which is a controversial Kyn that has both prooxidant and 

antioxidant properties. The o-aminophenol structure, which is common to 3-OHkyn, is 
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required for it to exert its toxicity. O-aminophenol compounds are subject to several steps of 

oxidation reactions that are initiated by their oxidative conversion to quinoneimines, which 

are then accompanied by the concomitant production of ROS. The main ROS are superoxide 

anion and H2O2(129).

As an endogenous generator of SOX, 3-OHkyn causes neuronal cell death with apoptotic 

features and region selectivity(37, 130). The generation of H2O2 is involved in the 

neurotoxicity of 3-OHkyn, which also counts on the role of iron(131). Endogenous xanthine 

oxidase activity is involved in 3-OHkyn-induced H2O2 generation, and it exacerbates cell 

damage. Furthermore, 3-OHkyn and 3-HAA have been shown to reduce copper (Cu) II to 

generate superoxide and H2O2 in a Cu-dependent manner(132).

The incubation of bovine α-crystallins with low concentrations of 3-OHkyn causes protein 

cross-linking and the oxidation of methionine and Trp residues(133), which indicates that 

the protein damage results from the generation of ROS. In the human lens, these reactions 

have been associated with aging and cataractous processes(134). Such modifications of 

proteins account for fiber cell apoptosis(15), epithelial cell apoptosis(16), and cataract 

formation in the mouse lens(15, 16). Also, both 3-OHkyn and 3-HAA can provoke protein 

oxidative damage and induce apoptosis, which is characterized by chromatin condensation 

and internucleosomal DNA cleavage in PC12, GT1-7, SK-N-SH(130, 132, 135), and T 

cells(14). In vivo experiments have demonstrated that the injection of 3-OHkyn into the 

striatum causes tissue damage(136). In support of this, 3-OHkyn has been shown to 

accelerate endothelial cell apoptosis and cause endothelial dysfunction by promoting the 

generation of NADPH oxidase–mediated superoxide anions in vivo and in vitro(30).

In addition to its cytotoxic effects, 3-OHkyn can cause bladder cancer(137). Moreover, it 

modifies the respiratory parameters, decreases the respiratory control index, and lowers the 

adenosine diphosphate/oxygen ratio of glutamate/malate-respiring heart mitochondria(129).

Conversely, 3-OHkyn has been proposed to be an antioxidant that scavenges peroxyl radicals 

in inflammatory diseases(138) and scavenges superoxide in the Malpighian tubes of 

insects(139). Because 3-OHkyn is an o-aminophenol, it might be expected to undergo 

complex oxidative processes. Similar to vitamin C and trolox, 3-OHkyn and 3-HAA belong 

to the class of small molecules that react very rapidly with peroxyl radicals and are 

potentially important biological antioxidants. In particular, they protect B-phycoerythrin 

from peroxyl radical-mediated oxidative damage more effectively than equimolar amounts 

of either ascorbate or Trolox(138). The antioxidative efficiency of 3-OHkyn appears to be 

better than that of glutathione, as it was more reactive with the ferryl complex.

The redox behavior of 3-OHkyn has been proposed, such that it can initially act as two-

electron donors (antioxidant) to oxidatively form ortho-quinoneimine, which produces ROS 

in the process (prooxidant)(140). Therefore, the behavior of 3-OHkyn depends on the redox 

status of the cell.

3.2.6 Xanthurenic acid—XA is a metabolite that is synthesized through 3-OHkyn 

transamination, and it is closely related structurally to KYNA but possesses different 
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biological roles. The formation of XA is thought to be the main route to prevent the 

accumulation of the potentially toxic 3-hydroxykynurenine excess(44). XA plays a role in 

the neurotransmission/neuromodulation effect that is inhibited in the absence of adenosine 

triphosphate(44), because it is actively taken up by synaptic vesicles from the rat brain. 

Peripheral administration of XA in rats induced a large increase in the concentration of XA 

in numerous regions of the brain, indicating exogenous XA can penetrate the brain blood 

barrier easily(44).

Some groups have shown that XA has metal-chelating activities and antioxidant 

properties(138, 141, 142). In the 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) 

(ABTS) system, XA is an efficient scavenger of hydroxyl radicals and ABTS·+. It can inhibit 

iron- and copper oxidation-induced lipid peroxidation in low-density lipoproteins (LDL) in a 

pH-dependent manner(141, 142). Moreover, XA prevents the inactivation of NADP+-

isocitrate dehydrogenase that is induced by the oxidation of these metals(141). XA 

scavenges superoxide in a hematoxylin autooxidation system(34) and acts as a peroxyl 

radical scavenger in vitro(138). The antioxidant properties of XA could be related to the fact 

that all phenolic metabolites show antioxidant activities, thus implicating the importance of 

the phenolic moiety as the active entity(138).

On the contrary, XA sometimes acts as a prooxidant due to its chelating effect(143). 

Furthermore, it induces apoptosis in vascular smooth muscle and lens epithelial cells(144, 

145). Additionally, XA acts as a photosensitizer and generates superoxide and singlet 

oxygen upon irradiation(146). The photooxidation and polymerization by XA of lens 

proteins are related to age-dependent cataractogenesis(147). All of these studies suggest that 

the cytotoxic action of XA may be explained by the prooxidant properties of chelate 

complexes with metals.

3.2.7 3-Hydroxyanthranilic acid—As a product of 3-OHkyn, 3-HAA is prone to 

autooxidation in a process that favors the formation of superoxide anions(83). This 

autooxidation of 3-HAA involves the generation of quinoneimine, followed by condensation 

and oxidation reactions to yield cinnabarinic acid. This process requires molecular oxygen 

and generates superoxide radicals and H2O2. In experimental models, the pattern of 3-HAA 

in mitochondrial processes involves the inhibition of oxygen uptake by mitochondrial 

respiring with NAD-dependent substrates, uncoupling of the respiratory chain, and oxidative 

phosphorylation(129, 148).

Furthermore, 3-HAA induces apoptosis in monocyte/macrophage cell lines(149) and 

activated T cells(150–152). It has been suggested that 3-HAA inhibits nuclear factor-κB 

activation upon T-cell antigen receptor engagement by specifically targeting 

phosphoinositide-dependent kinase-1(152). Additionally, it was demonstrated that 3-HAA 

induces the depletion of intracellular glutathione in activated T cells without increasing ROS 

formation(151).

On the contrary, 3-HAA has been shown to be a potent antioxidant(153). It suppresses 

inducible nitric oxide synthase expression in macrophages(154, 155) and inhibits monocyte 

chemoattractant protein-1 (CCL2) secretion and vascular cell adhesion molecule (VCAM)-1 
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expression in endothelial cells(156) via inducing the nuclear translocation of nuclear factor-

erythroid 2-related factor-dependent heme oxygenase-1 expression. Additionally, 3-HAA 

reduces the α-tocopheroxyl radical, thus restoring the levels of α-tocopherol and preventing 

LDL lipid peroxidation(153). Furthermore, 3-HAA and 3-OHkyn have been shown to inhibit 

spontaneous lipid peroxidation in the brain, and this inhibitory property remained even in the 

presence of Fe3+ and protected the cerebral cortex against SOX(157). The spontaneous 

oxidation of glutathione and the peroxyl radicals were significantly prevented by 3-

HAA(158).

Results from electrochemical studies suggested that 3-HAA can initially act as an 

antioxidant and then as a prooxidant(140), because its product, ortho-quinoneimine, 

possesses oxidant properties. The dual effect of 3-HAA in vitro is most likely concentration 

dependent. Recent clinical data show marked changes in the levels of 3-HAA, associated 

with changes in AA levels, in patients with a range of neurological and other disorders 

including osteoporosis, chronic brain injury, Huntington’s disease, coronary heart disease, 

thoracic disease, stroke and depression. In most cases, there is a decrease in 3-HAA levels 

and an increase in AA levels, which could possibly be a protective response to limit primary 

and secondary damage(159).

3.2.8 Quinolinic acid—QA, a neuroactive metabolite of 3-HAA, is an established 

intermediate in the synthesis of nicotinic acid and NAD+. It is an agonist of the NMDA 

receptor and has a high potency as an excitotoxin in vivo(160). QA induces SOX by 

activating NMDA receptors, producing mitochondrial dysfunction(161, 162), or increasing 

free-radical generation(163, 164).

QA can generate a dysregulation in the oxidant/antioxidant ratio by several ways: (1) 

affecting the reduced glutathione: oxidized glutathione ratio(165), (2) depleting the activity 

of copper- and zinc-dependent superoxide dismutase activity (Cu, Zn-SOD)(166, 167), (3) 

recruiting the early and time-dependent formation of peroxynitrite as a key reactive nitrogen 

species(168, 169), and (4) contributing to lipid peroxidation(170, 171). All of these 

processes can result in cell death(172, 173).

Other toxic effects of QA through NMDA receptors have been observed, such as 

inflammatory events, energetic deficits, and behavioral and morphological alterations(42, 

160, 174). The activity and toxicity of QA can change, depending on its levels. It has also 

been shown to participate in the apoptosis of oligodendrocytes, neurons, and astrocytes via 

NMDA-dependent ROS formation(172, 173).

Furthermore, QA can form complexes with Fe2+ and modulate lipid peroxidation(175). The 

QA-Fe2+ complex is relatively stable at physiological pH. Although this complex initiates 

the generation of hydroxyl radicals, it forms a QA derivative that enables the redox cycling 

of Fe2+ and Fe3+ ions, thus maintaining hydroxyl radical formation(176). The QA-Fe2+ 

complex has been shown to be responsible for in vitro DNA-chain breakage and lipid 

peroxidation that are mediated by hydroxyl radicals(177).
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4. The abnormal kynurenine pathway links oxidative stress, inflammation, 

and immune disorder in cardiovascular diseases

4.1 Immune regulatory role of the kynurenine pathway in atherosclerosis

4.1.1 Modulation of immunoinflammatory responses by IDO—The relationship 

between IDO activity and coronary heart disease (CHD) has been demonstrated in a few 

multi-center prospective studies. In a large cohort study of the general population (n=921, 

46–76 years old), IDO activity, as indicated by Kyn/Trp ratio (KTR), was positively 

correlated with early atherosclerosis and increased carotid artery intima-media thickness 

(CA-IMT) in both sexes, suggesting that IDO is a sensitive marker of atherosclerosis(178). 

Consistently, in a cohort of 3224 patients who were followed for 55 months, urine KTR, 

which is a novel urinary marker of inflammation marker, was strongly associated with 

adverse prognosis in patients with suspected stable coronary artery disease(179).

In another study, an oral load of L-Trp caused patients with myocardial infarction or angina 

pectoris to have higher KTR as compared to controls, indicating higher Trp degradation in 

these patients(180). The positive correlation between IDO activity and age was to be 

expected, as IDO activity is known to increase with age(181, 182). There was also a 

significant correlation between IDO and body mass index (BMI), waist circumference, and 

waist-to-hip ratio in both sexes. In parallel with this finding, Trp depletion and increased 

IDO activity were observed in morbidly obese patients, and this persisted even after weight 

reduction and led to chronic immune activation(183).

A prospective multi-center study of 986 young adults has identified that IDO activity 

(reflected by KTR) correlates significantly with CA-IMT in female subjects. IDO activity 

correlated significantly with several risk factors for atherosclerosis in females, such as age, 

low-density lipoprotein cholesterol (LDL-C), and BMI. In addition, it correlated weakly 

with C-reactive protein (CRP) and inversely with high-density lipoprotein cholesterol (HDL-

C) and triglyceride. In males, IDO activity correlated significantly with CRP and inversely 

with HDL-C. These results suggested that the IDO enzyme is a novel marker of immune 

activation in early atherosclerosis in young females(184). The Tampere vascular study has 

revealed that the up-regulation of IDO and its related genes are pronounced in 

atherosclerotic plaques. Immunohistochemical analyses demonstrated the expression of IDO 

protein in the atheromatous core and its co-distribution with monocyte-macrophages. In a 

gene-set enrichment analysis, the IDO pathway revealed a significant regulatory T cell, fork-

head box protein 3-initiated CD28-CTLA-4-inducible T-cell co-stimulator-driven pathway 

that leads to the activation of IDO expression in antigen-presenting cells. It has been 

concluded that IDO and the IDO-related pathway are important mediators of the 

immunoinflammatory responses in advanced atherosclerosis(185).

Moreover, increased IDO activity, as indicated by KTR, was found in subjects with 

angiographically verified CHD compared with healthy controls(186). The increase in IDO 

activity coincided with decreased Trp concentration and increased neopterin concentration, 

thus indicating an active cellular immune response. A close association between KTR and 

markers of immune activation, such as neopterin, has been established(187). In line with 
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this, the Hordaland health study has shown that plasma neopterin and KTR levels can predict 

acute coronary events in older adults without previous CHD(188).

In addition to IDO, the possible role of TDO in the enhancement of Trp degradation in the 

preclinical stages of atherosclerosis cannot be excluded, although IDO seems to be a more 

probable activator. TDO regulates basal serum Trp concentrations, and IDO is up-regulated 

in response to inflammatory conditions that are characteristics of early atherosclerosis(29).

4.1.2 Protective role of the kynurenine pathway—The protective role of IDO has 

been reported. The blockage of IDO expression in lymphoid tissue plasmacytoid dendritic 

cells (PDCs) from atherosclerotic mice abrogates the suppressive effect of PDCs on T-cell 

proliferation, suggesting that PDCs exert their protective role in atherosclerosis 

extravascularly by dampening T-cell proliferation and function in an IDO-dependent 

manner(189). Simultaneously, in the presence of the IDO inhibitor, 1-MT, the beneficial 

effects of EPA on atherosclerosis regression were inhibited, which suggested that IDO 

mediates EPA(190). The administration of 1-MT significantly increased macrophage 

contents in atherosclerotic lesions and CD4+ T-cell contents in the EPA-treated group 

compared with the solvent-treated EPA group. In particular, IDO expression in DCs is 

indispensable for atherosclerotic plaque regression, because the administration of the IDO 

inhibitor blocked the beneficial effects of EPA and increased inflammatory cell infiltration 

and plaque formation to the extent of control with the IDO inhibitor(190). Besides, it has 

been indicated that(191) the protective effects of stem cell therapy in ischemia-reperfusion 

(IR) injury of hind limb are critically dependent on the expression of IDO to induce its anti-

inflammatory effects. In IDO−/− mice, inflammation induced by the IR injury is more 

pronounced and so is necrosis and apoptosis of the tissues, which leads to a longer recovery 

time seen clinically.

Moreover, 3-HAA has been identified to inhibit atherosclerosis by regulating lipid 

metabolism and inflammation, which are two major components of this disease(192). 

Treatment of mice with 3-HAA for eight weeks significantly reduced the size of lesions in 

the aorta and modulated local and systemic inflammatory responses. A major cellular 

component of atherosclerotic lesions is the foam cells, which are initially formed by the 

uptake of oxidized LDL by macrophages. Importantly, 3-HAA has been reported to inhibit 

this uptake of oxidized LDL, and it can significantly affect plasma cholesterol and 

triglyceride levels in LDL receptor−/− mice, likely due to the modulation of signaling 

through peroxisome proliferator-activated receptors.

4.2 The kynurenine pathway is associated with the prevalence of cardiovascular disease in 
chronic renal disease patients

Many recent studies have postulated that the activation of the Kyn pathway is associated 

with increased SOX, inflammation, and atherosclerotic CVD prevalence in renal dysfunction 

patients(193–196).

4.2.1 Relationship to the severity of chronic kidney disease—In a prospective 

blinded endpoint analysis of patients with chronic kidney disease (CKD)(193), the serum 

levels of Kyn, KYNA, and QA increased with CHK severity (stages 4 and 5), although Trp 
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levels were unchanged. IDO activity, which may be estimated via the KTR, was significantly 

induced in patients with CKD(197), and it correlated with disease severity (stages 3–5) and 

key inflammatory markers [hypersensitive C reactive protein (hsCRP) and soluble tumor 

necrosis factor receptor-1(sTNFR-1)] independent of serum creatinine, age, and body 

weight. IDO products (Kyn, KYNA, and QA) also correlated with hsCRP and sTNFR-1. 

Overall, the induction of IDO and serum Kyns may primarily be a consequence of chronic 

inflammation, which is a well-known feature in CKD.

4.2.2 Association with the markers of inflammation and oxidative status—
Other clinical trials(194–196) have also shown that serum levels of Trp catabolites of the 

Kyn pathway increase with CHK severity and associate with markers of inflammation and 

SOX, which are in agreement with the previous report.

In a cohort of patients with CKD(194), Kyn, AA, and cellular adhesion molecule (soluble 

intercellular adhesion molecule-1 [sICAM-1] and soluble VCAM-1 [sVCAM-1]) 

concentrations were significantly higher in undialyzed patients with CKD compared with 

healthy subjects. In addition to these increases, significantly elevated levels of KYNA and 

the SOX marker, Cu/Zn SOD, were observed in two groups of dialyzed patients. Kyn, 

KYNA, and AA were positively associated with elevated sICAM-1 and sVCAM-1 in the 

whole CKD group, and a strong positive relationship was observed between Kyn and hsCRP, 

a surrogate of inflammation. Multivariable analysis showed that Kyn was a strong 

independent correlate of sICAM-1. Simultaneously, another study(195) has reported that 

CKD patients show a significant increase in plasma concentrations of 3-HAA, AA, CCL2, 

inflammatory protein-1β (CCL4), Cu/Zn SOD, and hsCRP, compared with controls. 

Multiple stepwise regression analysis has identified 3-HAA as the independent variable that 

was significantly associated with increased CCL2 and CCL4, which are correlated with 

increased SOX and carotid atherosclerosis(198).

Furthermore, a cross-sectional study on CKD patients(196) has indicated that the Kyns are 

positively associated with various endothelial markers: von Willebrand factor (vWF), 

thrombomodulin (TM), sICAM-1, and sVCAM-1. CA-IMT positively correlated with Kyn, 

3-OHkyn, and QA. Finally, multiple regression analysis has identified QA levels as the 

independent variable that was significantly associated with increased IMT in this population. 

This study suggested that the activation of the Kyn pathway, endothelial dysfunction, and the 

progression of atherosclerosis in CKD patients are related, whereas the endothelium is 

pivotal in the control of hemostasis and thrombosis.

Even more important, a recent clinical trial has shown that both Kyn and Kyn/Trp ratio 

significantly decreased after Amelioration of both oxidative and inflammation status by 

cholesterol lowering treatment in CKD, to values comparable with healthy controls after one 

year treatment(197).

4.2.3 Correlation with cardiovascular diseases—Along with the earlier studies, new 

evidence has provided support for the link between Kyn pathway activation and CVD 

prevalence or pathogenesis in patients with end-stage renal disease (ESRD)(199–205).
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A clinical trial of patients with ESRD has revealed that(199) the levels of Kyn pathway 

metabolites, TM, and vWF were significantly elevated in ESRD patients compared with 

controls. However, Trp concentrations in uremics were significantly lower than in healthy 

people. Kyn, 3-OHkyn, and QA levels were positively associated with TM and vWF in the 

whole ESRD group. A positive relationship between Cu/Zn SOD and Kyn, 3-OHkyn, and 

QA levels was observed, whereas the SOX marker, malondialdehyde, was correlated with 3-

OHkyn and QA concentrations. Multiple stepwise regression analysis has shown that Kyn 

metabolites and oxidative status are the independent variables that were significantly 

associated with increases in TM and vWF levels in uremic patients. This study has 

demonstrated that Kyn metabolites are independently and significantly associated with 

endothelial dysfunction in ESRD patients.

Pawlak et al. have reported that(200) both Kyn and 3-OHkyn are positively associated with 

Cu/Zn SOD and an index of inflammation (hsCRP) in the ESRD group. Univariate quasi-

Newton and Rosenbrock’s logistic regression analysis have shown that the prevalence of 

CVD in the population of uremic patients was significantly associated with low Trp and high 

Kyn and 3-OHkyn levels. Furthermore, logistic regression analysis has confirmed that 3-

OHkyn levels were independently associated with the presence of CVD in uremics. In 

another cross-sectional study(201) on chronic renal failure patients, Kyns were associated 

with hyperfibrinolysis, which has been causally related to the development of atherosclerosis 

and cardiovascular complications(206). These results suggested a relationship between Kyn 

pathway activation and increased SOX, inflammation, and CVD prevalence in ESRD 

patients. In addition, Kyn, QA, matrix metalloproteinases (MMPs), and a tissue inhibitor of 

MMPs were significantly higher in continuous ambulatory peritoneal dialysis (CAPD) 

patients with CVD than in patients without CVD and controls(202). QA was positively 

correlated with MMP-2 and the tissue inhibitor of MMP-2, which are responsible for the 

degradation of extracellular matrix components that are involved in vascular wall 

remodeling(207). QA and the QA/Kyn ratio have been identified to be the factors that are 

independently associated with MMP-2, thus suggesting a connection between Kyn pathway 

activation, arterial remodeling, and CVD prevalence in uremic patients on CAPD treatment.

Pawlak et al. have further demonstrated that the plasma concentrations of Kyn, QA, and the 

QA/Kyn ratio are positively associated with the inflammation indicator (hsCRP), SOX 

markers (Cu/Zn SOD, total peroxide, and malondialdehyde), and CA-IMT values in 

uremics(203). Moreover, multiple stepwise regression analysis has identified QA and the 

QA/Kyn ratio as the independent variables that were significantly associated with increased 

CA-IMT in this population. In a clinical trial on hemodialysis (HD) patients(204), a positive 

association was observed between log-transformed KTR and log-transformed hsCRP. Serum 

Kyn was also positively correlated with log-transformed hsCRP. These results confirmed a 

possible relationship between the activated Kyn pathway and inflammation in HD patients. 

It also demonstrated that log-transformed KTR was similarly related to an increase in CA-

IMT in HD patients. In addition, the diameter of maximal plaque was significantly larger in 

the top quartile of KTR compared with the bottom quartile, and the ankle-brachial pressure 

index was significantly higher in the lowest quartile of KTR. These findings suggested that 

the Kyn/Trp ratio was associated with carotid plaque enlargement and stenosis of peripheral 

arteries in the legs, as well as arterial wall thickness. Another study on HD patients has 
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shown that IDO concentration is increased in HD patients and is further increased in HD 

patients with CHD(205).

Intriguingly, inverse correlations have been observed between KYNA levels and CVD 

prevalence in ESRD patients(121, 122). Kyn, KYNA, and QA levels were significantly 

higher in peritoneal dialysis (PD) patients than in controls, whereas Trp was significantly 

lower in PD patients(121). In addition, PD patients with CVD had lower KYNA levels 

compared with PD patients without CVD. Logistic regression analysis has shown that low 

KYNA levels are independently associated with the presence of CVD in PD patients. Similar 

relationships have been observed in patients undergoing CAPD(122). KYNA concentrations 

and the KYNA/Kyn ratio were significantly lower in patients without CVD, and they were 

positively associated with Hcy in all CAPD patients and with hyperhomocysteinemia in 

CVD+ patients. These findings are in agreement with previous reports that KYNA may have 

a protective influence on the endothelium during hyperhomocysteinemia in vitro (128).

The results of these studies suggested a relationship between the activation of the Kyn 

pathway and increased SOX, inflammation, and the progression of atherosclerosis in patients 

with CKD.

4.3 Kynurenines affect the cardiovascular system during systemic inflammation

4.3.1 Vessel relaxation—IDO activity is increased in patients with inflammatory 

diseases, such as severe infection(18, 20), collagen diseases(208), and sepsis(21, 209). 

Blood pressure is tightly regulated by various mediators that are released from nerve 

endings, endocrine glands, and the endothelium. A decrease in the production of 

vasoconstricting factors and an increase in relaxing factors can cause blood pressure to drop. 

Kyn is the active compound in the IDO pathway that is responsible for lowering blood 

pressure in mice infected with malarial parasites(18, 20). A new clinical study has shown 

that IDO is expressed in resistance vessels in human sepsis, and its activity correlates with 

hypotension in human septic shock. IDO is thus a potential novel contributor to hypotension 

in sepsis(21). Jung et al.(210) have reported that IDO−/− mice and 1-MT-treated, endotoxin-

shocked mice have decreased levels of the cytokines, TNF-α, IL-6, and IL-12, and enhanced 

levels of IL-10. Blockade of IDO is thought to promote host survival in LPS-induced 

endotoxin shock. In addition, KYNA has been reported to attenuate NMDA-induced pial 

arteriolar dilation in newborn pigs(211). Co-application of KYNA dose-dependently reduces 

NMDA-induced vasodilation and attenuates the kainate-induced response.

4.3.2 Metabolism—In cardiovascular patients with systemic inflammation, low plasma 

vitamin B6 status affected the metabolism through the Kyn pathway(212). Plasma 3-OHkyn 

acted as a systemic vitamin B6 marker that was inversely related to plasma pyridoxal 5′-

phosphate, which is a commonly used marker for vitamin B6. Furthermore, inflammation 

was positively related to 3-OHkyn.

4.4 Activation of the kynurenine pathway in acute severe heart attacks

A study on biochemical changes has provided data to support the monitoring of Trp 

degradation as a potential means of detecting immune activation in a porcine cardiac arrest 
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model(213). The KTR may serve as a short-term measurement of immune activation and 

therefore permit an estimate of the extent of immune activation. Moreover, the Kyn pathway 

has been shown to be activated after cardiac arrest in rats, pigs, and humans(214). Decreases 

in Trp occurred during the post-resuscitation period and were accompanied by significant 

increases in its major metabolites, 3-HAA and KYNA, in each species. In rats, changes in 

Kyn pathway metabolites reflected changes in post-resuscitation myocardial function. In 

pigs, changes in Trp and increases in 3-HAA were significantly related to the severity of 

cerebral histopathological injuries. Similar to rats and pigs, there was a trend toward lower 

plasma levels of Trp and higher levels of Kyn in resuscitated patients than in healthy 

volunteers. The plasma levels of KYNA and 3-HAA were significantly higher at 1 h post-

resuscitation. Patients who survived after resuscitation presented lower plasma levels of 

KYNA and 3-HAA in comparison to those who died. Interestingly, the plasma levels of 3-

HAA were approximately doubled in patients who died compared to those who survived. In 

this fully translational investigation, the Kyn pathway was activated following resuscitation 

from cardiac arrest and may have contributed to post-resuscitation outcomes.

In mice with acute viral myocarditis, postinfection with the encephalomyocarditis virus 

increased Kyn serum levels, decreased Trp serum levels, and enhanced IDO activity in the 

spleen and heart(215). The survival rate of IDO−/− or 1-MT-treated mice was significantly 

greater than that of IDO+/+ mice. Indeed, the viral load was suppressed in IDO−/− or 1-MT–

treated mice. Furthermore, the levels of type I IFN in IDO−/− mice and IDO−/− bone 

marrow-transplanted IDO+/+ mice were significantly higher than those in IDO+/+ mice, and 

treatment of IDO−/− mice with Kyn metabolites eliminated the effects of IDO−/− on the 

improved survival rates(215). These results suggested that IDO has an important role in 

acute viral myocarditis. Specifically, IDO is postulated to increase the accumulation of Kyn 

pathway metabolites, which suppress the production of type I IFN and enhance viral 

replication. The inhibition of the Trp-Kyn pathway appears to ameliorate acute viral 

myocarditis. In line with this, upregulated type I IFN has been observed in IDO−/− and 1-

MT-treated mice with retrovirus infection compared with those form WT mice, resulting in 

suppression of virus replication, suggesting that modulation of the IDO pathway may be an 

effective strategy for treatment of virus infection(216).

5. Conclusions

In summary, the Kyn pathway plays a key role in the pathophysiological process of CVD by 

regulating inflammation, SOX, and immune activation (Figure 3). It offers previously 

uncharacterized therapeutic targets and possibilities for the development of novel therapies 

that can retard the inflammatory and oxidative states, reduce immune activation, and 

consequently decrease the prevalence of CVD.
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Figure 1. Schematic representation of Trp catabolism along the kyn pathway in mammals
The initial and rate-limiting step is catalyzed in the liver by TDO or in extra-hepatic tissue 

by IDO. Nfk is then converted to Kyn and formic acid. Depending on the cell-type, Kyn can 

then be catalyzed to form various metabolites, which can exhibit immunological, prooxidant, 

antioxidant or neurological activities. Trp, tryptophan; Nfk, N-formyl-Kynurenine; TDO, 

tryptophan 2, 3-dioxygenase; IDO, indoleamine- pyrrole 2,3-dioxygenase; Kyn, kynurenine; 

3-OHkyn, 3-hydroxykynurenine; KYNA, kynurenic acid; XA, xanthurenic acid; 3-HAA, 3-

hydroxyanthranilic acid; QUIN, quinolinic acid.
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Figure 2. The catalytic properties of IDO
IDO activation involves the single electron reduction of heme-iron from the ferric to ferrous 

form that facilitates the subsequent binding of L-Trp and O2 to the enzyme active site and 

oxidation of pyrrole ring of the amino acid to form Nfk.
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Figure 3. The activation of Kyn pathway in cardiovascular system
Kyn pathway regulates inflammation, SOX and immune responses in cardiovascular disease, 

especially under some pathological conditions, including chronic renal dysfunction, 

systemic inflammation and acute severe heart attack. Ox-LDL, oxidized low density 

lipoprotein; Vit, vitamin
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Table 1

Kyn pathway metabolites and their biological behaviors.

Metabolite Properties Functions and related diseases

Trp Antioxidant
Antiradical Inhibition of lipid peroxidation

Kyn

Prooxidant
Superoxide radical generation
Photooxidation
Lens protein modification
Deamination and oxidation
Nerve growth factor generation

Cataract formation
Cell death
Early neuronal growth and development
Hypotension

AA hydroxyl radical inactivating ligand
hydroxyl radicals producer

Anti-inflammation
Neurodegeneration
Active rate of respiration

KYNA

Competitive NMDA receptor blocker
Noncompetitive α-7 nicotinic acetylcholine receptor inhibitor
Orphan G protein-coupled receptor 35 ligand
Inhibition of the release of inflammatory mediators and exitatoty amino acid
Ligand activated transcription factor (aryl hydrocarbon) activation
Hydroxyl radicals and peroxynitrite scavenger
Inhibition of Hcy-induced inhibition of cell proliferation and migration

Neuromodulator
Anti-inflammation
Immunosuppression
Prevention of lipid peroxidation and ROS 
generation
Protection against Hcy-induced cytotoxicity

3-OHkyn

Prooxidant
Endogenous generator of SOX
Modifications of proteins
Respiratory parameters modification
Antioxidant
Peroxyl radicals and superoxide scavenger

Cytotoxicity
Apoptosis
Cataract formation
Bladder cancer
Respiratory control index inhibition

XA

Neurotransmission/neuromodulator
Metal-chelating activities
Antioxidant
Peroxyl radicals and superoxide scavenger
Prooxidant
Superoxide and singlet oxygen generator
Photosensitizer
Photooxidation and polymerization of lens proteins

Inhibition of lipid peroxidation
Apoptosis
Cytotoxicity
Cataractogenesis

3-HAA

Autooxidation
Superoxide anions formation
Mitochondrial pattern: Oxygen uptake inhibition, uncoupling of the 
respiratory chain and oxidative phosphorylation
Inhibition of nuclear factor-κB activation
Depletion of intracellular glutathione
Antioxidant
Suppression of inducible nitric oxide synthase and VCAM-1 expressions
CCL2 secretion Inhibition
α-Tocopheroxyl radical reduction
Prevention of spontaneous oxidation of glutathione and the peroxyl radicals

Apoptosis
Prevention of lipid peroxidation
Protection of the cerebral cortex against SOX

QA

Agonist of the NMDA receptor
Excitotoxin
SOX induction
Free-radical generation
Dysregulation in oxidant/antioxidant ratio
Toxicity
DNA-chain breakage

Mitochondrial dysfunction
Cell death
Apoptosis
Inflammation
Energetic deficit
Behavioral and morphological alternations
lipid peroxidation
Protection of the cerebral cortex against SOX
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