Tschirnhausen transformation of a cubic generic polynomial and a 2-dimensional involutive Cremona transformation

By Akinari Hoshi*) and Katsuya Mryake**)
To the memory of Professor Shokichi Iyanaga

(Communicated by Heisuke Hironaka, m.J.A., March 12, 2007)

Abstract

We study the field isomorphism problem for a cubic generic polynomial $X^{3}+$ $s X+s$ via Tschirnhausen transformation. Through this process, there naturally appears a 2 dimensional involutive Cremona transformation. We show that the fixed field under the action of the transformation is purely transcendental over an arbitrary base field.

Key words: Tschirnhausen transformation; cubic generic polynomial; field isomorphism problem; involutive Cremona transformation; general Noether problem.

1. Introduction. Let k be a field whose characteristic $\operatorname{ch}(k)$ is different from 3 and which may not be algebraically closed. Let $k(s)$ be the rational function field over k with an indeterminate s. In this paper, we study the cubic polynomial $R(s ; X):=X^{3}+s X+s \in k(s)[X]$. We denote by $\operatorname{Spl}_{k} f(X)$ the splitting field of a polynomial $f(X) \in k[X]$ over a field k. The polynomial $R(s ; X)$ is well-known as a k-generic S_{3}-polynomial (cf. e.g. $[6,9,15])$. Namely the Galois group of $R(s ; X)$ over $k(s)$ is isomorphic to the symmetric group S_{3} of degree 3 and every S_{3}-Galois extension $L / K \supset k$ can be obtained as $L=\operatorname{Spl}_{K} R(c ; X)$ for some $c \in K$ (see [7]). Note that from Kemper's Theorem [8] every $C_{2}{ }^{-}$ or C_{3}-Galois extension L^{\prime} / K which includes a base field k also can be realized as $L^{\prime}=\operatorname{Spl}_{K} R(d ; X)$ for some $d \in K$. Conversely, in the case of $k=\mathbf{Q}$, there exist one-parameter \mathbf{Q}-generic polynomials only for the groups C_{2}, C_{3} and S_{3} (cf. [7, 12]).

We shall treat the field isomorphism problem for $R(s ; X)$ via general Tschirnhausen transformation. Indeed in Section 2, we show that

Theorem (Theorem 1). Let $M \supseteq K \supseteq k(s)$ be a tower of fields, and $R(s ; X)=X^{3}+s X+s \in K[X]$. For $s^{\prime} \in K,\left(s^{\prime} \neq s\right)$, the following two statements are equivalent:
(i) $\operatorname{Spl}_{M} R\left(s^{\prime} ; X\right)=\operatorname{Spl}_{M} R(s ; X)$;

[^0](ii) there exists an element $u \in M$ such that
$$
s^{\prime}=\frac{s\left(u^{2}+9 u-3 s\right)^{3}}{\left(u^{3}-2 s u^{2}-9 s u-2 s^{2}-27 s\right)^{2}} .
$$

As a consequence of Theorem 1, we give a necessary and sufficient condition of $\operatorname{Spl}_{k} R(c ; X)=$ $\operatorname{Spl}_{k} R(d ; X)$ for $c, d \in k$.

Under the condition of the theorem, there also exists $u^{\prime} \in M$ such that

$$
s=\frac{s^{\prime}\left(u^{\prime 2}+9 u^{\prime}-3 s^{\prime}\right)^{3}}{\left(u^{\prime 3}-2 s^{\prime} u^{\prime 2}-9 s^{\prime} u^{\prime}-2 s^{\prime 2}-27 s^{\prime}\right)^{2}} .
$$

Then by these formulas for s and s^{\prime}, we are able to determine u and u^{\prime} as

$$
\begin{aligned}
u & =-\frac{\left(u^{\prime 2}+3 s^{\prime}\right)\left(u^{\prime 2}+9 u^{\prime}-3 s^{\prime}\right)}{u^{\prime 3}-2 s^{\prime} u^{\prime 2}-9 s^{\prime} u^{\prime}-2 s^{\prime 2}-27 s^{\prime}}, \\
u^{\prime} & =-\frac{\left(u^{2}+3 s\right)\left(u^{2}+9 u-3 s\right)}{u^{3}-2 s u^{2}-9 s u-2 s^{2}-27 s} .
\end{aligned}
$$

Hence we obtain a 2 -dimensional involutive Cremona transformation σ over an arbitrary field k^{\prime}. Indeed, let S and U be two independent variables over a field k^{\prime} of any characteristic, and define $\sigma \in \operatorname{Cr}_{2}\left(k^{\prime}\right)=$ $\operatorname{Aut}_{k^{\prime}}\left(k^{\prime}(S, U)\right)$ by

$$
\begin{aligned}
\sigma:(S, U) \mapsto & \left(\frac{S\left(U^{2}+9 U-3 S\right)^{3}}{\left(U^{3}-2 S U^{2}-9 S U-2 S^{2}-27 S\right)^{2}}\right. \\
& \left.-\frac{\left(U^{2}+3 S\right)\left(U^{2}+9 U-3 S\right)}{U^{3}-2 S U^{2}-9 S U-2 S^{2}-27 S}\right)
\end{aligned}
$$

Involutive Cremona birational transformations were classically studied by geometers in the so-called Italian school, for examples, E. Bertini [1] and G. Castelnuovo and F. Enriques [5]. Recently, L. Bayle and A. Beauville [2] gave a complete classification
of conjugacy classes of the 2-dimensional involutions over an algebraically closed field with characteristic not equal 2; their method is based on investigation of biregular involutions of rational surfaces under the Mori theory.

In our present work, we encountered the above involutive Cremona transformation σ which is definable over an arbitrary base field even with characteristic 2.

We solve the rationality problem for $k^{\prime}(S, U)^{\langle\sigma\rangle}$ and obtain Zariski-Castelnuovo's theorem (cf. [17]) by constructing a minimal basis for $k^{\prime}(S, U)^{\langle\sigma\rangle}$.

Theorem (Theorem 10). Let k^{\prime} be a field. The fixed field $k^{\prime}(S, U)^{\langle\sigma\rangle}$ of $k^{\prime}(S, U)$ under the action of σ is purely transcendental over k^{\prime}. If $\operatorname{ch}\left(k^{\prime}\right) \neq 2$ then a minimal basis of $k^{\prime}(S, U)^{\langle\sigma\rangle}$ is given as

$$
\begin{aligned}
& k^{\prime}(S, U)^{\langle\sigma\rangle}= \\
& k^{\prime}\left(\frac{2 S U^{3}+9 U^{3}+9 S U^{2}+2 S^{2} U+54 S U-9 S^{2}}{U^{3}-2 S U^{2}-9 S U-2 S^{2}-27 S}\right. \\
& \left.\quad \frac{S(4 S+27)\left(U^{2}+9 U+S+27\right)}{(2 U+9)\left(U^{3}-2 S U^{2}-9 S U-2 S^{2}-27 S\right)}\right)
\end{aligned}
$$

If $\operatorname{ch}\left(k^{\prime}\right)=2$ then

$$
k^{\prime}(S, U)^{\langle\sigma\rangle}=k^{\prime}\left(\frac{U^{3}+S U^{2}+S^{2}}{U^{3}+S U+S}, \frac{S}{U^{3}+S U+S}\right)
$$

2. Tschirnhausen transformation. Generally speaking, let $f(X), g(X) \in k[X]$ be monic polynomials of degree n over a field k, and let $\left\{\alpha_{i}\right\}_{1 \leq i \leq n}$ and $\left\{\beta_{i}\right\}_{1 \leq i \leq n}$ be the roots of $f(X)$ and $g(X)$ in a fixed algebraic closure of k, respectively. A polynomial $g(X)$ is called Tschirnhausen transformation of $f(X)$ over k, if there exist $c_{0}, \ldots, c_{n-1} \in k$ such that

$$
g(X)=\prod_{i=1}^{n}\left(X-\sum_{j=0}^{n-1} c_{j} \alpha_{i}^{j}\right)
$$

Two polynomials $f(X)$ and $g(X)$ in $k[X]$ are Tschirnhausen equivalent over k, which is denoted $f(X) \sim_{k} g(X)$, if they are Tschirnhausen transformations over k of each other. The following three conditions are equivalent: (i) $f(X) \sim_{k} g(X)$, (ii) $k[X] /(f(X))$ and $k[X] /(g(X))$ are k-isomorphic, (iii) $k\left(\alpha_{i}\right)=k\left(\beta_{j}\right)$ for some $i, j, 1 \leq i, j \leq n$. Hence if we have $f(X) \sim_{k} g(X)$ then $\operatorname{Spl}_{k} f(X)=\operatorname{Spl}_{k} g(X)$. However the converse does not hold in general (e.g. $\left.\operatorname{Gal}(f(X)) \cong D_{4}, \mathrm{PSL}_{2}\left(\mathbf{F}_{7}\right)\right)$. In the case of $n=3$, we see that $f(X) \sim_{k} g(X)$ if and only if $\operatorname{Spl}_{k} f(X)=$ $\operatorname{Spl}_{k} g(X)$ because all subgroups of S_{3} with index 3
are conjugate in S_{3}. Furthermore, the following fact is known (cf. [3]): Let $f(X), g(X) \in k[X]$ be irreducible polynomials of prime degree with solvable Galois groups. Then $f(X) \sim_{k} g(X)$ if and only if $\operatorname{Spl}_{k} f(X)=\operatorname{Spl}_{k} g(X)$.

Now let $M \supseteq K \supseteq k(s)$ be a tower of fields. We define a 3×3 matrix Ξ over K as in $[14,15]$ by

$$
\Xi:=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-s & -s & 0
\end{array}\right) \in \mathrm{M}_{3}(K)
$$

The cubic polynomial $R(s ; X):=X^{3}+s X+s \in$ $K[X]$ is the characteristic polynomial of Ξ, and its discriminant is $-s^{2}(4 s+27)$. For $x, y, z \in M$, we put $\Xi^{\prime}:=x I_{3}+y \Xi+z \Xi^{2}$, namely,

$$
\Xi^{\prime}:=\left(\begin{array}{ccc}
x & y & z \\
-s z & x-s z & y \\
-s y & -s y-s z & x-s z
\end{array}\right) \in \mathrm{M}_{3}(M)
$$

The characteristic polynomial $R^{\prime}(x, y, z, s ; X)$ of Ξ^{\prime} is given by

$$
\begin{align*}
& R^{\prime}(x, y, z, s ; X) \tag{1}\\
& =\quad X^{3}-(3 x-2 z s) X^{2}+\left(3 x^{2}+y^{2} s-4 x z s\right. \\
& \left.\quad+3 y z s+z^{2} s^{2}\right) X-x^{3}-x y^{2} s+y^{3} s \\
& \quad+2 x^{2} z s-3 x y z s-x z^{2} s^{2}+y z^{2} s^{2}-z^{3} s^{2}
\end{align*}
$$

The polynomial $R^{\prime}(x, y, z, s ; X) \in M[X]$ is a general form of Tschirnhausen transformations of $R(s ; X)$ over M. We can also obtain it as

$$
\begin{aligned}
& R^{\prime}(x, y, z, s ; X) \\
& \quad=\operatorname{Resultant}_{Y}\left(R(s ; Y), X-\left(x+y Y+z Y^{2}\right)\right)
\end{aligned}
$$

Let $f_{3}(X)$ be a cubic polynomial in $K[X]$, and suppose that

$$
\operatorname{Spl}_{M} f_{3}(X)=\operatorname{Spl}_{M} R(s ; X) \quad \text { for } \quad M \supseteq K
$$

Then there exist $x, y, z \in M$ such that $f_{3}(X)=$ $R^{\prime}(x, y, z, s ; X)$. From now on, we consider the special case where $f_{3}(X)=R\left(s^{\prime} ; X\right)=X^{3}+s^{\prime} X+$ $s^{\prime}, s^{\prime} \in K$. From (1), we have

$$
\begin{aligned}
& 3 x-2 z s=0 \\
& 3 x^{2}+y^{2} s-4 x z s+3 y z s+z^{2} s^{2}=-x^{3}-x y^{2} s \\
& +y^{3} s+2 x^{2} z s-3 x y z s-x z^{2} s^{2}+y z^{2} s^{2}-z^{3} s^{2}
\end{aligned}
$$

Hence we obtain

$$
\begin{align*}
x= & \frac{2 z s}{3} \\
27 y^{2} & -27 y^{3}+81 y z+18 y^{2} z s \tag{2}\\
& -9 z^{2} s+27 y z^{2} s+27 z^{3} s+2 z^{3} s^{2}=0 .
\end{align*}
$$

If $z=0$ then we must have $(x, y)=(0,1)$ and $R^{\prime}(0,1,0, s ; X)=R(s ; X)$. Thus we assume $z \neq 0$, and put $u:=3 y / z$; then from (2) we see

$$
\begin{aligned}
z^{2}(-9 s & +27 u+3 u^{2}+27 z s \\
& \left.+2 z s^{2}+9 u z s+2 u^{2} z s-u^{3} z\right)=0
\end{aligned}
$$

Hence we have

$$
z=\frac{3\left(u^{2}+9 u-3 s\right)}{u^{3}-2 s u^{2}-9 s u-2 s^{2}-27 s} .
$$

This means that, if $R^{\prime}(x, y, z, s ; X)=R\left(s^{\prime} ; X\right),\left(s^{\prime} \neq\right.$ $s)$, then there exists $u \in M$ such that

$$
\begin{align*}
& (x, y, z)=\left(\frac{2 s Z}{3}, \frac{u Z}{3}, Z\right), \text { where } \tag{3}\\
& Z=\frac{3\left(u^{2}+9 u-3 s\right)}{u^{3}-2 s u^{2}-9 s u-2 s^{2}-27 s}
\end{align*}
$$

By a direct calculation, we have

$$
\begin{aligned}
& R^{\prime}\left(\frac{2 s Z}{3}, \frac{u Z}{3}, Z, s ; X\right) \\
& =X^{3}+\frac{s\left(u^{2}+9 u-3 s\right)^{3}}{\left(u^{3}-2 s u^{2}-9 s u-2 s^{2}-27 s\right)^{2}}(X+1)
\end{aligned}
$$

Hence we have obtained the following theorem.
Theorem 1. Let $M \supseteq K \supseteq k(s)$ be a tower of fields. For $s^{\prime} \in K,\left(s^{\prime} \neq s\right)$, the following two statements are equivalent:
(i) $\operatorname{Spl}_{M} R\left(s^{\prime} ; X\right)=\operatorname{Spl}_{M} R(s ; X)$;
(ii) there exists an element $u \in M$ such that

$$
s^{\prime}=\frac{s\left(u^{2}+9 u-3 s\right)^{3}}{\left(u^{3}-2 s u^{2}-9 s u-2 s^{2}-27 s\right)^{2}}
$$

3. Generic sextic polynomial. In this Section, we consider the case of the rational function field $K=k(s, t)$ with two variables s, t over k. We assume that

$$
\operatorname{Spl}_{M} R(s ; X)=\operatorname{Spl}_{M} R(t ; X) \quad \text { for } \quad M \supseteq K
$$

as in Theorem 1. With the equation of (ii) of Theorem 1 in mind, we define a sextic polynomial $F(s, t ; X) \in K[X]$ by

$$
\begin{aligned}
F(s, t ; X):= & (s-t) X^{6}+(4 t+27) s X^{5} \\
& -(4 s t+9 s-18 t-243) s X^{4} \\
& -(32 s t+162 s-54 t-729) s X^{3}
\end{aligned}
$$

$$
\begin{aligned}
& -(8 s t-27 s+189 t+729) s^{2} X^{2} \\
& -9(4 s t-27 s+54 t) s^{2} X \\
& -\left(4 s^{2} t+27 s^{2}+108 s t+729 t\right) s^{2}
\end{aligned}
$$

If $X=u$ is a root of $F(s, t ; X)=0$, then t coincides with s^{\prime} given in the above (ii). Let $\alpha_{1}, \ldots, \alpha_{6}$ be the roots of $F(s, t ; X)$ in a fixed algebraic closure of K. From Theorem 1, it follows that $\operatorname{Spl}_{M} R(t ; X)=$ $\operatorname{Spl}_{M} R(s ; X)$ if and only if $F(s, t ; X)$ has a root in M. The discriminant of $F(s, t ; X) \in K[X]$ with respect to X is $(4 s+27)^{15}(4 t+27)^{3} s^{10} t^{4}$. We put

$$
L_{s}:=\operatorname{Spl}_{K} R(s ; X), \quad L_{t}:=\operatorname{Spl}_{K} R(t ; X)
$$

Then we have $L_{s} \cap L_{t}=K$ and $\operatorname{Gal}\left(L_{s} L_{t} / K\right) \cong$ $S_{3} \times S_{3}$.

Lemma 2. Let $f(X) \in K[X]$ be a sextic polynomial with roots $\beta_{1}, \ldots, \beta_{6}$. The following conditions are equivalent:
(i) $L_{s} L_{t}=L_{s}\left(\beta_{i}\right)=L_{t}\left(\beta_{i}\right)$ for every $i, 1 \leq i \leq 6$;
(ii) $f(X)$ is irreducible, $K\left(\beta_{i}\right) \subset L_{s} L_{t}$ and $L_{s} \cap K\left(\beta_{i}\right)$ $=L_{t} \cap K\left(\beta_{i}\right)=K$ for every $i, 1 \leq i \leq 6$.

Proof. If $L_{s} L_{t}=L_{s}\left(\beta_{i}\right)$ then $K\left(\beta_{i}\right) \subset$ $L_{s} L_{t},\left[K\left(\beta_{i}\right): K\right]=6$ and $K\left(\beta_{i}\right) \cap L_{s}=K$. Similarly, we have $K\left(\beta_{i}\right) \cap L_{t}=K$. Conversely if the condition (ii) holds, then $\left[L_{s}\left(\beta_{i}\right): L_{s}\right]=6$ and $L_{s} L_{t}=L_{s}\left(\beta_{i}\right)$ for $i=1, \ldots, 6$. By the same way we have $L_{s} L_{t}=L_{t}\left(\beta_{i}\right)$.

As for our $F(s, t ; X)$, we have $\operatorname{Spl}_{K\left(\alpha_{i}\right)} R(s ; X)=$ $\operatorname{Spl}_{K\left(\alpha_{i}\right)} R(t ; X)$, that is $L_{s}\left(\alpha_{i}\right)=L_{t}\left(\alpha_{i}\right)$, and hence $L_{s}\left(\alpha_{i}\right) \supset L_{s} L_{t}$. Since $6 \geq\left[L_{s}\left(\alpha_{i}\right): L_{s}\right] \geq\left[L_{s} L_{t}:\right.$ $\left.L_{s}\right]=6$, we have $L_{s}\left(\alpha_{i}\right)=L_{s} L_{t}$. Thus

Proposition 3. The above defined sextic polynomial $F(s, t ; X)$ and its roots $\alpha_{1}, \ldots, \alpha_{6}$ satisfy the conditions (i) and (ii) of Lemma 2.

Moreover we have
Proposition 4. $L_{s} L_{t}=K\left(\alpha_{1}, \ldots, \alpha_{6}\right)$.
Proof. It follows from the previous proposition that

$$
\begin{aligned}
& \operatorname{Spl}_{K} F(s, t ; X)=K\left(\alpha_{1}, \ldots, \alpha_{6}\right) \\
& \quad \subseteq L_{s} L_{t}=\operatorname{Spl}_{K} R(s ; X) \cdot \operatorname{Spl}_{K} R(t ; X)
\end{aligned}
$$

and $K\left(\alpha_{1}, \ldots, \alpha_{6}\right) \nsubseteq L_{s}, K\left(\alpha_{1}, \ldots, \alpha_{6}\right) \nsubseteq L_{t}$. However a normal subgroup N of $S_{3} \times S_{3}$ which satisfies $N \nsubseteq 1 \times S_{3}$ and $N \nsubseteq S_{3} \times 1$ must contain $C_{3} \times C_{3}$ (for example, see [13]). Thus $\left[S_{3} \times S_{3}: N\right] \leq 4$. Hence $K\left(\alpha_{1}, \ldots, \alpha_{6}\right)$ contains all of the cubic subextensions of L_{s} / K and L_{t} / K which generate $L_{s} L_{t}$. This shows the proposition.

The Galois group of the sextic polynomial $F(s, t ; X)$ over K is isomorphic to ${ }_{6} \mathrm{~T}_{9}\left(\cong S_{3} \times S_{3}\right)$, the ninth transitive subgroup of S_{6} (cf. [4]).

Theorem 5. The sextic polynomial $F(s, t ; X)$ $(\in k(s, t)[X])$ is a k-generic $\left(S_{3} \times S_{3}\right)$-polynomial.

Proof. The assertion follows from Proposition 4 and S_{3}-genericness of $R(s ; X)$.

Remark 6. T. Komatsu [11] also obtained a sextic polynomial $P(s, t ; X)$ satisfying the condition $\operatorname{Spl}_{K} P(s, t ; X)=\operatorname{Spl}_{K} R(s ; X) \cdot \operatorname{Spl}_{K} R(t ; X)$ as in Proposition 4 via descent Kummer theory (see also [10]). His paper [11] treats the subfield problem for $R(s ; X)$ by using his $P(s, t ; X)$.
4. Specialization of parameters. We consider the field isomorphism problem for $R(s ; X)$. Put

$$
L_{c}:=\operatorname{Spl}_{k} R(c ; X), \quad L_{d}:=\operatorname{Spl}_{k} R(d ; X)
$$

for $c, d \in k$. Suppose $c, d \in k \backslash\{0,-27 / 4\}$. (Then the discriminant, $-s^{2}(4 s+27)$, of $R(s ; X)$ with respect to X does not vanish.) By specializing the parameters $\left(s, s^{\prime}\right) \mapsto(c, d) \in k^{2}$ in Theorem 1, we obtain an answer of the field isomorphism problem for $R(s ; X)$ via Tschirnhausen transformation.

Theorem 7. If $F(c, d ; X)$ has an irreducible factor $f_{n}(X)$ of degree n over k, then a root field M of $f_{n}(X)$ satisfies $\operatorname{Spl}_{M} R(c ; X)=\operatorname{Spl}_{M} R(d ; X)$. Conversely, if there exists such an extension M of k with $[M: k]=n$, then $F(c, d ; X)$ has an irreducible factor $f_{m}(X)$ of degree m with $m \mid n$ over k a root of which is contained in M.

Corollary 8. Two splitting fields L_{c} and L_{d} coincide if and only if $F(c, d ; X)$ has a root in k.

Example 9. We give some numerical examples for Theorem 7 over $k=\mathbf{Q}$. We put $G_{c}:=$ $\operatorname{Gal}\left(L_{c} / \mathbf{Q}\right)$ for $c \in \mathbf{Q}$.
(i) $L_{1}=L_{67^{3}}, G_{1} \cong G_{67^{3}} \cong S_{3}$.

$$
F\left(1,67^{3} ; X\right)=-31 f_{1}(X) f_{2}(X) f_{3}(X)
$$

where

$$
\begin{aligned}
f_{1}(X) & =X-5 \\
f_{2}(X) & =98 X^{2}+293 X+574 \\
f_{3}(X) & =99 X^{3}-197 X^{2}-882 X-2843
\end{aligned}
$$

We choose $u=5$. It follows from (3) that $(x, y, z)=$ $(134,335,201)$ and then
Resultant $_{X}\left(X^{3}+X+1\right.$,

$$
\left.Y-\left(134+335 X+201 X^{2}\right)\right)=Y^{3}+67^{3}(Y+1)
$$

Root fields of $f_{2}(X)$ and $f_{3}(X)$ give subfields of L_{1}.
(ii) $L_{1} \neq L_{63},\left[L_{1} \cap L_{63}: \mathbf{Q}\right]=2, G_{1} \cong G_{63} \cong S_{3}$.

There exists a cubic field M for which we have $\operatorname{Spl}_{M} R(1 ; X)=\operatorname{Spl}_{M} R(63 ; X)$. Indeed, in this case,

$$
F(1,63 ; X)=-31 f_{3}^{(1)}(X) f_{3}^{(2)}(X)
$$

where

$$
\begin{aligned}
& f_{3}^{(1)}(X)=X^{3}-3 X^{2}-18 X-57 \\
& f_{3}^{(2)}(X)=2 X^{3}-3 X^{2}-9 X-30
\end{aligned}
$$

For each root field M of $f_{3}^{(1)}(X)$ or of $f_{3}^{(2)}(X)$ over \mathbf{Q} we have $\operatorname{Spl}_{M} R(1 ; X)=\operatorname{Spl}_{M} R(63 ; X)$.
(iii) $L_{1} \neq L_{2}, L_{1} \cap L_{2}=\mathbf{Q}, G_{1} \cong G_{2} \cong S_{3}$.

$$
\begin{aligned}
F(1,2 ; X)= & -X^{6}+35 X^{5}+262 X^{4} \\
& +611 X^{3}-1096 X^{2}-801 X-1709
\end{aligned}
$$

is irreducible over \mathbf{Q}.
(iv) $L_{-7}=L_{-49}, G_{-7} \cong G_{-49} \cong C_{3}$.

In this case, we have

$$
F(-7,-49 ; X)=7 f_{1}^{(1)}(X) f_{1}^{(2)}(X) f_{1}^{(3)}(X) f_{3}(X)
$$

where

$$
\begin{aligned}
f_{1}^{(1)}(X) & =X+7 \\
f_{1}^{(2)}(X) & =2 X+7 \\
f_{1}^{(3)}(X) & =3 X+14 \\
f_{3}(X) & =X^{3}+13 X^{2}+54 X+71
\end{aligned}
$$

Take $u=-7,-7 / 2,-14 / 3$. Then we get $(x, y, z)=$ $(14,7,-3),(28,7,-6),(-42,-14,9)$, respectively, from (3). Using these (x, y, z), we see

$$
\begin{aligned}
& \text { Resultant }_{X}\left(X^{3}-7 X-7, Y-\left(x+y X+z X^{2}\right)\right) \\
& =Y^{3}-49(Y+1)
\end{aligned}
$$

(v) $L_{-7} \neq L_{-9}, G_{-7} \cong G_{-9} \cong C_{3}$.

$$
F(-7,-9 ; X)=f_{3}^{(1)}(X) f_{3}^{(2)}(X)
$$

where

$$
\begin{aligned}
f_{3}^{(1)}(X) & =X^{3}+21 X^{2}+126 X+231 \\
f_{3}^{(2)}(X) & =2 X^{3}+21 X^{2}+63 X+42
\end{aligned}
$$

The splitting fields of $f_{3}^{(1)}(X)$ and of $f_{3}^{(2)}(X)$ give different cyclic cubic subfields of $L_{-7} L_{-9}$ which are also different from L_{-7} and L_{-9}.
5. Involutive Cremona transformation. Let $K=k(s, t)$ be the rational function field in two variables s and t, and suppose that $\operatorname{Spl}_{M} R(s ; X)=$ $\mathrm{Spl}_{M} R(t ; X)$ for an extension M of K. It follows from Theorem 1 that there exist $u, v \in M$ for which we have

$$
\begin{aligned}
t & =\frac{s\left(u^{2}+9 u-3 s\right)^{3}}{\left(u^{3}-2 s u^{2}-9 s u-2 s^{2}-27 s\right)^{2}} \\
s & =\frac{t\left(v^{2}+9 v-3 t\right)^{3}}{\left(v^{3}-2 t v^{2}-9 t v-2 t^{2}-27 t\right)^{2}}
\end{aligned}
$$

From this we also have

$$
v=-\frac{\left(u^{2}+3 s\right)\left(u^{2}+9 u-3 s\right)}{u^{3}-2 s u^{2}-9 s u-2 s^{2}-27 s}
$$

The correspondence $(s, u) \leftrightarrow(t, v)$ gives an involutive Cremona transformation σ over the field k. Let S and U be two independent variables over k; then $\sigma \in \mathrm{Cr}_{2}(k)=\operatorname{Aut}_{k}(k(S, U))$ is given by

$$
\begin{aligned}
\sigma:(S, U) \mapsto & \left(\frac{S\left(U^{2}+9 U-3 S\right)^{3}}{\left(U^{3}-2 S U^{2}-9 S U-2 S^{2}-27 S\right)^{2}}\right. \\
& \left.-\frac{\left(U^{2}+3 S\right)\left(U^{2}+9 U-3 S\right)}{U^{3}-2 S U^{2}-9 S U-2 S^{2}-27 S}\right)
\end{aligned}
$$

In contrast to the construction σ via Tschirnhausen transformation over k with $\operatorname{ch}(k) \neq 3, \sigma$ is defined over an arbitrary field k^{\prime}. Indeed, over a field k^{\prime} with $\operatorname{ch}\left(k^{\prime}\right)=3$, we have

$$
\sigma:(S, U) \mapsto\left(\frac{S U^{6}}{\left(U^{3}+S U^{2}+S^{2}\right)^{2}}, \frac{2 U^{4}}{U^{3}+S U^{2}+S^{2}}\right)
$$

and $\sigma^{2}(S, U)=(S, U)$. Hence we regard S and U as independent variables over an arbitrary base field k^{\prime}.

We study the rationality problem or the general Noether problem (cf. [7]) for $k^{\prime}(S, U)^{\langle\sigma\rangle}$ over k^{\prime}. It is known as Zariski-Castelnuovo's theorem (cf. [17]) that if $k(S, U) \supset M \supsetneq k$ with k algebraically closed of any characteristic and $k(S, U)$ is separable over M, then M is purely transcendental over k. However, this is not true for a general field. We show the rationality of $k^{\prime}(S, U)^{\langle\sigma\rangle}$ over an arbitrary field k^{\prime} by constructing a minimal basis of $k^{\prime}(S, U)^{\langle\sigma\rangle}$.

Theorem 10. Let k^{\prime} be a field. The fixed field $k^{\prime}(S, U)^{\langle\sigma\rangle}$ of $k^{\prime}(S, U)$ under the action of σ is purely transcendental over k^{\prime}. If $\operatorname{ch}\left(k^{\prime}\right) \neq 2$ then a minimal basis of $k^{\prime}(S, U)^{\langle\sigma\rangle}$ over k^{\prime} is given by

$$
\begin{aligned}
& k^{\prime}(S, U)^{\langle\sigma\rangle}= \\
& k^{\prime}\left(\frac{2 S U^{3}+9 U^{3}+9 S U^{2}+2 S^{2} U+54 S U-9 S^{2}}{U^{3}-2 S U^{2}-9 S U-2 S^{2}-27 S}\right.
\end{aligned}
$$

$$
\left.\frac{S(4 S+27)\left(U^{2}+9 U+S+27\right)}{(2 U+9)\left(U^{3}-2 S U^{2}-9 S U-2 S^{2}-27 S\right)}\right)
$$

If $\operatorname{ch}\left(k^{\prime}\right)=2$ then

$$
k^{\prime}(S, U)^{\langle\sigma\rangle}=k^{\prime}\left(\frac{U^{3}+S U^{2}+S^{2}}{U^{3}+S U+S}, \frac{S}{U^{3}+S U+S}\right)
$$

Proof. Put $L:=k^{\prime}(S, U)$ and $\sigma=\sigma_{1} \sigma_{2}$, where
$\sigma_{1}:(S, U) \mapsto$

$$
\left(\frac{S\left(U^{2}+9 U-3 S\right)^{3}}{\left(U^{3}-2 U^{2} S-9 S U-2 S^{2}-27 S\right)^{2}}, U\right)
$$

$\sigma_{2}:(S, U) \mapsto$

$$
\left(S,-\frac{\left(U^{2}+3 S\right)\left(U^{2}+9 U-3 S\right)}{U^{3}-2 S U^{2}-9 S U-2 S^{2}-27 S}\right)
$$

We define

$$
\begin{align*}
(x, y) & :=\left(\operatorname{Tr}_{\sigma}(S), \operatorname{Tr}_{\sigma}(U)\right) \tag{4}\\
& =\left(S+\sigma_{1}(S), U+\sigma_{2}(U)\right)
\end{align*}
$$

First we assume $\operatorname{ch}\left(k^{\prime}\right) \neq 2$. Then we can show

$$
\begin{equation*}
L^{\left\langle\sigma_{1}\right\rangle \times\left\langle\sigma_{2}\right\rangle}=k^{\prime}(x, y) \tag{5}
\end{equation*}
$$

Indeed, it follows from the definition of (x, y) that $L^{\left\langle\sigma_{1}\right\rangle \times\left\langle\sigma_{2}\right\rangle} \supset k^{\prime}(x, y)$. Then by using computer manipulation we obtain the following equations:

$$
\begin{aligned}
& 486 S-36 S^{2}-243 x+54 x S+729 y+270 y S \\
& -54 x y+4 x y S+243 y^{2}+54 y^{2} S+18 y^{3} \\
& +4 y^{3} S-2 U\left(729+54 S+4 S^{2}+54 x-2 x S\right. \\
& \left.+243 y+18 y S+9 x y+27 y^{2}+2 y^{2} S+y^{3}\right)=0 \\
& 16 S^{4}-32 x S^{3}+4 S(S-x)\left(1458+135 x+5 x^{2}\right. \\
& \left.+729 y+36 x y+162 y^{2}+2 x y^{2}+20 y^{3}+y^{4}\right) \\
& +16 x^{3} S-\left(3 x-9 y-y^{2}\right)^{3}=0
\end{aligned}
$$

From the first equation we have $U \in k^{\prime}(x, y)(S)$ because it is linear in U and $\operatorname{ch}\left(k^{\prime}\right) \neq 2$. By the second equation, we have $k^{\prime}(S, U)=k^{\prime}(x, y)(S)$ and $\left[k^{\prime}(S, U): k^{\prime}(x, y)\right]=4$. Hence we conclude the equality of (5). Now we have $L^{\langle\sigma\rangle} \supset k^{\prime}(x, y)$ and $\left[L^{\langle\sigma\rangle}: k^{\prime}(x, y)\right]=2$. Next we put

$$
\begin{equation*}
z:=\frac{S-\sigma_{1}(S)}{U-\sigma_{2}(U)} \tag{6}
\end{equation*}
$$

Then we see x, y, z satisfy

$$
\begin{aligned}
81+9 x & +18 y+x y+y^{2} \\
& +x z-9 y z-y^{2} z-9 z^{2}-y z^{2}=0
\end{aligned}
$$

Hence, we conclude $L^{\langle\sigma\rangle}=k^{\prime}(y, z)$ because we have $L^{\langle\sigma\rangle} \supset k^{\prime}(x, y)(z),\left[k^{\prime}(x, y)(z): k^{\prime}(x, y)\right]=2$ and
$k^{\prime}(x, y, z)=k^{\prime}(y, z)$. Finally we can compute y, z directly from the definition as

$$
\begin{aligned}
& y=-\frac{2 S U^{3}+9 U^{3}+9 S U^{2}+2 S^{2} U+54 S U-9 S^{2}}{U^{3}-2 S U^{2}-9 S U-2 S^{2}-27 S} \\
& z=-\frac{S(4 S+27)\left(U^{2}+9 U+S+27\right)}{(2 U+9)\left(U^{3}-2 S U^{2}-9 S U-2 S^{2}-27 S\right)}
\end{aligned}
$$

Next we assume $\operatorname{ch}\left(k^{\prime}\right)=2$. In this case, σ is described as

$$
\begin{aligned}
& \sigma:(S, U) \mapsto\left(\frac{S\left(U^{2}+U+S\right)\left(U^{4}+U^{2}+S^{2}\right)}{U^{6}+S^{2} U^{2}+S^{2}}\right. \\
&\left.\frac{U^{4}+U^{3}+S U+S^{2}}{U^{3}+S U+S}\right)
\end{aligned}
$$

From a similar way as above we see that

$$
x+y+y^{2}=0, \quad z=\frac{x}{y}
$$

where x, y, z are defined as in (4) and (6). Thus we have $k^{\prime}(x, y, z)=k^{\prime}(y)$ and

$$
y=U+\sigma(U)=\frac{U^{3}+S U^{2}+S^{2}}{U^{3}+S U+S}
$$

in the case of $\operatorname{ch}\left(k^{\prime}\right)=2$. Now we put

$$
w:=\frac{S}{U}+\frac{\sigma(S)}{\sigma(U)}=\frac{S\left(U^{3}+S U^{2}+S^{2}\right)}{U\left(U^{5}+S U^{2}+S^{2} U+S^{2}\right)}
$$

Then we obtain $k^{\prime}(S, U)^{\langle\sigma\rangle}=k^{\prime}(y, w)$ as follows: From the definition of y and w, we have $k^{\prime}(S, U)^{\langle\sigma\rangle} \supset$ $k^{\prime}(y, w)$. We put

$$
W:=\frac{w}{y+w}=\frac{S}{U^{3}+S U+S}
$$

Then $k^{\prime}(y, w)=k^{\prime}(y, W)$ and we see that y, W, S, U satisfy

$$
\begin{array}{r}
S+y U+U+W+y+1=0 \\
W U^{2}+y W U+W^{2}+y W+y+1=0
\end{array}
$$

Hence the equality $k^{\prime}(S, U)^{\langle\sigma\rangle}=k^{\prime}(y, W)=k^{\prime}(y, w)$ follows from $k^{\prime}(S, U)=k^{\prime}(y, W)(U)$ and $\left[k^{\prime}(S, U)\right.$: $\left.k^{\prime}(y, W)\right]=2$.

The calculations in this paper were carried out with Mathematica [16].

References

[1] E. Bertini, Ricerche sulle trasformazioni univoche involutorie nel piano, Annali di Mat. 8 (1877),

244-286.
[2] L. Bayle and A. Beauville, Birational involutions of \mathbf{P}^{2}, Asian J. Math. 4 (2000), no. 1, 11-17.
[3] A. A. Bruen, C. U. Jensen and N. Yui, Polynomials with Frobenius groups of prime degree as Galois groups. II, J. Number Theory 24 (1986), no. 3, 305-359.
[4] G. Butler and J. McKay, The transitive groups of degree up to eleven, Comm. Algebra 11 (1983), no. 8, 863-911.
[5] G. Castelnuovo and F. Enriques, Sulle condizioni di razionalità dei piani doppi, Rend. del Circ. Mat. di Palermo 14 (1900), 290-302.
[6] K.-I. Hashimoto and K. Miyake, Inverse Galois problem for dihedral groups, in Number theory and its applications (Kyoto, 1997), 165-181, Kluwer Acad. Publ., Dordrecht, 1999.
[7] C. U. Jensen, A. Ledet and N. Yui, Generic polynomials, Cambridge Univ. Press, Cambridge, 2002.
[8] G. Kemper, Generic polynomials are descentgeneric, Manuscripta Math. 105 (2001), no. 1, 139-141.
[9] Y. Kishi and K. Miyake, Parametrization of the quadratic fields whose class numbers are divisible by three, J. Number Theory 80 (2000), no. 2, 209-217.
[10] T. Komatsu, Arithmetic of Rikuna's generic cyclic polynomial and generalization of Kummer theory, Manuscripta Math. 114 (2004), no. 3, 265279.
[11] T. Komatsu, Generic sextic polynomial related to the subfield problem of a cubic polynomial. (Preprint). http://www.math.kyushu-u.ac.jp/ coe/report/pdf/2006-9.pdf
[12] A. Ledet, On groups with essential dimension one, J. Algebra. (to appear).
[13] M. D. Miller, On the lattice of normal subgroups of a direct product, Pacific J. Math. 60 (1975), no. 2, 153-158.
[14] K. Miyake, Twists of Hessian Elliptic Curves and Cubic Fields, in The Proceedings of Congrés International, Algèbre, Théorie des nombres et leurs Applications, Université Mohammed I, Oujda-Saidia, Maroc, 2006. (to appear).
[15] K. Miyake, Two Expositions on Arithmetic of Cubics, in The Proceedings of The Fourth China-Japan Conference on Number Theory, Shandong University Academic Center, Weihai, 2006. (to appear).
[16] S. Wolfram, The Mathematica ${ }^{\circledR}$ book, Fourth edition, Wolfram Media, Inc., Champaign, IL, 1999.
[17] O. Zariski, On Castelnuovo's criterion of rationality $p_{a}=P_{2}=0$ of an algebraic surface, Illinois J. Math. 2 (1958), 303-315.

[^0]: 2000 Mathematics Subject Classiffcation. 12F12, 12F20, 14E07, 14E08.
 *) Department of Mathematics, School of Education, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo 169-8050, Japan.
 **) Department of Mathematical Sciences, School of Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.

