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Abstract Companion dogs have recently been promot-

ed as an animal model for the study of aging due to their

similar disease profile to humans, the sophistication of

health assessment and disease diagnosis, and the shared

environments with their owners. In addition, dogs show

an interesting life history trait pattern where smaller

individuals are up to two-fold longer lived than their

larger counterparts. While some of the mechanisms

underlying this size and longevity trade-off are strongly

suspected (i.e., growth hormone/IGF-I), there are likely

a number of undiscovered mechanisms as well.

Accordingly, we have completed a large-scale global

metabolomic profiling of dogs encompassing a range

of sizes and ages from three cities across the USA. We

found a surprisingly strong location signal in the metab-

olome, stronger in fact than any signal related to age,

breed, or sex. However, after controlling for the effects

of location, tryptophan metabolism emerged as signifi-

cantly associated with weight of the dogs, with small

dogs having significantly higher levels of tryptophan

pathway metabolites. Overall, our results point toward

novel, testable hypotheses about the underlying physio-

logical mechanisms that influence size and longevity in

the companion dog and suggest that dogs may be useful

in sorting out the complexities of the tryptophan meta-

bolic network.
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Introduction

Humans are living longer than ever before in the 300-

thousand-year history of our species. Consequently, we

often spend our later years battling frailty, disability,

and/or multiple life-threatening illnesses. To begin to

understand the underlying aging processes that so often

degrade the quality of later life, model laboratory organ-

isms such as Caenorhabditis elegans, fruit flies, and

mice are most commonly employed with an ultimate

goal of discovering interventions that can be translated

to improve and extend human health. However, transla-

tion of findings from these common laboratory species

to effective interventions in humans has been uncertain

(Cheon and Orsulic 2011; von Scheidt et al. 2017).

https://doi.org/10.1007/s11357-019-00114-x

Electronic supplementary material The online version of this

article (https://doi.org/10.1007/s11357-019-00114-x) contains

supplementary material, which is available to authorized users.

J. M. Hoffman (*) : J. V. Kiklevich :M. Austad :

S. N. Austad

Department of Biology, University of Alabama at Birmingham,

1300 University Blvd. CH464, Birmingham, AL 35294, USA

e-mail: jmhoffm@uab.edu

V. Tran :D. P. Jones

Division of Pulmonary Allergy and Critical Care, Department of

Medicine, Emory University, Atlanta, GA, USA

V. Tran :D. P. Jones

Clinical Biomarkers Laboratory, Department of Medicine, Emory

University, Atlanta, GA, USA

A. Royal : C. Henry

Veterinary Medical Diagnostic Laboratory, University of

Missouri, 900 E Campus Dr, Columbia, MO 65211, USA

GeroScience (2020) 42:881–896

/Published online: 29 November 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s11357-019-00114-x&domain=pdf
http://orcid.org/0000-0002-9487-1629
https://doi.org/10.1007/s11357-019-00114-x


Among the reasons for this limited therapeutic translat-

ability are (1) overreliance on one or a few genetic

backgrounds, (2) model species accumulate very differ-

ent late-life pathologies compared with humans, and (3)

they are typically maintained in highly controlled, un-

changing, specific pathogen-free, benign environments

that bear little resemblance to the range of environments

that humans inhabit. To address these issues, the com-

panion dog has recently been promoted as a more rep-

resentative model of human health and longevity (e.g.,

Hoffman et al. 2018a; Kaeberlein et al. 2016).

Compared with laboratory mice, for instance, compan-

ion dogs are genetically heterogeneous, experience an

extraordinarily similar range of late-life pathologies as

humans, and of course share the same environments as

their owners. In addition, because of the sophistication

of veterinary science, their health status can be exqui-

sitely monitored and pathologies identified with preci-

sion possibly only second to that of humans (e.g., Jin

et al. 2016). In this regard, dogs have been found to have

age-related degenerative valve disease (Urfer et al.

2017a) as well as reduced oral health with aging (An

et al. 2018), both similar to humans. In a similar vein,

dogs have recently been proposed as a model to study

lifespan extending interventions, and early work with

rapamycin supplementation showed no negative health

effects with a potential improvement in heart function in

a small cohort of dogs (Urfer et al. 2017b). While these

studies all suggest the power of the dog as a model of

translational human aging, little is known about the

molecular changes that occur with, and contribute to,

aging in the dog.

In addition to their strengths as a model of human

aging and longevity, dogs show a potentially highly

informative pattern relating body size and longevity.

Across mammalian species, larger species tend to be

longer lived (Healy et al. 2014); however, within a

species, like the companion dog, smaller individuals

are longer lived. This pattern is seen in other mammalian

species that show a significant size variation including

mice and rats (Miller et al. 2002; Rollo 2002), horses

(Tapprest et al. 2017), and possibly humans (He et al.

2014; Ma et al. 2017), although data conflict on this last

point with some studies observing that taller individuals

live longer (e.g., Brandts and van den Brandt 2019).

However, no other species is known to show the body

size–longevity relationship to the extent of the compan-

ion dog, in which a 50-fold variation in body mass is

negatively associated with a 2-fold range in lifespan

(Fleming et al. 2011; O'Neill et al. 2013). Thus, weight

can be used an approximation of longevity, as smaller

dogs are expected to live longer than larger ones.

The physiological parameters that contribute to the

size-longevity trade-off seen in mammals is multi-facet-

ed. Growth hormone (GH) and IGF-I signaling are

almost certainly involved. In mice, it is well established

that reducing GH signaling, either by lowering hormone

availability or by disrupting its receptor, increases lon-

gevity and preserves multiple dimensions of health

(Bartke 2005). Consistent with these findings, in dogs,

GH and circulating IGF-1 levels are higher in large

compared with medium-sized dog breeds (Favier et al.

2001; Greer et al. 2011). In addition to the GH/IGF axis,

recent research using cultured fibroblasts from small and

large dogs suggests that differences in mitochondrial

metabolism and oxidative stress might contribute to

the longevity differences seen across different-sized

dogs. Cells from large dogs have significantly

higher rates of glycolysis and DNA damage

(Jimenez et al. 2018), as well as higher mitochon-

drial respiration rates (Nicholatos et al. 2019).

However, many of the underlying mechanisms that

contribute to longevity in the dog are still unknown.

By investigating size–longevity differences, we can

begin to develop novel hypotheses about healthy

aging that potentially can be translated to human

(and dog) life-extending interventions.

One method to identify molecular networks underly-

ing complex physiological processes is metabolomics,

the analysis of thousands of individual metabolites in an

organism to understand how changes in metabolism are

associated with specific phenotypes of interest.

Metabolomics has been used extensively in model or-

ganisms to understand aging and longevity (e.g., Fuchs

et al. 2010; Hoffman et al. 2014; Houtkooper et al.

2011), as well as non-human primates (Hoffman et al.

2018b; Hoffman et al. 2016) and humans (Darst et al.

2019; Menni et al. 2013). Previous research has sug-

gested that individual dog breeds show different

metabolomic profiles (Lloyd et al. 2016; Nicholatos

et al. 2019; Viant et al. 2007) and that metabolomic

profiles change in response to diet and obesity (Forster

et al. 2018; Soder et al. 2017), as well as with specific

diseases (e.g., Gookin et al. 2018; Hasegawa et al. 2014;

Minamoto et al. 2015). Dogs of varying sizes have been

shown to have different levels of circulating amino acids

(Middleton et al. 2017), as well as different

metabolomic profiles (Nicholatos et al. 2019).
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Here, we present the largest metabolomics study to

date in the companion dog with the goal of developing

novel hypotheses about mechanisms of canine aging

and longevity. We specifically look at the dog metabo-

lome sampled at three different locations across the

USA to help assess the impact of environmental

heterogeneity.

Methods

Sample collection

Whole blood from animals undergoing unrelated proce-

dures was collected in EDTA tubes from companion

dogs in three locations between 2016 and 2018: (1)

Birmingham, AL; (2) San Antonio, TX; and (3)

Columbia, MO. Birmingham samples were collected

from stray animals brought into the Jefferson County

animal control facility and generally healthy animals

seen at local veterinary clinics under the direction of

JVK. San Antonio samples were collected by JVK and

MA from generally healthy animals belonging to private

owners brought to a local spay/neuter clinic. Columbia

samples were collected as part of diagnostic workups for

Veterinary Health Center patients, with sample process-

ing coordinated by AR and CH. Individuals from this

location included acute and chronically ill animals in

addition to apparently healthy animals. A majority of

samples from Birmingham and Columbia were from

dogs fasted at least 4–6 h before blood collection. The

San Antonio samples were from animals fasted over-

night before the day of collection. During blood draw,

demographic information for each dog were recorded:

age, sex, sterilization status, body weight, and body

condition score (BCS), a measure of obesity in the

dog. Breed of dog was assigned either by the tending

veterinarian or by the owner of the dog (Table S1). Age

of stray animals from the Jefferson County animal con-

trol facility was estimated by JVK from a combination

of bone development, and dental and ocular character-

istics. Collection of blood samples from person-owned

dogs was approved under UAB IACUC 21121and MU

ACUC 8240.

After sample collection, tubes were stored at 4 °C.

Plasma was extracted by centrifugation and then frozen

at – 80 °C until plasma metabolite extraction. Samples

from the three collection sites were randomized to min-

imize batch effects during metabolomics analyses and

shipped on dry ice to the Clinical Biomarkers

Laboratory, Emory University, for analysis.

Metabolomics

High-resolution metabolomics (HRM) profiling was

completed using standardized methods (Liu et al.

2016; Soltow et al. 2013) as follows. The 133 samples

were analyzed in three batches consisting of 44, 44, and

45 samples, each prepared daily along with pooled

human plasma (Qstd3) for quality control. For analysis

prior to the first and after the last batch, an additional

aliquot of National Institute of Standards and

Technology Standard Reference Material 1950 (NIST

SRM1950) was processed and analyzed identically to

the samples. Aliquots were removed from storage at −

80 °C, thawed on ice, and 50 μL was treated with 100

μL of ice-cold LC-MS-grade acetonitrile. Extracts were

then equilibrated for 30 min on ice, centrifuged

(16,100×g at 4 °C) for 10 min to remove precipitated

proteins, and clear supernatant was transferred to

250-μL autosampler vials and maintained at 4 °C until

analysis (< 22 h).

Sample extracts were analyzed using liquid chroma-

tography and Fourier transform high-resolution mass

spectrometry on a Dionex Ultimate 3000, Orbitrap

Fusion™ Tribrid™ Mass Spectrometer system

(Thermo Scientific) operated at 120,000 resolution.

The chromatography system was operated in a dual-

pump configuration that enabled parallel analyte sepa-

ration and column flushing. For each sample, 10 μL

aliquots were analyzed in triplicate using hydrophilic

interaction liquid chromatography (HILIC) with

electrospray ionization (ESI) source operated in positive

mode and reverse-phase chromatography (RPC) with

ESI operated in negative mode. Analyte separation for

HILIC was accomplished by a 2.1 mm × 50 mm ×

2.5 μm Waters XBridge BEH Amide XP HILIC and

an eluent gradient (A = water, B = acetonitrile, C = 2%

formic acid) consisting of an initial 1.5-min period of

22.5% A, 75% B, and 2.5% C followed by a linear

increase to 77.5% A, 20% B, and 2.5% C at 4 min and

a final hold of 1 min. RPC separation was by 2.1 mm ×

50 mm × 3 μm end-capped C18 column (Higgins) using

an eluent gradient (A = water, B = acetonitrile, C =

10 mM ammonium acetate) consisting of an initial 1-

min period of 60% A, 35% B, and 5% C, followed by a

linear increase to 0% A, 95% B, and 5% C at 1.5 min

and held for the remaining 3.5 min. The mobile phase

GeroScience (2020) 42:881–896 883



flow rate for HILICpos was held at 0.350 mL/min for

the first 1.5 min, and increased to 0.400 mL/min for the

remaining of the run. C18neg mobile phase flow rate

was held at 0.400 ml/min for the first 2 min and then

increased to 0.500 ml/min for the remaining 3.0 min.

Data were collected for a mass-to-charge ratio (m/z)

range 85–1275. Probe temperature, capillary tempera-

ture, sweep gas, and S-Lens RF levels were maintained

at 200 °C, 300 °C, 1 arbitrary units (AU), and 45,

respectively, for both ESI polarities. Additional source

tune settings were optimized for sensitivity using a

standard mixture; positive tune settings for sheath gas,

auxiliary gas, sweep gas, and spray voltage setting were

45 AU, 25 AU, 1 AU, and 3.5 kV, respectively; negative

settings were 45 AU, 5 AU, 1 AU, and − 3.0 kV.

Maximum C-trap injection times of 100 ms and auto-

matic gain control target of 1 × 106 for both polarities.

During untargeted data acquisition, no exclusion or

inclusion masses were selected, and data were acquired

in MS1 mode only. Data were stored as .raw files and

converted to CDF format using Xcalibur file converter

software (Thermo Fisher, San Diego, CA) for further

data processing. Peak detection, noise filtering, m/z

and retention time alignment, feature quantification,

and data quality filtering were performed using

apLCMS (Yu et al. 2009) with xMSanalyzer

(Uppal et al. 2013). Data were extracted as m/z

features where a feature is defined by m/z, retention

time, and integrated ion intensity.

As a confirmation of metabolite values in our dataset,

we compared individual metabolite values with known

standards (Qstd3 as described above). This was done by

taking the known Qstd3 value and multiplying it by

metabolite intensity of each canine sample divided by

the mean Qstd3 value for that metabolite. This gave us a

“true” concentration of the metabolite in the canine

samples compared with a human reference.

Data analysis

Metabolomics data analysis was completed in the sta-

tistical language R unless otherwise stated (R Core

Team 2018). Positive and negative ion mode data were

analyzed separately. All data were first log-transformed

and centered and scaled to using the “scale” function in

R. Metabolites that were missing from more than 15%

of all samples were removed from the analysis. Dogs

who were recorded as being under 1 year of age were

removed from the analysis as final body size had not yet

been attained.

Our initial interest was in determining the association

between individual metabolites, weight, and age, con-

trolling for the effects of sex and location. We also

investigated the effect of sterilization status on the me-

tabolome and found little effect. Thus, sterilization sta-

tus was dropped from our final model. Significance was

set with a false discovery rate (FDR) of α < 0.05

(Benjamini and Hochberg 1995). Metabolites that were

found to be associated with weight or age were run

through the programmummichog to determine metabol-

ic pathways that were significantly different for each

factor individually (Li et al. 2013). We did not control or

look at the impact of breed in our model as there were

over 20 breeds represented in our final dataset.

Therefore, we did not have the power to assess breed-

specific differences.

In addition to our individual metabolite analyses, we

examined the associations of the entire metabolome

with sex, age, and body weight. Principal components

analysis (PCA) was performed using the ade4 package

in R (Dray and Dufour 2007), for only those metabolites

that were present in all samples.

Results

Our final dataset consisted of plasma samples from 112

dogs across the three locations (44-Birmingham, 38-

Columbia, 30-San Antonio). The mean age of all ani-

mals from all sites was 5.5 years (1–17 years) with an

average weight of 19.7 kg (2.1–76.4 kg). Males slightly

outnumbered our female samples (62 males, 50 fe-

males); 49% of females and 55% of males were steril-

ized at the time of sample collection. Clear differences

were noted in the characteristics of the dogs among the

three collection sites (Fig. 1). Dogs fromColumbia were

overall older and largely sterilized compared with youn-

ger, smaller 100% intact dogs from San Antonio. In fact,

dogs from San Antonio were smaller than those from

either of the other two locations. In addition, 0%, 18.2%,

and 71% of dogs at San Antonio, Birmingham, and

Columbia had a serious health diagnosis at the time of

sample draw (Table S1). Thus, the dogs sampled in

Columbia were on average sicker than the other two

populations. Therefore, all three locations represent very

different canine populations.
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Our final metabolomics dataset consisted of 6789

metabolites in the positive ion mode and 6614 metabo-

lites in the negative ion mode. Our residual linear re-

gression model and PCA comprised 3473 and 3442

metabolites in the positive and negative ion modes,

respectively; this difference in metabolite number is

due to including only those metabolites that were found

to have no missing data across all samples in the

analyses.

We found that, perhaps not surprisingly, location had

the biggest association with the metabolome. The

metabolomes of San Antonio dogs were most different

from Birmingham and Columbia (Figure 2). This loca-

tion effect was so strong that it overwhelmed associa-

tions of individual metabolites with our factors of inter-

est as little variation was left in the dataset (Table 1). To

control this location effect, we utilized two different

approaches. In the first, we took the residuals of each

metabolite by location, and then used the residual values

in a linear model. Secondly, we analyzed each location

individually, comparing significant metabolites across

locations.

Using the residuals of location, we were able to

discover 161 and 293 metabolites associated with age

and 59 and 32 metabolites associated with weight in the

positive and negative ion modes, respectively (Table 2).

We found very few metabolites associated with sex, 1

and 11 in the positive and negative modes, respectively.

However, our PCA failed to separate the metabolome

based on either age or weight (Figure S1). Metabolite

enrichment analyses discovered 9 and 5 pathways asso-

ciated with weight, and 8 and 31 pathways associated

with age in the positive and negative ion modes, respec-

tively (Table 3).We found a strong signal for differences

in tryptophanmetabolism between large and small dogs,

with higher values of tryptophan metabolites always

seen in the small dogs (Fig. 3a–f). However, tryptophan

itself was not higher in small dogs (Fig. 3g), nor was

kynurenine, its immediate metabolized breakdown

product (Fig. 3h). We then quantified tryptophan using

the raw intensity values and found that levels of trypto-

phan varied from 6.55–132.12 and showed a similar

pattern with body weight and the normalized residual

values in the model (Figure S2).

When we looked within individual locations, we

were actually able to find more metabolites associated

with age and weight, even though our power was sig-

nificantly decreased with the reduction in sample size in

a location-specific analysis. Striking differences were

seen in the numbers of metabolites associated with each

factor of interest. Specifically, over 13% of the metabo-

lome was associated with age in our Birmingham sam-

ples, but less than 1% were associated with age in San

Antonio. This is not surprising as San Antonio had the

smallest age variation (Fig. 1). No metabolites passed

our FDR cutoff in our Columbia samples. Weight was

Fig. 1 Profile of dogs sampled from the three locations. (a)

Weight. (b) Age. Note that vertical lines indicate population mean.

Percent of the sample that is female and that comes from sterilized

dogs shown for each location

GeroScience (2020) 42:881–896 885



associated with just over 1% of metabolites in both

Birmingham and San Antonio, and again, no metabo-

lites passed our FDR cutoff in Columbia. Sex was

significantly associated with metabolite concentration

only in the San Antonio location and only in the nega-

tive ion mode. The metabolites associated with age and

weight in Birmingham and San Antonio rarely

overlapped.

For those metabolites that were associated with either

weight or age in Birmingham, we ran metabolite enrich-

ment analysis to determine which metabolic pathways

were differentially associated with which variable.

Similar to the entire combined datasets, the strongest

differences between large and small dogs were related to

tryptophan metabolism. Specifically, in the positive ion

mode, 6 different metabolites were negatively associat-

ed with body size (Fig. 4). These findings replicate those

seen in the location residual performed previously,

suggesting many of the effects seen in the entire dataset

are driven partially at least by the differences in the

Birmingham location.

In addition to the differences in tryptophan metabo-

lism, urea cycle metabolism, and metabolism of fatty

acids, linoleate metabolism, de novo fatty acid synthe-

sis, fatty acid activation, and vitamin A metabolism

were associated with weight, while fatty acid metabo-

lism and arginine, proline, and alanine metabolism were

associated with age (Table 2). Many of the metabolic

pathways associated with age and weight in the

Birmingham sample were also significantly enriched

in the entire dataset when using residuals of location as

described above (Table 2).

 d = 20 
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Fig. 2 PCA effects of location for the a positive and b negative ion modes

Table 1 Number of metabolites associated with age, sex, and

weight across all locations. Linear model has controlled for the

effects of location. Models were run with 3473 and 3442 metab-

olites in the positive and negative ion modes, respectively (all

metabolites with no missing data)

Column Age Sex Weight

Hilic positive 161 1 59

C18 negative 293 11 32

Table 2 Number of metabolites associated with age, sex, and

weight for each location individually. Models were run with

6789 and 6614metabolites in the positive and negative ion modes,

respectively

Column Location Age Sex Weight

Hilic positive Birmingham 930 0 106

Columbia 0 0 0

San Antonio 26 4 101

C18 negative Birmingham 1474 0 90

Columbia 0 0 0

San Antonio 13 45 21
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Our Columbia population did not reveal any metab-

olites associated with age or weight. As the population

was sicker than the Birmingham or San Antonio popu-

lation, we were interested in understanding what might

be driving the variation seen in this population. First, we

divided the dogs into those that had a cancer diagnosis

to those that either did not have cancer or had an un-

known diagnosis. We found that at least in the positive

ion mode, cancer status was able to somewhat separate

the two group in a PCA analysis (Fig. 5). However,

running a linear model with cancer status failed to find

any metabolites that passed our FDR cutoff.

Discussion

Here, we have completed the largest metabolomic pro-

filing study to date in the companion dog, as well as the
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Fig. 3 Tryptophan metabolites associated with weight across all

location. a–fAll were significantly associated with weight at FDR

< 0.05. g–iOther annotated metabolites in the pathway that did not

pass our FDR threshold. All significant metabolites are lower in

larger dogs, controlling for the effects of age and sex. Note that

weight has been square-root transformed to make visualization

easier
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first to examine how the metabolome changes with age

and weight. Interestingly, the largest effect we found

was with regard to location of sampling. This large

effect was quite unexpected, especially considering

two of the locations (Birmingham and San Antonio)

had samples drawn by the same veterinarian into

EDTA tubes from the same shipment. However, the

age, size, and reproductive status distributions of these

two populations differed dramatically, so in retrospect

the location effect was not as shocking. Columbia

samples were collected in EDTA tubes not from the

same shipment or brand as the Birmingham and San

Antonio samples, yet animals in Columbia had a me-

tabolome more similar to animals in Birmingham. This

suggests that sample handling was most likely not the

primary reason for the large location effect we

witnessed. There are several potential explanations for

these findings that immediately come to mind. First, as

the dogs were residing in different locations, they were

undoubtedly exposed to different gut microbiomes
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Fig. 4 Tryptophan metabolites associated with weight in Bir-

mingham only. a–f All were significantly associated with weight

at FDR < 0.05. g–iOther annotatedmetabolites in the pathway that

did not pass our FDR threshold. All significant metabolites are

lower in larger dogs, controlling for the effects of age and sex.

Note that weight has been square-root transformed to make visu-

alization easier
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which could be influencing the circulating metabolome

in the dogs. Secondly, there could be underlying viruses

that do not affect the dog healthwise but do have some

physiological effect on the metabolome. This specifical-

ly might explain the large differences observed in the

San Antonio population. In addition, all dogs from San

Antonio were younger, intact, and tended to be smaller

which could have biased our metabolomic results.

However, sterilization status did not have a significant

effect on individual metabolites which is why it was

removed from our final linear model analysis. Lastly,

there was a difference in time spent fasting for the San

Antonio compared with the other two locations as de-

scribed in the methods. San Antonio dogs were fasted

overnight while the same was not true for Birmingham

and Columbia dogs. This difference in fasting could

have contributed to some of the variations seen in the

metabolome across the locations. Recent research in

Labrador Retrievers suggests that the fasting plasma

metabolome is significantly different from those of re-

cently fed dogs (Soder et al. 2019). However, this study

did not look at different periods of fasting. In addition,

studies in humans suggest that only certain groups of

metabolites (i.e., carnitines) are associated with fasting

time (Sedlmeier et al. 2018). Overall, we conclude

fasting status could have played a significant but likely

minor role in our strong location signals. All these

reasons notwithstanding, there are many other possibil-

ities for the observed differences between locations

including, but not limited to, different environmental

exposures (e.g., diet, air quality, urban/rural residence,

climate differences). Most likely, a combination of fac-

tors contributes to the strong location effect seen in our

metabolomic samples.

Our study suggests that when working with individ-

uals from different locations, especially if these are

individuals living in the natural environment not the

laboratory, we must control for potential location ef-

fects. The advice is most likely applicable to all “omics”

in which “levels” of different biological factors are

measured (i.e., transcriptomics and proteomics).

Accordingly, any future canine studies from which sam-

ples are derived from different populations must have

location as a controlling effect even if all sample han-

dling procedures are consistent between sites.

Even with all the limitations of using non-laboratory

animals in metabolomic profiling, we still find signifi-

cant metabolites associated with age and weight in both

 d = 50 

 cancer 

 non-cancer 

PC1 (11.2%)

P
C

2
 (

9
.7

%
)

Fig. 5 PCA of Columbia dogs

with cancer status. Only the

positive mode showed some

separation of the two groups
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our location residual analysis and our Birmingham-

specific analysis. Metabolites associated with trypto-

phan metabolism and fatty acid metabolism were found

to be differentially regulated between large and small

dogs. This held true when looking at the entire dataset

controlling for location effect and in the Birmingham-

only dataset (the only dataset for which a large enough

number of metabolites passed our FDR to be used for

enrichment analyses). Metabolites in the tryptophan

metabolism pathway tended to be higher in small dogs

compared with large dogs (Figs. 3 and 4). We found no

effect of weight on the two major players in the trypto-

phan metabolism pathway: L-tryptophan and

kynurenine. However, no metabolites related to trypto-

phan metabolism showed a positive associated between

weight and metabolite concentration. This pattern sup-

ports recent research suggesting that tryptophan metab-

olism may be an integral part of aging and longevity.

High tryptophan (van der Goot and Nollen 2013) and

low kynurenine (Sutphin et al. 2017) have been shown

to promote longevity in worms, and low tryptophan

levels were associated with increased risk of mortality

in marmosets (Hoffman et al. 2018b).

The tryptophan metabolic network is complex.

Tryptophan is a necessary precursor for the synthesis of

the neurotransmitters, serotonin, and melatonin.

However, 95% of dietary tryptophan enters the

kynurenine pathway, where an end-product is NAD, a

key player in energymetabolism and a co-factor for many

enzymes such as sirtuins that are known to be involved in

multiple aspects of health and longevity (Mouchiroud

et al. 2013). Enhancing physiological NAD via various

precursors has been shown to increase longevity and

health in multiple species (Zhang et al. 2016). On the

other hand, inhibition of the kynurenine pathway—which

should reduce NAD—has also been observed to increase

health and longevity (van der Goot and Nollen 2013).

The resolution of this seeming paradox likely involves

bioactive intermediates in the kynurenine pathway such

as quinolinic acid which is an NMDA receptor agonist

and/or kynurinic acid which is an antagonist of glutamate

receptors. The kynurenine pathway also interacts with the

mTOR network (Badawy 2017). Dogs, with their range

of longevities, may be informative in refining our knowl-

edge of the intricacies of this pathway.

Similar to our results, tryptophan itself was not found

to be associated with weight in a previous canine meta-

bolomics study (Middleton et al. 2017); however, they

failed to find a signal of tryptophan degradation in their

body weight analysis. Changes in tryptophan metabo-

lism have also been shown to be related to diarrhea in

dogs (Guard et al. 2015), suggesting changes in trypto-

phan metabolism might be indicative not just of size but

also disease in individual dogs. While these studies

combined with ours would suggest that higher trypto-

phan pathway metabolite levels are beneficial for lon-

gevity, previous research has shown that tryptophan

restriction increases lifespan in both mice (De Marte

and Enesco 1986) and rats (Segall and Timiras 1976).

Therefore, the overall contribution of the tryptophan

pathway to aging and longevity is still a very much

needed area of research. Further interrogation of the

tryptophan metabolism pathway is warranted to under-

stand how manipulation may influence size and

longevity.

Surprisingly, we failed to find any metabolite associ-

ated with weight or age in our Columbia population,

even though they were more similar to the Birmingham

population when comparing the entire metabolome.

This population of dogs came from the Veterinary

Health Center at the University of Missouri College of

Veterinary Medicine, and as such represented an older,

sicker population compared with the other two locations

with the majority of dogs sampled in this population

having at least one major health concern. These differ-

ences in health status are potentially driving the lack of

metabolomic associations in the population and would

also lend support to our PCA analysis which discovered

some separation of a dogs diagnosed with and without

cancer (Fig. 5). As older adults often present with at

least one major morbidity, the Columbia results suggest

that future large metabolomic studies in humans might

also fail to find strong age or sex effects due to the

overwhelming physiological changes that occur in re-

sponse to disease as individuals age.

Interestingly, sex was not associated with individual

metabolites. None passed our FDR correction threshold

across locations, and only San Antonio showed a sex

effect of any metabolites in the location-specific models.

The San Antonio samples may have been characterized

by differences by sex because they were all from intact

dogs that were primarily young to middle-aged. Thus,

the variation from sterilization and age was much less in

this population compared with the other two locations.

The overall lack of metabolites associated with sex is

consistent with our previous finding that companion

dogs do not show sex differences in longevity nor

causes of death (Hoffman et al. 2017). However, these
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results are in contrast to the majority of the metabolomic

literature which suggests that sex plays a large role on

individual metabolites. Potentially, our FDR threshold

was too stringent for the small effects of sex, but as we

are looking at thousands of metabolites, these differ-

ences manifest themselves when combined together.

Our results combined increase knowledge to the

overall field of metabolism and aging. Metabolism itself

has been strongly linked to aging for more than a cen-

tury (Austad and Fischer 1991; Rubner 1908). Over the

past decade however, attention has focused more on the

details of metabolic regulation which has emerged as a

major contributor to the aging phenotype. Metabolomic

studies have been increasingly used in both model (e.g.,

Fuchs et al. 2010; Hoffman et al. 2014; Houtkooper

et al. 2011) and non-model (Ball et al. 2018; Hoffman

et al. 2018b; Hoffman et al. 2016; Lewis et al. 2018;

Viltard et al. 2019) organisms, leading to the discovery

of common conserved pathways associated with aging

and longevity. Also, diet as shown by dietary restric-

tion, the most robust method to increase lifespan and

health in model organisms, has been found to pro-

foundly modify metabolic regulation (Matyi et al.

2018). Combined, it is evident that research on

metabolic regulation with attention to individual

metabolites may provide novel insights into mecha-

nisms underlying the aging phenotype.

While we have presented the largest canine metabo-

lome study to date, our results are not without many

limitations due to the nature of sampling companion

owned dogs. First, a large proportion of the metabolome

is influenced by the environment—specifically the

diet—and we do not know what each individual dog

ate or was exposed to. However, we would not expect

there to be strong differences across the three popula-

tions with regard to diet, as it would not be expected that

owners in one location would feed a significantly dif-

ferent diet than another location within the USA. We

would assume, though our assumption could be incor-

rect, that the variation in diets is the same across all three

populations. While diet most likely does not explain the

large differences between populations, diet is most as-

suredly leading to noise variation in the data. In addi-

tion, we lack information on the timing, amount, or type

of food consumption for each individual dog, although

any or all of these could be contributing to the changes

we see in tryptophan metabolism between large and

small dogs. Second, circadian rhythms play a large role

in metabolomic profiles, and as these were personal

owned dogs, we cannot control the time of day that each

sample was taken. It was dependent on when the dog

was brought into the clinic. Similar to the diet results,

time of day of sample collection should not differ be-

tween the locations but would add more noise into our

collected data. Third, while we do not know why our

locations showed significantly different metabolomic

profiles, some hypotheses are described above.

However, there could have been differences in sample

handling between the three locations that we are un-

aware of that led to the variation seen in the dataset.

Lastly, we did not investigate breed-specific differences

in our analysis, as we did not have the statistical power

to do so with the number of breeds included in the study.

Previous research, however, has shown that breeds do

have different metabolomic profiles (Liu et al. 2016;

Nicholatos et al. 2019), so breed variation in this study

is likely to have influenced our metabolomic profiles.

However, the wide range of breeds, including mixed-

breed dogs, in our analysis actually allows us to better

focus on size and age differences, as our results were

significant despite the number of breeds represented in

our study. Thus, the results reported here are likely not

due to breed-specific differences but are more likely due

to changes in age and genetic size effects.

Conclusions

Here, we found a strong effect of location on

metabolomic profiles in companion dogs; our results

suggest that metabolomic profiles can be strongly influ-

enced by location, and future large “omics” studies need

to account for this strong geographic signal. After con-

trolling for location effects, we found a strong signal of

tryptophan metabolism and size. Tryptophan pathway

metabolites were higher in small, long-lived dogs com-

pared with their large counterparts, and future studies

are needed to determine the direct physiological conse-

quences of tryptophan metabolism manipulation. We

still have ways to go to fully understand the metabolic

differences that are found between large and small dogs,

but we have paved the way for future large-scale

“omics” studies in the companion dog.
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