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ABSTRACT The network intrusion detection system is an important tool for protecting computer networks

against threats and malicious attacks. Many techniques have recently been proposed; however, these face

significant challenges due to the continuous emergence of new threats that are not recognized by existing

systems. In this paper, we propose a novel two-stage deep learning (TSDL) model, based on a stacked

auto-encoder with a soft-max classifier, for efficient network intrusion detection. The model comprises

two decision stages: an initial stage responsible for classifying network traffic as normal or abnormal,

using a probability score value. This is then used in the final decision stage as an additional feature, for

detecting the normal state and other classes of attacks. The proposed model is able to learn useful feature

representations from large amounts of unlabeled data and classifies them automatically and efficiently.

To evaluate its effectiveness, several experiments are conducted on two public datasets, specifically the

benchmark KDD99 and UNSW-NB15 datasets. Comparative simulation results demonstrate that our pro-

posed model significantly outperforms existing approaches, achieving high recognition rates, up to 99.996%

and 89.134%, for the KDD99 and UNSW-NB15 datasets respectively. We conclude that our model has the

potential to serve as a future benchmark for the deep learning and network security research communities.

INDEX TERMS Computational intelligence, two-stage deep learningmodel, feature representation, network

intrusion detection, stacked auto-encoder.

I. INTRODUCTION

With the growing use of computer networks across different

fields and applications, network security is becoming increas-

ingly important. Many organizations use traditional security

tools such as firewalls, anti-spam techniques, antiviruses, etc.,

to protect against network attacks. Unfortunately, these are

unable to recognize new and sophisticated attacks. Recently,

Network Intrusion Detection Systems (NIDSs) have emerged

as a second line of defence to monitor network activity and

detect intrusive events. They are now considered as powerful

defence tools that can protect against sophisticated attacks

and threats [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Yin Zhang.

Network intrusion detection is not a trivial task [2], [3].

There are several problems and challenges faced by network

intrusion detection approaches for efficiently and effectively

recognizing anomalies [4]. The first problem arises from

the variety and variability of malicious attacks and threats.

Existing intrusion detection methods are unable to cope

with continuous evolutions in the cyber threat landscape and

the emergence of new threats; hence many are inefficient

at achieving high detection rates or reducing false alarms.

The second problem is that classical machine learning meth-

ods used in network intrusion detection approaches present

several difficulties, such as overfitting and high bias due to

irrelevant or redundant features, and the imbalanced class

distribution of network traffic [5]. The third problem is related

to the complexity of labeling the traffic dataset for developing

a NIDS [6]. Substantial efforts are required to produce such
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labeled datasets over a period of time. These problems make

intrusion detection methods ineffective at detecting real-

world threats in large-scale environments. Moreover, they are

unable to efficiently learn feature representations in order to

build a more effective predictive model.

Recently, deep-learning-based methods have been suc-

cessfully applied in, amongst other tasks, image recogni-

tion, speech recognition [7], and action recognition [8], [9],

etc. These methods aim to learn relevant features from

a large sample of unlabeled data features and subse-

quently apply them to a limited amount of labeled data

features, in a supervised learning fashion. The labeled

and unlabeled data may come from different distribu-

tions, but they must be relevant to each other [10].

For example, Ahsan et al. [11] developed a novel Random

Neural Network (RNN) for real-time cognitive system design

requirements. They integrated the RNN with a genetic algo-

rithm to achieve real-time decision-making. Other recent

approaches have proposed alternative multi-layered echo

state network, deep, reinforcement, and multi-task learning

methods [12]–[15].

Thus far, few works have utilized deep learning algorithms

for network intrusion detection, for instance, deep belief

networks (DBNs), restricted Boltzmann machines (RBMs),

stacked auto-encoders (SAEs), and supervised learning with

convolutional neural networks (CNNs). Even though CNNs

can reduce the number of parameters through strategies of

sparse connectivity and shared weights, these algorithms are

designed for supervised learning and require a large amount

of labeled network data as input, which is a rather costly

option.

In the past, before the emergence of deep learning con-

cepts, the weights of a supervised neural network with

two or more hidden layers in the training phase were ran-

domly initialized from a Gaussian distribution. Subsequently,

a back-propagation optimization method was applied in order

to find the optimal parameters. In practice, this method based

on random initialization was shown to lead to slow optimiza-

tion and poor local minima solutions, since the loss function

is extremely uncontrolled when parameterized by millions

of correlated variables. To accommodate these limitations,

Hinton et al. [16] proposed the concept of deep learning to

optimize the learning problem, by pre-training each layer of

the network in an unsupervised way, to learn a discrimina-

tive representation of the data before the classification task.

Additionally, Vincent et al. [17] proposed a method, based on

a stacked denoising auto-encoder (SDAE) to enable a deep

neural network to learn a useful representation of features.

With use of effective feature learning, redundant or irrelevant

features in the training data, which can lead to overfitting, are

reduced. A key reason for the overfitting problem in a real-

time NIDS is feature redundancy in the training data of the

system model.

In this paper, we exploit the deep stacked auto-encoder

(DSAE) as part of a novel cascade architecture, termed two-

stage deep learning (TSDL), for feature learning and dimen-

sionality reduction, in which the output of the first stage is

used as input in the next stage, with optimised feature rep-

resentation and redundancy reduction. The proposed model

differs from previous works as it learns feature representation

in two stages. The first stage learns feature representation

for classifying normal and abnormal network traffic with a

probability score value. This value is used as an additional

feature in the second stage in order to learn feature represen-

tation of normal traffic and other types of attacks. The first

stage aims to avoid the overfitting problem and to mitigate

the bias towards normal traffic, through an increased focus on

abnormal traffic. This not only helps to confirm the detection

of the normal class but also contributes to the classification of

other types of attacks. The purpose of this research is to build

a two-stage feature-learning model based on deep learning

for improving accuracy and reducing false alarm rates of the

NIDS.

The main contributions of our work can be summarized as

follows:

1) We propose a novel two-stage semi-supervised feature-

learning model for network intrusion detection, with

two modes of operations, i.e., two-class and multiclass

intrusion detection. The proposed model has a unique

topology and architecture compared to existing works

in this domain.

2) We introduce a low-cost DSAE approach for NIDSs,

which uses a reduced number of features compared

to other state-of-the-art approaches (5 abstract features

for 2-class intrusion detection and 10 abstract features

for multiclass intrusion detection). This makes the pro-

posed model more efficient for real-time detection.

3) We optimize the parameters of the proposed

model using best practices reported in deep learning

research [18].

4) We demonstrate the model’s effectiveness in detecting

sophisticated new attacks by conducting experiments

on two benchmark public datasets, namely, an older

KDD99 dataset and the new UNSW-NB15 dataset.

The remainder of this paper is organized as follows:

in section II, we present related work on machine learn-

ing and deep-learning-based intrusion detection models and

approaches. In section III, we provide background knowl-

edge on general auto-encoder neural networks. In section IV,

we introduce the methodology used in this study in more

detail. In section V, we describe the experiments and

evaluation, including tools and datasets used, the data

pre-processing step, and comparative experimental results.

Finally, in section VI, we summarize our conclusions and

outline future work directions.

II. RELATED WORK

Over the past few years, a number of models and

approaches based on traditional machine learning have

been proposed for network intrusion detection. Examples

include the Support Vector Machine (SVM) [24], [25], K-

Nearest Neighbors (KNN) [26], Artificial Neural Networks
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(ANN) [17], [18], Random Forests (RF) [24], [25], [59],

Decision Trees (DT) [23], [26], [27], [60], [61], Linear

Regression (LR), Naïve Bayes (NB), Expectation Max-

imization (EM) [23], Simulated Annealing (SA) [27],

Simplified Swarm Optimization (SSO) [28], Neutrosophic

Logic (NL) [29], Neurotree [30], Random Effects Logis-

tic Regression (RELR) [31], PCA filtering [62], and oth-

ers reported in [32]–[34]. Recently, Nawir et al. [35]

proposed a classification model based on the Average One

Dependence Estimator (AODE) algorithm for multiclass

classification, on the UNSW-NB15 dataset, reporting an

accuracy of 83.47% and a false alarm rate (FAR) of 6.57%.

Janarthanan and Zargari [36] applied the RF classifier on the

UNSW-NB15 dataset to detect and classify intrusion attacks

with five selected features, with an accuracy of 81.6175% and

FAR of 4.4%.

Deep learning, a branch of machine learning, has recently

been used for network intrusion detection. State-of-the-art

deep learning approaches and methods that have been used

for unsupervised feature learning for network intrusion detec-

tion, include deep belief networks (DBNs), deep neural

networks (DNNs), restricted Boltzmann machines (RBMs),

auto-encoders, and variations of these methods. For example,

Erfani et al. [37] proposed a new approach, which combined

DBNs with a linear one-class SVM for intrusion detection

and applied it on several benchmark datasets. Similarly,

Fiore et al. [38] presented a discriminative RBM (DRBM)

method to learn compressed features from specific features

that are not in the packet payloads. The compressed features

are fed into a soft-max classifier to create a binary classifi-

cation of normal and abnormal behaviors. Javaid et al. [39]

presented a deep learning method based on DNNs for

anomaly detection. Their results showed that deep learning is

more effective for flow-based anomaly detection in software-

defined networks (SDNs). Tang et al. [40] introduced a deep

learning approach for network intrusion detection based on

self-taught learning (STL), applied to the NSL-KDD dataset.

Their experimental results showed that deep learning sur-

passes previous studies in terms of performance and accu-

racy. Wang [41] proposed a deep learning approach based

on the stacked auto-encoder for network traffic recognition

from raw data and attained remarkably high performance.

Additionally, Yin et al. [42] proposed a deep learning

method built on recurrent neural networks (RNNs) for intru-

sion detection. This method was applied on the NSL-KDD

dataset and demonstrated that deep learning methods for

intrusion detection outperform traditional machine learn-

ing classification approaches. Alrawashdeh and Purdy [43]

also introduced a deep learning approach based on a DBN of

RBMs with one and four hidden layers for feature reduction.

The weights of the DBN were updated in a fine-tuning phase

and the classification task was performed using a Logistic

Regression classifier. The proposed approach was imple-

mented on the KDD99 dataset and achieved an accuracy

of 97.9% with a false alarm rate of 0.5%. Nevertheless,

the accuracy on this old benchmark dataset is still not high

FIGURE 1. An m/h/m auto-encoder architecture.

enough to make this a strong approach for network intrusion

detection.

Shone et al. [44] presented a deep learning approach

for intrusion detection based on a non-symmetric deep

auto-encoder (NDAE). This technique was applied on the

KDD99 dataset using RF as a classifier and achieved an

accuracy rate up to 97.85%. However, the false alarm rate

was as high as 2.15%, which makes this method ineffec-

tive for the detection of sophisticated attacks. More recently,

Nguyen et al. [45] proposed a framework based on principal

component analysis (PCA) and a Gaussian-binary restricted

Boltzmann machine (GRBM) to detect cyber attacks in the

mobile cloud environment. However, the testing methodol-

ogy of this approach is unclear and not sufficiently detailed

to enable comparative benchmarking.

In order to recognize more sophisticated attacks, the model

proposed in this paper is designed to learn more useful

feature representations from large amounts of unlabeled

features. Moreover, to improve the flexibility of current

NIDSs, the proposed model can detect network intrusions

in two modes of operations, namely normal and abnormal

state detection, in addition to detecting normal states and

other types of attacks. Unlike existing models, we propose a

two-stage deep learning (TSDL) model for network intrusion

detection: a cascade model where the probability score value

of normal and abnormal state classification resulting from the

first stage is used as an additional feature for the second stage,

in order to classify the normal state and different types of

attacks.

III. PRELIMINARIES OF THE GENERAL AUTO-ENCODER

In this section, we briefly introduce the general notion of an

auto-encoder for the purpose of data reduction. Fundamen-

tally, an m/h/m auto-encoder is mathematically defined by a

tuple m, h, n,R,T, S,X,Y ,X ′,D, as shown in Figure 1:

- R is a set of real numbers.

- m and h are positive integers that represent the length

of X and Z . For data reduction, the case 0 < h < m is

considered.

- T is a mapping function from R
m to Rh.

- S is a mapping function from R
h to Rm.

- X = {x1, x2, . . . , xn} is a set of n training vectors

inRm. When external targets exist, Y = {y1, y2, . . . , yn}

is a set of n compressed vectors in R
h, and X ′ =

{x ′1, x
′
2, . . . , x

′
n} represents the equivalent set of target

vectors in Rm.
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- D is a distortion or dissimilarity function (e.g., the Lp

norm or Hamming distance), defined over Rm.

For any transformations T ∈ T and S ∈ S, the auto-encoder

transforms the input training vectors xi ∈ R
m into output

vectors T ◦ S(xi) ∈ R
m. The auto-encoder learns the weights

and biases of the transformations T and S using the training

vectors by minimizing the distortion function as defined in

the following equation:

E(T , S) =

m
∑

i=1

E (xi) =

m
∑

i=1

D(S(T (xi;w, b);w′, b′), xi) (1)

Where the weight matrix w and the bias vector b are the

parameters of T , and the weight matrix w′ and the bias vector

b′ are the parameters of S. When h < m, the auto-encoder

projects the data on a lower dimensional space, and thus

performs the data reduction and compression.

By using the general architecture of the auto-encoder,

different kinds of feature representations can be obtained,

based on the best choice of mappings T and S, the distortion

function D, and the use of additional constraints such as

generalization and regularization. A deep neural network is

defined by stacking a number of auto-encoders. For many

classification problems, non-linear sigmoid activation is usu-

ally applied on the hidden layers. In the case of mapping

from R
m to R

h, the auto-encoders can work as though cor-

responding to T and S, which are classes of linear transfor-

mation functions. Therefore, T and S are matrices of size

h × m and m × h, respectively. The linear transformation

of Rm and R
h using D, which is a squared Euclidean dis-

tance, was presented in [46], [47]. Moreover, the theory of

complex-valued linear auto-encoders has also been extended

in [48].

IV. METHODOLOGY

In this section, we first present the theoretical concept behind

our proposed model. Then, the proposed TSDL model for

network intrusion detection is described in more detail. Fol-

lowing this, we briefly introduce the two public datasets

used to evaluate the model. Finally, we explain our method

for pre-processing the two datasets before describing the

simulation experiments and comparisons with state-of-the-art

approaches.

A. THEORETICAL CONCEPTS BEHIND THE PROPOSED

MODEL

The basic unit of the proposed TSDL model is the auto-

encoder (AE). AnAE is essentially a feed-forward neural net-

work similar to a multi-layer perceptron (MLP), composed of

three main layers, namely the input layer, one or more hidden

layer(s) and the output layer, where the numbers of neurons

in the output and input layers are equal. Figure 2 shows a

typical architecture of a simple AE consisting of a single

hidden layer.

The learning technique of an AE is unsupervised learning

because the AE learns the abstract compressed data repre-

FIGURE 2. The basic architecture of the AE with a single hidden layer.

sentation for reconstructing the original input data instead of

guessing the target output from the input. AnAE includes two

processes: the encoding process, which takes place between

the input layer and the hidden layer, and the decoding process,

which takes place between the hidden layer and the output

layer.

Suppose that the input layer of AE contains m nodes for

n input data vectors xi and h nodes in the hidden layer for

the equivalent set of abstract compressed data vectors yi. The

number of nodes in the output layer is equal to the number of

nodes in the input layer and the reconstructed vectors x ′i are

approximately equal to the input vectors, which are expressed

as follows:

xi ∼= x ′i, for i = 1, 2, . . . , n (2)

In the encoding process of the AE, the abstract compressed

data vectors yi can be computed as follows:

T : yi = g(xiw+ b), for i = 1, 2, . . . , n (3)

where w, b and xi are the weight matrix, the bias vector, and

the input vector in the input layer, respectively. On the other

hand, the decoding process of the AE can be used to calculate

the reconstructed data vectors x ′i :

S : x ′i = g(yiw
T + b) (4)

Where wT , b, and yi are the transpose weight matrix, the bias

vector, and the abstract compressed data vector of the hidden

layer, respectively.

The function g, used in Eq. (3) and Eq. (4), can be a lin-

ear or nonlinear activation function. In our model, a sigmoid

function is used and computed as follows:

g (x) = 1
/

(1+ e−x) (5)

Once we learn the values of wT and b by applying the AE

on unlabeled data in an unsupervised learningmanner, we can
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use them in a supervised learning manner to tune the values

ofwT and b of the model, using a back-propagation algorithm

with a soft-max classifier, based on the training data vectors.

B. MODEL DESCRIPTION

The proposed TSDL model is a deep learning model that

consists of two stages: the initial and final decision stages.

The approach used for constructing these two stages is a deep

neural network (DNN), due to its performance and speed in

real-time classification. In the initial stage, network traffic

can be classified into normal or abnormal with a probability

score value. This value is used as an additional feature to

train the final decision stage for normal and multi-class attack

classification.

The DNN approach, which is adopted in both stages, com-

bines a DSAE comprising two hidden layers with a soft-

max layer classifier on top. To build the proposed TSDL

model, two tasks are performed in the training phase. The

first is a pre-training task, where each layer of the DSAE

is pre-trained individually using an unsupervised learning

technique. At each layer, the error arising from reconstructing

the input features is minimized.

The original unlabeled features are inputs to the first layer

and the output-compressed features are inputs to the second

layer. When the first and second layers are pre-trained sep-

arately, we stack them together and add a soft-max layer

on top as a classifier for the next task, which is termed a

fine-tuning task. In this task, a supervised learning technique

based on a back-propagation algorithm is utilized to tune the

parameters of the pre-trained DSAE model obtained from

the previous task. Thus, our proposed model is trained by

a semi-supervised learning technique. The aim of the fine-

tuning task is to furtherminimize the prediction error by using

labeled features. We briefly summarize the algorithmic steps

of the training phase in two stages of our TSDL model in

Algorithm 1 and Algorithm 2. The variables used in these

algorithms are presented in Table 1.

After the training phase is completed, the TSDL model

is able to classify unseen network traffic instances.

Figure 3 shows the steps of the trained TSDL model dur-

ing the classification phase. The first stage is intended to

reduce the overfitting problem and mitigate bias towards

normal traffic, by placing more focus on abnormal traffic,

in order to classify the other types of attacks. The proposed

model also provides a discriminative, abstract feature space

to differentiate between normal and abnormal network traffic

flows.

V. EXPERIMENTS AND EVALUATION

To evaluate and validate the proposed TSDL model for a

NIDS, two publicly available datasets have been used. These

are the benchmark KDD99 dataset and the new, complex

UNSW-NB15 dataset. In the next subsections, the description

of the two datasets, the preprocessing step and the compar-

ative results are presented in detail. The preprocessing step

consists of normalization and resampling of the datasets so

Algorithm 1 Initial Decision Stage Algorithm

Input: x, t, lx, lt

Output: TMDNNI, pcl and pv.

1. Begin

//Initializing the parameters

2. initializeParameters(p);

//Reading Train and Test feature sets

3. readData (x, t, lx, lt) ;

//Pre-training task to learn the feature representation

4. y← preTrain(x, IN1,H1);

5. v← preTrain(y, IN2,H2);

//Fine-tuning task to tune the parameters

6. DSAEI← stackedLayers (H1,H2) ;

7. DNNI← stackedLayers (IN,DSAEI,OT) ;

8. TMDNNI← fineTune(x, lx,DNN1);

//Classification

9. [pcl, pv]← classify(t,TMDNNI);

10. returnTMDNNI, pcl, pv

11. End

TABLE 1. Notations used in Algorithms 1 and 2.

they can be efficiently and effectively handled with the TSDL

model.

A. TOOL DESCRIPTION

The experiments are conducted using MATLAB version

R2015a on a laptop, with a 2.0 GHz Intel Core i7-4510U

processor, 8 GB of RAM and a 64-bit Windows 10 operating

system.

B. PERFORMANCE METRICS

To evaluate the performance of the TSDL model, the same

evaluation measures are adopted as in most previous research

on NIDSs. Specifically, literature review shows that accu-

racy, precision, recall, F-measure, and false alarm rate (FAR)

metrics have been widely used to evaluate the effectiveness

of most intrusion detection systems [45]. These metrics are
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Algorithm 2 Final Decision Stage Algorithm

Input: x, t, lx, lt, pv,TMDDNI

Output: TrainedDNN1 and pclAllattcks

1. Begin

//Initializing the parameters

2. initializeParameters(p);

//Reading Train and Test feature sets

3. readData (x, t, lx, lt, pv,TMDDNI) ;

//Features concatenation

4. fc← concatFeature(x, pv);

//Pre-training task to learn the feature representation

5. y← preTrain(fc, IN1,H1);

6. v← preTrain(y, IN2,H2);

//Fine-tuning task to tune the parameters

7. DSAEF← stackedLayers (H1,H2) ;

8. DNNF← stackedLayers (IN,DSAEF,OT) ;

9. TrainedDNNF← fineTune(fc, lx,DNNF);

//Classification

10. [pcl, pv]← classify(t,TMDNNI);

11. fc← concatFeature(t, pv);

12. [pclAllattcks]← classify(fc,TMDNNF);

13. returnTMDNNF,pclAllattcks

14. End

computed using the following equations:

Accuracy (ACC) = (TP+ TN )/(TP+TN+FP+FN )

(6)

Precision(P) = TP/(TP+ FP) (7)

Recall(R) = TP/(TP+ FN ) (8)

F − measure = 2× ((P× R)/(P+ R)) (9)

FalseAlarmRate(FAR) = FP/(FP+ TN ) (10)

where TP, TN, FP, and FN are true positives, true negatives,

false positives, and false negatives, respectively.

Furthermore, the execution time of the proposed model is

computed to evaluate its efficiency for real-time detection.

C. DATASETS DESCRIPTION

A number of publicly available datasets have been used for

NIDS evaluation. However, they do not truly represent cur-

rent real-world network traffic attacks. Assessing the degree

of realism of these datasets for NIDSs is also a challenging

task [26], [50]. Therefore, several evaluation metrics are used

by researchers to measure the degree of realism, in an attempt

to produce more representative datasets containing scalable,

active behaviors of normal and abnormal traffic [50], [51].

This is imperative for the reliability and credibility of any

developed NIDS. In this work, an older benchmark, namely

the KDD99 dataset, and a new benchmark, the UNSW-

NB15 dataset, are used to evaluate the TSDL model. The

results of both benchmark datasets are analyzed in terms of

accuracy and detection rate, to evaluate the effectiveness of

our proposed model.

FIGURE 3. Overview of the classification phase based on the TSDL model.

The KDD99 dataset is widely used for NIDS performance

evaluation [52]. The normal and attack behaviors in the

KDD99 dataset are outdated and do not have any complex

variations on current network traffic, which makes the eval-

uation of any NIDS misleading [26]. This might explain the

reasons behind the high accuracy rates attained by various

existing models. Additionally, this dataset includes a set of

redundant records [30] and produces unbalanced distribution

among the different classes of traffic [53]. It comprises about

5 million records, including abnormal and normal events

collected over a number of weeks [53]. Each record con-

sists of 41 continuous and nominal features, as well as a

type label, which determines the class of traffic: normal

or attack. We can find 22 different types belonging to one

of four popular attacks, namely the Remote-to-Local (R2L)

attack, User-to-Root (U2R) attack, Probing attack (probe)

and Denial of Service (DoS) attack. Three sets of features

exist in the KDD99 dataset: traffic features, content fea-

tures and basic features. Traffic features are calculated by

examining the connections established in the past two sec-

onds, and are divided into two different groups, i.e., the host

features (such as rerror_rate, serror_rate,etc.) and service

30378 VOLUME 7, 2019



F. A. Khan et al.: TSDL Model for Efficient Network Intrusion Detection

features (such as srv_rerror_rate, srv_serror_rate, etc.) [50].

Content features allow the detection of suspicious behavior

(such as num_compromised, Num_failed_logins, logged_in,

etc.). Basic features are attributes extracted from TCP/IP

connections (such as protocol_type, duration, service, flag,

dst_bytes, scr_bytes,etc.). Besides these features, there is also

an attack category label field for each instance in the dataset,

named attack_cat. This field represents either the normal

state or the attack category name. For differentiating the

normal instances from abnormal instances, we add another

field, label, which takes a value of 1 for abnormal traffic and

0 for normal traffic.

UNSW-NB15 is a newer dataset collected at the Australian

Centre for Cyber Security (ACCS) by the cyber security

research group [54]. A raw data of 100 GB was collected

using TCP dump and Ixia PerfectStorm tools representing

normal andmodern network traffic attacks. The data was gen-

erated over two different simulation periods of 15 hours and

16 hours, respectively. There are approximately 2.5 million

records within the UNSW-NB15 dataset. A total of 49 fea-

tures were extracted using Bro-IDS, Argus tools, and some

newly developed algorithms. The features of this dataset

are divided into five sets: time features, content features,

flow features, basic features, and additional originated fea-

tures. In addition to these features, there are two labels:

attack_cat, which is either the normal state or the attack

category name, and label, which is 1 for abnormal traffic and

0 for normal traffic. There are nine types of attacks in the

UNSW-NB15 dataset, including Worms, Shellcode, Recon-

naissance, Analysis, Generic, Backdoor, DoS, Exploits, and

Fuzzers [23].

Each dataset is partitioned into two distinct parts, a training

dataset and a testing dataset, to assess the performance of

any system developed for network intrusion detection [55].

Since the original size of the KDD99 is too large [23],

[52], 10% of the KDD99 [56] is usually used to evalu-

ate the proposed model. For the UNSW-NB15 dataset, a

partition from the original dataset was selected as a train-

ing set (UNSW_NB15_training-set.csv) [57], which is also

used for model evaluation. This partition has 45 features

including the record ID and two class labels. Table 2 shows

different classes of the 10% of KDD99 dataset used for

training, and Table 3 shows the different classes of the

UNSW-NB15 training dataset.

D. DATA PREPROCESSING

The data-preprocessing step includes two main tasks: the

nominal-to-numeric data conversion and data-resampling

tasks. First, nominal-to-numeric data conversion is applied

on the two datasets. In the KDD99 dataset, there are

38 numeric features, three nonnumeric features, and

one nonnumeric attack category label. Meanwhile, the

UNSW-NB15 dataset contains 39 numeric features, 3 non-

numeric features, and 1 nonnumeric attack category label.

Since the proposed model only deals with numeric fea-

tures, the nonnumeric features are converted into numeric

TABLE 2. Data preprocessing of KDD99 dataset.

TABLE 3. Data preprocessing of UNSW-NB15 dataset.

values. For instance, the ’protocol_type’ feature contains

3 types of attributes, ’icmp’, ’tcp’, and ’udp’. These attributes

are converted into numeric integer values, 1, 2, and 3, respec-

tively. In the same way, the ’service’ feature, the ’flag’

feature and the ’attack_cat’ label are also represented by

numeric integer values. After this, the data-resampling task

is performed to solve the problems of redundant records and

imbalanced class distribution. By analyzing the two datasets,

we noticed that the KDD99 dataset includes a large number of

redundant instances [30], [53]. However, this issue does not

exist in the case of the UNSW-NB15 dataset [23]. Redun-

dant instances may lead to the problem of imbalanced class

distribution, which is known to bias a machine learning clas-

sifier towards the majority class [30], [53]. Imbalanced class

distribution is a key problem resulting either from repeated

instances, as in the case of KDD99 (see Figure 4), or a

large difference in the number of instances of each class,

as in the case of UNSW-NB15 (see Figure 5). Repeated

instances in the KDD99 dataset make the class distribution

of normal and abnormal records imbalanced, and the large

difference in the number of normal and abnormal records

in the UNSW-NB15 dataset leads to the same problem.

Therefore, we down-sample the KDD99 dataset by elimi-

nating repeated records, obtaining a sum of 145,586 unique

records out of 494,021 total instances (see Table 2). For the

UNSW-NB15 dataset, we used the Synthetic Minority

Over-sampling Technique (SMOTE) described in [58] to

up-sample the instances of normal and abnormal classes

and make the distribution more balanced, as shown

in Figure 5 and Table 3.

E. FEATURE NORMALIZATION

Feature normalization is a method utilized to normalize the

independent features into a specific range. In the case of
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FIGURE 4. Data preprocessing of KDD99 dataset; (a) original distribution
of normal and abnormal instances, and (b) new distribution of normal
and abnormal instances.

FIGURE 5. Data preprocessing of USNW-NB15 dataset; (a) original
distribution of normal and abnormal instances, and (b) new distribution
of normal and abnormal instances.

data processing, it is commonly known as data normalization.

There are some features obtained from the network traffic

that have a very large difference between the minimum and

the maximum values. To suppress the effect of these outliers,

a min-max scaling method is used to linearly normalize the

feature values in the range of 0 and 1, according to Eq. (11).

fi,j =
fi,j −min(fi,j)

max
(

fi,j
)

−min(fi,j)
(11)

where fi,j represents the value of the feature in row i and

column j of the dataset.

F. RESULTS AND COMPARISONS

After implementing the proposed TSDL model in

MATLAB programing language, we tested it on the selected

datasets with a 10-fold cross validation method. Using this

method, each dataset is divided into ten parts, one of which

is used as a testing dataset while the remaining nine are used

as a training dataset. This method is repeated 10 times, and

the results are then averaged to yield a single estimation.

The advantage of this evaluation is that all observations are

employed for both training and testing, and each observation

can be used exactly once for testing the trained model. In this

context, we demonstrate the results of each stage of the

TSDL model. The results of the evaluation measures are

demonstrated for both initial and final decision stages. The

initial stage is responsible for normal and abnormal state

classification, whereas the final decision stage is used for

multi-class classification (normal state and other types of

attacks). This implies that the TSDL model is a flexible

FIGURE 6. Area under curve of normal and abnormal classification of
KDD99 dataset.

TABLE 4. Confusion matrix of normal and abnormal classification for
KDD99 dataset.

TABLE 5. Evaluation measures of normal and abnormal classification for
KDD99 dataset.

intrusion detection model with two options, as requested by

the user.

For the KDD99 dataset, the 41 features are normalized and

reduced to 10 abstract features using the initial trained DSAE

of the initial decision stage, and then classified into normal

and abnormal states using a soft-max classifier. The accuracy

of this stage according to the 10-fold cross validation test

is 99.931%: 145486 out of 145586 instances were correctly

classified. The confusion matrix and other evaluation mea-

sures are shown in Tables 4 and 5. Moreover, in order to

evaluate the quality or performance of normal and abnormal

detection, a Receiver Operating Characteristic (ROC) curve

is shown in Figure 6. The blue dotted curve plots the true

positive rates (TPRs) on the y coordinate versus the false

positive rates (FPRs) on the x coordinate, and the red point

on the curve represents the area under curve (AUC) value of

the ROC curve.We note that the AUC has a value nearly equal

to 1, which confirms that the model produces better results.

In addition to Figure 6, Tables 5 and 7 demonstrate that our

model attains attractive results in terms of accuracy, precision,

recall and F-measure, with a very lowweighted average false-

alarm rate using 5 features compressed from the original ones.
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TABLE 6. Confusion matrix of normal and other types of attacks
classification for KDD99 dataset.

TABLE 7. Evaluation measures of normal and other types of attacks
classification for KDD99 dataset.

TABLE 8. Confusion matrix of normal and abnormal classification for
UNSW-NB15 dataset.

The normal and abnormal state classifications of the initial

decision stage are based on the prediction value of the soft-

max classifier, which is in the range 0 to 1. This predic-

tion value can be used as an additional feature in the final

decision stage. The 41 normalized features, as well as this

additional feature arising from the first stage, are reduced to

5 abstract features using the final DSAE model in the second

stage. These five abstract features are used to classify the

normal state and other types of attacks based on the soft-

max classifier in the final decision stage. The accuracy of the

10-fold cross validation test is 99.996%, representing correct

classification of 145580 out of 145586 instances. In Table 6,

a confusionmatrix shows the number of records for each class

that were classified correctly. Table 7 presents the sensitivity,

specificity and FAR of each class. The weighted averages

of sensitivity, specificity and FAR for each class are also

calculated and presented in Table 7.

Table 7 shows that the model achieves excellent results

under KDD99 by using only 10 abstract features. This is due

to the ability of our proposed model to compress the original

features to more discriminative abstract features and reduce

weak features that affect the detection rate.

Comparative experiments are also conducted on the new

UNSW-NB15 dataset to demonstrate the effectiveness of our

proposed TSDL model. By using the 10-fold cross valida-

tion test mode, the accuracy of the initial decision stage

is shown to be 89.711%. This corresponds to 212007 out

of 236323 instances being correctly classified. The confusion

TABLE 9. Evaluation measures of normal and abnormal classification for
UNSW-NB15 dataset.

FIGURE 7. Area under curve of normal and abnormal classification of
UNSW-NB15 dataset.

matrix is presented in Table 8 and other evaluation measures

are shown in Table 9.

From Table 9, we can see that the model achieves con-

sistently good results, above 89.7%, with respect to the pre-

cision, recall and F-measure, with a small average value of

FAR (0.1018). The quality of detection results is illustrated

by plotting the ROC graph, which is shown in Figure 7. The

red point on this curve represents the AUC value at which the

model produces the best detection results. We note that the

value of AUC in the graph is equal to 0.9.

For classification of the normal state and other types

of attacks, the accuracy is found to be 89.134%. That is,

210643 out of 236323 instances were correctly classified.

The confusionmatrix and other evaluationmeasures are listed

in Tables 10 and 11. The best F-measure values are obtained

for the Normal, Generic, Exploits, Fuzzers, and Reconnais-

sance classes, as 0.999990, 0.986158, 0.954066, 0.916957,

and 0.830501, respectively. We also note that the worst

F-measure values are attained by the other classes. The reason

for the poor F-measure values is that these classes are in

the minority compared to others—especially the Backdoor

and Worm, which have a very small number of instances.

Despite the problem of imbalanced class distribution in this

dataset, the proposed model is seen to achieve very good

results. These results prove the effectiveness and robust-

ness of our model. To show the advantages of using the

initial decision stage in terms of the effectiveness of the

TSDL model, we compute the accuracy and FAR of the

final stage without using the additional feature (PV). Accu-

racies of 98% and 87.35% are recorded for the KDD99 and

UNSW-NB15 datasets, respectively. In addition, FARs
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TABLE 10. Confusion matrix of normal and other types of attacks classification for UNSW-NB15 dataset.

TABLE 11. Evaluation measures of normal and other types of attacks
classification for UNSW-NB15 dataset.

TABLE 12. Results of final decision stage with and without additional
feature on KDD99 and UNSW-NB15 datasets.

of 0.15% and 1.14% are obtained for the KDD99 and

UNSW-NB15 datasets, respectively. As shown in Table 12,

using the additional feature clearly improves the effectiveness

of the TSDL model in terms of accuracy and FAR.

In Tables 13 and 14, we compare the TSDL model with

recent work on NIDSs conducted on the KDD99 and UNSW-

NB15 datasets.

The comparison is based on the number of features used,

the classifier adopted in each work, the results of FAR and

the accuracy. The reported results show the superiority of our

model over state-of-the-art approaches in the literature. The

proposed model achieves high accuracy by learning feature

representations from large amounts of unlabeled training fea-

tures. Using two-stage deep feature learning, our proposed

model is able to detect old and new intrusion attacks and

is less influenced by the presence of an unbalanced class

distribution between normal and abnormal traffic on the one

TABLE 13. Comparison results of TSDL model with state-of-the-art
methods on KDD99 dataset.

TABLE 14. Comparison results of TSDL model with state-of-the-art
methods on UNSW-NB15 dataset.

hand, and between the different categories of attacks on the

other.

We also compare TSDL with the MLP, which is a shal-

low architecture of the deep neural network. The accu-

racy and FAR for MLP and TSDL models are shown

in Tables 13 and 14. It can be seen that the TSDL

model attains a higher accuracy and lower FAR results
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TABLE 15. Average execution time of detection for one instance in
milliseconds.

than MLP and the state-of-the-art approaches. It pro-

vides 99.996% accuracy and a 0.00001% FAR for the

KDD99 dataset and 89.134% accuracy and a 0.7495% FAR

for the UNSW-NB15 dataset. Despite the complexity of the

UNSW-NB15 dataset, which contains a variety of modern

intrusion patterns [23], TSDL is less affected by these varia-

tions, achieving the highest accuracy when compared to state-

of-the-art models available in the literature.

Before evaluating the time efficiency of our model,

we assume the model is trained periodically on up-to-

date network traffic features in an offline manner. There-

fore, we focus on the running time of online detection

(See Table 15).

In Table 15, we summarize the average execution time in

milliseconds required to detect one instance for the initial

decision stage, the final decision stage and both stages.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel two-stage deep

learning (TSDL)model based on a deep stacked auto-encoder

(DSAE) neural network, to deal with the problem of net-

work intrusion detection. The TSDL model comprises two

stages; each stage contains two hidden layers with a soft-

max classifier. The deep learning model is trained in a

semi-supervised manner. Specifically, each hidden layer is

separately pre-trained on a large set of unlabeled network

traffic features, in an unsupervised manner, and then fine-

tuned using labeled network traffic features. The first stage

of the model, termed the initial decision stage, is used to

classify the normal and abnormal states of network traffic.

The user can select the deep learning model to operate only

at this stage. To detect the normal state and other types of

attacks, the second decision stage is employed. In the latter,

our deep learning model works in a cascade manner, where

the probability value of the initial stage output is utilized

as an additional feature to complement the original features.

This enables the final decision stage to efficiently classify

various types of attacks.

Extensive experiments have been conducted on two

public datasets; specifically the benchmark KDD99 and

UNSW-NB15 datasets. The latter comprises more compli-

cated types of attacks to evaluate our proposed deep learn-

ing models. In the experiments, we performed two steps,

namely data preprocessing and normalization, on the features

of the datasets to make them more amenable to detection.

In terms of multi-class detection accuracy, TSDL achieved

impressive results, up to 99.996% for the KDD99 dataset

and 89.134% for the UNSW-NB15 dataset, with a low FAR.

Additionally, in terms of efficiency, the execution time con-

sumed by the proposed model is very low, which makes

it appropriate for future deployment in real-time intrusion

detection tasks. Comparison with state-of-the-art approaches

has demonstrated the robustness of the TSDL model, which

can hence serve as a future benchmark for the deep learning

and network security research communities. For future work,

we plan to integrate our deep learning approach with novel

reinforcement [12] and multi-task [14] learning algorithms,

to further optimize our proposed network intrusion detection

system.
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