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TSLP is a direct trigger for T cell 
migration in filaggrin-deficient skin 
equivalents
Leonie Wallmeyer1, Kristina Dietert2, Michaela Sochorová3, Achim D. Gruber2, Burkhard 
Kleuser4, Kateřina Vávrová  3 & Sarah Hedtrich  1

Mutations in the gene encoding for filaggrin (FLG) are major predisposing factors for atopic dermatitis 

(AD). Besides genetic predisposition, immunological dysregulations considerably contribute to its 
pathophysiology. For example, thymic stromal lymphopoietin (TSLP) is highly expressed in lesional 
atopic skin and significantly contributes to the pathogenesis of AD by activating dendritic cells that then 
initiate downstream effects on, for example, T cells. However, little is known about the direct interplay 
between TSLP, filaggrin-deficient skin and other immune cells such as T lymphocytes. In the present 
study, FLG knockdown skin equivalents, characterised by intrinsically high TSLP levels, were exposed 
to activated CD4+ T cells. T cell exposure resulted in an inflammatory phenotype of the skin equivalents. 
Furthermore, a distinct shift from a Th1/Th17 to a Th2/Th22 profile was observed following exposure 
of T cells to filaggrin-deficient skin equivalents. Interestingly, TSLP directly stimulated T cell migration 
exclusively in filaggrin-deficient skin equivalents even in the absence of dendritic cells, indicating a 
hitherto unknown role of TSLP in the pathogenesis of AD.

Atopic dermatitis (AD), a chronic in�ammatory skin disease, has a major detrimental impact on patient quality 
of life1. AD patients su�er from dry, red, and pruritic skin caused by a dysfunctional skin barrier and complex 
immune dysregulations2, 3. Atopic skin is characterised by enhanced epidermal proliferation, disturbed di�er-
entiation, and alterations in skin lipid composition and organisation4, 5. Additionally, mutations in the �laggrin 
(FLG) gene, which a�ect 10–50% of AD patients, contribute to functional epidermal barrier defects with subse-
quent allergic sensitisation6–8, an increased incidence of skin infection, and increased risk for several allergies 
and/or allergic asthma9. Irrespective of the FLG genotype, FLG expression is downregulated in AD patients, 
likely as a downstream e�ect of T helper cells type 2-derived (�2) cytokines such as interleukin (IL-) 4 and 
IL-1310. Additionally, recent studies have demonstrated the detrimental e�ects of �2 cytokines on the expres-
sion of corni�ed envelope proteins such as involucrin (IVL) and loricrin (LOR), tight junction proteins claudin-1 
(CLDN-1) and occludin (OCLN), and anti-microbial peptides like β-defensins11–13.

Overall, increased levels of IL-4, IL-13, IL-25 and IL-33, as well as the keratinocyte-derived factor thymic 
stromal lymphopoietin (TSLP), a master regulator of �2-driven in�ammation, have been identi�ed in the skin 
of AD patients, all of which are known to in�uence keratinocyte function and skin barrier integrity14, 15. Notably, 
several studies have linked TSLP with the development, maintenance and progression of atopic diseases including 
asthma and AD16, 17, although increased TSLP expression was observed only in skin lesions of AD patients but not 
in non-lesional skin or in serum samples suggesting local distribution18, 19. Nevertheless, TSLP was also identi�ed 
as activator of sensory neurons which directly evoke itch behaviours, a further hallmark of atopic skin20.

TSLP is an IL-7-like cytokine that exerts its biological activities by binding to a heterodimeric receptor com-
plex composed of the IL-7 receptor α-chain and the TSLP receptor chain21. �is receptor complex is expressed by 
a wide range of immune cells including dendritic cells (DCs), macrophages and T cells17. Recently, TSLP receptors 
were found to be expressed on skin-associated Treg cells mediating suppressive functions under pro-in�ammatory 
conditions22. Moreover, TSLP plays an important role in, for example, the activation of DCs that subsequently 
prime human CD4+ T cells into �2 cytokine-producing cells in local lymph nodes19, 23, 24. TSLP signalling in 
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CD4+ T cells is also required for memory formation a�er �2 sensitization25 and it activates group 2 innate 
lymphoid cells, which are further important players in the pathogenesis of multiple in�ammatory skin diseases26.

Although the importance of TSLP in the pathogenesis of allergic diseases is widely recognised, little is cur-
rently known about the direct interplay between TSLP, �laggrin-de�cient skin and naïve CD4+ T cells in humans. 
To overcome this shortcoming and investigate the e�ects of T cells in �laggrin-de�cient skin, we report the devel-
opment of an immunocompetent �laggrin-de�cient skin equivalent that permits the migration of T cells into the 
dermis equivalent. �ough in vitro models of in�ammatory skin have previously been developed by supplement-
ing the cell culture medium with disease associated cytokines12, 13, 27, these models lack actual immune cells, and 
thus, cannot not fully re�ect the complex interplay between skin (patho) physiology and immune cells. Following 
successful model establishment, the regulation of corni�ed envelope and tight junction proteins, skin surface 
pH, pro-in�ammatory cytokine secretion, skin lipid composition and barrier function of the skin equivalents in 
the presence of the T cells were assessed. Using this in vitro model, previously unidenti�ed down-stream e�ects 
between �laggrin-de�cient skin, TSLP expression, and T cell migration were identi�ed.

Results
Exposure to CD4+ T cells induces inflammatory responses, increases skin surface pH and 
reduces skin barrier function. At day 12 of tissue cultivation, 1.5 × 106 activated human CD4+ T cells were 
applied underneath the dermis equivalent, directly onto the cell culture insert membrane on which the normal 
(FLG+) and �laggrin-de�cient (FLG−) skin equivalents are grown. �e purity and activation status of the CD4+ 
T cells has been previously con�rmed by �ow cytometry (Supplementary Fig. S1). Histological analysis showed 
slight hyperproliferation and spongiosis in FLG− skin equivalents (with and without T cell exposure) compared 
to FLG+ skin equivalents. No major histological di�erences were observed between FLG− skin equivalents alone 
and a�er exposure to activated T cells (Supplementary Fig. S2).

In contrast, the levels of the pro-in�ammatory cytokines IL-6 and IL-8 in the culture media were signi�cantly 
enhanced in FLG+ and FLG− skin equivalents following T cell exposure (Fig. 1a,b). Exposure to non-activated 
T cells did not increase IL-6 or IL-8 release, (Supplementary Fig. S3) and levels of IL-25 (IL-17E) and IL-33 were 
below detection limit. Concordant with previous results28, no increased skin surface pH was observed in FLG− 
compared to FLG+ skin equivalents (Fig. 1c). By contrast, in the presence of activated CD4+ T cells, skin surface 

Figure 1. Exposure to activated CD4+ T cells induces in�ammatory responses in normal (FLG+) and 
�laggrin-de�cient (FLG−) skin equivalents. (a,b) Levels of the pro-in�ammatory cytokines IL-6 and IL-8 
in FLG+ and FLG− skin equivalents, with and without exposure to activated CD4+ T cells (mean ± SEM, 
n = 7). (c) Skin surface pH of FLG+ and FLG− skin equivalents before and a�er exposure to activated CD4+ 
T cells (mean ± SEM, n = 3). (d) Skin permeability of FLG+ (○) and FLG− (□) skin equivalents without 
activated CD4+ T cells and FLG+ (○) and FLG− (□) skin equivalents a�er exposure to activated CD4+ T 
cells (mean ± SEM, n = 4). *Indicates statistically signi�cant di�erences between FLG+ skin equivalents 
(**p ≤ 0.01), +indicates statistically signi�cant di�erences between FLG− skin equivalents (++p ≤ 0.01).
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pH increased signi�cantly from pH 5.5 to pH 5.9 in both models. Additionally, the skin barrier function of FLG+ 
and FLG− skin equivalents was assessed by skin permeation studies using radioactively-labelled testosterone. 
While no distinct di�erences in skin permeability were observed between untreated FLG+ and FLG− skin equiv-
alents, exposure to CD4+ T cells diminished the barrier function of both (Fig. 1d). Papp values increased from 
4.1−6 ± 3.4−7 [cm/s] to 5.3−6 ± 3.9−7 [cm/s] for FLG+ and from 3.6−6 ± 4.6−7 [cm/s] to 4.5−6 ± 5.8−7 [cm/s] for 
FLG− skin equivalents (mean ± SEM; n = 4).

Presence of CD4+ T cells reduces the expression of barrier and tight junction proteins, and dis-
turbs their compensatory upregulation in FLG− skin equivalents. As expected, FLG expression 
was signi�cantly reduced in FLG− skin equivalents compared to FLG+ skin equivalents (Fig. 2a) as assessed by 

Figure 2. Exposure of activated CD4+ T cells to the skin equivalents reduces the expression of important 
skin barrier and tight junction proteins. Western blot and relative protein expression semi-quanti�ed by 
densitometry, as well as representative immunostaining of normal (FLG+) and �laggrin-de�cient (FLG−) skin 
equivalents alone and a�er addition of activated CD4+ T cells for (a) �laggrin (FLG, red), (b) involucrin (IVL, 
green), (c) loricrin (LOR, green), (d) occludin (OCLN, green) and (e) claudin-1 (CLDN-1, red). Counterstained 
with DAPI (blue), scale bar = 100 µm. *Indicates statistically signi�cant di�erences between FLG+ skin 
equivalents (*p ≤ 0.05), +indicates statistically signi�cant di�erences between FLG− skin equivalents 
(+p ≤ 0.05). (Mean ± SEM; n = 4).
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densitometry of Western blots and immunostaining. A clear trend towards upregulation of the skin barrier pro-
teins involucrin (IVL, 1.4-fold; p = 0.099; Fig. 2b) and loricrin (LOR, 1.6-fold; p = 0.5218; Fig. 2c), as well as the 
tight junction proteins occludin (OCLN, 1.4-fold, Fig. 2d) and claudin-1 (CLDN-1, 1.2-fold, p = 0.036, Fig. 2e) 
in FLG− compared to FLG+ skin equivalents was observed, in line with previous reports from our group13. A�er 
exposure to activated CD4+ T cells, the compensatory up-regulation of IVL in FLG− skin equivalents was abol-
ished. A similar trend, although less marked, was observed for LOR (p = 0.60), OCLN (p = 0.061) and CLDN-1 
(p = 0.060). FLG expression in FLG+ skin equivalents was also diminished a�er T cell addition. Corresponding 
regulations at the mRNA level are presented in Supplementary Fig. S4.

Exposure to CD4+ T cells disturbs skin lipid organisation and composition. Infrared spectroscopy 
was used to assess the order of barrier lipids found in skin equivalents. FLG+ skin equivalents lipids were less 
ordered in the presence of activated T cells, as deduced by the increased asymmetric methylene stretching infra-
red vibration from 2918 cm−1 to >2921 cm−1. Diminished FLG levels induced similar lipid �uidity, however the 
presence of T cells in the FLG− skin constructs did not change the lipid conformation further (Fig. 3a,b).

Stratum corneum (SC) lipids of the skin equivalents were further analysed by high-performance thin layer 
chromatography. Both FLG− skin equivalents, with and without T cells, had increased levels of free fatty acids 
(Fig. 3c) and glucosylceramides, as compared to FLG+ skin equivalents without T cells (Fig. 3e). �ey also 
showed diminished levels of two sphingosine-containing ceramide subclasses, Cer EOS and Cer NS (Fig. 3d). 
�e presence of T cells was accompanied by diminished Cer NS levels, but only in FLG+ skin equivalents. �e 
levels of cholesterol, cholesteryl sulfate, sphingomyelin and phospholipids did not signi�cantly di�er between the 
skin equivalents (Supplementary Fig. S5).

Distinct CD4+ T cell migration occurs exclusively in filaggrin-deficient skin equiva-
lents. Unexpectedly, distinct migration of activated CD4+ T cells into the dermis of FLG− skin equivalents 
was observed 2 days a�er T cell exposure (Fig. 4a,b). In contrast, no T cell migration was observed in FLG+ 
skin equivalents, skin equivalents treated with non-activated CD4+ T cells, or skin equivalents generated from 
keratinocytes transfected with negative control siRNA (Fig. 4c–e). Additionally, T cell migration into the skin 
equivalents was quanti�ed using a digital pathology scanner and corresponding so�ware, revealing 18.95 ± 1.7 T 
cells/mm2 in FLG− skin equivalents and 0.9 ± 0.1 T cells/mm2 in FLG+ skin equivalents (n = 4, p ≤ 0.0001, 
mean ± SEM).

Migration of CD4+ T cells in FLG− skin equivalents is directly stimulated by TSLP. TSLP expres-
sion in the skin equivalents was determined by densitometry of Western blots and immunostaining. FLG− equiv-
alents were characterised by intrinsically increased TSLP levels compared to normal skin equivalents (Fig. 5a), in 
line with previously published data from our group13. Here, TSLP protein expression was signi�cantly increased 
by 1.6-fold relative to FLG+ skin equivalents (Fig. 5a,b); exposure to activated T cells did not further enhance the 
TSLP levels. By contrast, in FLG+ equivalents exposure to activated CD4+ T cells signi�cantly increased the TSLP 
levels by 1.7-fold. Corresponding expression on mRNA level is shown in Supplementary Fig. S6.

We next investigated the role of TSLP on T cell migration in FLG− skin equivalents. Pre-incubation of T cells 
with a speci�c TSLP receptor antibody (2.5 µg/ml) completely abolished T cell migration in FLG− skin equiva-
lents (Fig. 5c). By contrast, direct application of 50 ng/ml TSLP to keratinocyte-free dermis equivalents induced 
T cell migration (Fig. 5d). Transwell migration assays using 50 ng/ml also con�rmed the direct stimulating e�ect 
of TSLP on T cell migration (Fig. 5e). TSLP receptor expression on the surface of CD4+ T cells was con�rmed 
by �ow cytometry, showing a signi�cantly increased expression on activated compared to non-activated T cells 
(0.56% to 43.9%; Supplementary Fig. S7).

TSLP shifts the polarisation profile of activated CD4+ T cells from Th1/Th17 to Th2/
Th22. Interestingly, the enhanced TSLP levels in FLG+ and FLG− skin equivalents a�er exposure to the acti-
vated T cells shi�ed the �1/�17-polarisation pro�le of activated CD4+ T cells towards �2/�22 polarisa-
tion. Non-exposed activated CD4+ T cells produced high amounts of �1/�17 cytokines such as interferon-γ 
(IFN-γ), tumour necrosis factor-α (TNF-α) and IL-17A (Fig. 6a). A�er addition to the skin equivalents, the 
secretion of the �2/�22 cytokines IL-13 and IL-22 remained unchanged (Fig. 6e,f), but IL-17A, IFN-γ and 
TNF-α levels declined signi�cantly (Fig. 6b–d). Additionally, mRNA expression analysis of the T cell master 
regulators TBX21 (�1), GATA3 (�2), RORC (�17) and AHR (�22) con�rmed the shi� from a �1/�17 to 
a more �2/�22 pro�le in activated T cells. Notably, this shi� occurred irrespective of T cell migration into the 
dermis equivalents (Fig. 6g–j).

Discussion
�e crosstalk between immune and skin cells play a central role in the pathophysiology of AD and other in�am-
matory skin disorders29, 30. Nevertheless, many important pathways and correlations are still poorly understood. 
Generally in AD, disruption of the physical skin barrier facilitates the uptake of allergens, irritants and microbes 
by DCs in the skin inducing DC migration to the local lymph nodes, followed by corresponding polarisation 
of naïve T cells into �2 cells31, 32. �e exact mechanisms by which �2 cell immunity is induced by DCs is still 
ambiguous, although interactions with the major histocompatibility complex-T cell receptor or the expression of 
OX40L are widely discussed33. �e keratinocyte-derived cytokine TSLP was identi�ed as a key player in the early 
stages of allergic in�ammation, and as a sensitising product of keratinocytes released prior to the development of 
lesional skin in AD patients34. TSLP strongly activates DCs, which themselves are capable of priming naïve CD4+ 
T cells to di�erentiate into pro-in�ammatory �2 cells23. Subsequently, these allergen-speci�c �2 T cells migrate 
back from lymph nodes to the original site of in�ammation to trigger an allergic response. Pronounced dermal 
T cell in�ltration is a hallmark of AD and may lead to chronic lesions due to continuous cytokine secretion35. 
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Although only 10–50% of AD patients carry FLG mutations, all of them exhibit skin barrier defects due to det-
rimental downstream e�ects of pro-in�ammatory cytokines on the skin barrier integrity36–38. Not only TSLP, 
IL-4 and IL-13, but also IL-17A, IL-31, IL-33 and the alarmin high-mobility group box 1 downregulate �laggrin 
expression and genes which are important for cellular adhesion39–41. Previous reports suggest that TSLP down-
regulates FLG expression in human skin by STAT3- and/or ERK-dependent pathways42.

Although the relevance of TSLP in the pathogenesis of AD is well established, little is known in humans about 
the direct interplay between TSLP, �laggrin-de�cient skin and immune cells. Hence, to investigate these aspects 
in more detail, we exposed a previously developed �laggrin-de�cient, human-based skin equivalent to activated 
human CD4+ T lymphocytes. To understand the e�ects of T cells on skin homeostasis in more detail, regulation 
of the skin surface pH, barrier function, corni�ed envelope and tight junction proteins, and skin lipid composi-
tion of the skin equivalents was assessed.

As expected, exposure to activated T cells induced an in�amed phenotype in the skin equivalents with signi�-
cantly enhanced levels of pro-in�ammatory cytokines IL-6 and IL-8 a�er exposure to activated T cells (Fig. 1a,b). 
Additionally, a signi�cant increase in the surface pH of the skin equivalents (Fig. 1c) was observed, characteristic 
of AD patient skin lesions43. Interestingly, these responses occurred irrespective of T cell migration, indicat-
ing that cytokine release underneath the dermal equivalent was su�cient to induce the observed physiological 
aberrations. �e initial compensatory upregulation of epidermal barrier (IVL, LOR) and tight junction proteins 
(OCLN, CLDN-1) in FLG− skin equivalents was abolished a�er exposure to the T cells (Fig. 2), well in line with 
recent results from IL-4/IL-13 stimulated skin equivalents13. �e feedback mechanism is potentially disturbed 
by T cell-derived cytokines ultimately activating the STAT-6 signalling pathway44 or the S100 calcium-binding 
protein A1110. Similar compensatory mechanisms for epidermal barrier proteins have previously been reported 
in loricrin-de�cient45 and �aky tail mice46 as well as for desmosomes and tight junction proteins47. Notably, here 
we observed a discrepancy in analysed mRNA and corresponding protein levels (Fig. 2 and Fig. S4) which is a 
known phenomenon and likely results from regulation controls at di�erent expression levels. Interestingly, di�er-
ent studies indicate that only 40% of mRNA and protein expression correlate well48–50.

Exposure of FLG+ skin equivalents to CD4+ T cells also disturbed the skin lipid organisation, increased the 
free fatty acid content and reduced the ceramide levels in the SC (Fig. 3). Similar tendencies have previously been 
reported for FLG− skin equivalents28, 51. �e e�ects on epidermal barrier proteins and skin lipids may explain 

Figure 3. �e presence of CD4+ T cells disorders stratum corneum (SC) barrier lipids of normal (FLG+), 
but not �laggrin-de�cient (FLG−), skin equivalents. (a,b) Infrared spectroscopy of isolated SC (spectra and 
wavenumbers of methylene asymmetric stretching vibration). (Mean ± SEM; n = 4). (c–e) High-performance 
thin layer chromatography analysis of SC lipids (free fatty acids, ceramide subclasses and glucosylceramides) 
of FLG+ and FLG− skin equivalents with or without exposure to activated CD4+ T cells (mean ± SEM; n = 4). 
*Indicates statistically signi�cant di�erences between FLG+ skin equivalents (*p ≤ 0.05, **p ≤ 0.01).
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the increased permeability of skin equivalents in the presence of activated T cells, although these data have to be 
interpreted with caution since skin equivalents show generally higher skin permeability than native human skin52.

Consistent with the in vivo situation in AD patients and previous reports from our group13, basal TSLP lev-
els were signi�cantly elevated in the FLG− skin equivalents (Fig. 5a,b). Additionally, TSLP levels of FLG+ skin 
equivalents also increased signi�cantly a�er T cell exposure likely due to secreted cytokines. In FLG− skin equiv-
alents, however, exposure to activated T cells did not further enhance the TSLP levels likely due to limited expres-
sion capacity of the soluble cytokine TSLP.

Interestingly, we observed distinct T cell migration into the dermis equivalent exclusively in FLG− skin equiv-
alents (Fig. 4a,b). Since direct interactions between T cells and TSLP have recently been demonstrated53, we inves-
tigated the role of TSLP on T cell migration. Pre-incubation of T cells with a TSLP receptor antibody inhibited 
dermal in�ltration, while direct application of recombinant human TSLP on the dermis equivalents or T cells 
cultured in transwells resulted in CD4+ T cell migration (Fig. 5c–e). �ese results clearly indicate that TSLP can 
directly initiate T cell migration into dermis equivalents. �e lack of T cell migration in FLG+ skin equivalents 
despite enhanced TSLP levels following T cell exposure suggests a speci�c role of the �laggrin de�ciency that 
requires further investigations. �e migration of activated T cells due to enhanced TSLP levels was particularly 
unexpected, since other than that its e�ects on DCs, few direct biological e�ects of human TSLP on immune cells 
have been described19, 54, 55. Direct e�ects of TSLP on T cells have, however, previously been described in mice56, 57.

Paracrine interactions between T cells, DCs, Langerhans cells and keratinocytes play a central role in the 
pathophysiology of AD. DCs are known to stimulate T cell migration as well as �2 polarisation of naïve CD4+ 
T cells19. Despite this, the actions of TSLP on other immune cells have been given less attention, and impor-
tant pathways such as further triggers of T cell migration and the role of TSLP in CD4+ T cell activation/�2 
polarisation are not fully elucidated. We have now identi�ed a previously unknown down-stream e�ect of TSLP 
in the direct activation of T cell migration. It must be noted that other potentially confounding activators of 
leukocyte migration, such as DCs, or chemokines involved in T cell recruitment like CCL2258, are absent from 
the skin equivalent used here. Interestingly, the enhanced TSLP levels found in the skin equivalents a�er T cell 
addition also diminished the �1/�17-polarisation pro�le of activated CD4+ T cells, which initially produced 

Figure 4. CD4+ T cell migration occurs exclusively in �laggrin-de�cient (FLG−) skin equivalents. (a) 
Representative light microscopy picture of a FLG− skin equivalent containing migrated T cells attached to 
magnetic beads (arrows). (b) Corresponding immunostaining against CD4+ T cells (red), counterstained with 
DAPI (blue), scale bar = 100 µm. (c) Immunostaining against non-activated CD4+ T cells (red, arrows) in FLG− 
skin equivalents, counterstained with DAPI (blue). Representative light microscopy picture of (d) a normal 
(FLG+) skin equivalent and (e) FLG− skin equivalents generated from keratinocytes transfected with siRNA 
negative control a�er exposure to activated T cells (arrows, attached to magnetic beads; scale bar = 100 µm, 
SC = stratum corneum, VE = viable epidermis, D = dermis).
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Figure 5. TSLP directly stimulates T cell migration in �laggrin-de�cient (FLG−) skin equivalents. (a) Western 
blot and relative protein expression of TSLP in normal (FLG+) and FLG− skin equivalents before and a�er 
exposure to activated CD4+ T cells (mean ± SEM; n = 4), *indicates statistical signi�cance over FLG+ skin 
equivalents (*p ≤ 0.05, **p ≤ 0.01). (b) Representative immunostains against TSLP (red) in FLG+ and FLG− 
skin equivalents (scale bar = 100 µm). (c) Representative light microscopy pictures of FLG− skin equivalents 
supplemented with activated CD4+ T cells (control) and with TSLPr antibody pre-incubated T cells (+TSLPr), 
scale bar = 100 µm. (d) Dermis equivalents, with and without topical application of 50 ng/ml TSLP, prior to T 
cell exposure (scale bar = 100 µm). (e) Representative dot plots from the �ow cytometric transwell migration 
assay with non-activated and activated CD4+ T cells, incubated for 48 h with medium only (negative control), 
30 ng/ml SDF-1α (positive control), and 50 ng/ml TSLP with and without pre-incubation with TSLPr antibody.
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Figure 6. Impact of TSLP on the di�erentiation pro�le of activated CD4+ T cells. (a) Levels of IFN-γ, TNF-α, 
IL-22, IL-17A and IL-13 produced by activated CD4+ T cells (mean ± SEM; n = 3–5). (b–f) Respectively, release 
of, IFN-γ, TNF-α, IL-17A, IL-13 and IL-22 from activated CD4+ T cells alone (white bar) and a�er addition to 
FLG− skin equivalents (grey bar), relative to 106 CD4+ T cells (mean ± SEM; n = 3–5; *p ≤ 0.05, **p ≤ 0.01). 
(g–j) Respectively, relative mRNA expression of T cell master regulators TBX21 (�1), GATA3 (�2), RORC 
(�17) and AHR (�22).



www.nature.com/scientificreports/

9Scientific RepoRts | 7: 774  | DOI:10.1038/s41598-017-00670-2

high amounts of �1/�17 cytokines IFN-γ, TNF-α and IL-17A. By contrast, secretion of �2 cytokine IL-13 and 
�22 cytokine IL-22 were unchanged (Fig. 6). �is �ndings support the hypothesis of a decrease in �1/�17 
pro�le in favour of a more �2/�22-like phenotype, concordant with studies suggesting that TSLP may play a 
prominent role in attenuating �1 and �17 responses59–61. �ough a handful of studies show an increased �17 
axis in patients with AD and �aky tail mice62–64, overall the �17 pathway is much less activated in patients with 
AD compared with psoriasis patients65, 66.

Despite the convincing results, a potential downside of the present study is that no information about the 
health status of the blood donors was provided. Hence, isolation of PBMCs from blood of AD patients or volun-
teers with related allergic diseases is possible, which would have a�ected the outcome. However, since the results 
are conclusive and clear, the reported data are considered as signi�cant.

In summary, a new mechanism of T cell stimulation in human skin was identi�ed, demonstrating the direct 
induction of T cell migration by TSLP in the absence of DCs. �is provides a new perspective of the impact TSLP 
has on the pathogenesis of AD. Whilst these results will require veri�cation in vivo, the skin equivalents used 
here allow the study of interactions between skin components that would be di�cult to detect in vivo, due to the 
multitude of potentially confounding factors within this biologically complex setting.

Materials and Methods
Materials. All solutions for H&E staining, formaldehyde solution 4%, Tween 20 and bovine serum albumin 
(BSA) were obtained from Carl Roth, Karlsruhe, Germany. Horseradish-peroxidase-conjugated secondary anti-
bodies were purchased from Cell Signaling, Frankfurt/Main, Germany. �e secondary antibodies IgG DyLight 
488 and IgG DyLight 594, as well as 4′,6-diamidin-2-phenylindol (DAPI) antifading mounting medium were 
bought from Dianova, Hamburg, Germany. �e RNA isolation kit NucleoSpin® RNA II was from Macherey-
Nagel, Düren, Germany; the iScriptTM cDNA Synthesis Kit from Bio-Rad Laboratories, Munich, Germany. SYBR 
Green I Masterplus kit for real-time quantitative polymerase chain reaction (qPCR) was purchased from Roche, 
Penzberg, Germany. All primers for qPCR were purchased by TibMolbiol, Berlin, Germany.

T cell isolation and activation. Peripheral blood mononuclear cells (PBMCs) were isolated from 
bu�y-coat preparations from whole human blood by NycoPrepTM 1.077 (Axis-Shield plc, Oslo, Norway) density 
gradient centrifugation. �e blood was purchased from the German Red Cross (DRK-Blutspendedienst Ost, 
Berlin, Germany) and informed consent was obtained from the donors, respectively. �e isolation of PBMCs and 
related experiments were performed in accordance with relevant guidelines and regulations and approved by the 
ethics committee of the Charité–Universitätsmedizin Berlin, Germany (EA1/227/14). Naïve human CD4+ T cells 
were puri�ed from PBMCs by negative selection using magnetic-activated cell sorting beads according to the 
manufacturer’s instructions (MACS; Miltenyi-Biotec, Bergisch-Gladbach, Germany). For T cell activation, cells 
were stimulated with anti-CD3/CD28 beads (Life Technologies, Darmstadt, Germany), at a T cell/bead ratio of 
1:1, for 24 h cultured in RPMI 1640 (Sigma-Aldrich, Munich, Germany) containing 10% heat-inactivated foe-
tal calve serum (FCS, Biochrom, Berlin, Germany) and 2 mM L-glutamine (Sigma-Aldrich, Munich, Germany). 
Successful T cell/bead binding was veri�ed by light microscopy. �erea�er, activated cells were washed and sus-
pended in skin di�erentiation medium.

Generation of skin equivalents and supplementation with activated CD4+ T cells. Normal 
(FLG+) and �laggrin-de�cient (FLG−) skin equivalents were generated according to Stark et al.67. �e origi-
nal protocol was modi�ed as described in previously published work13, 28, 51. For more details, see Supplemental 
Materials. All experiments were performed in accordance with relevant guidelines and regulations and were 
approved by the ethics committee of the Charité - Universitätsmedizin Berlin, Germany (EA1/081/13). Primary 
human keratinocytes and �broblasts were isolated from juvenile foreskin obtained from circumcision surgery, 
informed consent was obtained, respectively. Skin equivalents generated from keratinocytes previously trans-
fected with siRNA negative control served as control. At day 12 of tissue cultivation, 1.5 × 106 activated CD4+ 
T cells were applied underneath the dermis equivalent directly onto the cell culture insert membrane of FLG+ 
and FLG− skin equivalents and cultured for 2 more days68. Skin equivalents treated with medium only served as 
control.

Flow cytometry. Purity, activation status of isolated CD4+ T cells and expression levels of TSLP receptors 
on non-activated and activated T cells were analysed by �ow cytometry. Cells were assessed via eight-colour �ow 
cytometry with FACSCanto II (BD Biosciences, San Jose, CA, USA) using the antibodies depicted in Table S1. 
Debris was excluded by forward and side scatter gating, and dead cells by staining with Fixable Viability Dye 
eFluor® 780 (eBioscience, Hat�eld, United Kingdom). Data were analysed using FlowJo 10 so�ware (TreeStar, 
Ashland, OR, USA).

Inhibition studies. Isolated CD4+ T cells were pre-incubated with a TSLP receptor antibody (2.5 µg/ml; 
R&D Systems, Abingdon, United Kingdom) and anti-CD3/CD28 beads for 24 h. �erea�er, cells were applied 
under the dermis equivalent directly onto the cell culture insert membrane of FLG+ and FLG− skin equivalents. 
Skin equivalents supplemented with activated CD4+ T cells only served as positive control.

T cell migration assay. Dermis equivalents were generated according to the normal protocol for skin equiv-
alent generation. 24 h a�er airli�, a nylon mesh (200 µm; neoLab, Heidelberg, Germany) was applied on top of the 
dermis equivalents and 50 µl recombinant human TSLP (50 ng/ml; R&D Systems, Abingdon, United Kingdom) 
was applied topically over three consecutive days. Topically applied phosphate bu�ered saline (PBS) containing 
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0.1% BSA served as control. Activated T cells were applied under the dermis equivalents directly onto the cell 
culture insert membranes as described above.

Transwell migration assay. For the transwell migration assay, isolated CD4+ T cells (activated for 3 
days prior use with ImmunoCult™ Human CD3/CD28 T cell Activator; STEMCELL Technologies, Cologne, 
Germany) were pre-incubated with media containing 1% FCS for 4 h. 2 × 105 cells/0.1 ml were applied onto the 
transwell membrane (5 µm pore size; Corning, Amsterdam, Netherlands). �e acceptor chamber was �lled with 
0.3 ml cell culture media alone, supplemented with 50 ng/ml recombinant human TSLP, or supplemented with 
30 ng/ml SDF-1α recombinant human CXCL12 (Miltenyi-Biotec, Bergisch-Gladbach, Germany), the latter of 
which served as positive control. T cells pre-incubated with a TSLP receptor antibody (2.5 µg/ml; R&D Systems, 
Abingdon, United Kingdom) and non-activated T cells served as negative controls. A�er 48 h at 37 °C and 5% 
CO2, migrated T cells were harvested and counted for 60 s at a de�ned constant �ow rate by �ow cytometry using 
CytoFLEX (Beckman Coulter, Krefeld, Germany). Cell debris was excluded by scatter gates.

Histology and cell counting. For histological analysis, skin equivalents were embedded in tissue freezing 
medium (Leica Biosystems, Nussloch, Germany), shock-frozen with liquid nitrogen and subsequently cut into 
vertical sections (5 µm) with a Leica CM1510 S cryotome (Leica Biosystems, Nussloch, Germany). Sections were 
then stained with hematoxylin and eosin according to standard protocols.

Migrated activated CD4+ T cells were measured within the dermis equivalents in 4 hematoxylin and 
eosin-stained sections (per skin equivalent). In total, 4 di�erent donors of FLG+ and FLG− skin equivalents 
were evaluated using the Aperio CS2 digital pathology scanner and the corresponding so�ware (Table S2, Aperio 
nuclear V9 algorithm; Leica Biosystems, Nussloch, Germany).

Real-time quantitative polymerase chain reaction (qPCR). For gene expression analysis of barrier 
and tight junction proteins, the epidermis was gently removed, frozen and then grinded for 30 s at 25 Hz using a 
TissueLyzer (Qiagen, Hilden, Germany). For the analysis of T cell master regulators, the dermal compartments 
as well as T cells alone were lysed in lysis bu�er from RNA isolation kit. RNA was isolated using the NucleoSpin® 
RNA II kit according to the manufacturer’s instructions. For cDNA synthesis, iScriptTM cDNA Synthesis Kit was 
used. Subsequently, qPCR was performed using SYBR Green I Masterplus kit. Primer sequences are listed in 
Supplementary Table S3. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as house-keeping gene.

Immunofluorescence and Western blot analysis. Immuno�uorescence and Western blot analysis 
were performed according to standard protocols (see Supplementary Material). Antibodies used are depicted in 
Supplementary Table S4. Protein expression was semi quanti�ed by densitometry and normalised to β-actin levels 
using ImageJ version 1.46r (National Institutes of Health, Bethesda, MD, USA)69. Potential o�-target e�ects on 
respective protein expression levels due to siRNA transfection were excluded in our recent study by using kerati-
nocytes previously transfected with siRNA negative control13.

Enzyme Linked Immunosorbent Assay (ELISA). �e release of the cytokines IFN-γ, TNF-α, IL-17A, 
IL-22, IL-13, IL-6 and IL-8 were determined using ELISA-Ready Set Go kits (eBioscience, Hat�eld, United 
Kingdom) according to the manufacturer’s instructions. For the analysis of IL-25 (IL-17E) and IL-33 ELISA 
DuoSet kits were used (R&D Systems, Abingdon, United Kingdom). Culture media of isolated CD4+ T cells and 
skin equivalents was collected and stored at −80 °C until use. To better compare the release of IFN-γ, TNF-α, 
IL-17A, IL-22 and IL-13 from T cells alone and a�er addition to skin equivalents, cytokine levels were depicted 
relative to 106 CD4+ T cells.

Skin surface pH measurements. Skin surface pH was assessed as described previously28, 70. For details, 
see Supplementary Materials.

Skin absorption testing. Skin permeability studies were performed according to validated test proce-
dures71, 72 using the radioactive labelled test compound testosterone (for details, see Supplementary Materials).

Lipid analysis. �e SC lipids were analysed in terms of their lipid content and organisation according to 
previously published procedures28, 51. For details, see Supplemental Materials.

Statistical analysis. �e unpaired student’s t-test was used for direct comparisons of two independent 
groups. For multiple comparisons, one-way analysis of variance followed by Bonferroni’s correction for multiple 
comparisons, was performed using GraphPad Prism 6.0 (GraphPad So�ware Inc., La Jolla, CA). Asterisks (*) 
indicate statistical signi�cance over FLG+, plus (+) signs indicate statistical signi�cance over FLG−. p ≤ 0.05 
was considered statistical significant. Data from at least three independent experiments are presented as 
means ± standard error of the mean (SEM).
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