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Tschirnhausen transformation of a cubic generic polynomial
and a 2-dimensional involutive Cremona transformation
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Abstract: We study the field isomorphism problem for a cubic generic polynomial X3 +
sX 4+ s via Tschirnhausen transformation. Through this process, there naturally appears a 2-
dimensional involutive Cremona transformation. We show that the fixed field under the action of

the transformation is purely transcendental over an arbitrary base field.
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Let k& be a field whose
characteristic ch(k) is different from 3 and which
may not be algebraically closed. Let k(s) be the
rational function field over k£ with an indetermi-
nate s. In this paper, we study the cubic polyno-
mial R(s;X) := X3+ sX +s € k(s)[X]. We de-
note by Spl, f(X) the splitting field of a polynomial
f(X) € kE[X] over a field k. The polynomial R(s; X)
is well-known as a k-generic Ss-polynomial (cf. e.g.
[6, 9, 15]). Namely the Galois group of R(s; X) over
k(s) is isomorphic to the symmetric group Ss of de-
gree 3 and every Ss-Galois extension L/K D k can
be obtained as L = Sply R(c; X) for some ¢ € K (see
[7]). Note that from Kemper’s Theorem [8] every Ca-
or C3-Galois extension L'/K which includes a base
field k also can be realized as L' = Sply R(d; X)) for
some d € K. Conversely, in the case of k = Q, there
exist one-parameter Q-generic polynomials only for
the groups Co, C3 and S3 (cf. [7, 12]).

We shall treat the field isomorphism problem for
R(s; X) via general Tschirnhausen transformation.
Indeed in Section 2, we show that

Theorem (Theorem 1). Let M D K D k(s) be
a tower of fields, and R(s; X) = X3+sX +s € K[X].
Fors' € K, (s' # s), the following two statements are
equivalent :

(i) SplyR(s"; X) = Sply R(s; X);

1. Introduction.
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(ii) there exists an element u € M such that

, s(u? 4+ 9u — 3s)3
s = — :
(ud — 2su? — 9su — 252 — 27s)?

As a consequence of Theorem 1, we give a nec-
essary and sufficient condition of Spl R(¢; X) =
Spl, R(d; X) for ¢,d € k.

Under the condition of the theorem, there also
exists u' € M such that

s'(u'? + 9u' — 35')3

s = — .
(u'® — 2s'u'? — 9s'u! — 2s'* — 275s')2

Then by these formulas for s and s’, we are able to
determine u and u as

(W + 3¢ ) (u'* 4 9u' — 35')
w3 — 25/ — 9s'u! — 25'% — 275"’
;L (u? + 3s)(u? + 9u — 3s)
T ud —2su — 9su — 282 — 275
Hence we obtain a 2-dimensional involutive Cremona
transformation o over an arbitrary field k’. Indeed,

u = —

u

let S and U be two independent variables over a field
k' of any characteristic, and define o € Cra(k') =
Autk/ (k/(S, U)) by

S(U?% +9U —39)3
(U3 — 2502 —9SU — 282 — 275)?’
(U2 +39)(U% +9U — 39)
U3 —28U2 - 98U — 252 — 275’)'
Involutive Cremona birational transformations
were classically studied by geometers in the so-called
Italian school, for examples, E. Bertini [1] and G.
Castelnuovo and F. Enriques [5]. Recently, L. Bayle
and A. Beauville [2] gave a complete classification

o (S,0) »—»(
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of conjugacy classes of the 2-dimensional involutions
over an algebraically closed field with characteristic
not equal 2; their method is based on investigation
of biregular involutions of rational surfaces under the
Mori theory.

In our present work, we encountered the above
involutive Cremona transformation o which is defin-
able over an arbitrary base field even with character-
istic 2.

We solve the rationality problem for &'(S,U){)
and obtain Zariski-Castelnuovo’s theorem (cf. [17])
by constructing a minimal basis for &’(S, U){".

Theorem (Theorem 10). Let k" be a field. The
fized field k' (S,U)'?) of k'(S,U) under the action of
o is purely transcendental over k'. If ch(k') # 2 then
a minimal basis of k'(S,U)\7) is given as

K (S,U)) =
k,(25U3 +9U3 4+ 9SU? + 282U + 545U — 95?2
U3 —25U2 —9SU — 252 — 278 ’

S(4S +27)(U? +9U + S +27) )
(2U + 9)(U3 — 28U2 — 9SU — 252 — 27S)/’

If ch(k') = 2 then

)
1

U3 + SU% + 52 S
U3+ SU+S ’U3+SU+S)'
2. Tschirnhausen transformation. Gen-
erally speaking, let f(X), g(X) € k[X] be monic
polynomials of degree m over a field k, and let
{a;}1<i<n and {f;}1<i<n be the roots of f(X) and
g(X) in a fixed algebraic closure of k, respectively.
A polynomial g(X) is called Tschirnhausen transfor-

K(S,0) =k (

mation of f(X) over k, if there exist cg,...,cn—1 € k
such that
n n—1 )
g(X) = H Xchjag
i=1 §=0

Two polynomials f(X) and ¢(X) in k[X] are
Tschirnhausen equivalent over k, which is denoted
f(X) ~k g(X), if they are Tschirnhausen transfor-
mations over k of each other. The following three
conditions are equivalent: (i) f(X) ~p g(X), (ii)
k[ X]/(f(X))and k[X]/(g(X)) are k-isomorphic, (iii)
k(a;) = k(B;) for some 4,j,1 < 4,j < n. Hence if
we have f(X) ~ g(X) then Spl, f(X) = Spl,g(X).
However the converse does not hold in general (e.g.
Gal(f(X)) & D4,PSLa(F7)). In the case of n = 3,
we see that f(X) ~j ¢g(X) if and only if Spl, f(X) =
Spl,g(X) because all subgroups of S5 with index 3
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are conjugate in S3. Furthermore, the following fact
is known (cf. [3]): Let f(X),9(X) € k[X] be ir-
reducible polynomials of prime degree with solvable
Galois groups. Then f(X) ~j g(X) if and only if
Spl f(X) = Spl,g(X).

Now let M D K D k(s) be a tower of fields. We
define a 3 x 3 matrix = over K as in [14, 15] by

0 1 0
= = 0 0 1 € M3(K).
—-s —s 0

The cubic polynomial R(s; X) := X3 +sX + s €
K[X] is the characteristic polynomial of Z, and its
discriminant is —s?(4s+27). For z,y,z € M, we put
= = xl3 + y= + 252, namely,

x y z
g2 = -8z T — 82 Yy € M3(M).
-8y —8Yy—sz X — Sz

The characteristic polynomial R'(z,y, z,s; X) of =’
is given by
1) R(z,y,2 5X)
= X3 — 3z —228) X% + (322 + y?s — dazs
+3yzs + 2282 X — 2% — zy®s + 135

+ 22225 — 3xyzs — x2°s% + y22s? — 2357

The polynomial R'(z,y,z,$;X) € M[X] is a
general form of Tschirnhausen transformations of
R(s; X) over M. We can also obtain it as

R'(z,y,2,8X)
= Resultanty (R(s;Y), X — (z + yY + 2Y?)).

Let f35(X) be a cubic polynomial in K[X], and sup-
pose that

Sply, f3(X) = Sply, R(s; X) for M 2D K.

Then there exist x,y,z € M such that f3(X) =
R/(z,y,z,s;X). From now on, we consider the spe-
cial case where f3(X) = R(s’;X) = X3 + /X +
s, s € K. From (1), we have

3r —2zs = 0,

322 + y25 —4dxzs 4+ 3yzs + 22s% = —a3 — nyS

+ 435 + 22225 — Bwyzs — x22s? 4 y22s? — 2342

Hence we obtain
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2zs
xr = —,
3
(2)  27y? —27y® + 81lyz + 18y>zs
—92%s5 + 27y2%s + 27235 + 22357 = 0.
If z = 0 then we must have (x,y) = (0,1) and
R'(0,1,0,s; X) = R(s; X). Thus we assume z # 0,
and put u := 3y/z; then from (2) we see
22(—9s + 27u + 3u® 4 27zs
+225% + uzs + 2ulzs — ulz) = 0.

Hence we have
3(u? + 9u — 3s)
ud — 2su? — 9su — 252 — 27s’
This means that, if R'(z,y, z,s; X) = R(s'; X), (s’ #
s), then there exists u € M such that
22 uz
373
3(u? + 9u — 3s)
ud — 2s5u? — 9su — 252 — 27s’

z =

@) @y = (

7 =

,Z), where

By a direct calculation, we have

2sZ uZ
R’(—,—,Z,S;X)
3 3
2 23
_ox3. s(u® 4+ 9u — 3s) (X +1).

(ud — 2su? — 9su — 282 — 27s)?

Hence we have obtained the following theorem.
Theorem 1. Let M O K D k(s) be a tower

of fields. For s’ € K,(s'" # s), the following two

statements are equivalent:

(1) Spla R(s's X) = Sply R(s; X);

(ii) there exists an element w € M such that

, s(u? 4+ 9u — 3s)3
s = — :
(ud — 2su? — 9su — 282 — 27s)?

3. Generic sextic polynomial. In this
Section, we consider the case of the rational func-
tion field K = k(s,t) with two variables s,t over k.
We assume that

Sply, R(s; X) = Sply,R(t; X) for M DK

as in Theorem 1. With the equation of (ii) of
Theorem 1 in mind, we define a sextic polynomial
F(s,t; X) € K[X] by
F(s,t; X) = (s — )X + (4t 4 27)s X5
— (4st +9s — 18t — 243)sX*
— (325t + 1625 — 54t — 729)s X3

Tschirnhausen transformation of a cubic generic polynomial 23

— (85t — 275 + 189t + 729)s? X 2
—9(4st — 27s + 54t)s* X
— (45t + 275% + 108s ¢ + 729¢)s>.

If X =wis aroot of F(s,t; X) =0, then ¢ coincides
with s’ given in the above (ii). Let ai,...,as be
the roots of F(s,¢; X) in a fixed algebraic closure of
K. From Theorem 1, it follows that Spl,,R(t; X) =
SplysR(s; X) if and only if F(s,¢; X) has aroot in M.
The discriminant of F(s,t; X) € K[X] with respect
to X is (4s + 27)12(4t + 27)3s0t%. We put

L, := SplpR(s; X), L¢ := SplgR(t; X).

Then we have Ly N Ly = K and Gal(LsL:/K) =
S3 X S3.

Lemma 2. Let f(X) € K[X] be a sextic poly-
nomial with roots (1,...,0s. The following condi-
tions are equivalent:

(i) LsLy = Ly(B;) = L+(B;) for every i, 1 < i < 6;
(ii) f(X) is irreducible, K (5;) C LsLy and Ls N K(5;)
=L:NK(B;) =K for everyi,1 <i<6.

Proof. f LsL;y = Lg(3;) then K(8;) C
L.Li)[K(08;) : K] =6 and K(6;) N Ly = K. Sim-
ilarly, we have K(3;) N Ly = K. Conversely if the
condition (ii) holds, then [Ls(5;) : Ls] = 6 and
L.L; = Ly(B;) for i = 1,...,6. By the same way
we have LsLy = Li(3;). O

As for our F(s, t; X), we have Sply () R(s; X) =
SPli (o) B(t; X), that is Ls(a;) = Li(;), and hence
Ls(a;) D LsLy. Since 6 > [Lg(ey) @ Ls] > [LsLy :
Li] =6, we have Ls(o;) = LsLy. Thus

Proposition 3. The above defined sextic poly-
nomial F(s,t; X) and its roots aq, ..., ag satisfy the
conditions (i) and (ii) of Lemma 2.

Moreover we have

Proposition 4. L.L; = K(a,...,a4).

Proof . 1t follows from the previous proposition
that

SleF(S,t,X) :K(ala"'aaﬁ)
C L,L:; = SplR(s; X) - Spl R(t; X),

and K(ai,...,a6) € Ls, K(a,...,a6) € L;. How-
ever a normal subgroup N of S5 x S3 which satisfies
N Z 1x S5 and N € S5x1 must contain C3 x C5 (for
example, see [13]). Thus [S3 x S5 : N] < 4. Hence
K (a1, ..., as) contains all of the cubic subextensions
of Ls/K and L;/K which generate Ly L;. This shows
the proposition. O
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The Galois group of the sextic polynomial
F(s,t; X) over K is isomorphic to Ty (=S5 x S3),
the ninth transitive subgroup of Sg (cf. [4]).

Theorem 5. The sextic polynomial F(s,t; X)
(€ k(s,t)[X]) is a k-generic (S3 x Ss)-polynomial.

Proof. The assertion follows from Proposition 4
and Ss-genericness of R(s; X). O

Remark 6. T. Komatsu [11] also obtained a
sextic polynomial P(s,t; X) satisfying the condition
Splg P(s,t; X) = SplgR(s; X) - SplgR(t; X) as in
Proposition 4 via descent Kummer theory (see also
[10]). His paper [11] treats the subfield problem for
R(s; X) by using his P(s,t; X).

4. Specialization of parameters. We con-
sider the field isomorphism problem for R(s; X). Put

L. := Spl,R(¢; X), Lg := Spl,R(d; X),

for ¢,d € k. Suppose ¢,d € k\{0,—27/4}. (Then the
discriminant, —s?(4s+27), of R(s; X) with respect to
X does not vanish.) By specializing the parameters
(s,8') — (c,d) € k? in Theorem 1, we obtain an
answer of the field isomorphism problem for R(s; X)
via Tschirnhausen transformation.

Theorem 7. If F(c,d; X) has an irreducible
factor f,(X) of degree n over k, then a root field
M of fn(X) satisfies Sply;R(c; X) = Sply,R(d; X).
Conversely, if there exists such an extension M of k
with [M : k] = n, then F(c,d; X) has an irreducible
factor fn(X) of degree m with m | n over k a root of
which is contained in M.

Corollary 8. Two splitting fields L. and Lq
coincide if and only if F(c,d; X) has a root in k.

Example 9. We give some numerical exam-
ples for Theorem 7 over kK = Q. We put G, :=
Gal(L./Q) for c € Q.

(i) L1 = Lg7s, G1 = Ggps =2 Ss.
F(1,67% X) = =31/1(X)f2(X) fs(X),
where
(X)) = X -5,
f2(X) = 98X?% 4 293X + 574,
f2(X) = 99X3 —197X? — 882X — 2843.

We choose u = 5. It follows from (3) that (z,y, z) =
(134, 335,201) and then

Resultant x (X3 + X +1,

Y — (1344 335X +201X7)) = Y? + 673(Y +1).

[Vol. 83(A),

Root fields of f2(X) and f3(X) give subfields of L;.

(11) L4 7é L63, [Ll N Lgs : Q] =2, G122 Ggz =2 S5.

There exists a cubic field M for which we have
Sply,R(1; X)) = Sply, R(63; X). Indeed, in this case,

F(1,63X) = —31Y(X) £ (X)
where
M(X) = X*—3X%— 18X — 57,
(X) = 2X%—3X%—9X — 30.
For each root field M of f(l)( X) or of f§2) (X) over
Q we have Spl;,;R(1; X) = Spl,;R(63; X).
(111) Ly 7& Lo, L1 NLy=Q, G1 =2 Gy = Ss.
=— X% +35X° +262X*
+611X° — 1096X2 — 801X — 1709

F(1,2;X)

is irreducible over Q.

(iv) Loy = L_49, G_7 =2 G_49 =2 Cs.
In this case, we have
F(-7,-49; X) = THV(X) P (X) AP (X) f3(X)
where
(1)(X) = X +7,
(X) 2X +7,
(X) =
) =

<3>X 3X + 14,
f3(X) = X34+ 13X% 454X + 71

Take u = —7, —7/2, —14/3. Then we get (z,y,z) =
(147 7; 73)) (28, 77 76)7 (742, 714; 9)7
from (3). Using these (z,y, z), we see

Resultanty (X® — 7X = 7,Y — (z + yX + 2X?))
=Y3 —49(Y +1).
(V)Y L. #L_g, G_7 2 G_g = Cs.

F(-7,-9X) = (X)) 2 (x),

respectively,

where
) =
P(x) =

X34+ 21X2 + 126X + 231,
2X°% +21X? + 63X +42.
The splitting fields of f(l)( X) and of fég)(X) give

different cyclic cubic subfields of L_7L_g which are
also different from L_7 and L_g.
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5. Involutive Cremona transformation.

Let K = k(s,t) be the rational function field in two
variables s and ¢, and suppose that Spl,,; R(s; X) =
Sply, R(t; X) for an extension M of K. It follows
from Theorem 1 that there exist u,v € M for which
we have

s(u? + 9u — 3s)3
(u — 2su? — 9su — 252 — 275)?’

t(v? +9v — 3t)3
(v3 = 2tw? — 9tv — 2t2 — 27t)2°

From this we also have

(u? + 3s)(u? + 9u — 3s)

v o= — )
u3 — 2su? — 9su — 252 — 27s

The correspondence (s,u) < (t,v) gives an involu-
tive Cremona transformation o over the field k. Let
S and U be two independent variables over k; then
o € Cra(k) = Autg(k(S,U)) is given by

S(U?% +9U - 39)3
(U3 —2SU2 —9SU — 252 — 275)2’
(U +39)(U* +9U —35) )
U3 —25U2 - 9SU — 252 —275)°

In contrast to the construction ¢ via Tschirnhausen
transformation over k with ch(k) # 3, o is defined
over an arbitrary field k. Indeed, over a field k¥’ with
ch(k") = 3, we have

o (S,0) »—»(

Sue 204 )
(U3 4 SU? 4 52)2’ U3 + SU? + 52

and 02(S,U) = (S,U). Hence we regard S and U as
independent variables over an arbitrary base field &’.

We study the rationality problem or the general
Noether problem (cf. [7]) for k'(S,U){" over k. Tt
is known as Zariski-Castelnuovo’s theorem (cf. [17])
that if k(S,U) D M 2 k with k algebraically closed
of any characteristic and k(S, U) is separable over M,
then M is purely transcendental over k. However,
this is not true for a general field. We show the
rationality of k/(S,U){°) over an arbitrary field &’
by constructing a minimal basis of &'(S, U){).

Theorem 10. Let k' be a field. The fized field
E'(S,U)) of k'(S,U) under the action of o is purely
transcendental over k'. If ch(k') # 2 then a minimal
basis of k'(S,U)'7) over k' is given by

a:(S,U)»—>(

K (S, U) =
k,(2SU3 +9U3 +9SU? + 252U + 545U — 952
U3 —2SU2 —9SU — 282 — 278 ’

Tschirnhausen transformation of a cubic generic polynomial 25

S(4S+27)(U? +9U + S +27) )
(2U +9)(U3 — 2SU2% — 9SU — 252 — 275)/)°

If ch(k') = 2 then

U3 + SU? + 52 S )
U+ SU+S U3+ SU+S/
Proof. Put L :=k'(S,U) and o = 0109, where

o1 : (S,U) —

K (S,U)) = k'(

( S(U?%+9U —39)3 U)
(U3 — 2025 — 95U — 252 — 2752’
oz @ (S,U) —

(S (U2 +38)(U* +9U —35) )
' U3 —-2SU2-9SU — 252 -27S/°
We define

(4) (x,y) = (TI'U(S))TI‘U(U))
-

S + 0'1(5), U+ O'Q(U))
First we assume ch(k’) # 2. Then we can show
5) LX)~ iz y).

Indeed, it follows from the definition of (x,y) that
Liohx{o2) 5 E/(z,9). Then by using computer ma-
nipulation we obtain the following equations:

486S — 3652 — 243z + 54xS + 729y + 270y S

— bdxy + 4zyS + 243y% + 54y%S 4 18y°

+ 4938 — 2U (729 + 548 + 45% 4 54x — 228

+ 243y + 18yS + 9xy + 27y% + 2428 +4°) = 0,

165* — 32083 + 45(S — x)(1458 + 135z + 522

+ 729y + 362y + 162y° + 2zy% 4 20y° + y*)

+ 16238 — (3z — 9y — 4*)3 = 0.
From the first equation we have U € k'(z,y)(S) be-
cause it is linear in U and ch(k") # 2. By the sec-
ond equation, we have k'(S,U) = k'(x,y)(S) and
[£'(S,U) : K'(z,y)] = 4. Hence we conclude the
equality of (5). Now we have L{°) > E'(z,y) and
[L{) 2 K/ (x,y)] = 2. Next we put
S — 01 (S)
U—-o, (U) .

Then we see z,y, z satisfy

(6) z =

81 + 9z + 18y + zy + y>
+ a2z —9yz— 1?2z — 922 —y22 =0.

Hence, we conclude L{”) = k'(y, z) because we have
L S K(a,p)(2), Ky : Kzy)] = 2 and
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k' (xz,y,z) = k'(y,z). Finally we can compute y, z
directly from the definition as

28U3 +9U3 4+ 9SU? + 252U + 545U — 952
B U3 —2SU2 —9SU — 252 — 278 ’
S(4S +27)(U? +9U + S + 27)
(2U +9)(U3 — 2SU2 — 9SU — 252 — 275)°

y:

z=—

Next we assume ch(k’) = 2. In this case, o is de-
scribed as

S(U?+U+ 8)(U*+U? + S?)
US4 5202 + §2 ’
Ut + U3+ SU + S
U3+ SU+ S )

From a similar way as above we see that

a:(S,U)»—»(

x
r+y+y? =0, z =

;a
where z,y, z are defined as in (4) and (6). Thus we
have k'(x,y,z) = k'(y) and

U3 + SU? + 52
y=Uroll) = T ar+s
in the case of ch(k’) = 2. Now we put
v §+ o(9) S(U3 + SU? + §?)
U oU)  UUS+SU2+ 82U+ S?2)

Then we obtain k'(S,U){?) = K'(y,w) as follows:
From the definition of y and w, we have k’(S, U){? >
k' (y,w). We put

w S

T ytw Ut SULS

Then k' (y,w) = k'(y, W) and we see that y, W, S, U
satisfy

S+yU+U+W+y+1 = 0,
WU? +yWU +W? +yW +y+1 = 0.

Hence the equality &'(S,U)\ = k'(y, W) = k' (y, w)
follows from k'(S,U) = k'(y, W)(U) and [K'(S,U) :
K (y,W)] = 2. O

The calculations in this paper were carried out
with Mathematica [16].
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