

Edinburgh Research Explorer

TSO-CC: Consistency directed cache coherence for TSO

Citation for published version:
Elver, M & Nagarajan, V 2014, TSO-CC: Consistency directed cache coherence for TSO. in The
International Symposium on High-Performance Computer Architecture: Orlando, Florida.
<http://hpca20.ece.ufl.edu/program.html>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The International Symposium on High-Performance Computer Architecture

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Aug. 2022

http://hpca20.ece.ufl.edu/program.html
https://www.research.ed.ac.uk/en/publications/f515d6c4-b6b2-42fe-865f-2c7d0109d8fd

TSO-CC: Consistency directed cache coherence for TSO
Marco Elver

University of Edinburgh
marco.elver@ed.ac.uk

Vijay Nagarajan
University of Edinburgh

vijay.nagarajan@ed.ac.uk

Abstract
Traditional directory coherence protocols are designed

for the strictest consistency model, sequential consistency
(SC). When they are used for chip multiprocessors (CMPs)
that support relaxed memory consistency models, such pro-
tocols turn out to be unnecessarily strict. Usually this comes
at the cost of scalability (in terms of per core storage), which
poses a problem with increasing number of cores in today’s
CMPs, most of which no longer are sequentially consistent.

Because of the wide adoption of Total Store Order (TSO)
and its variants in x86 and SPARC processors, and exist-
ing parallel programs written for these architectures, we
propose TSO-CC, a cache coherence protocol for the TSO
memory consistency model. TSO-CC does not track sharers,
and instead relies on self-invalidation and detection of po-
tential acquires using timestamps to satisfy the TSO memory
consistency model lazily. Our results show that TSO-CC
achieves average performance comparable to a MESI direc-
tory protocol, while TSO-CC’s storage overhead per cache
line scales logarithmically with increasing core count.

1. Introduction
In shared-memory chip multiprocessors (CMPs), each

processor typically accesses a local cache to reduce memory
latency and bandwidth. Data cached in local caches, however,
can become out-of-date when they are modified by other
processors. Cache coherence helps ensure shared memory
correctness by making caches transparent to programmers.

Shared-memory correctness is defined by the memory
consistency model, which formally specifies how the mem-
ory must appear to the programmer [1]. The relation between
the processor’s memory consistency model and the coher-
ence protocol has traditionally been abstracted to the point
where each subsystem considers the other as a black box [41].
Generally this is beneficial, as it reduces overall complexity;
however, as a result, coherence protocols are designed for
the strictest consistency model, sequential consistency (SC).
SC mandates that writes are made globally visible before
a subsequent memory operation. To guarantee this, before
writing to a cache line, coherence protocols propagate writes
eagerly by invalidating shared copies in other processors.

Providing eager coherence, however, comes at a cost. In
snooping based protocols [2], writes to non-exclusive cache

lines need to be broadcast. Scalable multiprocessors use
directory based protocols [11] in which the directory main-
tains, for each cache line, the set of processors caching that
line in the sharing vector. Upon a write to a non-exclusive
cache line, invalidation requests are sent to only those proces-
sors caching that line. While avoiding the potentially costly
broadcasts, the additional invalidation and acknowledgement
messages nevertheless represents overhead [12]. More impor-
tantly, the size of the sharing vector increases linearly with
the number of processors. With increasing number of pro-
cessors, it could become prohibitively expensive to support a
sharing vector for large-scale CMPs [12, 35].

Although there have been a number of approaches to more
scalable coherence purely based on optimizing eager coher-
ence protocols and cache organization [13, 18, 20, 29, 34, 36,
44, 48], we are interested in an alternative approach. Lazy
coherence has generated renewed interest [7, 12, 35], as a
means to address the scalability issues in eager coherence
protocols. First proposed in the context of distributed shared
memory (DSM) coherence [10, 22], lazy coherence protocols
exploit the insight that relaxed consistency models such as Re-
lease Consistency (RC) require memory to be consistent only
at synchronization boundaries [25]. Consequently, instead
of eagerly enforcing coherence at every write, coherence is
enforced lazily only at synchronization boundaries. Thus,
upon a write, data is merely written to a local write-buffer,
the contents of which are flushed to the shared cache upon a
release. Upon an acquire, shared lines in the local caches are
self-invalidated – thereby ensuring that reads to shared lines
fetch the up-to-date data from the shared cache. In effect,
the protocol is much simpler and does not require a sharing
vector. To summarize, in contrast to conventional techniques
for enhancing scalability, lazy coherence protocols have an
added advantage since they are memory consistency directed.

1.1. Motivation
However, one important limitation of existing lazy coher-

ence protocols concerns portability. Since they only enforce
relaxed consistency models such as RC, they are not directly
compatible with widely prevalent architectures such as x86
and SPARC which support variants of Total Store Order
(TSO). Thus, legacy programs written for TSO could break
on architectures that employ current lazy coherence protocols
for RC. For this reason, it is unlikely that lazy coherence will

proc A

init: data = flag = 0;

proc B

r1 = data;

while (flag == 0);

b 2

1b

flag = 1;

data = 1;

a 2

1a

Figure 1. In TSO architectures that employ conven-
tional (eager) coherence protocols, 1 eager coher-
ence ensures that the write a2 to flag from proc A be-
comes visible to proc B without any additional syn-
chronization or memory barrier. 2 Once b1 reads the
value produced by a2, TSO ordering ensures that the
read b2 sees the value written by a1.

be adopted by the above architectures.
On the other hand, TSO coherence is amenable to a lazy

coherence implementation as it relaxes the w→ r ordering1.
Writes in TSO retire into a local write-buffer and are made
visible to other processors in a lazy fashion. Consequently,
making them visible to other processors as soon as the writes
exit the write-buffer is overkill.

1.2. Requirements
The key challenge in designing a lazy coherence protocol

for TSO is the absence of explicit release or acquire instruc-
tions. Indeed, since all reads have acquire semantics and
all writes have release semantics, simple writes and reads
may be used for synchronization. This is illustrated in the
producer-consumer example (Figure 1) in which the write a2
is used as a release and the read b1 is used as an acquire. In
TSO, since any given write can potentially be a release, it is
essential that each write is propagated to other processors, so
that the value written is eventually made visible to a matching
acquire – we call this the write-propagation requirement. In
the above example, the value written by a2 should be made
visible to b1 – or else, proc. B will keep spinning indefinitely.
Additionally, TSO mandates enforcing the following three
memory orderings: w→ w, r→ r, and r→ w – we call this
the TSO memory ordering requirement. In the above exam-
ple, once b1 reads the value produced by a2, TSO ordering
ensures that b2 correctly reads the value written by a1.

One way to trivially ensure TSO is to consider each read
(write) to be an acquire (release) and naïvely use the rules of
a lazy RC implementation. This, however, can cause signifi-
cant performance degradation, since all reads and writes will
have to be serviced by a shared cache, effectively rendering
local caches useless.

1.3. Approach
In the basic scheme, for each cache line in the shared

cache, we keep track of whether the line is exclusive, shared
or read-only. Shared lines do not require tracking of sharers.

1w denotes a write, r a read and m any memory operation (write or read),
→ captures the happens before ordering relation between memory events.

Additionally, for private cache lines, we only maintain a
pointer to the owner.

Since we do not track sharers, writes do not eagerly in-
validate shared copies in other processors. On the contrary,
writes are merely propagated to the shared cache in program
order (thus ensuring w→ w). To save bandwidth, instead of
writing the full data block to the shared cache, we merely
propagate the coherence states. In the above example, the
writes a1 and a2 are guaranteed to propagate to the shared
cache in the correct order. Intuitively, the most recent value
of any data is maintained in the shared cache.

Reads to shared cache lines are allowed to read from the
local cache, up to a predefined number of accesses (poten-
tially causing a stale value to be read), but are forced to
re-request the cache line from the shared cache after exceed-
ing an access threshold (our implementation maintains an
access counter per line). This ensures that any write (used
as a release) will eventually be made visible to the matching
acquire, ensuring write propagation. In the above example,
this ensures that the read b1 will eventually access the shared
cache and see the update from a2.

When a read misses in the local cache, it is forced to
obtain the most recent value from the shared cache. In order
to ensure r→ r, future reads will also need to read the most
recent values. To guarantee this, whenever a read misses
in the local cache, we self-invalidate all shared cache lines.
In the above example, whenever b1 sees the update from
a2, self-invalidation ensures that b2 correctly reads the value
produced by a1.

Finally, we reduce the number of self-invalidations by
employing timestamps to perform transitive reduction [33]. If
at a read miss, the corresponding write is determined to have
happened before a previously seen write, a self-invalidation
is not necessary. In the example, even though b2 reads from
the shared cache, this does not cause a self-invalidation.

1.4. Contributions

We propose TSO-CC, a coherence protocol that enforces
TSO lazily without a full sharing vector. The use of a full
sharing vector is an important factor that could limit scala-
bility, which we overcome in our proposed protocol, while
maintaining good overall performance in terms of execution
times and on-chip network-traffic. We implemented TSO-
CC in the cycle accurate full system simulator Gem5 [9], and
tested our protocol implementation for adherence to TSO by
running it against a set of litmus tests generated using the
diy [6] tool – results indicate that TSO is indeed satisfied.
TSO-CC’s storage overhead per cache line scales logarith-
mically with increasing core count. More specifically, for
32 (128) cores, our best performing configuration reduces
the storage overhead over MESI by 38% (82%). Our ex-
periments with programs from SPLASH-2, PARSEC and
STAMP benchmarks show an average reduction in execution

time of 3% over the baseline (MESI), with the best case
outperforming the baseline by 19%.

2. Background
In this section we first (§2.1) introduce the notion of lazy

coherence based on definitions of relaxed memory consis-
tency models, in particular that of Release Consistency (RC).
Then we introduce the Total Store Order (TSO) memory
consistency model (§2.2).

2.1. Eager versus lazy coherence
First, let us establish the relationship between the coher-

ence protocol and consistency model. Given a target memory
consistency model, the coherence protocol must ensure that
memory operations become visible according to the ordering
rules prescribed by the consistency model.

In SC, because all memory orderings are enforced, and in
particular the w→ r ordering, a write must be made visible
to all processors before a subsequent read. This requirement
is ensured via the use of eager coherence protocols which
propagate writes eagerly by invalidating or updating shared
cache lines in other processors [37].

On the other hand, if the consistency model is relaxed,
i.e. not all possible orderings between memory operations
are enforced, propagation of unordered memory operations
can be delayed until an order can be re-established through
synchronization boundaries [15, 25, 37]. In other words, lazy
coherence protocols exploit the fact that relaxed consistency
models require memory to be consistent only at synchroniza-
tion boundaries.

A relaxed and relatively simple model which explicitly
exposes synchronization operations via special instructions is
RC [19]. In RC, special release and acquire instructions are
used to enforce an ordering with other memory operations in
program order. Given a write release, all memory operations
prior must be visible before the write; a read acquire enforces
preserving the program ordering of all operations after it. In
addition, releases guarantee eventual propagation of synchro-
nization data so that they become visible to corresponding
acquires.

Using an eager coherence protocol in a system imple-
menting a relaxed consistency model is potentially waste-
ful, as employing a lazy approach to coherence opens
up further optimization opportunities to remedy the short-
comings of eager coherence protocols, as demonstrated
by [4, 5, 12, 23, 25, 35, 42] in the context of RC. RC pro-
vides the optimal constraints (explicit synchronization) for
a lazy coherence approach and as such is the only consis-
tency model for which lazy coherence approaches have been
studied in great detail. Typically, in a system supporting
RC, lazy coherence can be implemented by 1 propagating
release writes and ensuring that all writes before the release
are propagated first and 2 upon an acquire, self-invalidating
all locally cached shared data.

2.2. Total Store Order
Since TSO is the memory model found in x86 processors,

its various implementations have been analyzed in detail [38].
TSO is a result of taking writes out of the critical path and
entering committed writes into a FIFO write-buffer, poten-
tially delaying a write to cache or other parts of the memory
hierarchy [38, 40]. Reads to the same address as prior writes
by the same processor must not be affected, which typically
mandates that reads bypass the write-buffer.

Consequently, the write to read ordering w→ r is relaxed.
However, in TSO all writes have release semantics and all
reads have acquire semantics. Thus, m→ w and r→ m need
to be enforced – in other words the TSO ordering requirement.
As every write can potentially be a release, each write needs
to (eventually) propagate to other processors, so that they are
made visible to a matching acquire – in other words the write
propagation requirement.

3. Protocol Design
This section outlines the design and implementation de-

tails of the protocol: first we present a conceptual overview,
followed by the basic version of the protocol, and then pro-
ceed incrementally adding optimizations to further exploit
the relaxations of TSO. We assume a local L1 cache per core
and a NUCA [24] architecture for the shared L2 cache.

3.1. Conceptual overview
To keep the TSO-CC protocol scalable, we do not want

to use a full sharing vector. Thus, a major challenge is to
enforce TSO without a full sharing vector, while minimizing
costly invalidation messages – a consequence of which is
that the resulting protocol must enforce coherence lazily.

Our basic approach is as follows. When a write retires
from the write-buffer, instead of eagerly propagating it to
all sharers like a conventional eager coherence protocol, we
merely propagate the write to the shared cache. One way to
do this is to simply write-though to the shared cache. To save
bandwidth, however, our protocol uses a write-back policy,
in that, only state changes are propagated to the shared cache.
In addition to this, by delaying subsequent writes until the
previous write’s state changes have been acknowledged by
the shared cache, we ensure that writes are propagated to the
shared cache in program order. Informally, this ensures that
the “most recent” value of any address can be obtained by
sending a request to the shared cache.

Consequently, one way to ensure write propagation triv-
ially is for all reads to read from the shared cache [34]. Note
that this would ensure that all reads would get the most recent
value, which in turn would ensure that any write which is
used as a release (i.e. a synchronization operation) would def-
initely be seen by its matching acquire. However, the obvious
problem with this approach is that it effectively means that
shared data cannot be cached, which can affect performance
significantly as we will show later with our experiments.

We ensure write-propagation as follows. First, let us note
that ensuring write-propagation means that a write is even-
tually propagated to all processors. The keyword here is
eventually, as there is no guarantee on when the propaga-
tion will occur even for shared memory systems that enforce
the strongest memory consistency model (SC) using eager
coherence. Consequently, shared memory systems must
be programmed to work correctly even in the presence of
propagation delays. While this is typically accomplished
by employing proper synchronization, unsynchronized op-
erations are used in shared memory systems as well. For
example, synchronization constructs themselves are typically
constructed using unsynchronized writes (releases) and reads
(acquires). The same rules apply even with unsynchronized
operations. Shared memory systems using unsynchronized
operations may rely on the fact that an unsynchronized write
(for e.g. release) would eventually be made visible to a read
(for e.g. acquire), but must be tolerant to propagation de-
lays. In other words, the corresponding unsynchronized read
(acquire) must continually read the value to see if the write
has propagated. This is precisely why all acquire-like op-
erations have a polling read to check the synchronization
value [43, 46]. This is our key observation.

Motivated by this observation, we use a simple scheme
in which shared reads are allowed to hit in the local cache a
predefined number of times, before forcing a miss and read-
ing from the lower-level cache. This guarantees that those
reads that are used as acquires will definitely see the value
of the matching release, while ensuring that other shared
data are allowed to be cached. It is important to note that in
doing this optimization, we are not restricting ourself to any
particular shared-memory programming model. Indeed, our
experiments show that our system can work correctly for a
wide variety of lock-based and lock-free programs.

Having guaranteed write-propagation we now explain how
we ensure the memory orderings guaranteed by TSO. We
already explained how, by propagating writes to the shared
cache in program order, we ensure the w→ w ordering. En-
suring the r→ r ordering means that the second read should
appear to perform after the first read. Whenever a read is
forced to obtain its value from the shared cache (due to a miss
– capacity/cold, or shared read that exceeded the maximum
allowed accesses), and the last writer is not the requesting
core, we self-invalidate all shared cache lines in the local
cache. This ensures that future reads are forced to obtain
the most recent data from the shared cache, thereby ensuring
r→ r ordering; r→ w is trivially ensured as writes retire
into the write-buffer only after all preceding reads complete.

3.2. Basic Protocol
Having explained the basic approach, we now discuss in

detail our protocol2. First, we start with the basic states, and
2A detailed state transition table is available online:

http://homepages.inf.ed.ac.uk/s0787712/research/tsocc

explain the actions for reads, writes, and evictions.
Stable states: The basic protocol distinguishes between in-
valid (Invalid), private (Exclusive, Modified) and shared (Shared)
cache lines, but does not require maintaining a sharing vector.
Instead, in the case of private lines – state Exclusive in the
L2 – the protocol only maintains a pointer b.owner, tracking
which core owns a line; shared lines are untracked in the L2.
The L2 maintains an additional state Uncached denoting that
no L1 has a copy of the cache line, but is valid in the L2.
Reads: Similar to a conventional MESI protocol, read re-
quests (GetS) to invalid cache lines in the L2 result in Exclu-
sive responses to L1s, which must acknowledge receipt of
the cache line. If, however, a cache line is already in private
state in the L2, and another core requests read access to the
line, the request is forwarded to the owner. The owner will
then downgrade its copy to the Shared state, forward the line
to the requester and sends an acknowledgement to the L2,
which will also transition the line to the Shared state. On
subsequent read requests to a Shared line, the L2 immedi-
ately replies with Shared data responses, which do not require
acknowledgement by L1s.

Unlike a conventional MESI protocol, Shared lines in the
L1 are allowed to hit upon a read, only until some predefined
maximum number of accesses, at which point the line has to
be re-requested from the L2. This requires extra storage for
the access counter b.acnt – the number of bits depend on the
maximum number of L1 accesses to a Shared line allowed.

As Shared lines are untracked, each L1 that obtains the
line must eventually self-invalidate it. After any L1 miss, on
the data response, where the last writer is not the requesting
core, all Shared lines must be self-invalidated.
Writes: Similar to a conventional MESI protocol, a write
can only hit in the L1 cache if the corresponding cache line
is held in either Exclusive or Modified state; transitions from
Exclusive to Modified are silent. A write misses in the L1 in
any other state, causing a write request (GetX) to be sent to the
L2 cache and a wait for response from the L2. Upon receipt
of the response from the L2, the local cache line’s state
changes to Modified and the write hits in the L1, finalizing the
transition with an acknowledgement to the L2. The L2 cache
must reflect the cache line’s state with the Exclusive state
and set b.owner to the requester’s id. If another core requests
write access to a private line, the L2 sends an invalidation
message to the owner stored in b.owner, which will then pass
ownership to the core which requested write access. Since
the L2 only responds to write requests if it is in a stable state,
i.e. it has received the acknowledgement of the last writer,
there can only be one writer at a time. This serializes all
writes to the same address at the L2 cache.

Unlike a conventional MESI protocol, on a write to a
Shared line, the L2 immediately responds with a data re-
sponse message and transitions the line to Exclusive. Note
that even if the cache line is in Shared, the L2 must send the

entire line, as the requesting core may have a stale copy. On
receiving the data message, the L1 transitions to Exclusive
either from Invalid or Shared. Note that there may still be
other copies of the line in Shared in other L1 caches, but since
they will eventually re-request the line and subsequently self-
invalidate all Shared lines, TSO is satisfied.
Evictions: Cache lines which are untracked in the L2 do
not need to be inclusive. Therefore, on evictions from the
L2, only Exclusive line evictions require invalidation requests
to the owner; Shared lines are evicted from the L2 silently.
Similarly for the L1, Exclusive lines need to inform the L2,
which can then transition the line to Uncached; Shared lines
are evicted silently.

3.3. Opt. 1: reducing self-invalidations
In order to satisfy the r→ r ordering, in the basic pro-

tocol, all L2 accesses except to lines where b.owner is the
requester, result in self-invalidation of all Shared lines. This
leads to shared accesses following an acquire to miss and
request the cache line from the L2, and subsequently self-
invalidating all shared lines again. For example in Figure 1,
self-invalidating all Shared lines on the acquire b1 but also on
subsequent read misses is not required. This is because, the
self-invalidation at b1 is supposed to make all writes before
a2 visible. Another self-invalidation happens at b2 to make
all writes before a1 visible. However, this is unnecessary,
as the self-invalidation at b1 (to make all writes before a2
visible) has already taken care of this. To reduce unneces-
sary invalidations, we implement a version of the transitive
reduction technique outlined in [33].

Each line in the L2 and L1 must be able to store a times-
tamp b.ts of fixed size; the size of the timestamp depends on
the storage requirements, but also affects the frequency of
timestamp resets, which are discussed in more detail in §3.5.
A line’s timestamp is updated on every write, and the source
of the timestamp is a unique, monotonically increasing core
local counter, which is incremented on every write.

Thus, to reduce invalidations, only where the requested
line’s timestamp is larger than the last-seen timestamp from
the writer of that line, treat the event as a potential acquire
and self-invalidate all Shared lines.

To maintain the list of last-seen timestamps, each core
maintains a timestamp table ts_L1. The maximum possi-
ble entries per timestamp table can be less than the total
number of cores, but will require an eviction policy to deal
with limited capacity. The L2 responds to requests with the
data, the writer b.owner and the timestamp b.ts. For those
data responses where the timestamp is invalid (lines which
have never been written to since the L2 obtained a copy)
or there does not exist an entry in the L1’s timestamp-table
(never read from the writer before), it is also required to
self-invalidate; this is because timestamps are not propagated
to main-memory and it may be possible for the line to have
been modified and then evicted from the L2.

Timestamp groups: To reduce the number of timestamp
resets, it is possible to assign groups of contiguous writes the
same timestamp, and increment the local timestamp-source
after the maximum writes to be grouped is reached. To still
maintain correctness under TSO, this changes the rule for
when self-invalidation is to be performed: only where the
requested line’s timestamp is larger or equal (contrary to
just larger as before) than the last-seen timestamp from the
writer of that line, self-invalidate all Shared lines.

3.4. Opt. 2: shared read-only data

The basic protocol does not take into account lines which
are written to very infrequently but read frequently. Another
problem are lines which have no valid timestamp (due to prior
L2 eviction), causing frequent mandatory self-invalidations.
To resolve these issues, we add another state SharedRO for
shared read-only cache lines.

A line transitions to SharedRO instead of Shared if the line
is not modified by the previous Exclusive owner (this prevents
Shared lines with invalid timestamps). In addition, cache
lines in the Shared state decay after some predefined time of
not being modified, causing them to transition to SharedRO.
In our implementation, we compare the difference between
the shared cache line’s timestamp and the writer’s last-seen
timestamp maintained in a table of last-seen timestamps ts_L1
in the L2 (this table is reused in §3.5 to deal with timestamp
resets). If the difference between the line’s timestamp and
last-seen timestamp exceeds a predefined value, the cache
line is transitioned to SharedRO.

Since on a self-invalidation, only Shared lines are inval-
idated, this optimization already decreases the number of
self-invalidations, as SharedRO lines are excluded from in-
validations. Regardless, this still poses an issue, as on every
SharedRO data response, the timestamp is still invalid and
will cause self-invalidations. To solve this, we introduce
timestamps for SharedRO lines with the timestamp-source
being the L2 itself – note that each L2 tile will maintain
its own timestamp-source. The event on which a line is as-
signed a timestamp is on transitions from Exclusive or Shared
to SharedRO. On such transitions the L2 tile increments its
timestamp-source.

Each L1 must maintain a table ts_L2 of last-seen times-
tamps for each L2 tile. On receiving a SharedRO data line
from the L2, the following rule determines if self-invalidation
should occur: if the line’s timestamp is larger than the last-
seen timestamp from the L2, self-invalidate all Shared lines.
Writes to shared read-only lines: A write request to a
SharedRO line requires a broadcast to all L1s to invalidate the
line. To reduce the number of required broadcast invalidation
and acknowledgement messages, the b.owner entry in the L2
directory is reused as a coarse sharing vector [20], where
each bit represents a group of sharers; this permits SharedRO
evictions from L1 to be silent. As writes to SharedRO lines

should be infrequent, the impact of unnecessary SharedRO
invalidation/acknowledgement messages should be small.
Timestamp groups: To reduce the number of timestamp
resets, the same timestamp can be assigned to groups of
SharedRO lines. In order to maintain r→ r ordering, a core
must self-invalidate on a read to a SharedRO line that could
potentially have been modified since the last time it read the
same line. This can only be the case, if a line ends up in a
state, after a modification, from which it can reach SharedRO
again: 1 only after a L2 eviction of a dirty line; after a GetS
request to a line in Uncached which has been modified; or 2
after a line enters the Shared state. It suffices to have a flag for
conditions 1 and 2 each to denote if the timestamp-source
should be incremented on a transition event to SharedRO. All
flags are reset after incrementing the timestamp-source.

3.5. Timestamp resets
Since timestamps are finite, we have to deal with times-

tamp resets for both L1 and L2 timestamps. If the timestamp
and timestamp-group size are chosen appropriately, times-
tamp resets should occur relatively infrequently, and does not
contribute overly negative to network traffic. As such, the
protocol deals with timestamp resets by requiring the node,
be it L1 or L2 tile, which has to reset its timestamp-source to
broadcast a timestamp reset message.

In the case where a L1 requires resetting the timestamp-
source, the broadcast is sent to every other L1 and L2 tile.
Upon receiving a timestamp reset message, a L1 invalidates
the sender’s entry in the timestamp table ts_L1. However, it is
possible to have lines in the L2 where the timestamp is from
a previous epoch, where each epoch is the period between
timestamp resets, i.e. b.ts is larger than the current timestamp-
source of the corresponding owner. The only requirement is
that the L2 must respond with a timestamp that reflects the
correct happens-before relation.

The solution is for each L2 tile to maintain a table of last-
seen timestamps ts_L1 for every L1; the corresponding entry
for a writer is updated when the L2 updates a line’s timestamp
upon receiving a data message. Every L2 tile’s last-seen
timestamp table must be able to hold as many entries as
there are L1s. The L2 will assign a data response message
the line’s timestamp b.ts if the last-seen timestamp from the
owner is larger or equal to b.ts, the smallest valid timestamp
otherwise. Similarly for requests forwarded to a L1, only
that the line’s timestamp is compared against the current
timestamp-source.

Upon resetting a L2 tile’s timestamp, a broadcast is sent to
every L1. The L1s remove the entry in ts_L2 for the sending
tile. To avoid sending larger timestamps than the current
timestamp-source, the same rule as for responding to lines
not in SharedRO as described in the previous paragraph is
applied (compare against L2 tile’s current timestamp-source).

One additional case must be dealt with, such that if the
smallest valid timestamp is used if a line’s timestamp is

from a previous epoch, it is not possible for a L1 to skip
self-invalidation due to the line’s timestamp being equal to
the smallest valid timestamp. To address this case, the next
timestamp assigned to a line after a reset must always be
larger than the smallest valid timestamp.
Handling races: As it is possible for timestamp reset mes-
sages to race with data request and response messages, the
case where a data response with a timestamp from a previous
epoch arrives at a L1 which already received a timestamp re-
set message, needs to be accounted for. Waiting for acknowl-
edgements from all nodes having a potential entry of the
resetter in a timestamp table would cause twice the network
traffic on a timestamp reset and unnecessarily complicates
the protocol. We introduce an epoch-id to be maintained
per timestamp-source. The epoch-id is incremented on every
timestamp reset and the new epoch-id is sent along with the
timestamp reset message. It is not a problem if the epoch-id
overflows, as the only requirement for the epoch-id is to
be distinct from its previous value. However, we assume a
bound on the time it takes for a message to be delivered, and
it is not possible for the epoch-id to overflow and reach the
same epoch-id value of a message in transit.

Each L1 and L2 tile maintains a table of epoch-ids for
every other node: L1s maintain epoch-ids for every other L1
(epoch_ids_L1) and L2 (epoch_ids_L2) tile; L2 tiles maintain
epoch-ids for all L1s. Every data message that contains a
timestamp, must now also contain the epoch-id of the source
of the timestamp: the owner’s epoch-id for non-SharedRO
lines and the L2 tile’s epoch-id for SharedRO lines.

Upon receipt of a data message, the L1 compares the
expected epoch-id with the data message’s epoch-id; if they
do not match, the same action as on a timestamp reset has to
be performed, and can proceed as usual if they match.
3.6. Atomic accesses and fences

Implementing atomic read and write instructions, such
as RMWs, is trivial with our proposed protocol. Similarly
to MESI protocols, in our protocol an atomic instruction
also issues a GetX request. Fences require unconditional
self-invalidation of cache lines in the Shared state.
3.7. Storage requirements & organization

Table 1 shows a detailed breakdown of storage require-
ments for a TSO-CC implementation, referring to literals
introduced in §3. Per cache line storage requirements has the
most significant impact, which scales logarithmically with
increasing number of cores (see §4, Figure 2).

While we chose a simple sparse directory embedded in
the L2 cache for our evaluation (Figure 2), our protocol is
independent of a particular directory organization. It is possi-
ble to further optimize our overall scheme by using directory
organization approaches such as in [18, 36]; however, this
is beyond the scope of this paper. Also note that we do not
require inclusivity for Shared lines, alleviating some of the
set conflict issues associated with the chosen organization.

Table 1. TSO-CC specific storage requirements.

L1 Per node:
• Current timestamp, Bts bits
• Write-group counter, Bwrite−group bits
• Current epoch-id, Bepoch−id bits
• Timestamp-table ts_L1[n], n≤CountL1 entries
• Epoch-ids epoch_ids_L1[n], n =CountL1 entries

Only required if SharedRO opt. (§3.4) is used:
• Timestamp-table ts_L2[n], n≤CountL2−tiles entries
• Epoch-ids epoch_ids_L2[n], n =CountL2−tiles entries

Per line b:
• Number of accesses b.acnt, Bmaxacc bits
• Last-written timestamp b.ts, Bts bits

L2 Per tile:
• Last-seen timestamp-table ts_L1, n =CountL1 entries
• Epoch-ids epoch_ids_L1[n], n =CountL1 entries

Only required if SharedRO opt. (§3.4) is used:
• Current timestamp, Bts bits
• Current epoch-id, Bepoch−id bits
• Increment-timestamp-flags, 2 bits

Per line b:
• Timestamp b.ts, Bts bits
• Owner (Exclusive), last-writer (Shared), sharer-count

(SharedRO) as b.owner, log(CountL1) bits

4. Evaluation Methodology
This section provides an overview of our evaluation

methodology used in obtaining the performance results (§5).

4.1. Simulation Environment
Simulator: For the evaluation of TSO-CC, we use the Gem5
simulator [9] in Ruby full-system mode. GARNET [3] is used
to model the on-chip interconnect. The ISA used is x86_64,
as it is the most widely used architecture that assumes a
variant of TSO. The processor model used for each CMP
core is a simple out-of-order processor. Table 2 shows the
key-parameters of the system.

As TSO-CC explicitly allows accesses to stale data, this
needs to be reflected in the functional execution (not just the
timing) of the simulated execution traces. We added support
to the simulator to functionally reflect cache hits to stale data,
as the stock version of Gem5 in full-system mode would
assume the caches to always be coherent otherwise.
Workloads: Table 3 shows the benchmarks we have selected
from the PARSEC [8], SPLASH-2 [45] and STAMP [31]
benchmarks suites. The STAMP benchmark suite has been
chosen to evaluate transactional synchronization compared to
the more traditional approach from PARSEC and SPLASH-2;
the STM algorithm used is NOrec [14].

Note that in the evaluated results, we include two versions
of lu, with and without the use of contiguous block allocation.
The version which makes use of contiguous block allocation
avoids false sharing, whereas the non-contiguous version
does not. Both version are included to show the effect of

Table 2. System parameters.

Core-count & frequency 32 (out-of-order) @ 2GHz
Write buffer entries 32, FIFO
ROB entries 40
L1 I+D -cache (private) 32KB+32KB, 64B lines, 4-way
L1 hit latency 3 cycles
L2 cache (NUCA, shared) 1MB×32 tiles, 64B lines, 16-way
L2 hit latency 30 to 80 cycles
Memory 2GB
Memory hit latency 120 to 230 cycles
On-chip network 2D Mesh, 4 rows, 16B flits
Kernel Linux 2.6.32.60

Table 3. Benchmarks and their input parameters.

PA
R

SE
C blackscholes simmedium

canneal simsmall
dedup simsmall
fluidanimate simsmall
x264 simsmall

SP
L

A
SH

-2 fft 64K points
lu 512×512 matrix, 16×16 blocks
radix 256K, radix 1024
raytrace car
water-nsquared 512 molecules

ST
A

M
P

bayes -v32 -r1024 -n2 -p20 -i2 -e2
genome -g512 -s32 -n32768
intruder -a10 -l4 -n2048 -s1
ssca2 -s13 -i1.0 -u1.0 -l3 -p3
vacation -n4 -q60 -u90 -r16384 -t4096

false-sharing, as previous works have shown lazy protocols
to perform better in the presence of false-sharing [16].

All selected workloads correctly run to completion with
both MESI and our configurations. It should also be em-
phasized that all presented program codes run unmodified
(including the Linux kernel) with the TSO-CC protocol.

4.2. Parameters & storage overheads
In order to evaluate our claims, we have chosen the MESI

directory protocol implementation in Gem5 as the baseline.
To assess the performance of TSO-CC, we have selected a
range of configurations to show the impact of varying the
timestamp and write-group size parameters.

We start out with a basic selection of parameters which
we derived from a limited design-space exploration. We
have determined 4 bits for the per-line access counter to be
a good balance between average performance and storage-
requirements, since higher values do not yield a consistent
improvement in performance; this allows at most 16 consec-
utive L1 hits for Shared lines.

Furthermore, in all cases the shared read-only optimiza-
tion as described in §3.4 contributes a significant improve-
ment: average execution time is reduced by more than 35%
and average on-chip network traffic by more than 75%.
Therefore, we only consider configurations with the shared
read-only optimization. The decay time (for transitioning
Shared to SharedRO) is set to a fixed number of writes, as

0 16 32 48 64 80 96 112 128
Core count

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

C
o
h
e
re

n
ce

 s
to

ra
g
e
 o

v
e
rh

e
a
d
 (

M
B

) MESI

TSO-CC-4-12-3

TSO-CC-4-12-0

TSO-CC-4-9-3

TSO-CC-4-basic

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34

Figure 2. Storage overhead with all optimizations en-
abled, 1MB per L2 tile, and as many tiles as cores; the
timestamp-table sizes match the number of cores and
L2 tiles; Bepoch−id = 3 bits per epoch-id.

reflected by the timestamp (taking into account write-group
size); we have determined 256 writes to be a good value.

Below we consider the following configurations: CC-
shared-to-L2, TSO-CC-4-basic, TSO-CC-4-noreset, TSO-
CC-4-12-3, TSO-CC-4-12-0, TSO-CC-4-9-3. From the pa-
rameter names introduced in Table 1, the naming convention
used is TSO-CC-Bmaxacc-Bts-Bwrite−group.
CC-shared-to-L2: A simple protocol that removes the shar-
ing list, but as a result, reads to Shared lines always miss
in the L1 and must request the data from the L2. The base
protocol implementation is the same as TSO-CC, and also
includes the shared read-only optimization (without the abil-
ity to decay Shared lines, due to no timestamps). With a
system configuration as in Table 2, CC-shared-to-L2 reduces
coherence storage requirements by 76% compared to MESI.
TSO-CC-4-basic: An implementation of the protocol as de-
scribed in §3.2 with the shared read-only optimization. Over
CC-shared-to-L2, TSO-CC-4-basic only requires additional
storage for the per L1 line accesses counter. TSO-CC-4-basic
reduces storage requirements by 75% for 32 cores.
TSO-CC-4-noreset: Adds the optimization described in
§3.3, but assumes infinite timestamps3 to eliminate times-
tamp reset events, and increments the timestamp-source on
every write, i.e. write-group size of 1. This configuration
is expected to result in the lowest self-invalidation count, as
timestamp-resets also affect invalidations negatively.

To assess the effect of the timestamp and the write-group
sizes using realistic (feasible to implement) storage require-
ments, the following configurations have been selected.
TSO-CC-4-12-3: From evaluating a range of realistic proto-
cols, this particular configuration results in the best trade-off
between storage, and performance (in terms of execution
times and network traffic). In this configuration 12 bits are
used for timestamps and the write-group size is 8 (3 bits extra

3The simulator implementation uses 31 bit timestamps, which is more
than sufficient to eliminate timestamp reset events for the chosen workloads.

storage required per L1). The storage reduction over MESI
is 38% for 32 cores.
TSO-CC-4-12-0: In this configuration the write-group size
is decreased to 1, to show the effect of varying the write-
group size. The reduction in storage overhead over MESI is
38% for 32 cores.
TSO-CC-4-9-3: This configuration was chosen to show the
effect of varying the timestamp bits, while keeping the write-
group size the same. The timestamp size is reduced to 9
bits, and write-group size is kept at 8. On-chip coherence
storage overhead is reduced by 47% over MESI for 32 cores.
Note that timestamps reset after the same number of writes
as TSO-CC-4-12-0, but 8 times as often as TSO-CC-4-12-3.

Figure 2 shows a comparison of the extra coherence stor-
age requirements between MESI, TSO-CC-4-12-3, TSO-CC-
4-12-0, TSO-CC-4-9-3 and TSO-CC-4-basic for core counts
up to 128. The best case realistic configuration TSO-CC-
4-12-3 reduces on-chip storage requirements by 82% over
MESI at 128 cores.

4.3. Verification
To check the protocol implementation for adherence to

the consistency model, a set of litmus tests were chosen to
be run in the full-system simulator. The diy [6] tool was used
to generate litmus tests for TSO according to [38]. This was
invaluable in finding some of the more subtle issues in the
implementation of the protocol. According to the litmus tests,
each configuration of the protocol satisfies TSO. Keeping in
mind that the litmus tests are not exhaustive, we can conclude
with a high level of confidence that the consistency model
in the implementation is satisfied. In addition, we model
checked the protocol for race conditions and deadlocks.

5. Experimental Results
This section highlights the simulation results, and ad-

ditionally gives insight into how execution times and net-
work traffic are affected by some of the secondary properties
(timestamp-resets, self-invalidations).

In the following we compare the performance of TSO-CC
with MESI. Figure 3 shows normalized (w.r.t. MESI) exe-
cution times and Figure 4 shows normalized network traffic
(total flits) for all chosen benchmarks and configurations.
For all TSO-CC configurations, we determine additional net-
work traffic due to SharedRO-invalidations to be insignificant
compared to all other traffic, as writes to SharedRO are too
infrequent to be accounted for in Figure 5.
CC-shared-to-L2: We begin with showing how the naïve
implementation without a sharing vector performs. On aver-
age, CC-shared-to-L2 has a slowdown of 14% over MESI;
the best case, fft, performs 14% faster than the baseline, while
the worst case has a slowdown of 84% for lu (cont.). Net-
work traffic is more sensitive, with an average increase of
137%. CC-shared-to-L2 performs poorly in cases with fre-
quent shared misses, as seen in Figure 5, but much better in

blackscholes

canneal
dedup

fluidanimate

x264 fft lu (cont.)
lu (non-cont.)

radix
raytrace

water-nsq
bayes

genome
intruder

ssca2
vacation

gmean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

1.
84

MESI

CC-shared-to-L2

TSO-CC-4-basic

TSO-CC-4-noreset

TSO-CC-4-12-3

TSO-CC-4-12-0

TSO-CC-4-9-3

Figure 3. Execution times, normalized against MESI.

blackscholes

canneal
dedup

fluidanimate

x264 fft lu (cont.)
lu (non-cont.)

radix
raytrace

water-nsq
bayes

genome
intruder

ssca2
vacation

gmean

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 n

e
tw

o
rk

 t
ra

ff
ic

 (
to

ta
l
fl
it

s) 7.
20

6.
22

7.
30

3.
92

2.
61

3.
99

4.
43

2.
37

5.
97

2.
75

2.
19

2.
48

3.
13

MESI

CC-shared-to-L2

TSO-CC-4-basic

TSO-CC-4-noreset

TSO-CC-4-12-3

TSO-CC-4-12-0

TSO-CC-4-9-3

Figure 4. Network traffic (total flits), normalized against MESI.

cases with a majority of private accesses and most shared
reads are to shared read-only lines, as Figure 6 shows,

TSO-CC-4-basic: Compared to the baseline, TSO-CC-4-
basic is 4% slower; the patterns observed are similar to CC-
shared-to-L2. The best case speedup is 5% for ssca2, and
worst case slowdown is 29% for blackscholes. Allowing
read hits to Shared lines until the next L2 access improves
execution time compared to CC-shared-to-L2 by 9%, and
network traffic by 30% on average. Since the transitive
reduction optimization is not used, most L1 misses cause
self-invalidation as confirmed by Figure 7; on average 40%
of read misses cause self-invalidation.

TSO-CC-4-noreset: The ideal case TSO-CC-4-noreset
shows an average of 2% improvement in execution time
over the baseline; best case speedup of 20% for intruder,
worst case slowdown of 22% for vacation. On average, self-
invalidations – potential acquires detected as seen in Figure 7
– are reduced by 87%, directly resulting in a speedup of 6%
over TSO-CC-4-basic. Overall, TSO-CC-4-noreset requires
4% more on-chip network traffic compared to the baseline,
an improvement of 37% over TSO-CC-4-basic.

TSO-CC-4-12-3: The overall best realistic configuration is
on average 3% faster than the MESI baseline. The best
case speedup is 19% for intruder, and worst case slowdown
is 10% for canneal. This configuration performs as well
as TSO-CC-4-noreset (the ideal case), despite the fact that
self-invalidations have increased by 25%. Over TSO-CC-4-

basic, average execution time improves by 7%, as a result of
reducing self-invalidations by 84%. The average network-
traffic from TSO-CC-4-noreset (no timestamp resets) to TSO-
CC-4-12-3 does not increase, which indicates that timestamp-
reset broadcasts are insignificant compared to all other on-
chip network traffic.

There are two primary reasons as to why TSO-CC-4-12-3
outperforms MESI. First, our protocol has the added benefit
of reduced negative effects from false sharing, as has been
shown to hold for lazy coherence protocols in general [16].
This is because shared lines are not invalidated upon another
core requesting write access, and reads can continue to hit
in the L1 until self-invalidated. This can be observed when
comparing the two versions of lu. The version which does
not eliminate false-sharing (non-cont.) performs significantly
better with TSO-CC-4-12-3 compared to MESI, whereas the
version where the programmer explicitly eliminates false-
sharing (cont.) results in similar execution times.

Second, our protocol performs better for GetX requests
(writes, RMWs) to shared cache lines, as we do not require
invalidation messages to be sent to each sharer, which must
also be acknowledged. This can be seen in the case of radix,
which has a relatively high write miss rate as seen in Figure 5.
Further evidence for this can be seen in Figure 8, which
shows the normalized average latencies of RMWs.

As we have seen, the introduction of the transitive re-
duction optimization (§3.3) contributes a large improvement

blackscholes

canneal
dedup

fluidanimate

x264 fft lu (cont.)
lu (non-cont.)

radix
raytrace

water-nsq
bayes

genome
intruder

ssca2
vacation

amean

0
2
4
6
8

10
12
14
16
18

L1
 c

a
ch

e
 m

is
se

s
(%

)

L-R: (1) MESI (2) CC-shared-to-L2 (3) TSO-CC-4-basic (4) TSO-CC-4-noreset (5) TSO-CC-4-12-3 (6) TSO-CC-4-12-0 (7) TSO-CC-4-9-3

Read-miss (Invalid)

Write-miss (Invalid)

Read-miss (Shared) Write-miss (Shared) Write-miss (SharedRO)

Figure 5. Detailed breakdown of L1 cache misses by Invalid, Shared and SharedRO states.

blackscholes

canneal
dedup

fluidanimate

x264 fft lu (cont.)
lu (non-cont.)

radix
raytrace

water-nsq
bayes

genome
intruder

ssca2
vacation

amean

0

20

40

60

80

100

L1
 c

a
ch

e
 h

it
s

&
 m

is
se

s
(%

)

L-R: (1) MESI (2) CC-shared-to-L2 (3) TSO-CC-4-basic (4) TSO-CC-4-noreset (5) TSO-CC-4-12-3 (6) TSO-CC-4-12-0 (7) TSO-CC-4-9-3

Read-miss

Write-miss

Read-hit (Shared)

Read-hit (SharedRO)

Read-hit (Private) Write-hit (Private)

Figure 6. L1 cache hits and misses; hits split up by Shared, SharedRO and private (Exclusive, Modified) states.

blackscholes

canneal
dedup

fluidanimate

x264 fft lu (cont.)
lu (non-cont.)

radix
raytrace

water-nsq
bayes

genome
intruder

ssca2
vacation

amean

0

20

40

60

80

100

L1
 s

e
lf
-i

n
v
a
lid

a
ti

o
n
s

tr
ig

g
e
re

d
 (

%
)

L-R: (1) TSO-CC-4-basic (2) TSO-CC-4-noreset (3) TSO-CC-4-12-3 (4) TSO-CC-4-12-0 (5) TSO-CC-4-9-3

invalid timestamp p. acquire (non-SharedRO) p. acquire (SharedRO)

Figure 7. Percentage of L1 self-invalidation events trig-
gered by data response messages.

blackscholes

canneal
dedup

fluidanimate

x264 fft lu (cont.)
lu (non-cont.)

radix
raytrace

water-nsq
bayes

genome
intruder

ssca2
vacation

gmean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 R

M
W

 l
a
te

n
cy

Figure 8. RMW latencies, normalized against MESI.
(Legend same as Figure 3, TSO-CC only)

over TSO-CC-4-basic, and next we look at how varying the
TSO-CC parameters can affect performance.

TSO-CC-4-12-0: Decreasing the write-group size by a fac-
tor of 8× (compared to TSO-CC-4-12-3) results in a propor-
tional increase in timestamp-resets, yet potential acquires de-
tected are similar to TSO-CC-4-12-3 (Figure 7). One reason
for this is that a write-group size of 1 results in more accurate
detection of potential acquires, reducing self-invalidations.
Thus, average execution time is similar to TSO-CC-4-12-3.
However, network traffic is more sensitive; TSO-CC-4-12-0
requires 5% more network traffic compared to the baseline.

blackscholes

canneal
dedup

fluidanimate

x264 fft lu (cont.)
lu (non-cont.)

radix
raytrace

water-nsq
bayes

genome
intruder

ssca2
vacation

amean

0

20

40

60

80

100

L1
 s

e
lf
-i

n
v
a
lid

a
ti

o
n
s

ca
u
se

 (
%

)

L-R: (1) TSO-CC-4-basic (2) TSO-CC-4-noreset (3) TSO-CC-4-12-3 (4) TSO-CC-4-12-0 (5) TSO-CC-4-9-3

invalid timestamp

p. acquire (non-SharedRO)

p. acquire (SharedRO) fence

Figure 9. Breakdown of L1 self-invalidation cause.

TSO-CC-4-9-3: Decreasing the maximum timestamp size
by 3 bits while keeping the write-group size the same, com-
pared to TSO-CC-4-12-3, results in an expected increase
of timestamp-resets of 8×, and stays the same compared to
TSO-CC-4-12-0. Because of this, and because write-groups
are more coarse grained, this parameter selection results in an
increase of self-invalidations by 5% (7%), yet no slowdown
compared to TSO-CC-4-12-3 (TSO-CC-4-12-0). The best
case is intruder with an improvement of 24% over MESI, the
worst case is canneal with a slowdown of 15%. TSO-CC-
4-9-3 requires 7% more network traffic compared to MESI,
indicating that network traffic is indeed more sensitive to
increased self-invalidations.

As both timestamp-bits and write-group size change, the
number of timestamp-resets in the system change proportion-
ally. As timestamp-resets increase, invalidation of entries
in timestamp-tables increases, and as a result, upon read-
ing a cache line where there does not exist an entry in the
timestamp-table for the line’s last writer, a potential acquire
is forced and all Shared lines are invalidated. This trend can
be observed in Figure 7. The breakdown of self-invalidation
causes can be seen in Figure 9.

6. Related Work
Closely related work is mentioned in previous sections,

whereas this section provides a broader overview of more
scalable approaches to coherence.
Coherence for sequential consistency: Among the ap-
proaches with a sharing vector, are hierarchical directo-
ries [29, 44], which solve some of the storage concerns, but
increase overall organization complexity through additional
levels of indirection.

Coarse sharing vector approaches [20, 48] reduce the
sharing vector size, however, with increasing number of
cores, using such approaches for all data becomes prohibitive
due to the negative effect of unnecessary invalidation and
acknowledgement messages on performance. More recently,
SCD [36] solves many of the storage concerns of full sharing
vectors by using variable-size sharing vector representations,
again with increased directory organization complexity.

Furthermore, several schemes optimize standalone sparse
directory utilization [18, 36] by reducing set conflict issues.
This allows for smaller directories even as the number of
cores increase. Note that these approaches are orthogonal to
our approach, as they optimize directory organization but not
the protocol, and thus do not consider the consistency model.

Works eliminating sharing vectors [13, 34], observe most
cache lines to be private, for which maintaining coherence
is unnecessary. For example, shared data can be mapped
onto shared and private data onto local caches [34], eliminat-
ing sharer tracking. However, it is possible to degrade per-
formance for infrequently written but frequently read lines,
suggested by our implementation of CC-shared-to-L2.
Coherence for relaxed consistency: Dubois and Scheurich
[15, 37] first gave insight into reducing coherence overhead
in relaxed consistency models, particularly that the require-
ment of “coherence on synchronization points” is sufficient.
Instead of enforcing coherence at every write (also referred
as the SWMR property [41]), recent works [7, 12, 17, 21, 28,
35, 42] enforce coherence at synchronization boundaries by
self-invalidating shared data in private caches.

Dynamic Self-Invalidation (DSI) [27] proposes self-
invalidating cache lines obtained as tear-off copies, instead
of waiting for invalidation from directory to reduce coher-
ence traffic. The best heuristic for self-invalidation triggers
are synchronization boundaries. More recently, SARC [21]
improves upon these concepts by predicting writers to limit
accesses to the directory. Both [21, 27] improve performance
by reducing coherence requests, but still rely on an eager
protocol for cache lines not sent to sharers as tear-off copies.

Several recent proposals eliminate sharing vector over-
heads by targeting relaxed consistency models; they do
not, however, consider consistency models stricter than RC.
DeNovo [12], and more recently DeNovoND [42], argue
that more disciplined programming models must be used to
achieve less complex and more scalable hardware. DeNovo

proposes a coherence protocol for data-race-free (DRF) pro-
grams, however, requires explicit programmer information
about which regions in memory need to be self-invalidated
at synchronization points. The work by [35], while not re-
quiring explicit programmer information about which data
is shared nor a directory with a sharing vector, present a
protocol limiting the number of self-invalidations by distin-
guishing between private and shared data using the TLB.

Several works [30, 47] also make use of timestamps to
limit invalidations by detecting the validity of cache lines
based on timestamps, but require software support. Contrary
to these schemes, and how we use timestamps to detect
ordering, the hardware-only approaches proposed by [32, 39]
use globally synchronized timestamps to enforce ordering
based on predicted lifetimes of cache lines.
For distributed shared memory (DSM): The observation
of only enforcing coherent memory in logical time [26]
(causally), allows for further optimizations. This is akin
to the relationship between coherence and consistency given
in §2.1. Causal Memory [4, 5] as well as [23] make use
of this observation in coherence protocols for DSM. Lazy
Release Consistency [23] uses vector clocks to establish a
partial order between memory operations to only enforce
completion of operations which happened-before acquires.

7. Conclusion
We have presented TSO-CC, a lazy approach to coherence

for TSO. Our goal was to design a more scalable protocol, es-
pecially in terms of on-chip storage requirements, compared
to conventional MESI directory protocols. Our approach is
based on the observation that using eager coherence proto-
cols in the context of systems with more relaxed consistency
models is unnecessary, and the coherence protocol can be
optimized for the target consistency model. This brings with
it a new set of challenges, and in the words of Sorin et al. [41]
“incurs considerable intellectual and verification complexity,
bringing to mind the Greek myth about Pandora’s box”.

The complexity of the resulting coherence protocol obvi-
ously depends on the consistency model. While we aimed at
designing a protocol that is simpler than MESI, to achieve
good performance for TSO, we had to sacrifice simplicity.
Indeed, TSO-CC requires approximately as many combined
stable and transient states as a MESI implementation.

Aside from that, we have constructed a more scalable
coherence protocol for TSO, which is able to run unmodified
legacy codes. Preliminary verification results based on lit-
mus tests give us a high level of confidence in its correctness
(further verification reserved for future work). More im-
portantly, TSO-CC has a significant reduction in coherence
storage overhead, as well as an overall reduction in execution
time. Despite some of the complexity issues, we believe
these are positive results, which encourages a second look at
consistency-directed coherence design for TSO-like architec-
tures. In addition to this, it would be very interesting to see

if the insights from our work can be used in conjunction with
other conventional approaches for achieving scalability.

Acknowledgements
We would like to thank the anonymous reviewers for their

helpful comments and advice. This work is supported by the
Centre for Numerical Algorithms and Intelligent Software,
funded by EPSRC grant EP/G036136/1 and the Scottish
Funding Council to the University of Edinburgh.

References
[1] S. V. Adve and K. Gharachorloo. Shared Memory Consis-

tency Models: A Tutorial. IEEE Computer, 29(12), 1996.
[2] A. Agarwal, R. Simoni, J. L. Hennessy, and M. Horowitz.

An Evaluation of Directory Schemes for Cache Coherence.
1988.

[3] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. GAR-
NET: A detailed on-chip network model inside a full-system
simulator. In ISPASS, 2009.

[4] M. Ahamad, P. W. Hutto, and R. John. Implementing and
programming causal distributed shared memory. In ICDCS,
1991.

[5] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W.
Hutto. Causal Memory: Definitions, Implementation, and
Programming. Distributed Computing, 9(1), 1995.

[6] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus:
Running tests against hardware. In TACAS, 2011.

[7] T. J. Ashby, P. Diaz, and M. Cintra. Software-based cache
coherence with hardware-assisted selective self-invalidations
using bloom filters. IEEE Trans. Computers, 60(4), 2011.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: characterization and architectural implica-
tions. In PACT, 2008.

[9] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt,
A. G. Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. SIGARCH
Computer Architecture News, 39(2), 2011.

[10] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementa-
tion and Performance of Munin. In SOSP, 1991.

[11] L. M. Censier and P. Feautrier. A New Solution to Coherence
Problems in Multicache Systems. IEEE Trans. Computers,
27(12), 1978.

[12] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honar-
mand, S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou.
DeNovo: Rethinking the Memory Hierarchy for Disciplined
Parallelism. In PACT, 2011.

[13] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato. In-
creasing the effectiveness of directory caches by deactivating
coherence for private memory blocks. In ISCA, 2011.

[14] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: stream-
lining STM by abolishing ownership records. In PPOPP,
2010.

[15] M. Dubois, C. Scheurich, and F. A. Briggs. Memory Access
Buffering in Multiprocessors. In ISCA, 1986.

[16] M. Dubois, J.-C. Wang, L. A. Barroso, K. Lee, and Y.-S.
Chen. Delayed consistency and its effects on the miss rate of
parallel programs. In SC, 1991.

[17] C. Fensch and M. Cintra. An OS-based alternative to full
hardware coherence on tiled CMPs. In HPCA, 2008.

[18] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi.
Cuckoo directory: A scalable directory for many-core sys-
tems. In HPCA, 2011.

[19] K. Gharachorloo, D. Lenoski, J. Laudon, P. B. Gibbons,
A. Gupta, and J. L. Hennessy. Memory Consistency and
Event Ordering in Scalable Shared-Memory Multiprocessors.
In ISCA, 1990.

[20] A. Gupta, W.-D. Weber, and T. C. Mowry. Reducing Mem-
ory and Traffic Requirements for Scalable Directory-Based
Cache Coherence Schemes. In ICPP (1), 1990.

[21] S. Kaxiras and G. Keramidas. SARC Coherence: Scaling
Directory Cache Coherence in Performance and Power. IEEE
Micro, 30(5), 2010.

[22] P. J. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard Work-
stations and Operating Systems. In USENIX Winter, 1994.

[23] P. J. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release
Consistency for Software Distributed Shared Memory. In
ISCA, 1992.

[24] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches. In ASPLOS, 2002.

[25] L. I. Kontothanassis, M. L. Scott, and R. Bianchini. Lazy
Release Consistency for Hardware-Coherent Multiprocessors.
In SC, 1995.

[26] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM, 21(7), 1978.

[27] A. R. Lebeck and D. A. Wood. Dynamic Self-Invalidation:
Reducing Coherence Overhead in Shared-Memory Multipro-
cessors. In ISCA, 1995.

[28] D. Liu, Y. Chen, Q. Guo, T. Chen, L. Li, Q. Dong, and W. Hu.
DLS: Directoryless Shared Last-level Cache. 2012.

[29] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip
cache coherence is here to stay. Commun. ACM, 55(7), 2012.

[30] S. L. Min and J.-L. Baer. Design and Analysis of a Scalable
Cache Coherence Scheme Based on Clocks and Timestamps.
IEEE Trans. Parallel Distrib. Syst., 3(1), 1992.

[31] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford Transactional Applications for Multi-
Processing. In IISWC, 2008.

[32] S. K. Nandy and R. Narayan. An Incessantly Coherent Cache
Scheme for Shared Memory Multithreaded Systems. 1994.

[33] R. H. B. Netzer. Optimal Tracing and Replay for Debugging
Shared-Memory Parallel Programs. In Workshop on Parallel
and Distributed Debugging, 1993.

[34] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubra-
monian. SWEL: hardware cache coherence protocols to map
shared data onto shared caches. In PACT, 2010.

[35] A. Ros and S. Kaxiras. Complexity-effective multicore co-
herence. In PACT, 2012.

[36] D. Sanchez and C. Kozyrakis. SCD: A scalable coherence
directory with flexible sharer set encoding. In HPCA, 2012.

[37] C. Scheurich and M. Dubois. Correct Memory Operation of
Cache-Based Multiprocessors. In ISCA, 1987.

[38] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O.
Myreen. x86-TSO: a rigorous and usable programmer’s
model for x86 multiprocessors. Commun. ACM, 53(7), 2010.

[39] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and
T. M. Aamodt. Cache coherence for GPU architectures. In
HPCA, 2013.

[40] K. Skadron and D. Clark. Design issues and tradeoffs for
write buffers. 1997.

[41] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Mem-
ory Consistency and Cache Coherence. Synthesis Lectures
on Computer Architecture. Morgan & Claypool Publishers,
2011.

[42] H. Sung, R. Komuravelli, and S. V. Adve. DeNovoND:
efficient hardware support for disciplined non-determinism.
In ASPLOS, 2013.

[43] C. Tian, V. Nagarajan, R. Gupta, and S. Tallam. Dynamic
recognition of synchronization operations for improved data
race detection. In ISSTA, 2008.

[44] D. A. Wallach. PHD: A Hierarchical Cache Coherent Proto-
col. PhD thesis, 1992.

[45] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In ISCA, 1995.

[46] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad Hoc
Synchronization Considered Harmful. In OSDI, 2010.

[47] X. Yuan, R. G. Melhem, and R. Gupta. A Timestamp-based
Selective Invalidation Scheme for Multiprocessor Cache Co-
herence. In ICPP, Vol. 3, 1996.

[48] H. Zhao, A. Shriraman, and S. Dwarkadas. SPACE: sharing
pattern-based directory coherence for multicore scalability.
In PACT, 2010.

