
TS-Router: On Maximizing the Quality-of-Allocation in the On-Chip Network

Yuan-Ying Chang†, Yoshi Shih-Chieh Huang†, Matthew Poremba‡,
Vijaykrishnan Narayanan‡, Yuan Xie‡,§, and Chung-Ta King†

†Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, {elmo,yoshi,king}@cs.nthu.edu.tw
‡Department of Computer Science and Engineering, Pennsylvania State University, University Park, USA,

{mrp5060,vijay,yuanxie}@cse.psu.edu
§AMD Research, yuan.xie@amd.com

Abstract

Switch allocation is a critical pipeline stage in the router of
an Network-on-Chip (NoC), in which flits in the input ports of
the router are assigned to the output ports for forwarding. This
allocation is in essence a matching between the input requests
and output port resources. Efficient router designs strive to max-
imize the matching. Previous research considers the allocation
decision at each cycle either independently or depending on
prior allocations. In this paper, we demonstrate that the matching
decisions made in a router along time actually form a time
series, and the Quality-of-Allocation (QoA) can be maximized if
the matching decision is made across the time series, from past
history to future requests. Based on this observation, a novel
router design, TS-Router, is proposed. TS-Router predicts future
requests to arrive at a router and tries to maximize the matching
across cycles. It can be extended easily from most state-of-the-
art routers in a lightweight fashion. Our evaluation of TS-Router
uses synthetic traffic as well as real benchmark programs in
full-system simulator. The results show that TS-Router can have
higher number of matchings and lower latency. In addition, a
prototype of TS-Router is implemented in Verilog, so that power
consumption and area overhead are also evaluated.

I. Introduction

As the number of cores keeps increasing on chip multiproces-
sors, the Network-on-Chip (NoC) technology is becoming essen-
tial to interconnect these cores [16], [6]. Many prior efforts on the
design of efficient routers have been developed to design efficient
router for NoCs. One class of works focused on the resource
allocation inside a router, including Virtual-channel Allocation
(VA) and Switch Allocation (SA), because these operations are
in the critical path of the router pipeline [24], [18]. A key issue
in resource allocation is the Quality-of-Allocation (QoA), which
is the subject of serveral recent works [2], [3], [21], [23].

QoA refers to the ability of a router to match input port
requests with output port resources [3], which is often measured
as the number of matches that can be made in a cycle. A higher
QoA means that a router can move more packets across its
internal switches in a cycle, resulting in higher throughput. Most
existing works aim at maximizing the number of matches but
only consider the allocation within a single cycle. In fact, the
matching decisions made in a router along time actually form a
time series1. A greedy allocation algorithm which maximizes the
matching in each cycle might not lead to best QoA across the
whole time series.

Recent works such as Packet Chaining [21] and Pseudo-
Circuit [2] have discovered that allocation decisions made in the
current cycle may be affected by those made in the previous
cycles. Allocation strategies are thus proposed to improve the
number of matches in a router by inheriting the results of previous
cycles. Experiment results show this strategy can even outperform
maximal matching via wavefront allocator [26] and maximum
matching via augmenting path algorithm [9]. This implies that
maximal/maximum matching within a single cycle is not good
enough and back-to-back allocations should be considered.

Although the idea of performing switch allocation based
on past history works well, the requirement to achieve good
performance is still quite rigid – the current allocation must have
suitable similarity with the previous one. Unfortunately, this is
only valid in some specific cases. If the similarity is too low, the
performance of history-based strategies [21], [2] will degenerate
to that of independent allocation [20]. On the other hand, if the
similarity is too high, the performance will also be degraded
because inheriting the previous allocation will starve the new
requests. Therefore, a more general and less demanding strategy
is needed.

In this paper, we discuss Quality-of-Allocation of switch
allocation from the perspective of time series of matching be-

1Generally speaking, a time series can be a sequence of data, results,
or decisions, which have happen-before relationships and therefore can
be represented along with time.

CA NA PA

Maximizing # of matchings

CA NA PA

Time series

Allocation inheritance

(Packet Chaining / Pseudo-Circuit)

PA: Past allocation

CA: Current allocation

NA: Next allocation

CA NA PA

Time series

Prediction by

forwarding datapath

(a)

(b)

(c)

time

time

time

Fig. 1: An overview of different designs. (a) The initial works for
maximizng the number of matchings. (b) History-based solution,
which uses previous allocation(s) to improve current allocation.
(c) TS-Router predicts the future requests to improve the current
allocation.

tween input port requests and output port resources. With such
a perspective, the allocation decision made at each cycle should
consider not only past decisions but also future requests. In
the next section, we will show an example to illustrate that
maximizing the number of allocations in a single cycle is not
enough, since current allocation will affect future allocations.
If the requests in the following cycles can be predicted, the
allocation decision made in the current cycle can be adjusted
accordingly, which results in more concurrent connections in con-
secutive allocations. Figure 1 illustrates an overview of previous
works (maximizing matches in a single cycle and history-based)
and our design.

Based on this observation, a novel router design, TS-Router, is
proposed. TS-Router predicts future requests to arrive at a router
and tries to maximize the matching across cycles. In this paper,
a forwarding design in the router architecture for maximizing
the current and future allocations is proposed, in which possible
conflicts in the future are predicted and resolved, resulting in
more concurrent connections along time. In contrast to naive
prediction, the forwarding datapath directly forwards the requests
from virtual-channel allocation stage to switch allocation stage,
which results in accurate prediction.

To summarize, the main contributions of this paper are as
follows:

• To the best of our knowledge, this is the first work to propose
the concept of time-series matchings, which is in contrast
to maximal and maximum matching.

• A novel router design, TS-Router, is proposed, which real-

izes the idea of time-series matching.

This paper is organized as follows: In the next section,
preliminaries of this paper are introduced, including a background
of allocation and matching, followed by the representation of an
allocation. A motivating example is given in Section III to show
that maximal and maximum matching considered within a single
cycle do not lead to a global optimal allocation. Instead, time-
series-based allocation outperforms these allocation algorithms.
In Section IV, the design of TS-Router is introduced, including
a discussion of the implementation overheads. For evaluating the
performance of TS-Router, we present comprehensive experimen-
tal results in Section V to compare the TS-Router with the classic
iSLIP allocator [20] and the most recent allocation algorithm
[21]. Finally, related works are discussed in Section VI, and the
conclusions and future work are given in Section VII.

II. Preliminaries

In this section, we give a brief introduction on the prelimi-
naries on allocation in NoC architecture.

A. Allocation and Matching

An allocation or a matching in a router is to pair the input
ports (in-ports) and output ports (out-ports). To avoid conflicts,
one input port can only be paired with one output port, and
vice versa. A maximal matching means that while there is
an existing matching, it is impossible to add more pair(s) to
the existing matching. On the contrary, a maximum matching
means that it is the largest matching in terms of the number
of paired input-to-output ports. Note that a maximum matching
is certainly a maximal matching. However, a maximal matching
is not necessarily a maximum matching. 2

B. Representation of Allocation

We use a request matrix to show requesting-requested rela-
tionships between input ports and output ports in the stage of
Switch Allocation (SA). Each row stands for an input port and
the cells in a row are the requested output ports. Each column
stands for an output port and the cells in a column are the input
ports that are requesting for this output port. White circles stands
for the requests. A V × U request matrix can be represented as
a bipartite graph denoted as G = (V ;U ;E), and vice versa.

Once an allocation is done, the resultant matrix has the
following properties: (1) Each row can only contains one white
circle, that is, each input port can request at most one output port
at a time. (2) Each column can contain only one white circle, that
is, each output port can only be requested by at most an input
port at a time. A request matrix can also be depicted as a bipartite
graph G = (V ;U ;E) but each element in V can only have one
outgoing link to U , and vice versa. The corresponding bipartite
graph of a request matrix forms a matching.

2In the following paragraphs, if a matching is maximal and maximum
simultaneously, we denote such matchings as max matchings for short.

III. Motivating Examples

In the following examples, we discuss the influences of max
matching and show the cases that max matchings do not lead to
the best results. We assume the pipelined router architecture as in
[21]. For simplifying the discussion, we assume a 5-port router
and the number of virtual channel is set to 2.

In this example, we use request matrix to represent the
relationship between input ports and output ports. We use white
circles to state the requests in the stage of Switch Allocation (SA),
and black dot is specially for representing the future requests of
SA stage. The gray cells stands for the previous grants in last
allocation, which is used by history-based strategy, such as in
[21], [2].

Figure 2a shows two possible solutions denoted as i and i′.
Both of the two solutions achieve max matchings simultaneously
(3 in this case). Then, Figure 2b shows the following allocation.
Previously unallocated requests are left in (i + 1) and (i + 1)′,
respectively. Moreover, the future request, depicted in Figure 2a
with the black dot, becomes a current request in Figure 2b. Note
that both of the allocation (i+1) and (i+1)′ are max matchings
(2 and 1, respectively). However, allocation (i+1)′ results in an
input port conflict and therefore the latter max matching is worse
than the former.

This example shows that in two back-to-back allocations,
the current allocation may affect the next allocation. If we
only consider each single allocation, both of the two allocations
achieve max matchings and the drawback cannot be found. Note
that this example only shows the case of column conflicts. The
same idea can be applied to row conflicts.

Next, with the gray cells, we are able to observe the allo-
cations made by history-based strategies [21], [2]. It shows that
history-based strategies provide higher priorities to the previous
grants. However, in this example, it would select the allocation
(i + 1)′ based on the previous grants, and it eliminates the
possibility of concurrent transmission since it does not take the
future requests into consideration. To conclude, history-based
strategies are more conservative and tend to reserve the previous
connections to lower the risks of ports being idle. In contrast,
TS-Router takes the current allocation and incoming allocation
into consideration and explores more possibilities of parallel
connections. In other words, history-based strategies are look-
behind strategies which uses history of grants to improve the
QoA. In contrast, TS-Router not only considers the history, but
also contains a look-ahead strategy which uses the forwarding
messages to predict the incoming matchings.

IV. Design Concept of TS-Router

In the following discussion, we first give the router archi-
tecture to use. Second, we give the formulation of matching
maximization for current-next allocations. Third, we give the
detailed operations of an allocation with the future requests. An
illustration is given for demonstrating the operations step-by-step.
Finally, we discuss the modifications in the datapath to support
the prediction of future requests.

A. The General Router Architecture

We use a general router architecture mentioned in [1], [24]
as our baseline router architecture. The router has five pipeline
stages: Routing Computation (RC), Virtual-channel Allocation
(VA), Switch Allocation (SA), Switch Traversal (ST), and Link
Traversal (LT). Each router has multiple virtual channels per
input ports and VC flow control is used [5]. Note that the reason
that using a very general router architecture rather than optimized
ones is that our idea of predicting the future requests can be
realized by adding a few additional links and simple logics, which
is orthogonal to the most modern designs. Therefore, using a
general router architecture helps understand the spirit of our idea.
However, the idea can be integrated into most modern router
architectures as long as the router architecture involves VA and
SA stages.

B. Time-Series Switching

To design a time-series-considered router, while doing a
decision of allocation, the impact of the decision needs to be
calculated by estimating the profit brought by this allocation. In
a single router, for the Current-Next allocations, the Matching
Quality (MQ) is defined as the resulting Numbers of Matchings
(NoM) with a prospecting vision v > 0. The goal of MQ is as
follows with a given v:

maxMQ(allocationi) = max
∑

i<i+v

NoMi

A larger v can be set for more aggressive design. Theoretically
v → ∞ gives the upper bound of MQ. However, setting v → ∞
is not practical in real cases since the incoming traffic patterns
are always unknown until the runtime. In TS-Router, v is set to
1, which means that when doing the i-th allocation, it also takes
the next (i+ 1)-th allocation into consideration. This prediction
is performed inside the router by forwarding, so the accuracy is
relatively high. However, it is still possible that when doing i-th
allocation, more than one following allocations are considered,
i.e., (i+v)-th allocations, where v > 1. To do the more aggressive
prediction, the information required by the prediction may not
only come from the local router, but also the other neighbor
routers. Nevertheless, the accuracy will be relative low since
the prediction is made across the routers. Therefore, we focus
on conservative prediction in this paper rather than aggressively
prediction across the routers.

Figure 3 shows the datapath of TS-Router. A general separable
arbitrators design can be applied. A forwarding link from VA to
SA is for predicting the participants in the next allocation.

C. Priority Propagation in Priority Matrix

To represent the priority when conflict occurs in inport arbitra-
tion or outport arbitration, we use priority matrix which is similar
to the request matrix mentioned in Section II-B. Differently,
request matrix is a binary matrix, i.e., each entry in a cell is either
0 or 1, but an entry in a priority matrix is a value indicating the
priority when conflict occurs.

1 2 3 4 5

1

2

3

4

5

The i-th request matrix

1 2 3 4 5

1

2

3

4

5

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Allocation i

Allocation i’

Output

In
p

u
t

5 5

1 2 3 4 5

1

2

3

4

5
5 5

(a) The i-th request matrix

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

The (i+1) th request matrix

The (i+1) th request matrix

Allocation (i+1)

Allocation (i+1)’

5 5

5 5

(b) The (i+ 1)-th request matrix

Fig. 2: The white circles are the current requests and the black dot is the future request in the stage of Switch Allocation (SA). The
gray cells stand for the prioritized cells, which is used by history-based strategy, such as in [21], [2]. In this case, the gray cells are
previously granted requests. Note that: (a) both allocations i and i′ achieve max matchings (3 in this case). (b) In the next allocation,
although allocation (i+ 1) and (i+ 1)′ also are both max matchings (2 and 1, respectively), the latter has input port conflicts, so the
max matching is worse than the former.

RC VA XT LT

RC/VA VA/SA SA/XT XT/LT

Original datapath

Additional datapath

VA pending request

SA

Fig. 3: Datapath of TS-Router. Dedicated links from the downstream routers provides the feedback information and stored in the VA/SA
latch. One forwarding link is from the pending request in the VA stage for predicting the participants in the next allocation.

An predicted request, represented by a black dot in the priority
matrix, means that the occupied cell (standing for an inport and
an outport) has a request in the next allocation, so it propagates
the priorities to the requests in the same column and the same
row except itself based on the following observations:

1) Clean the competitor(s): to avoid them occupying the inport
or the outport in the next allocation.

2) Improve parallelism: Once the competitor(s) is cleared, the
request(s) which is in the same row or the same column
has higher probability to be transmitted with the predicted
one in the next allocation.

Specifically, assuming that the predicted request is located at
(m,n), the cells in the m-th row and in the n-th column except
(m,n) itself are prioritized. For simplifying the explanation, we
use an illustration to help understand the process. As Figure 4a
shows, an predicted request is located at (2, 2). According to our
algorithm, the second row and the second column are prioritized

except (2, 2) itself. Therefore, the inport conflict between (4, 1)
and (4, 2) is resolved by letting (4, 2) win. Similarly, (2, 3) wins
the outport arbitration when conflicting with (3, 3). Figure 4b
shows the remaining requests, i.e., the new request (2,2) and
the losers in the previous arbitration. Apparently, the remaining
three requests do not have conflict because time-series switching
has resolved the possible conflicts in the previous allocation, and
therefore they can be transmitted in parallel in the next allocation.

Note that the values in the priority matrix can be accumulated
in one switch arbitration. Figure 5 shows an sample priority
matrix which has two predicted requests, in which the overlapped
prioritized cells have higher priorities and the values are accu-
mulated to 2. Note also that the accumulations only occur in one
switch allocation rather than accumulated along time. That is, the
priority matrix is refreshed to 0s every switch arbitration.

The request matrix can be implemented with several existing
methods, such as Tree Arbiter, Matrix Arbiter, and so on [23],

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

(a) (b)

Fig. 4: (a) Gray cells are prioritized by the predicted request
(black dot). As a result, (2,3) and (4,2) have higher priorities
when conflicting. (b) Remaining requests can be transmitted in
parallel in the next allocation.

1 2 3 4 5

1 1 1

2 1 1 2 1

3 1 1

4 1 2 1 1

5 1 1

Fig. 5: A sample of priority matrix with multiple predicted
requests.

[7]. In the following subsection, we implement the TS-Router
with Verilog to investigate the hardware considerations.

D. Router Implementation

To investigate the overheads in terms of several considera-
tions, we perform estimations on the power, area, and critical
path latency of our router architecture using Synopsys Design
Compiler. Behavioral RTL is synthesized using ST micron’s
65nm design libraries. We choose the nominal library with 1.20V
core voltage. The design of our baseline is a simplistic design
involving X-Y routing and only 4 stages: route computation,
switch allocation, crossbar transversal, and link transversal. The
stage of virtual-channel allocation is removed for simplifying
the following analysis. Note that this simple baseline router may
result in larger area overhead percentage when applying the logics
for realizing time-series switching. However, it will be relatively
small when applying the logics to other modern routers [18],
[19].

a) Area overhead of priority matrix.: Before entering the
RTL-based analysis, we calculate the area overhead of priority
matrix to give a formal estimation. Assuming that the size of
the crossbar is N ×N , then each cell in the priority matrix has
N − 1 neighbors in a row, and similarly N − 1 neighbors in
a column. Therefore, the accumulated priority value for a cell
ranges from [0, 2N − 2], and the required bits to store all the
values are N2⌈log2(2N − 2)⌉ bits. Note that since the entries
in priority matrix are cleared every switch arbitration, values in
cells will not be accumulated along time, so the analysis above
guarantees that values will not overflow.

b) Critical path, area overhead, and power consumption.:
Next, we estimate the critical path by synthesizing our designs

to reach the maximum frequency without violating timing con-
straint. Currently, the slowest path involves selecting the highest
priority input port without causing conflicts on output port grants.
This selection is an iterative process involving a sequential logic
path. Each iteration checks for the i-th highest priority and grants
the input if the output is not already granted. The list of output
ports already granted is used when selecting the (i−1)-th highest
priority input port. To boost the speed, we can check grants
of multiple input ports in parallel to speed up selection. To do
this, each input port must also compare the priorities of other
input ports, which adds additional comparators to the design. In
Figure 6, the priority matrix is calculated and then the arbitration
decision needs to be done based on the priority matrix. Take the
arbitration of output port 4 as an example, input port 1, 2 and
3 are involved in arbitration. Note that the maximum priority is
6 in this example. First, they compare their priority values with
6,5,4,2 and 1 in parallel. Then, these compared results are sent
to Conflict Solver, which can process conflicts in a round-robin
manner when two or more request have the same priorities. After
conflicts are solved, these results are treated as control signals
to Selector, which chooses the request with highest priority.
However, we only implement the selection process in a sequential
way currently.

Based on our synthesis results, our router can be run up to
333 MHz and the baseline up to 500 MHz. This results in a 33%
slower router. However, this is the maximum slowdown since we
can optimize the design to be more parallel at the cost of extra
area. Alternatively, the iterative process can be split by dividing
the switch allocation into two pipeline stages. With a completely
iterative process, the design requires additional 867 gates per
router than the baseline router with an absolute additional area
of 61 × 61µm2. Besides, considering the impacts of power
consumption due to NoC [28], [27], the power consumption is
also compared using the design compiler tool. We re-synthesized
the baseline router to operate at 333 MHz to compare the
power consumption. The result shows that our design consumes
additional 0.325 mW per router.

V. Evaluation

We use GEM5, a full-system simulator [4], with enabled Ruby
and Garnet to model the system [17], [1], including detailed
memory model and interconnection network. The evaluation is
threefold. First, we focus on the network performance by switch
GEM5 to network only mode, in which processing elements (PE)
act as traffic injectors, and we can synthesize several conven-
tional traffic patterns to examine the performance limitations of
the network. Second, we focus on the effectiveness of time-
series consideration. We use moving average to observe the
effectiveness by comparing TS-Router with Packet Chaining.
Finally, we switch GEM5 to full-system mode for running the
real benchmarks. The default settings are shown in Table I. If
the settings are modified in a specific experiment, they will be
mentioned in the paragraphs for avoiding confusion.

1 2 3 4

1 1 1

2 1 1 2

3 1 1

4 1 2 1

Priority Matrix

6

6

6

5

5

5

C
o
m
p
a
ra
to
r

C
o
m
p
a
ra
to
r

C
o
m
p
a
ra
to
r

C
o
m
p
a
ra
to
r

C
o
m
p
a
ra
to
r

C
o
m
p
a
ra
to
r

Selector

...

...

...

…

C
o
n
flict

 so
lv
e
r

Fig. 6: Priority-based arbitration microarchitecture.

TABLE I: Default simulation setup

Simulator settings
Processor family ALPHA ISA
Frequency 2 GHZ
Number of cores 64
Cache protocol MESI protocol
NoC topology 8-by-8 2D mesh network
Average Packet size 6 flits
Number of VCs 4
Input buffer size 5 flits
Routing algorithm Dimension-order

A. Evaluation for Network Performance

In this subsection, we investigate the synthetic traffic patterns
with different injection rates to observe the performances of
network latencies by iSLIP, Packet Chaining, and TS-Router, re-
spectively. Note that in the following experiments we implement
the second type of Packet Chaining (Same port, different VCs)
since it has been shown that it strikes the best tradeoff between
implementation overhead and performance gain [21].

c) Network latency of synthetic traffic patterns.: Under
tornado and bit-complement traffic, TS-Router can have the better
performance than the other two allocators. This is because that a
high queueing latency may be incurred in Packet Chaining due
to the reservation of the previous allocation. This phenomenon is
due to starvation which is discussed in Section V-B3. In Figure
7 and Figure 8, TS-Router has a 76% lower average latencies
compared to the other two allocators at the saturation point.
Figure 9a shows the network latencies under uniform distribution
traffic. TS-Router outperforms the other two allocators except
while the injection rate is between 0.5 and 0.7 due to too many
future requests involved, which will be further discussed in the

0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

Injection rate (flits/cycle)

L
a
te

n
c
y
 (

C
y
c
le

)

iSLIP

Packet Chaining

TS-Router

Fig. 7: The latency comparison under tornado traffic with differ-
ent injection rates.

0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

14000

16000

Injection rate (flits/cycle)

L
a
te

n
c
y
 (

C
y
c
le

)

iSLIP

Packet Chaining

TS-Router

Fig. 8: The latency comparison under bit-complement traffic with
different injection rates.

section V-B1.
As the injecting rate increases, the network latency increases

exponentially due to the network saturation. Therefore, it is
difficult to observe that TS-Router outperform the other two
allocators in low injection rates. We zoomed in Figure 9a before
the injection rate achieves the saturation point (IR ≤ 0.33) under
uniform traffic pattern. As depicted in Figure 9b, it shows that
TS-Router has lower latency when the network is not saturated.
The same trends can be found in all the synthetic workloads when
the injection rate is low. This property is important since most
parallel programs run with the injection rate before saturation
point according to [12], [25], and therefore achieving low latency
before the saturation point is quite critical for most programs.

B. Evaluation for Time-Series Switching

1) Number of Matchings: In the following two experiments,
we investigate the effectiveness of time-series consideration. We
use three different synthetic traffic distribution with different
injection rates to see the total resulted numbers of matchings
by iSLIP, Packet Chaining, and TS-Router, respectively. As
Figure 10 and Figure 11 show, the X-axis is the injection

0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

Injection rate (flits/cycle)

L
a
te

n
c
y
 (

C
y
c
le

)

iSLIP

Packet Chaining

TS-Router

(a) Injection rates with saturation

0.1 0.2 0.3 0.33
36

38

40

42

44

46

48

50

52

54

Injection rate (flits/cycle)

L
a
te

n
c
y
 (

C
y
c
le

)

iSLIP

Packet Chaining

TS-Router

(b) Injection rates without saturation (Zoom-in)

Fig. 9: The latency comparison under uniform traffic with different injection rates.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Injection rate (flits/cycle)

D
if
fe

re
n
c
e
 o

f
m

a
tc

h
in

g
 n

u
m

b
e
r

w
it
h
 S

L
IP

Packet Chaining

TS-Router

Fig. 10: The improved numbers of matchings by Packet Chaining
and TS-Router under tornado distribution traffic.

rate (flits/cycle), and the Y-axis is the difference of matching
numbers, and the results show that TS-Router outperforms Packet
Chaining. In addition, the total number of allocation of Packet
Chaining is worse than the baseline (iSLIP-1). This is because the
traffic pattern of bit-complement is relatively more stable than the
other two synthetic traffic, and the existing allocation is always
prioritized than the newcomers. The resulted network behaves as
a pseudo circuit-switch network and starve the newcomers, as we
observed in the network latency. Further discussion is in Section
V-B3.

However, Packet Chaining can take advantages of inheriting
the pervious allocation while the injection is larger than 0.4 in
uniform traffic, as illustrated in Figure 12. We observe that the
allocation of TS-Router may behave similarly as iSLIP while the
network becomes congested in uniform pattern. This is because
that the priorities of the requests are almost the same since too
many future requests, which are generated in uniform pattern
with high injection rate, participate in the priority propagation.
Nevertheless, it cannot happen in tornado and bit-complement
traffic since the requests can be only generated in some inputs
and outputs in these two traffic patterns.

2) Analysis of time series: To further analyze the effective-
ness of time-series consideration, we focus on the saturation point

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

5

Injecton rate (flits/cycle)

D
if
fe

re
n
c
e
 o

f
m

a
tc

h
in

g
 n

u
m

b
e
r

w
it
h
 S

L
IP

Packet Chaining

TS-Router

Fig. 11: The improved numbers of matchings by Packet Chaining
and TS-Router under bit-complement distribution traffic.

(IR=0.4) and use moving average, which is a common technique
in statistics for analyzing the trend in time series. We compared
TS-Router with Packet Chaining since both of them are based on
the observation that consecutive allocations affect each other.

For the readability, we sampled 500 cycles of the router in the
center of the network. However, the following observation can
also be found when sampling other routers with longer period.
In each cycle the number of matchings is recorded, denoted as
mpc and mts for Packet Chaining and TS-Router, respectively.
As Figure 13 shows, the Y-axis is the difference between the
matching number, i.e., mts −mpc, and the X-axis is the cycles.
The light gray lines shows the fluctuation and it is hard to observe
the trend. However, by applying moving average with period 10
(the black lines), the effects of time-series can be easily observed.
As Figure 13 shows, the black lines are above the X-axis and
thus positive at most time, which means considering the time-
series effect, TS-Router outperforms Packet Chaining. With larger
period, the effects are more obvious. Similar trends are found
under tornado and bit-complement traffic distribution, as shown

0.2 0.3 0.33 0.36 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Injection rate (flits/cycle)

D
if
fe

re
n
c
e
 o

f
m

a
tc

h
in

g
 n

u
m

b
e
r

w
it
h
 S

L
IP

Packet Chaining

TS-Router

Fig. 12: The improved numbers of matchings by Packet Chaining
and TS-Router under uniform distribution traffic.

3

2

R
 !
P
C
)

1

h
in
g

 (
T
S

!R

0

1

1
9

3
7

5
5

7
3

9
1

1
0
9

1
2
7

1
4
5

1
6
3

1
8
1

1
9
9

2
1
7

2
3
5

2
5
3

2
7
1

2
8
9

3
0
7

3
2
5

3
4
3

3
6
1

3
7
9

3
9
7

4
1
5

4
3
3

4
5
1

4
6
9

4
8
7

f
#
M
a
tc
h

!1

D
if
f.
o
f

3

!2

!3
Moving average. Period = 10

Fig. 13: The moving average for the difference of matching
numbers between Packet Chaining and TS-Router under uniform
distribution.

in Figure 14 and Figure 15.
The above two experiments conclude that TS-Router’s look-

ahead strategy is more effective than Packet Chaining’s look-
behind strategy. This is because look-behind is empirical inferring
from past allocation to current allocation. In contrast, TS-Router
accurately predicts the requestors in the following allocations
and uses the future requestors as the clues to do the priorities
assignment in current allocation, which is intrinsically time-
series-considered rather than empirical inferring.

3) Starvation effects.: In this experiment, we compare the
starvation effect when applying Packet Chaining and TS-Router.
Since Packet Chaining is based on the assumption that the
previous allocation is similar to the current allocation, the existing
granted requests are prioritized to avoid joining the current
allocation, which leads to the possibility of starving the new re-
quests. For evaluating this affection, we compare Packet Chaining
and TS-Router by increasing the packet length under the bit-
complement traffic. As Figure 16 shows, when the packet length
is between 1 and 3, Packet Chaining and TS-Router have the same
performance in terms of the total number of matchings. When the
packet length is between 4 and 5, TS-Router outperforms Packet

1

1.5

2

2.5

S
 R

!
P
C
)

 2.5

 2

 1.5

 1

 0.5

0

0.5

1

2
1

4
1

6
1

8
1

1
0
1

1
2
1

1
4
1

1
6
1

1
8
1

2
0
1

2
2
1

2
4
1

2
6
1

2
8
1

3
0
1

3
2
1

3
4
1

3
6
1

3
8
1

4
0
1

4
2
1

4
4
1

4
6
1

4
8
1

Moving!average.!Period=10

D
if
f.
!o
f
m
a
tc
h
in
g
!(
T
S

Fig. 14: The moving average for the difference of matching
numbers between Packet Chaining and TS-Router under tornado
traffic.

1

2

3

4

(T
S
 R

!
P
C
)

 4

 3

 2

 1

0

1

2
0

3
9

5
8

7
7

9
6

1
1
5

1
3
4

1
5
3

1
7
2

1
9
1

2
1
0

2
2
9

2
4
8

2
6
7

2
8
6

3
0
5

3
2
4

3
4
3

3
6
2

3
8
1

4
0
0

4
1
9

4
3
8

4
5
7

4
7
6

4
9
5

Moving!average.!Period=10

D
if
f.
!o
f!
m
a
tc
h
in
g
!

Fig. 15: The moving average for the difference of matching
numbers between Packet Chaining and TS-Router under bit-
complement traffic.

Chaining because the former leads to larger network capacity.
Note that the network is getting saturated when the packet length
is larger than 5. Unfortunately, when the packet length continues
to increase, Packet Chaining inherits the previous allocation and
the hit rate is very high due to the longer packet length. It makes
the network behaves as a pseudo circuit-switch network, and
the inherited allocations starve the new requests, which lead to
exponential queuing delay in the network. Although the starvation
effect can be avoided by setting a predefined value to cut the
chain, i.e., limit the maximum number of chained flits, to avoid
the starvation effect. However, it is related to the traffic behavior
and therefore finding a suitable value for various traffic is not
even possible.

Nevertheless, TS-Router relies on the predicted allocation
rather than the existing ones, and therefore it does not starve
the new requests. The priority is assigned according to whether
or not more parallel connections can be granted. To conclude,
TS-Router is more general and independent of the packet length,
which leads to a starvation-free network.

C. Benchmark Evaluation

In this experiment, we configure GEM5 as a ALPHA CMP
with 64 CPUs which is connected by an 8 × 8 mesh network.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10
x 10

6

Packet length (# of flits in control header)

T
o
ta

l
n
u
m

b
e
r

o
f
m

a
tc

h
in

g
s

0 5 10 15
0

1

2
x 10

4

Q
u
e
u
e
in

g
 l
a
te

n
c
y
 (

c
y
c
le

)

Packet Chaining (latency)

TS-Router (latency)

Packet Chaining (matching number)

TS-Router (matching number)

Fig. 16: The comparisons of total number of matchings and
queueing latency between Packet Chaining and TS-Router under
bit-complement traffic.

Each CPU is the out-of-order architecture and only supports
single thread. The related setting is listed at Table I. We use
nine programs from SPEC2006 [11] benchmarks. For each eval-
uation, the benchmark program is duplicated to 64 instances and
distributed to the corresponding 64 cores as one-to-one mapping.
The programs on each CPU run independently and generate the
cache traffic, and the cache controller follows the cache protocols
to generate packets into the three independent networks as LD
(load) network, IFETCH (instruction fetch) network, and ST
(store) network according to the packet type.

As Figure 17a shows, the network latency of TS-Router
in LD network can be improved up to 8.5% compared with
Packet Chaining. Also, we calculate the Instruction-Per-Cycle
(IPC) when using TS-Router and Packet Chaining. As Figure
17b shows, TS-Router outperforms Packet Chaining in all the
benchmarks, and the improvement is 2% on average.

VI. Related Works

To maximize the number of matchings in allocation, previ-
ous works such as Wavefront and Augmenting Path allocators
can achieve maximal matchings and maximum matchings [26],
[9], respectively. However, the hardware cost is much larger
and therefore not practical in real implementations [13]. iSLIP
separate allocators [20], which arbitrates inport and outport
separately with round-robin priority, keeps the allocation simple
but sacrifices the efficiency of matching. These allocators focus
on each allocation independently and therefore can only achieve
local optimal solutions.

In [29], the out-of-order requests to DRAM caused by NoC
is discussed. In this paper, they propose the idea of hold grant
which reduces the interleaving memory requests to keep the row-
buffer hit-rate in the memory controller. Holding grants allows
previously granted input to have higher priority than others and
thereby avoids the locality of memory request being broken.

Different from the viewpoint of improving the efficiency of
memory access, Pseudo-Circuit and Packet Chaining are more
from the viewpoint of interconnection design. Both of them take

advantages of the most recent allocation based on the observa-
tion that the last allocation tends to be similar to the current
allocation [21], [2], so the last allocation is kept which results
a circuit-switch-like behavior. The experiment results show that
the performance can outperform Wavefront and Augmenting Path
allocators due to the implicit time-series consideration. TS-Router
shares similar concept, i.e., consecutive allocations, but with
the explicit time-series consideration in the allocation algorithm.
Instead of inheriting the past allocation which benefits the ex-
isting connections, TS-Router predicts the following requests for
exploring more parallel connections between current allocation
and next allocation. Due to the native time-series consideration,
TS-Router outperforms these history-based allocators.

Other research works have explored the related problem with
different points of views, such as running pipeline stage in
parallel by speculation [24], [23], bypassing pipeline stages or
having express channel for prioritized packets [15], [19], [18],
and speed up the routing latency by looking-ahead design [10].
Most of these works are orthogonal to TS-Router. In other
words, the concept of TS-Router can be implemented in these
state-of-the-art routers and the existing advantages can be kept
simultaneously.

VII. Conclusion and Future Works

In this paper, we first summarize the state-of-the-art works
and TS-Router with our time-series model, which includes the
past allocation, current allocation, as well as next allocation.
Next, we propose TS-Router, a time-series effects considered
router, which leverages the forwarding information from the
previous pipeline stage to make a foresighted arbitration. By
the foresighted arbitrations, the numbers of parallel connections
(pairs of inputs and outputs) of the routers can be increased and
also the whole system performance.

In the future work, we will apply TS-Router to many-core
accelerator and hybrid design, such as the interconnection for
GPU and Multi-Processor System-on-Chip (MPSoC). With more
various processing elements interconnected by NoC, more factors
are necessary to be explored, such as the impact of different traffic
patterns, the different topologies, and the performance of high-
radix TS-Router when being the communication fabric for the
large-scale chip multiprocessors [8], [14], [22].

VIII. Acknowledgements

This work was supported in part by NSF grants 1205618,
1213052, 1147388, 0916887, 0905365 and 0903432 as well as
Industrial Technology Research Institute and National Science
Council grant NSC 101-2220-E-007-025.

References

[1] N. Agarwal, T. Krishna, L. Peh, and N. Jha. Garnet: A detailed
on-chip network model inside a full-system simulator. In Perfor-
mance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on, pages 33–42. Ieee, 2009.

[2] M. Ahn and E. J. Kim. Pseudo-circuit: Accelerating communication
for on-chip interconnection networks. In Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO ’43, pages 399–408, Washington, DC, USA, 2010.
IEEE Computer Society.

namd dealII povray soplex libquantum cactusADM GemsFDTD omnetpp
50

100

150

200

250

300

L
a
te

n
c
y
 (

C
y
c
le

)

Packet Chaining

TS-Router

(a) The latency comparison between TS-Router and Packet Chaining in
LD network.

1 03

1.035

1.04

a
in
in
g

1.01

1.015

1.02

1.025

1.03

rm
a
li
ze
d

 t
o

 P
a
ck
e
t
C
h

0.995

1

1.005

namd dealII povray soplex libquantum cactusADM GemsFDTD omnetpp

IP
C

 N
o
r

(b) The IPC performance of SPEC CPU2006 (Normalized to Packet
Chaining).

Fig. 17: The evaluation of network latency and IPC of SPEC CPU2006 in mesh network topology.

[3] D. U. Becker and W. J. Dally. Allocator implementations for
network-on-chip routers. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, SC ’09,
pages 52:1–52:12, New York, NY, USA, 2009. ACM.

[4] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. Hower, T. Krishna, S. Sardashti, et al. The gem5
simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7,
2011.

[5] W. Dally. Virtual-channel flow control. Parallel and Distributed
Systems, IEEE Transactions on, 3(2):194–205, 1992.

[6] W. Dally and B. Towles. Route packets, not wires: On-chip
interconnection networks. In Design Automation Conference, 2001.
Proceedings, pages 684–689. IEEE, 2001.

[7] W. Dally and B. Towles. Principles and practices of interconnection
networks. Morgan Kaufmann, 2004.

[8] H. Eberle, P. Garcia, J. Flich, J. Duato, R. Drost, N. Gura, D. Hop-
kins, and W. Olesinski. High-radix crossbar switches enabled by
proximity communication. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, page 32. IEEE Press, 2008.

[9] L. Ford and D. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8(3):399–404, 1956.

[10] M. Galles. Spider: a high-speed network interconnect. Micro, IEEE,
17(1):34–39, 1997.

[11] J. L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH
Comput. Archit. News, 34(4):1–17, Sept. 2006.

[12] J. Hestness, B. Grot, and S. Keckler. Netrace: dependency-driven
trace-based network-on-chip simulation. In Proceedings of the Third
International Workshop on Network on Chip Architectures, pages
31–36. ACM, 2010.

[13] R. Hoare, Z. Ding, and A. Jones. A near-optimal real-time hardware
scheduler for large cardinality crossbar switches. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing, page 94.
ACM, 2006.

[14] J. Kim, W. Dally, B. Towles, and A. Gupta. Microarchitecture of a
high-radix router. In ACM SIGARCH Computer Architecture News,
volume 33, pages 420–431. IEEE Computer Society, 2005.

[15] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha. Express virtual
channels: towards the ideal interconnection fabric. In Proceedings of
the 34th annual international symposium on Computer architecture,
ISCA ’07, pages 150–161, New York, NY, USA, 2007. ACM.

[16] R. Kumar, V. Zyuban, and D. Tullsen. Interconnections in multi-
core architectures: Understanding mechanisms, overheads and scal-
ing. In Computer Architecture, 2005. ISCA’05. Proceedings. 32nd
International Symposium on, pages 408–419. IEEE, 2005.

[17] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Mul-
tifacet’s general execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News, 33(4):92–99, Nov. 2005.

[18] H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga. Prediction
router: Yet another low latency on-chip router architecture. In High
Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on, pages 367–378. IEEE, 2009.

[19] H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga. Prediction
router: A low-latency on-chip router architecture with multiple
predictors. volume 60, pages 783–799. IEEE, 2011.

[20] N. McKeown. The islip scheduling algorithm for input-queued
switches. Networking, IEEE/ACM Transactions on, 7(2):188–201,
1999.

[21] G. Michelogiannakis, N. Jiang, D. Becker, and W. J. Dally. Packet
chaining: efficient single-cycle allocation for on-chip networks. In
Proceedings of the 44th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO-44 ’11, pages 83–94, New
York, NY, USA, 2011. ACM.

[22] C. Minkenberg and M. Gusat. Speculative flow control for high-
radix datacenter interconnect routers. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International,
pages 1–10. IEEE, 2007.

[23] R. Mullins, A. West, and S. Moore. Low-latency virtual-channel
routers for on-chip networks. In Proceedings of the 31st annual
international symposium on Computer architecture, ISCA ’04,
pages 188–, Washington, DC, USA, 2004. IEEE Computer Society.

[24] L.-S. Peh and W. Dally. A delay model and speculative architecture
for pipelined routers. In High-Performance Computer Architecture,
2001. HPCA. The Seventh International Symposium on, pages 255
–266, 2001.

[25] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis. An analysis
of on-chip interconnection networks for large-scale chip multipro-
cessors. ACM Transactions on Architecture and Code Optimization
(TACO), 7(1):4, 2010.

[26] Y. Tamir and H. C. Chi. Symmetric crossbar arbiters for vlsi
communication switches. IEEE Trans. Parallel Distrib. Syst.,
4(1):13–27, Jan. 1993.

[27] H. Wang, L. Peh, and S. Malik. Power-driven design of router
microarchitectures in on-chip networks. In Proceedings of the 36th
annual IEEE/ACM International Symposium on Microarchitecture,
page 105. IEEE Computer Society, 2003.

[28] H. Wang, X. Zhu, L. Peh, and S. Malik. Orion: a power-
performance simulator for interconnection networks. In Microar-
chitecture, 2002.(MICRO-35). Proceedings. 35th Annual IEEE/ACM
International Symposium on, pages 294–305. IEEE, 2002.

[29] G. Yuan, A. Bakhoda, and T. Aamodt. Complexity effective
memory access scheduling for many-core accelerator architectures.
In Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM
International Symposium on, pages 34–44. IEEE, 2009.

