
Citation: Song, W.; Suandi, S.A.

TSR-YOLO: A Chinese Traffic Sign

Recognition Algorithm for Intelligent

Vehicles in Complex Scenes. Sensors

2023, 23, 749. https://doi.org/

10.3390/s23020749

Academic Editor: Felipe Jiménez

Received: 29 November 2022

Revised: 30 December 2022

Accepted: 4 January 2023

Published: 9 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

TSR-YOLO: A Chinese Traffic Sign Recognition Algorithm for
Intelligent Vehicles in Complex Scenes
Weizhen Song and Shahrel Azmin Suandi *

Intelligent Biometric Group, School of Electrical and Electronics Engineering, University Sains Malaysia,
Engineering Campus, Nibong Tebal 14300, Malaysia
* Correspondence: shahrel@usm.my

Abstract: Recognizing traffic signs is an essential component of intelligent driving systems’ environ-
ment perception technology. In real-world applications, traffic sign recognition is easily influenced
by variables such as light intensity, extreme weather, and distance, which increase the safety risks
associated with intelligent vehicles. A Chinese traffic sign detection algorithm based on YOLOv4-tiny
is proposed to overcome these challenges. An improved lightweight BECA attention mechanism
module was added to the backbone feature extraction network, and an improved dense SPP network
was added to the enhanced feature extraction network. A yolo detection layer was added to the
detection layer, and k-means++ clustering was used to obtain prior boxes that were better suited
for traffic sign detection. The improved algorithm, TSR-YOLO, was tested and assessed with the
CCTSDB2021 dataset and showed a detection accuracy of 96.62%, a recall rate of 79.73%, an F-1 Score
of 87.37%, and a mAP value of 92.77%, which outperformed the original YOLOv4-tiny network, and
its FPS value remained around 81 f/s. Therefore, the proposed method can improve the accuracy of
recognizing traffic signs in complex scenarios and can meet the real-time requirements of intelligent
vehicles for traffic sign recognition tasks.

Keywords: traffic sign; intelligent vehicle; YOLOv4-tiny; k-means++; CCTSDB2021 dataset

1. Introduction

Traffic sign recognition is a crucial component of intelligent vehicle driving systems
and one of the most important research fields in computer vision [1]. Traffic sign recognition
tasks are usually performed in natural scenes; however, extreme weather conditions (e.g.,
rain, snow, or fog) can obscure traffic signage information, and overexposure and dim light
usually reduce the visibility of traffic signs. Furthermore, traffic signs are exposed all year,
causing the surfaces of some to fade, become unclear, or become damaged. Complex and
changing environments often affect the speed and accuracy of traffic sign recognition in
intelligent transportation [2]. Therefore, it is now especially essential to study the problem
of fast and accurate traffic sign detection in complex environments.

Early recognition methods in traffic sign recognition used a sliding window strat-
egy to traverse the entire image and generate many candidate regions. The candidate
regions were then extracted with various types of hand-designed features, such as HOG
(histogram of oriented gradient) [3], SIFT (scale-invariant feature transform) [4], and LBP
(local binary pattern) [5]. These features were then fed into an efficient classifier, such
as SVM (support vector machine) [6], Adaboost [7], or Random Forest [8], for detection
and identification. However, traditional target detection methods require researchers to
extract features manually and are not robust to changes in diversity. In addition, sliding-
window-based region selection strategies are not targeted and have high time complexity.
Hu et al. [9] proposed a new approach for traffic sign detection based on maximally stable
extremal regions (MSERs) and SVM, which had a high level of accuracy but only seven
frames per second (FPS) of detection speed. Dai et al. [10] proposed using color to improve

Sensors 2023, 23, 749. https://doi.org/10.3390/s23020749 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020749
https://doi.org/10.3390/s23020749
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9980-7426
https://doi.org/10.3390/s23020749
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020749?type=check_update&version=1

Sensors 2023, 23, 749 2 of 23

the recognition rate of traffic signs in varying brightness environments, achieving 78%
accuracy and 11 FPS. Nevertheless, in real scenarios, real-time and accuracy are essential
for traffic sign recognition. Therefore, conventional methods of target detection fall well
short of the needs of intelligent traffic systems.

The AlexNet [11] algorithm achieved great success for convolutional neural networks
in 2012, making deep learning rapidly gain the attention of researchers in the field of
artificial intelligence, including target detection. Girshick et al. proposed R-CNN (regions
with CNN features) [12], the first deep-learning-based two-stage target detection algorithm,
which provided a significant performance improvement compared to traditional algorithms.
The algorithms that followed, such as SSD (single shot multi-box) [13], Fast R-CNN [14],
Faster R-CNN [15], and the YOLO (you only look once) series [16–19], achieved higher
accuracy in target localization and classification tasks. Zhang et al. [20] proposed the
MSA_YOLOv3 algorithm for traffic sign recognition, with a mAP value of 0.86 and a
detection speed of 9 FPS. Zhang et al. [21] proposed CMA R-CNN for traffic sign recognition,
with a mAP value of 0.98 and a detection speed of only 3 FPS. Cui et al. [22] proposed
CAB-s Net for traffic sign detection, with a mAP value of 0.89 and a detection speed of
27 FPS. However, these algorithms are frequently designed to extract more detailed features
by constructing deeper network structures, resulting in models that are relatively large,
are slow to detect, and require high amounts of hardware computing power and storage
capacity, making them difficult to use in mobile and embedded devices.

In order to accelerate the detection time of deep convolutional neural-network-based
traffic sign detection methods, a lightweight convolutional neural-network-based target
detection architecture is now used to recognize traffic signs. Regarding detection speed,
YOLOv4-tiny [23] is a superior target detection model that outperforms the vast majority of
current, complicated deep convolutional neural network models. However, the YOLOv4-
tiny algorithm’s detection accuracy is relatively low. This paper proposes a Chinese
traffic sign detection algorithm based on enhanced YOLOv4-tiny that can more effectively
promote the transmission and sharing of different levels of information to improve the
algorithm’s detection accuracy and ensure its detection speed by optimizing the network.
Compared to the YOLOv4-tiny algorithm, the following are the primary contributions of
this study.

• To address the issue that a complex background interferes with target recognition in the
feature information extracted by the CSPDarknet53-tiny network, this paper embeds a
BECA attention mechanism module in a CSP structure to improve the model’s ability
to extract and utilize key feature information while reducing the importance of useless
features and to invest computational resources in different channels proportionally to
the importance of the channels.

• Since the YOLOv4-tiny enhanced feature extraction network is too simple, and the
fusion of feature layers only reflects the stacking of a single feature layer after upsam-
pling, resulting in a low utilization of feature information extracted from the backbone
network and insufficient feature fusion, dense spatial pyramid pooling (Dense SPP) is
introduced for multiscale pooling and the fusion of input feature layers to enrich the
feature expression capability.

• Based on the original network, the detection scale range is increased to improve
the degree of matching for targets of various sizes. The bottom–up fusion of deep
semantic information with shallow semantic information is used to improve the
feature information of small targets, predict small and far away traffic sign targets
more accurately, and improve the accuracy of the network’s localization and detection.

• In order to accelerate the network’s ability to detect traffic signs, k-means++ clustering
is used to learn prior boxes that are more suitable for traffic sign detection.

• The TSR-YOLO method proposed in this study has a higher mAP value of 8.23%, a
higher precision value of 5.02%, a higher recall value of 1.6%, and a higher F-1 score of
3.04% compared to YOLOv4-tiny.

Sensors 2023, 23, 749 3 of 23

The rest of this paper is organized as follows. In Section 2, we briefly review the devel-
opment of target detection, traffic sign detection, and related work. Section 3 describes our
research methodology. Section 4 presents our experimental results and analysis. Section 5
summarizes our work and provides some suggestions for future work.

2. Related Work

Traffic sign detection is one of the most challenging and essential problems in au-
tonomous vehicle-driving systems. Most early algorithms for identifying traffic signs
used machine learning and template matching [24]. Deep-learning-based algorithms are
widely used for high-precision traffic sign detection due to the rapid development of
high-performance computers and the enormous explosion of data volume in recent years.

Tong et al. [25] proposed a color-based support vector machine (SVM) algorithm
for traffic sign recognition that first converted the RGB color space to HSV color space
to determine the region of interest (ROI) and then extracted the histogram of oriented
gradients (HOG) features and used an SVM to determine whether it was a traffic sign.
Yu et al. [26] identified traffic signs using a color threshold segmentation method and
morphological processing to eliminate the interference of the background region and
increase the contours of the sign region and then used the HOG method to gather the
gradient of each pixel point within a cell. Madani et al. [27] employed adaptive thresholding
algorithms and support vector machine models to recognize and classify traffic signs based
on boundary color and shape.

Typically, the performance of such detection methods is dependent on the useful-
ness of the manual feature extraction, which requires shape features, color features, or
hybrid features to obtain rich detail information of traffic signs. Detection results are
also susceptible to objective natural factors, such as variations in light, extreme weather,
and obstructions.

Since the emergence of deep-learning techniques, numerous target detection algo-
rithms based on deep learning have been applied to traffic sign detection [28]. In contrast to
the above methods, deep-learning models can automatically extract features, avoiding the
limitations of manual feature extraction, and their generalizability and robustness are rela-
tively high. There are currently two types of CNN-based target identification algorithms:
single-stage detectors based on regression and two-stage detectors based on candidate
areas. Zuo et al. [29] used a two-stage target detection algorithm, Faster R-CNN, to detect
traffic signs by conditionally scanning an image to generate a large number of candidate
boxes, sending each candidate box to the network to extract a feature, sending that feature
to a classifier for classification, and finally generating the correct class name. Li et al. [30]
designed a detection model using the Faster R-CNN and MobileNet structures. It refined
the localization of small traffic signs using color and shape information. A CNN with an
asymptotic kernel was then used to classify traffic signs. The research results demonstrated
that the proposed detector was able to detect different kinds of traffic signs. Unlike the
two-stage target detection method, the single-stage target detection algorithm first uses a
clustering algorithm to create a certain number of prior boxes. It then uses these prior boxes
to find a region of interest, feeds the region of interest into a feature extraction network,
and uses a regression method to determine the confidence probability of the object. This
accelerates operation and allows for real-time detection. Shan et al. [31] used an SSD
single-stage target identification method to detect traffic signs; the algorithm worked well
with single-target, multi-target, and low-light images. Chen et al. [32] proposed employing
the YOLOv3 method to overcome the problem of poor rate of traffic sign recognition due
to complicated background interference and, ultimately, achieved accurate traffic sign
recognition by fusing advanced network modules.

In conclusion, detection methods based on deep learning can enable intelligent vehicles
to better detect traffic signs in complex road scenarios. With the rapid development of
intelligent vehicles, real-time and accuracy requirements for traffic sign detection and
recognition have improved. This paper employs a single-stage deep learning detection

Sensors 2023, 23, 749 4 of 23

method and proposes TSR-YOLO, a lightweight traffic sign detection model with high
accuracy, low latency, and robustness to improve detection performance.

3. The Proposed Method

This study creates an effective traffic sign identification algorithm and integrates the
proposed TSR-YOLO model into a vehicle traffic sign perception system. This section
begins with an overview of the smart car traffic sign recognition system, followed by a brief
description of the YOLOv4-tiny network and a discussion of the YOLOv4-tiny network
improvement method.

3.1. The Traffic Sign Recognition System

This study demonstrates an intelligent vehicle traffic sign visual perception system
with three main parts: a vision system, a traffic sign detection system, and an intelligent
car display system. To be more specific, a vision system based on a monocular camera
captured information in a vehicle’s driving road environment in the form of video or image
and then passed the information to a traffic sign detector, which detected the existence of
traffic signs in the driving environment by the video sequence given by the vision system.
If the traffic sign information was captured in the road environment, it was displayed on
the HUD (head up display) flat-strip display. The responsibility of the traffic sign detection
system was to detect the existence of traffic signs in the driving environment. It was a key
component of the proposed system for identifying traffic signs. Therefore, efforts needed
to be made to develop a system capable of detecting traffic signs rapidly and precisely in a
complicated road environment. Figure 1 illustrates the proposed traffic sign recognition
system’s workflow.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 24

method and proposes TSR-YOLO, a lightweight traffic sign detection model with high
accuracy, low latency, and robustness to improve detection performance.

3. The Proposed Method
This study creates an effective traffic sign identification algorithm and integrates the

proposed TSR-YOLO model into a vehicle traffic sign perception system. This section be-
gins with an overview of the smart car traffic sign recognition system, followed by a brief
description of the YOLOv4-tiny network and a discussion of the YOLOv4-tiny network
improvement method.

3.1. The Traffic Sign Recognition System
This study demonstrates an intelligent vehicle traffic sign visual perception system

with three main parts: a vision system, a traffic sign detection system, and an intelligent
car display system. To be more specific, a vision system based on a monocular camera
captured information in a vehicle’s driving road environment in the form of video or im-
age and then passed the information to a traffic sign detector, which detected the existence
of traffic signs in the driving environment by the video sequence given by the vision sys-
tem. If the traffic sign information was captured in the road environment, it was displayed
on the HUD (head up display) flat-strip display. The responsibility of the traffic sign de-
tection system was to detect the existence of traffic signs in the driving environment. It
was a key component of the proposed system for identifying traffic signs. Therefore, ef-
forts needed to be made to develop a system capable of detecting traffic signs rapidly and
precisely in a complicated road environment. Figure 1 illustrates the proposed traffic sign
recognition system’s workflow.

TSR-YOLO
Detector of traffic signs

Traffic sign
information

Data
collection

Front Camera

 Videos and Images

Detect the presence of a
traffic sign on a street

 Display on HUD and
on-board computer

Display if traffic
sign is detected

Figure 1. Traffic sign recognition system.

A traffic sign recognition system can effectively remind drivers to pay attention to
traffic sign information, such as prohibitions and warnings, to prevent violations caused
by negligence. In our study, a monocular camera captured video sequences in real time.
The camera was the “eye” for traffic sign detection and was connected to a computer sys-
tem running an improved YOLOv4-tiny pretraining model. If the pretrained detector de-
tected information containing traffic signs in the road environment, it passed the infor-
mation to an intelligent vehicle display system for display on the HUD.

Figure 1. Traffic sign recognition system.

A traffic sign recognition system can effectively remind drivers to pay attention to
traffic sign information, such as prohibitions and warnings, to prevent violations caused by
negligence. In our study, a monocular camera captured video sequences in real time. The
camera was the “eye” for traffic sign detection and was connected to a computer system
running an improved YOLOv4-tiny pretraining model. If the pretrained detector detected
information containing traffic signs in the road environment, it passed the information to
an intelligent vehicle display system for display on the HUD.

3.2. The YOLOv4-Tiny Network

YOLOv4-tiny is a scaled-down version of YOLOv4. The main idea is to treat the target
detection task as a regression problem, with the detected target location and classification
results obtained directly through network model regression. Figure 2 depicts the network
structure of YOLOv4-tiny. The YOLOv4-tiny network is divided into three components:
the backbone (CSP-Darknet53-tiny), the neck (feature pyramid network, FPN), and the
Yolo-head. (1) The backbone part is composed of a convolutional block (CBL), a maximum

Sensors 2023, 23, 749 5 of 23

pooling layer (maxpool), and a cross-stage partial (CSP) module, which is mainly used
for prefeature extraction. (2) In the neck part, YOLOv4-tiny retains the feature pyramid
network (FPN) structure of YOLOv4. The FPN structure can fuse the features between
different network layers so that it can obtain both the rich semantic information of the
deeper networks and the geometric detail information of the lower networks to enhance
the feature extraction ability. (3) Two prediction branches are retained in the Yolo-head
section, and the final prediction is performed using the feature fusion results obtained
from the FPN module to form two prediction scales of 13 × 13 and 26 × 26. Because of its
simple structure, small computation, and fast detection time, YOLOv4-tiny is suitable for
intelligent vehicle environment-aware systems. Still, it is not very accurate in detecting
small targets, such as traffic signs, which makes it difficult to adapt to the task of traffic
sign recognition in complex scenes. Therefore, some improvements to YOLOv4-tiny are
needed to make the algorithm capable of detecting traffic signs in complex scenarios.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 24

3.2. The YOLOv4-Tiny Network
YOLOv4-tiny is a scaled-down version of YOLOv4. The main idea is to treat the tar-

get detection task as a regression problem, with the detected target location and classifi-
cation results obtained directly through network model regression. Figure 2 depicts the
network structure of YOLOv4-tiny. The YOLOv4-tiny network is divided into three com-
ponents: the backbone (CSP-Darknet53-tiny), the neck (feature pyramid network, FPN),
and the Yolo-head. (1) The backbone part is composed of a convolutional block (CBL), a
maximum pooling layer (maxpool), and a cross-stage partial (CSP) module, which is
mainly used for prefeature extraction. (2) In the neck part, YOLOv4-tiny retains the fea-
ture pyramid network (FPN) structure of YOLOv4. The FPN structure can fuse the fea-
tures between different network layers so that it can obtain both the rich semantic infor-
mation of the deeper networks and the geometric detail information of the lower networks
to enhance the feature extraction ability. (3) Two prediction branches are retained in the
Yolo-head section, and the final prediction is performed using the feature fusion results
obtained from the FPN module to form two prediction scales of 13 × 13 and 26 × 26. Be-
cause of its simple structure, small computation, and fast detection time, YOLOv4-tiny is
suitable for intelligent vehicle environment-aware systems. Still, it is not very accurate in
detecting small targets, such as traffic signs, which makes it difficult to adapt to the task
of traffic sign recognition in complex scenes. Therefore, some improvements to YOLOv4-
tiny are needed to make the algorithm capable of detecting traffic signs in complex sce-
narios.

416*416*3

Input

CBL

CBL

CSP

maxpool

CSP

maxpool

CSP

maxpool

CBL

CBL CBL CONV

CBL

upsample

Concat CBL CONV

Backbone Neck Output

Figure 2. Structure of the YOLOv4-tiny network.

3.3. The Proposed TSR-YOLO Algorithm
For the specific traffic sign detection task, we improved the YOLOv4-tiny algorithm’s

ability to extract features by adding an improved BECA attention mechanism module to
a CSPDarknet53-tiny structure, combining an improved spatial-pyramid-pooling module
with the FPN structure and adding a Yolo detection layer to the Yolo head. The
CCTSDB2021 traffic sign dataset was grouped using the k-means++ algorithm to find the
anchor boxes that the model used.

3.3.1. The Improvement of CSPDarknet53-Tiny
A color picture has three channels of RGB. After convolution by different convolution

kernels, each channel produces new channels. The new channels’ features reflect the im-
age components on distinct convolutional kernels, which do not contribute equally to the

Figure 2. Structure of the YOLOv4-tiny network.

3.3. The Proposed TSR-YOLO Algorithm

For the specific traffic sign detection task, we improved the YOLOv4-tiny algorithm’s
ability to extract features by adding an improved BECA attention mechanism module to a
CSPDarknet53-tiny structure, combining an improved spatial-pyramid-pooling module
with the FPN structure and adding a Yolo detection layer to the Yolo head. The CCTSDB2021
traffic sign dataset was grouped using the k-means++ algorithm to find the anchor boxes
that the model used.

3.3.1. The Improvement of CSPDarknet53-Tiny

A color picture has three channels of RGB. After convolution by different convolution
kernels, each channel produces new channels. The new channels’ features reflect the image
components on distinct convolutional kernels, which do not contribute equally to the
task’s crucial information. The performance of a network can be improved by blocking
out irrelevant information and giving important information a higher weight value. In
2019, Hu et al. [33] proposed the SENet channel attention mechanism, which significantly
enhanced the performance of convolutional neural network models. ECANet [34] is an
improved lightweight channel attention mechanism compared to the SENet module. Global
averaging pooling is performed before processing the features. Global averaging pooling
sums and averages all weights of the same channel, which results in some high and low
weights being averaged and a loss of information about the high weights. As a result, in this
paper, we used Better-ECA [35], an improved ECA attention mechanism that incorporated

Sensors 2023, 23, 749 6 of 23

maximum global pooling (BECA). Figure 3 depicts the improved BECA channel attention
mechanism’s structure.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 24

task’s crucial information. The performance of a network can be improved by blocking
out irrelevant information and giving important information a higher weight value. In
2019, Hu et al. [33] proposed the SENet channel attention mechanism, which significantly
enhanced the performance of convolutional neural network models. ECANet [34] is an
improved lightweight channel attention mechanism compared to the SENet module.
Global averaging pooling is performed before processing the features. Global averaging
pooling sums and averages all weights of the same channel, which results in some high
and low weights being averaged and a loss of information about the high weights. As a
result, in this paper, we used Better-ECA [35], an improved ECA attention mechanism
that incorporated maximum global pooling (BECA). Figure 3 depicts the improved BECA
channel attention mechanism’s structure.

GAP

MAP

X

C

H

W

W=1×1×C

U=1×1×C

Z=1×1×C

σ

L=1×1×C

C

H

W

Adaptive Selection of
Kernel Size:

k=Φ(C)

k X

Figure 3. BECA structure.

1. Feature compression
In this step, global average pooling was utilized to compress the input H × W × C

features into 1 × 1 × C features W, while maximum global pooling was used to extract the
maximum value of the channels to produce 1 × 1 × C features U. The features acquired in
the two parts were then subjected to a fusion operation, and their channel information on
the corresponding channels was summed as shown in Equation (1): 𝑍 = 𝑊 + 𝑈 (1)

where 𝑊 is the feature information of the global average pooling channel, and 𝑈 is the
feature information of the global maximum pooling channel.
2. Characteristic incentive

A one-dimensional convolution with a convolution kernel of size 𝑘 captured only
the k-neighboring channels of the input features instead of all the channels. This could
significantly reduce the parameters and computational costs. The convolved features
were then activated by the sigmoid activation function to output the feature information
of each channel, where the operation could be represented by Equation (2): 𝑠 = 𝜎(𝐶1𝐷 (𝑦)) (2)

where 𝜎 is the sigmoid activation function, 𝑦 denotes the 1 × 1 × C feature 𝑍 being con-
volved, 𝐶1𝐷 denotes the one-dimensional convolution, and the size of the one-dimen-
sional convolution kernel is indicated by k. k was obtained by Equation (3): 𝑘 = 𝜙(𝐶) = 𝑙𝑜𝑔 (𝐶)2 + 12 (3)

where 𝐶 denotes the given channel dimension, and 𝑜𝑑𝑑 is the nearest odd number after
taking the absolute value calculation.

Figure 3. BECA structure.

1. Feature compression

In this step, global average pooling was utilized to compress the input H ×W × C
features into 1 × 1 × C features W, while maximum global pooling was used to extract the
maximum value of the channels to produce 1 × 1 × C features U. The features acquired in
the two parts were then subjected to a fusion operation, and their channel information on
the corresponding channels was summed as shown in Equation (1):

Zc = Wi + Ui (1)

where Wi is the feature information of the global average pooling channel, and Ui is the
feature information of the global maximum pooling channel.

2. Characteristic incentive

A one-dimensional convolution with a convolution kernel of size k captured only
the k-neighboring channels of the input features instead of all the channels. This could
significantly reduce the parameters and computational costs. The convolved features were
then activated by the sigmoid activation function to output the feature information of each
channel, where the operation could be represented by Equation (2):

s = σ(C1Dk(y)) (2)

where σ is the sigmoid activation function, y denotes the 1 × 1 × C feature Z being con-
volved, C1D denotes the one-dimensional convolution, and the size of the one-dimensional
convolution kernel is indicated by k. k was obtained by Equation (3):

k = φ(C) =
∣∣∣∣ log2(C)

2
+

1
2

∣∣∣∣
odd

(3)

where C denotes the given channel dimension, and odd is the nearest odd number after
taking the absolute value calculation.

3. Feature recalibration

The weight information of each channel obtained in Step 2 was multiplied by the
corresponding original channel features, thereby achieving the goal of recalibrating the
original feature information by enhancing the task-critical channel information in all the
channels and suppressing the unimportant channel information. The operation could be
represented by Equation (4):

X̃c = Lc·Xc (4)

Sensors 2023, 23, 749 7 of 23

where Lc represents the weight coefficient of each channel, and Xc represents the original
channel feature information for each channel.

In this study, an improved lightweight channel attention mechanism was added to
the CSP module of a CSPDarknet53-tiny network. This greatly improved the network’s
ability to extract important feature information while reducing the number of parameters
and computations to improve the accuracy of the network’s detection.

3.3.2. The Improvement of the Feature Pyramid and Detection Network

In the traditional structure of a convolutional neural network, a fully connected layer is
connected after the convolutional layer. Since the number of features in the fully connected
layer is fixed, the size of the input image on the input side of the network is also fixed. In
practical applications, the input image size is typically inadequate and must be cropped
and stretched, which frequently distorts the image. Spatial pyramid pooling (SPP) [36]
can generate fixed-scale features by processing input images of arbitrary sizes or scales
and is robust to changes in the size and shape of an input image. Its structure is shown
in Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 24

3. Feature recalibration
The weight information of each channel obtained in Step 2 was multiplied by the

corresponding original channel features, thereby achieving the goal of recalibrating the
original feature information by enhancing the task-critical channel information in all the
channels and suppressing the unimportant channel information. The operation could be
represented by Equation (4): 𝑋 = 𝐿 · 𝑋 (4)

where 𝐿 represents the weight coefficient of each channel, and 𝑋 represents the origi-
nal channel feature information for each channel.

In this study, an improved lightweight channel attention mechanism was added to
the CSP module of a CSPDarknet53-tiny network. This greatly improved the network’s
ability to extract important feature information while reducing the number of parameters
and computations to improve the accuracy of the network’s detection.

3.3.2. The Improvement of the Feature Pyramid and Detection Network
In the traditional structure of a convolutional neural network, a fully connected layer

is connected after the convolutional layer. Since the number of features in the fully con-
nected layer is fixed, the size of the input image on the input side of the network is also
fixed. In practical applications, the input image size is typically inadequate and must be
cropped and stretched, which frequently distorts the image. Spatial pyramid pooling
(SPP) [36] can generate fixed-scale features by processing input images of arbitrary sizes
or scales and is robust to changes in the size and shape of an input image. Its structure is
shown in Figure 4.

Max Pooling

Input Feature Map

...

...

Fully-connected layers

W×H×C

4×C 1×C 9×C

14×C

Figure 4. Spatial pyramid pooling.

Inspired by the idea of SPP and YOLOv3-spp [37], this study improved a traditional
SPP module, and the improved structure is shown in Figure 5. The structure consisted of
five branches. The first branch connected the input directly to the output, the second
branch downsampled the input through a maximum pooling of size 3 × 3 and then output,
the third branch downsampled the input through a maximum pooling of size 5 × 5 and
then output, the fourth branch downsampled the input through a maximum pooling of
size 7 × 7 and then output, and the fifth branch downsampled the input through a maxi-
mum pooling of size 9 × 9 and then output. Since the step size of the pooling layer was 1
and the padding operation was performed before the pooling operation, the length, width,
and depth of the feature map output from these five branches were the same. Finally,

Figure 4. Spatial pyramid pooling.

Inspired by the idea of SPP and YOLOv3-spp [37], this study improved a traditional
SPP module, and the improved structure is shown in Figure 5. The structure consisted
of five branches. The first branch connected the input directly to the output, the second
branch downsampled the input through a maximum pooling of size 3 × 3 and then output,
the third branch downsampled the input through a maximum pooling of size 5 × 5 and
then output, the fourth branch downsampled the input through a maximum pooling of size
7 × 7 and then output, and the fifth branch downsampled the input through a maximum
pooling of size 9 × 9 and then output. Since the step size of the pooling layer was 1 and
the padding operation was performed before the pooling operation, the length, width, and
depth of the feature map output from these five branches were the same. Finally, these five
feature maps were concatenated. This dense SPP network was added after the backbone
network since YOLOv4-tiny disregards the fusion of multiscale local region features on the
same convolutional layer. This dense SPP network converted the 13 × 13 × 512 feature
maps generated by the 15th convolutional layer into 13 × 13 × 2560 feature maps. This
structure achieved the fusion between feature maps of local and global features, and the
multiscale fusion enhanced the characterization ability of the feature maps so that more
features were passed to the next layer of the network. The number of input feature maps
was then reduced from 2560 to 256 using 1 × 1 convolution to extract useful features from

Sensors 2023, 23, 749 8 of 23

the large number of relevant features, which were later pooled to different scales to improve
the detection accuracy of traffic signs.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 24

these five feature maps were concatenated. This dense SPP network was added after the
backbone network since YOLOv4-tiny disregards the fusion of multiscale local region fea-
tures on the same convolutional layer. This dense SPP network converted the 13 × 13 × 512
feature maps generated by the 15th convolutional layer into 13 × 13 × 2560 feature maps.
This structure achieved the fusion between feature maps of local and global features, and
the multiscale fusion enhanced the characterization ability of the feature maps so that
more features were passed to the next layer of the network. The number of input feature
maps was then reduced from 2560 to 256 using 1 × 1 convolution to extract useful features
from the large number of relevant features, which were later pooled to different scales to
improve the detection accuracy of traffic signs.

Multi-scale MaxPooling

Input Feature Map

Concatenate

...

Output Feature Maps

Feature Maps

W×H×512

W×H×512 W×H×512 W×H×512

W×H×2560

W×H×512

W×H×512

Figure 5. Improved dense spatial pyramid pooling.

We enhanced the Yolo head module to increase the YOLOv4-tiny network’s ability
to identify traffic signs. Following the enhanced feature extraction network, a YOLO de-
tection layer was added. To create this detection layer, we fine-tuned a second YOLO de-
tection layer and added convolutional layers with channel sizes of 128, 256, 512, and 24.
The final output of this detection layer was a high-dimensional feature map of 52 × 52 ×
24, which enhanced the accuracy of target localization and prediction. YOLOv4-tiny can
only generate feature maps with the dimensions of 13 × 13 × 24 and 26 × 26 × 24. With these
improvements, the TSR-YOLO algorithm achieved first YOLO layer outputting feature
maps of 13 × 13 × 24, second YOLO detection layer outputting feature maps of 26 × 26 ×
24, and third YOLO detection layer outputting feature maps of 52 × 52 × 24. This method
could better detect long-distance traffic signs in complex scenarios and solve the problem
of inaccurate localization and prediction of YOLOv4-tiny when locating small targets at a
far distance. The network’s three YOLO detection layers were used to process and forecast
the bounding boxes, objectness score, class predictions, and anchor boxes, where anchor
boxes were used to identify the bounding boxes for each object in each class in the traffic
sign recognition dataset. Because three detection layers were used and there were three
classes of traffic signs in the dataset, the number of channels for each detection layer was
calculated by the formula (class + 4 + 1) × 3 before designing each YOLO detection layer,
and the channel size was set to 24. After completing the above improvements, the TSR-

Figure 5. Improved dense spatial pyramid pooling.

We enhanced the Yolo head module to increase the YOLOv4-tiny network’s ability to
identify traffic signs. Following the enhanced feature extraction network, a YOLO detection
layer was added. To create this detection layer, we fine-tuned a second YOLO detection
layer and added convolutional layers with channel sizes of 128, 256, 512, and 24. The
final output of this detection layer was a high-dimensional feature map of 52 × 52 × 24,
which enhanced the accuracy of target localization and prediction. YOLOv4-tiny can only
generate feature maps with the dimensions of 13 × 13 × 24 and 26 × 26 × 24. With
these improvements, the TSR-YOLO algorithm achieved first YOLO layer outputting
feature maps of 13 × 13 × 24, second YOLO detection layer outputting feature maps of
26 × 26 × 24, and third YOLO detection layer outputting feature maps of 52 × 52 × 24.
This method could better detect long-distance traffic signs in complex scenarios and solve
the problem of inaccurate localization and prediction of YOLOv4-tiny when locating small
targets at a far distance. The network’s three YOLO detection layers were used to process
and forecast the bounding boxes, objectness score, class predictions, and anchor boxes,
where anchor boxes were used to identify the bounding boxes for each object in each class in
the traffic sign recognition dataset. Because three detection layers were used and there were
three classes of traffic signs in the dataset, the number of channels for each detection layer
was calculated by the formula (class + 4 + 1) × 3 before designing each YOLO detection
layer, and the channel size was set to 24. After completing the above improvements, the
TSR-YOLO algorithm structure and the algorithm’s detailed network configuration are
given in Figure 6.

Sensors 2023, 23, 749 9 of 23

Sensors 2023, 23, x FOR PEER REVIEW 9 of 24

YOLO algorithm structure and the algorithm’s detailed network configuration are given
in Figure 6.

input

Conv(3,32,3/2)

3×416×416

Conv(32,64,3/2)

32×208×208

Conv(64,64,3)

64×104×104

split
64×104×104

Conv(32,32,3)
32×104×104

Conv(32,32,3)

Concat

BECA

Conv(64,64,1)Concat

32×104×104

32×104×104
32×104×104

64×104×104

64×104×104
64×104×104

64×104×104

Maxpool(2×2/2)

128×104×104

Conv(128,128,3)
128×52×52

split Conv(64,64,3)
64×52×52

Conv(64,64,3)

Concat

BECA

Conv(128,128,1)

128×52×52 64×52×52

64×52×52
64×52×52

128×52×52

128×52×52
Concat

128×52×52
128×52×52

Maxpool(2×2/2)

Conv(256,256,3)
256×26×26

split Conv(128,128,3)
128×26×26

Conv(128,128,3)

Concat

BECA

Conv(256,256,1)Concat

256×52×52

256×26×26 128×26×26

128×26×26128×26×26

256×26×26

256×26×26256×26×26
256×26×26

Maxpool(2×2/2)
512×26×26

Conv(512,512,3)

512×13×13

512×13×13

Conv(512,256,1)

Conv(256,512,3)

256×13×13

512×13×13

Maxpool(3×3) Maxpool(5×5) Maxpool(7×7) Maxpool(9×9)

Concat

512×13×13 512×13×13 512×13×13 512×13×13

Conv(2560,256,1)

2560×13×13

Conv(256,512,3)
256×13×13

512×13×13

Conv(512,256,1)

Conv(256,512,3)

256×13×13

512×13×13

Conv(512,24,1)

YOLO

24×13×13

Conv(256,128,1)

256×13×13

Upsample

Concat

128×13×13

128×26×26 256×26×26

Conv(384,256,3)
384×26×26

Conv(256,24,1)

256×26×26

YOLO
24×26×26

128×52×52

256×26×26

Conv(256,128,1)

Upsample

Concat

128×26×26

128×52×52

Conv(256,256,3)
256×52×52 256×52×52 512×52×52

24×52×52

Conv(256,512,3)

YOLO

Conv(512,24,1)

Figure 6. Improved network TSR-YOLO.

Sensors 2023, 23, 749 10 of 23

3.4. Anchor Boxes Using K-Means++ Clustering

The original YOLOv4-tiny model’s anchor boxes were obtained by clustering the
COCO dataset [38] and the Pascal VOC dataset [39]. By analyzing these datasets, we found
that the targets in these datasets were more different in size and shape from those in the
traffic sign dataset, and the background of the traffic sign dataset was more complex. As a
result, the original anchor box size was unsuitable for Chinese traffic sign detection task
and may harm the model’s training results. Figure 7 shows samples from the Pascal VOC
dataset and the CCTSDB2021 dataset.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 24

Figure 6. Improved network TSR-YOLO.

3.4. Anchor Boxes Using K-Means++ Clustering
The original YOLOv4-tiny model’s anchor boxes were obtained by clustering the

COCO dataset [38] and the Pascal VOC dataset [39]. By analyzing these datasets, we found
that the targets in these datasets were more different in size and shape from those in the
traffic sign dataset, and the background of the traffic sign dataset was more complex. As
a result, the original anchor box size was unsuitable for Chinese traffic sign detection task
and may harm the model’s training results. Figure 7 shows samples from the Pascal VOC
dataset and the CCTSDB2021 dataset.

(a) Some samples of the Pascal VOC dataset

(b) Some samples of the CCTSDB2021 dataset

Figure 7. Some samples in the Pascal VOC and CCTSDB2021 datasets.

A typical k-means clustering algorithm [40] was used in the original YOLOv4-tiny
model for a dimensional clustering analysis of training images to obtain prior boxes. Nev-
ertheless, the randomness of the k-means algorithm for the selection of initial clustering
centers may have detrimental impacts on the clustering effect. The k-means++ clustering
algorithm was used instead of the k-means clustering algorithm in this work to improve
the accuracy with which the proposed target detection network predicted a target’s loca-
tion. The k-means++ clustering algorithm featured less clustering randomness, which re-
duced the bias of clustering results produced by the random selection of initial clustering
centers. k-means++ was utilized to cluster the CCTSDB2021 dataset for Chinese traffic
signs in order to generate more accurate and representative anchor boxes. The k-means++
technique for clustering works was as follows:
1. Determine the number of cluster centers k and the height and width set M of Chinese

traffic signs in the given data.
2. Choose one point randomly from the set M to satisfy the initial clustering center 𝑞 .
3. Determine 𝐷(𝑥) the distance between each remaining point 𝑥 in the set M and its

nearest clustering center 𝑞 . The greater the distance between the prior box and the
next clustering center, the greater the probability 𝑃(𝑥). This step should be repeated
until k clustering centers are found. 𝐷(𝑥) = 1 − 𝐼𝑂𝑈(𝑥, 𝑞) (5)

𝑃(𝑥) = 𝐷(𝑥)∑ 𝐷(𝑥)∈ (6)

Figure 7. Some samples in the Pascal VOC and CCTSDB2021 datasets.

A typical k-means clustering algorithm [40] was used in the original YOLOv4-tiny
model for a dimensional clustering analysis of training images to obtain prior boxes.
Nevertheless, the randomness of the k-means algorithm for the selection of initial clustering
centers may have detrimental impacts on the clustering effect. The k-means++ clustering
algorithm was used instead of the k-means clustering algorithm in this work to improve the
accuracy with which the proposed target detection network predicted a target’s location.
The k-means++ clustering algorithm featured less clustering randomness, which reduced
the bias of clustering results produced by the random selection of initial clustering centers.
k-means++ was utilized to cluster the CCTSDB2021 dataset for Chinese traffic signs in order
to generate more accurate and representative anchor boxes. The k-means++ technique for
clustering works was as follows:

1. Determine the number of cluster centers k and the height and width set M of Chinese
traffic signs in the given data.

2. Choose one point randomly from the set M to satisfy the initial clustering center q1.
3. Determine D(x) the distance between each remaining point x in the set M and its

nearest clustering center qx. The greater the distance between the prior box and the
next clustering center, the greater the probability P(x). This step should be repeated
until k clustering centers are found.

D(x) = 1− IOU(x, qx) (5)

P(x) =
D(x)2

∑x∈N D(x)2 (6)

IOU(x, qx) denotes the intersection ratio between the clustering center and each
labeled box.

Sensors 2023, 23, 749 11 of 23

4. Determine the distance D(x) between all points in the set M and the k cluster centers,
and place the point in the cluster center category with the smallest distance. For the
clustering results, recalculate each clustering category center Ci.

Ci =
∑x∈Ci

x
|Ci|

(7)

5. When the cluster center Ci of each clustering category no longer changes, repeat Step
2 and output k cluster center results.

The CCTSDB2021 dataset was initially analyzed, and Figure 8 shows the annotated
information of the samples in the dataset. The data for the clustering algorithm are in
the annotated red box in Figure 8. Therefore, we give more detail about the data in the
an-notated red box. The bndbox tag specifies the location of a traffic sign within an image,
the xmin value specifies the horizontal coordinate of the upper-left corner of a traffic sign
bounding box, and the ymin tag specifies the vertical coordinate of the upper-left corner of
a traffic sign bounding box. The xmax tag specifies the horizontal coordinate of a sign’s
lower-right corner. The ymax tag specifies the vertical coordinate of a bounding box’s lower
right corner.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 24

𝐼𝑂𝑈(𝑥, 𝑞) denotes the intersection ratio between the clustering center and each labeled
box.
4. Determine the distance D(x) between all points in the set M and the k cluster centers,

and place the point in the cluster center category with the smallest distance. For the
clustering results, recalculate each clustering category center 𝐶 .

𝐶 = ∑ 𝑥∈|𝐶 | (7)

5. When the cluster center 𝐶 of each clustering category no longer changes, repeat Step
2 and output k cluster center results.
The CCTSDB2021 dataset was initially analyzed, and Figure 8 shows the annotated

information of the samples in the dataset. The data for the clustering algorithm are in the
annotated red box in Figure 8. Therefore, we give more detail about the data in the an-
notated red box. The bndbox tag specifies the location of a traffic sign within an image,
the xmin value specifies the horizontal coordinate of the upper-left corner of a traffic sign
bounding box, and the ymin tag specifies the vertical coordinate of the upper-left corner
of a traffic sign bounding box. The xmax tag specifies the horizontal coordinate of a sign’s
lower-right corner. The ymax tag specifies the vertical coordinate of a bounding box’s
lower right corner.

Figure 8. Annotation information of the image.

The width and height of each traffic sign’s bounding box were used as horizontal and
vertical coordinates. The width and height were normalized with respect to the original
image to obtain the distribution of the actual boxes of traffic signs in the CCTSDB2021
dataset. Following the above k-means++ algorithm steps, a cluster analysis was then per-
formed using the CCTSDB2021 dataset, with k set to 9, and nine clustering results were
obtained for the CCTSDB2021 dataset, where the black plus sign is the cluster center, as
shown in Figure 8. The nine clustering centers in Figure 9 were (0.009375, 0.01805556),
(0.0140625, 0.02638889), (0.02109375, 0.0375), (0.018, 0.04857143), (0.022, 0.06285714),
(0.03203125, 0.05448718), (0.029, 0.07714286), (0.042, 0.1), and (0.07533351, 0.14571429), re-
spectively. The final parameters of anchor boxes needed to be transformed according to
the original image size. When the input image size was 416×416, the coordinate values of
the clustering centers were multiplied by 416 to obtain the nine clustering centers in the

Figure 8. Annotation information of the image.

The width and height of each traffic sign’s bounding box were used as horizontal and
vertical coordinates. The width and height were normalized with respect to the original im-
age to obtain the distribution of the actual boxes of traffic signs in the CCTSDB2021 dataset.
Following the above k-means++ algorithm steps, a cluster analysis was then performed
using the CCTSDB2021 dataset, with k set to 9, and nine clustering results were obtained
for the CCTSDB2021 dataset, where the black plus sign is the cluster center, as shown in
Figure 8. The nine clustering centers in Figure 9 were (0.009375, 0.01805556), (0.0140625,
0.02638889), (0.02109375, 0.0375), (0.018, 0.04857143), (0.022, 0.06285714), (0.03203125,
0.05448718), (0.029, 0.07714286), (0.042, 0.1), and (0.07533351, 0.14571429), respectively.
The final parameters of anchor boxes needed to be transformed according to the original
image size. When the input image size was 416 × 416, the coordinate values of the clus-
tering centers were multiplied by 416 to obtain the nine clustering centers in the original
image of (4, 8), (6, 11), (9, 16), (8, 20), (9, 26), (14, 23), (12, 32), (18, 42), and (32, 61). Large
anchor boxes were used to predict big traffic signs, and small anchor boxes were used to
predict small traffic signs. Thus, the prior boxes of (12, 32), (18, 42), and (32, 61) were used

Sensors 2023, 23, 749 12 of 23

to predict the bounding box at the scale of 13 × 13; the prior boxes of (8, 20), (9, 26), and
(14, 23) were used to predict the bounding box at the scale of 26 × 26; the remaining three
prior boxes of (4, 8), (6, 11), and (9, 16) were used to predict the bounding box at the scale
of 52 × 52.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 24

original image of (4, 8), (6, 11), (9, 16), (8, 20), (9, 26), (14, 23), (12, 32), (18, 42), and (32, 61).
Large anchor boxes were used to predict big traffic signs, and small anchor boxes were
used to predict small traffic signs. Thus, the prior boxes of (12, 32), (18, 42), and (32, 61)
were used to predict the bounding box at the scale of 13 × 13; the prior boxes of (8, 20), (9,
26), and (14, 23) were used to predict the bounding box at the scale of 26 × 26; the remain-
ing three prior boxes of (4, 8), (6, 11), and (9, 16) were used to predict the bounding box at
the scale of 52 × 52.

Figure 9. Distribution of clustering centers in the CCTSDB2021 dataset.

3.5. Traffic Detection Using TSR-YOLO
The traffic sign detection process based on TSR-YOLO included dataset prepro-

cessing, model training, and detection of traffic signs, as shown in Figure 10. First, the
CCTSDB2021 training dataset was preprocessed to improve traffic sign detection perfor-
mance and prevent model overfitting. In the training phase, the dataset was first loaded,
and the anchor boxes were generated using the k-means++ clustering algorithm; the train-
ing parameters were then set, and the TSR-YOLO network model was initialized; finally,
the weights of the TSR-YOLO model were iteratively updated using the loss function to
converge the loss function and obtain the model weights for traffic sign detection. An im-
age or video was input during the traffic sign detection phase, the trained model weights
were loaded, and traffic signs were predicted. At this period, the obtained prediction re-
sults contained multiple prediction boxes that overlapped. Redundant prediction boxes
were removed using the non-maximum suppression (NMS) algorithm, and the final test
results were output.

Figure 9. Distribution of clustering centers in the CCTSDB2021 dataset.

3.5. Traffic Detection Using TSR-YOLO

The traffic sign detection process based on TSR-YOLO included dataset preprocessing,
model training, and detection of traffic signs, as shown in Figure 10. First, the CCTSDB2021
training dataset was preprocessed to improve traffic sign detection performance and
prevent model overfitting. In the training phase, the dataset was first loaded, and the
anchor boxes were generated using the k-means++ clustering algorithm; the training
parameters were then set, and the TSR-YOLO network model was initialized; finally,
the weights of the TSR-YOLO model were iteratively updated using the loss function to
converge the loss function and obtain the model weights for traffic sign detection. An
image or video was input during the traffic sign detection phase, the trained model weights
were loaded, and traffic signs were predicted. At this period, the obtained prediction results
contained multiple prediction boxes that overlapped. Redundant prediction boxes were
removed using the non-maximum suppression (NMS) algorithm, and the final test results
were output.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

Start

CCTSDB2021
DataSet

Data Preprocessing

Loss
Convergence?

End

Training Dataset
Loading

Anchor boxes Setting

Parameters Setting

Network
Initialization

Model Training

TSR-YOLO model
weights

Input image or video

Model Loading

Prediction

NMS

Output

Yes

No

Figure 10. The traffic detection process based on TSR-YOLO.

4. Experimental Section
4.1. Dataset

In the current research on traffic sign detection and recognition, the algorithm per-
formance was primarily evaluated using well-known public transportation sign datasets,
such as the GTSDB (German Traffic Sign Detection Benchmark), the BTSD (Belgian Traffic
Sign Dataset), and the STSD (Swedish Traffic Sign Dataset) [41]. The aforementioned da-
tasets are limited to European traffic signs, the samples are gathered primarily under op-
timal lighting settings, and there are substantial discrepancies between Chinese and Eu-
ropean traffic signs [42]. We used the CCTSDB2021 dataset, which was composed of 423
films from traffic recorders at varied times, locations, and weather conditions, to accom-
plish real-time detection of Chinese traffic signs in difficult circumstances. The dataset
included street traffic scenes, high-speed traffic scenes, rain traffic scenes, evening traffic
scenes, and backlight traffic scenes. The diversity and coverage of the dataset were well-
ensured, which was more compatible with the task of Chinese traffic sign detection under
complex scenarios.

According to Table 1, the traffic signs in the CCTSDB2021 dataset were divided into
three categories based on their respective meanings: prohibitive signs, warning signs, and
mandatory signs. The prohibitive signs had a white background, a red circle, a red bar,
and a black pattern, and their shapes were a circle, octagon, or equilateral triangle with
the top angle pointing downward. The warning signs had a yellow background, a black
border, and a black pattern, and their shape was an equilateral triangle with the top angle
pointing upward. The mandatory signs had a blue background and a white pattern, and
their bodies were composed of a circle, a rectangle, or a square. The training set for this
dataset had 16,356 images, with 13,876 prohibitive signs, 4598 warning signs, and 8363
mandatory signs. This dataset’s test set was composed of 1500 images, and the entire test
set had 3228 traffic signs. In a ratio of 9:1, the training set was divided into a training set
and a validation set.

Table 1. Selected examples of three types of traffic signs in the CCTSDB2021 dataset.

Prohibitory Warning Mandatory

Figure 10. The traffic detection process based on TSR-YOLO.

Sensors 2023, 23, 749 13 of 23

4. Experimental Section
4.1. Dataset

In the current research on traffic sign detection and recognition, the algorithm perfor-
mance was primarily evaluated using well-known public transportation sign datasets, such
as the GTSDB (German Traffic Sign Detection Benchmark), the BTSD (Belgian Traffic Sign
Dataset), and the STSD (Swedish Traffic Sign Dataset) [41]. The aforementioned datasets
are limited to European traffic signs, the samples are gathered primarily under optimal
lighting settings, and there are substantial discrepancies between Chinese and European
traffic signs [42]. We used the CCTSDB2021 dataset, which was composed of 423 films from
traffic recorders at varied times, locations, and weather conditions, to accomplish real-time
detection of Chinese traffic signs in difficult circumstances. The dataset included street traf-
fic scenes, high-speed traffic scenes, rain traffic scenes, evening traffic scenes, and backlight
traffic scenes. The diversity and coverage of the dataset were well-ensured, which was
more compatible with the task of Chinese traffic sign detection under complex scenarios.

According to Table 1, the traffic signs in the CCTSDB2021 dataset were divided into
three categories based on their respective meanings: prohibitive signs, warning signs, and
mandatory signs. The prohibitive signs had a white background, a red circle, a red bar, and
a black pattern, and their shapes were a circle, octagon, or equilateral triangle with the top
angle pointing downward. The warning signs had a yellow background, a black border,
and a black pattern, and their shape was an equilateral triangle with the top angle pointing
upward. The mandatory signs had a blue background and a white pattern, and their bodies
were composed of a circle, a rectangle, or a square. The training set for this dataset had
16,356 images, with 13,876 prohibitive signs, 4598 warning signs, and 8363 mandatory signs.
This dataset’s test set was composed of 1500 images, and the entire test set had 3228 traffic
signs. In a ratio of 9:1, the training set was divided into a training set and a validation set.

Table 1. Selected examples of three types of traffic signs in the CCTSDB2021 dataset.

Prohibitory Warning Mandatory

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

Start

CCTSDB2021
DataSet

Data Preprocessing

Loss
Convergence?

End

Training Dataset
Loading

Anchor boxes Setting

Parameters Setting

Network
Initialization

Model Training

TSR-YOLO model
weights

Input image or video

Model Loading

Prediction

NMS

Output

Yes

No

Figure 10. The traffic detection process based on TSR-YOLO.

4. Experimental Section
4.1. Dataset

In the current research on traffic sign detection and recognition, the algorithm per-
formance was primarily evaluated using well-known public transportation sign datasets,
such as the GTSDB (German Traffic Sign Detection Benchmark), the BTSD (Belgian Traffic
Sign Dataset), and the STSD (Swedish Traffic Sign Dataset) [41]. The aforementioned da-
tasets are limited to European traffic signs, the samples are gathered primarily under op-
timal lighting settings, and there are substantial discrepancies between Chinese and Eu-
ropean traffic signs [42]. We used the CCTSDB2021 dataset, which was composed of 423
films from traffic recorders at varied times, locations, and weather conditions, to accom-
plish real-time detection of Chinese traffic signs in difficult circumstances. The dataset
included street traffic scenes, high-speed traffic scenes, rain traffic scenes, evening traffic
scenes, and backlight traffic scenes. The diversity and coverage of the dataset were well-
ensured, which was more compatible with the task of Chinese traffic sign detection under
complex scenarios.

According to Table 1, the traffic signs in the CCTSDB2021 dataset were divided into
three categories based on their respective meanings: prohibitive signs, warning signs, and
mandatory signs. The prohibitive signs had a white background, a red circle, a red bar,
and a black pattern, and their shapes were a circle, octagon, or equilateral triangle with
the top angle pointing downward. The warning signs had a yellow background, a black
border, and a black pattern, and their shape was an equilateral triangle with the top angle
pointing upward. The mandatory signs had a blue background and a white pattern, and
their bodies were composed of a circle, a rectangle, or a square. The training set for this
dataset had 16,356 images, with 13,876 prohibitive signs, 4598 warning signs, and 8363
mandatory signs. This dataset’s test set was composed of 1500 images, and the entire test
set had 3228 traffic signs. In a ratio of 9:1, the training set was divided into a training set
and a validation set.

Table 1. Selected examples of three types of traffic signs in the CCTSDB2021 dataset.

Prohibitory Warning Mandatory

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

Start

CCTSDB2021
DataSet

Data Preprocessing

Loss
Convergence?

End

Training Dataset
Loading

Anchor boxes Setting

Parameters Setting

Network
Initialization

Model Training

TSR-YOLO model
weights

Input image or video

Model Loading

Prediction

NMS

Output

Yes

No

Figure 10. The traffic detection process based on TSR-YOLO.

4. Experimental Section
4.1. Dataset

In the current research on traffic sign detection and recognition, the algorithm per-
formance was primarily evaluated using well-known public transportation sign datasets,
such as the GTSDB (German Traffic Sign Detection Benchmark), the BTSD (Belgian Traffic
Sign Dataset), and the STSD (Swedish Traffic Sign Dataset) [41]. The aforementioned da-
tasets are limited to European traffic signs, the samples are gathered primarily under op-
timal lighting settings, and there are substantial discrepancies between Chinese and Eu-
ropean traffic signs [42]. We used the CCTSDB2021 dataset, which was composed of 423
films from traffic recorders at varied times, locations, and weather conditions, to accom-
plish real-time detection of Chinese traffic signs in difficult circumstances. The dataset
included street traffic scenes, high-speed traffic scenes, rain traffic scenes, evening traffic
scenes, and backlight traffic scenes. The diversity and coverage of the dataset were well-
ensured, which was more compatible with the task of Chinese traffic sign detection under
complex scenarios.

According to Table 1, the traffic signs in the CCTSDB2021 dataset were divided into
three categories based on their respective meanings: prohibitive signs, warning signs, and
mandatory signs. The prohibitive signs had a white background, a red circle, a red bar,
and a black pattern, and their shapes were a circle, octagon, or equilateral triangle with
the top angle pointing downward. The warning signs had a yellow background, a black
border, and a black pattern, and their shape was an equilateral triangle with the top angle
pointing upward. The mandatory signs had a blue background and a white pattern, and
their bodies were composed of a circle, a rectangle, or a square. The training set for this
dataset had 16,356 images, with 13,876 prohibitive signs, 4598 warning signs, and 8363
mandatory signs. This dataset’s test set was composed of 1500 images, and the entire test
set had 3228 traffic signs. In a ratio of 9:1, the training set was divided into a training set
and a validation set.

Table 1. Selected examples of three types of traffic signs in the CCTSDB2021 dataset.

Prohibitory Warning Mandatory

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

Start

CCTSDB2021
DataSet

Data Preprocessing

Loss
Convergence?

End

Training Dataset
Loading

Anchor boxes Setting

Parameters Setting

Network
Initialization

Model Training

TSR-YOLO model
weights

Input image or video

Model Loading

Prediction

NMS

Output

Yes

No

Figure 10. The traffic detection process based on TSR-YOLO.

4. Experimental Section
4.1. Dataset

In the current research on traffic sign detection and recognition, the algorithm per-
formance was primarily evaluated using well-known public transportation sign datasets,
such as the GTSDB (German Traffic Sign Detection Benchmark), the BTSD (Belgian Traffic
Sign Dataset), and the STSD (Swedish Traffic Sign Dataset) [41]. The aforementioned da-
tasets are limited to European traffic signs, the samples are gathered primarily under op-
timal lighting settings, and there are substantial discrepancies between Chinese and Eu-
ropean traffic signs [42]. We used the CCTSDB2021 dataset, which was composed of 423
films from traffic recorders at varied times, locations, and weather conditions, to accom-
plish real-time detection of Chinese traffic signs in difficult circumstances. The dataset
included street traffic scenes, high-speed traffic scenes, rain traffic scenes, evening traffic
scenes, and backlight traffic scenes. The diversity and coverage of the dataset were well-
ensured, which was more compatible with the task of Chinese traffic sign detection under
complex scenarios.

According to Table 1, the traffic signs in the CCTSDB2021 dataset were divided into
three categories based on their respective meanings: prohibitive signs, warning signs, and
mandatory signs. The prohibitive signs had a white background, a red circle, a red bar,
and a black pattern, and their shapes were a circle, octagon, or equilateral triangle with
the top angle pointing downward. The warning signs had a yellow background, a black
border, and a black pattern, and their shape was an equilateral triangle with the top angle
pointing upward. The mandatory signs had a blue background and a white pattern, and
their bodies were composed of a circle, a rectangle, or a square. The training set for this
dataset had 16,356 images, with 13,876 prohibitive signs, 4598 warning signs, and 8363
mandatory signs. This dataset’s test set was composed of 1500 images, and the entire test
set had 3228 traffic signs. In a ratio of 9:1, the training set was divided into a training set
and a validation set.

Table 1. Selected examples of three types of traffic signs in the CCTSDB2021 dataset.

Prohibitory Warning Mandatory

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

Start

CCTSDB2021
DataSet

Data Preprocessing

Loss
Convergence?

End

Training Dataset
Loading

Anchor boxes Setting

Parameters Setting

Network
Initialization

Model Training

TSR-YOLO model
weights

Input image or video

Model Loading

Prediction

NMS

Output

Yes

No

Figure 10. The traffic detection process based on TSR-YOLO.

4. Experimental Section
4.1. Dataset

In the current research on traffic sign detection and recognition, the algorithm per-
formance was primarily evaluated using well-known public transportation sign datasets,
such as the GTSDB (German Traffic Sign Detection Benchmark), the BTSD (Belgian Traffic
Sign Dataset), and the STSD (Swedish Traffic Sign Dataset) [41]. The aforementioned da-
tasets are limited to European traffic signs, the samples are gathered primarily under op-
timal lighting settings, and there are substantial discrepancies between Chinese and Eu-
ropean traffic signs [42]. We used the CCTSDB2021 dataset, which was composed of 423
films from traffic recorders at varied times, locations, and weather conditions, to accom-
plish real-time detection of Chinese traffic signs in difficult circumstances. The dataset
included street traffic scenes, high-speed traffic scenes, rain traffic scenes, evening traffic
scenes, and backlight traffic scenes. The diversity and coverage of the dataset were well-
ensured, which was more compatible with the task of Chinese traffic sign detection under
complex scenarios.

According to Table 1, the traffic signs in the CCTSDB2021 dataset were divided into
three categories based on their respective meanings: prohibitive signs, warning signs, and
mandatory signs. The prohibitive signs had a white background, a red circle, a red bar,
and a black pattern, and their shapes were a circle, octagon, or equilateral triangle with
the top angle pointing downward. The warning signs had a yellow background, a black
border, and a black pattern, and their shape was an equilateral triangle with the top angle
pointing upward. The mandatory signs had a blue background and a white pattern, and
their bodies were composed of a circle, a rectangle, or a square. The training set for this
dataset had 16,356 images, with 13,876 prohibitive signs, 4598 warning signs, and 8363
mandatory signs. This dataset’s test set was composed of 1500 images, and the entire test
set had 3228 traffic signs. In a ratio of 9:1, the training set was divided into a training set
and a validation set.

Table 1. Selected examples of three types of traffic signs in the CCTSDB2021 dataset.

Prohibitory Warning Mandatory

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

Start

CCTSDB2021
DataSet

Data Preprocessing

Loss
Convergence?

End

Training Dataset
Loading

Anchor boxes Setting

Parameters Setting

Network
Initialization

Model Training

TSR-YOLO model
weights

Input image or video

Model Loading

Prediction

NMS

Output

Yes

No

Figure 10. The traffic detection process based on TSR-YOLO.

4. Experimental Section
4.1. Dataset

In the current research on traffic sign detection and recognition, the algorithm per-
formance was primarily evaluated using well-known public transportation sign datasets,
such as the GTSDB (German Traffic Sign Detection Benchmark), the BTSD (Belgian Traffic
Sign Dataset), and the STSD (Swedish Traffic Sign Dataset) [41]. The aforementioned da-
tasets are limited to European traffic signs, the samples are gathered primarily under op-
timal lighting settings, and there are substantial discrepancies between Chinese and Eu-
ropean traffic signs [42]. We used the CCTSDB2021 dataset, which was composed of 423
films from traffic recorders at varied times, locations, and weather conditions, to accom-
plish real-time detection of Chinese traffic signs in difficult circumstances. The dataset
included street traffic scenes, high-speed traffic scenes, rain traffic scenes, evening traffic
scenes, and backlight traffic scenes. The diversity and coverage of the dataset were well-
ensured, which was more compatible with the task of Chinese traffic sign detection under
complex scenarios.

According to Table 1, the traffic signs in the CCTSDB2021 dataset were divided into
three categories based on their respective meanings: prohibitive signs, warning signs, and
mandatory signs. The prohibitive signs had a white background, a red circle, a red bar,
and a black pattern, and their shapes were a circle, octagon, or equilateral triangle with
the top angle pointing downward. The warning signs had a yellow background, a black
border, and a black pattern, and their shape was an equilateral triangle with the top angle
pointing upward. The mandatory signs had a blue background and a white pattern, and
their bodies were composed of a circle, a rectangle, or a square. The training set for this
dataset had 16,356 images, with 13,876 prohibitive signs, 4598 warning signs, and 8363
mandatory signs. This dataset’s test set was composed of 1500 images, and the entire test
set had 3228 traffic signs. In a ratio of 9:1, the training set was divided into a training set
and a validation set.

Table 1. Selected examples of three types of traffic signs in the CCTSDB2021 dataset.

Prohibitory Warning Mandatory

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

Start

CCTSDB2021
DataSet

Data Preprocessing

Loss
Convergence?

End

Training Dataset
Loading

Anchor boxes Setting

Parameters Setting

Network
Initialization

Model Training

TSR-YOLO model
weights

Input image or video

Model Loading

Prediction

NMS

Output

Yes

No

Figure 10. The traffic detection process based on TSR-YOLO.

4. Experimental Section
4.1. Dataset

In the current research on traffic sign detection and recognition, the algorithm per-
formance was primarily evaluated using well-known public transportation sign datasets,
such as the GTSDB (German Traffic Sign Detection Benchmark), the BTSD (Belgian Traffic
Sign Dataset), and the STSD (Swedish Traffic Sign Dataset) [41]. The aforementioned da-
tasets are limited to European traffic signs, the samples are gathered primarily under op-
timal lighting settings, and there are substantial discrepancies between Chinese and Eu-
ropean traffic signs [42]. We used the CCTSDB2021 dataset, which was composed of 423
films from traffic recorders at varied times, locations, and weather conditions, to accom-
plish real-time detection of Chinese traffic signs in difficult circumstances. The dataset
included street traffic scenes, high-speed traffic scenes, rain traffic scenes, evening traffic
scenes, and backlight traffic scenes. The diversity and coverage of the dataset were well-
ensured, which was more compatible with the task of Chinese traffic sign detection under
complex scenarios.

According to Table 1, the traffic signs in the CCTSDB2021 dataset were divided into
three categories based on their respective meanings: prohibitive signs, warning signs, and
mandatory signs. The prohibitive signs had a white background, a red circle, a red bar,
and a black pattern, and their shapes were a circle, octagon, or equilateral triangle with
the top angle pointing downward. The warning signs had a yellow background, a black
border, and a black pattern, and their shape was an equilateral triangle with the top angle
pointing upward. The mandatory signs had a blue background and a white pattern, and
their bodies were composed of a circle, a rectangle, or a square. The training set for this
dataset had 16,356 images, with 13,876 prohibitive signs, 4598 warning signs, and 8363
mandatory signs. This dataset’s test set was composed of 1500 images, and the entire test
set had 3228 traffic signs. In a ratio of 9:1, the training set was divided into a training set
and a validation set.

Table 1. Selected examples of three types of traffic signs in the CCTSDB2021 dataset.

Prohibitory Warning Mandatory

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

4.2. Experiment Configuration
In this study, we built neural networks with the Pytorch deep-learning framework

and trained them on a GPU server using the parameters in Table 2 for the experimental
environment.

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration
Operating system Windows11

CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradi-
ent descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR.
The TSR-YOLO model was updated and optimized to obtain the optimal model after sev-
eral stable iterations of learning on the training set images. The main parameter settings
for model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value
epoch 500

batch size 16
initial learning rate 0.001

momentum 0.937
weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics
Multiple evaluation criteria were employed to analyze the proposed modified

Yolov4-tiny model from diverse angles in order to evaluate the detection performance of
the algorithm in complex road scenarios more objectively. In this work, precision (P), re-
call (R), mean average precision (𝑚𝐴𝑃), F-1 score, and frames per second (FPS) were uti-
lized to evaluate the performance of the algorithm. FPS denoted the number of images
processed per second in the evaluation metrics. While true positives (𝑇𝑃s) indicated that

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

4.2. Experiment Configuration
In this study, we built neural networks with the Pytorch deep-learning framework

and trained them on a GPU server using the parameters in Table 2 for the experimental
environment.

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration
Operating system Windows11

CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradi-
ent descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR.
The TSR-YOLO model was updated and optimized to obtain the optimal model after sev-
eral stable iterations of learning on the training set images. The main parameter settings
for model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value
epoch 500

batch size 16
initial learning rate 0.001

momentum 0.937
weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics
Multiple evaluation criteria were employed to analyze the proposed modified

Yolov4-tiny model from diverse angles in order to evaluate the detection performance of
the algorithm in complex road scenarios more objectively. In this work, precision (P), re-
call (R), mean average precision (𝑚𝐴𝑃), F-1 score, and frames per second (FPS) were uti-
lized to evaluate the performance of the algorithm. FPS denoted the number of images
processed per second in the evaluation metrics. While true positives (𝑇𝑃s) indicated that

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

4.2. Experiment Configuration
In this study, we built neural networks with the Pytorch deep-learning framework

and trained them on a GPU server using the parameters in Table 2 for the experimental
environment.

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration
Operating system Windows11

CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradi-
ent descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR.
The TSR-YOLO model was updated and optimized to obtain the optimal model after sev-
eral stable iterations of learning on the training set images. The main parameter settings
for model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value
epoch 500

batch size 16
initial learning rate 0.001

momentum 0.937
weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics
Multiple evaluation criteria were employed to analyze the proposed modified

Yolov4-tiny model from diverse angles in order to evaluate the detection performance of
the algorithm in complex road scenarios more objectively. In this work, precision (P), re-
call (R), mean average precision (𝑚𝐴𝑃), F-1 score, and frames per second (FPS) were uti-
lized to evaluate the performance of the algorithm. FPS denoted the number of images
processed per second in the evaluation metrics. While true positives (𝑇𝑃s) indicated that

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

4.2. Experiment Configuration
In this study, we built neural networks with the Pytorch deep-learning framework

and trained them on a GPU server using the parameters in Table 2 for the experimental
environment.

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration
Operating system Windows11

CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradi-
ent descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR.
The TSR-YOLO model was updated and optimized to obtain the optimal model after sev-
eral stable iterations of learning on the training set images. The main parameter settings
for model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value
epoch 500

batch size 16
initial learning rate 0.001

momentum 0.937
weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics
Multiple evaluation criteria were employed to analyze the proposed modified

Yolov4-tiny model from diverse angles in order to evaluate the detection performance of
the algorithm in complex road scenarios more objectively. In this work, precision (P), re-
call (R), mean average precision (𝑚𝐴𝑃), F-1 score, and frames per second (FPS) were uti-
lized to evaluate the performance of the algorithm. FPS denoted the number of images
processed per second in the evaluation metrics. While true positives (𝑇𝑃s) indicated that

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

4.2. Experiment Configuration
In this study, we built neural networks with the Pytorch deep-learning framework

and trained them on a GPU server using the parameters in Table 2 for the experimental
environment.

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration
Operating system Windows11

CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradi-
ent descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR.
The TSR-YOLO model was updated and optimized to obtain the optimal model after sev-
eral stable iterations of learning on the training set images. The main parameter settings
for model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value
epoch 500

batch size 16
initial learning rate 0.001

momentum 0.937
weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics
Multiple evaluation criteria were employed to analyze the proposed modified

Yolov4-tiny model from diverse angles in order to evaluate the detection performance of
the algorithm in complex road scenarios more objectively. In this work, precision (P), re-
call (R), mean average precision (𝑚𝐴𝑃), F-1 score, and frames per second (FPS) were uti-
lized to evaluate the performance of the algorithm. FPS denoted the number of images
processed per second in the evaluation metrics. While true positives (𝑇𝑃s) indicated that

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

4.2. Experiment Configuration
In this study, we built neural networks with the Pytorch deep-learning framework

and trained them on a GPU server using the parameters in Table 2 for the experimental
environment.

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration
Operating system Windows11

CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradi-
ent descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR.
The TSR-YOLO model was updated and optimized to obtain the optimal model after sev-
eral stable iterations of learning on the training set images. The main parameter settings
for model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value
epoch 500

batch size 16
initial learning rate 0.001

momentum 0.937
weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics
Multiple evaluation criteria were employed to analyze the proposed modified

Yolov4-tiny model from diverse angles in order to evaluate the detection performance of
the algorithm in complex road scenarios more objectively. In this work, precision (P), re-
call (R), mean average precision (𝑚𝐴𝑃), F-1 score, and frames per second (FPS) were uti-
lized to evaluate the performance of the algorithm. FPS denoted the number of images
processed per second in the evaluation metrics. While true positives (𝑇𝑃s) indicated that

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

4.2. Experiment Configuration
In this study, we built neural networks with the Pytorch deep-learning framework

and trained them on a GPU server using the parameters in Table 2 for the experimental
environment.

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration
Operating system Windows11

CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradi-
ent descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR.
The TSR-YOLO model was updated and optimized to obtain the optimal model after sev-
eral stable iterations of learning on the training set images. The main parameter settings
for model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value
epoch 500

batch size 16
initial learning rate 0.001

momentum 0.937
weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics
Multiple evaluation criteria were employed to analyze the proposed modified

Yolov4-tiny model from diverse angles in order to evaluate the detection performance of
the algorithm in complex road scenarios more objectively. In this work, precision (P), re-
call (R), mean average precision (𝑚𝐴𝑃), F-1 score, and frames per second (FPS) were uti-
lized to evaluate the performance of the algorithm. FPS denoted the number of images
processed per second in the evaluation metrics. While true positives (𝑇𝑃s) indicated that

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

4.2. Experiment Configuration
In this study, we built neural networks with the Pytorch deep-learning framework

and trained them on a GPU server using the parameters in Table 2 for the experimental
environment.

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration
Operating system Windows11

CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradi-
ent descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR.
The TSR-YOLO model was updated and optimized to obtain the optimal model after sev-
eral stable iterations of learning on the training set images. The main parameter settings
for model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value
epoch 500

batch size 16
initial learning rate 0.001

momentum 0.937
weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics
Multiple evaluation criteria were employed to analyze the proposed modified

Yolov4-tiny model from diverse angles in order to evaluate the detection performance of
the algorithm in complex road scenarios more objectively. In this work, precision (P), re-
call (R), mean average precision (𝑚𝐴𝑃), F-1 score, and frames per second (FPS) were uti-
lized to evaluate the performance of the algorithm. FPS denoted the number of images
processed per second in the evaluation metrics. While true positives (𝑇𝑃s) indicated that

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

4.2. Experiment Configuration
In this study, we built neural networks with the Pytorch deep-learning framework

and trained them on a GPU server using the parameters in Table 2 for the experimental
environment.

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration
Operating system Windows11

CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradi-
ent descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR.
The TSR-YOLO model was updated and optimized to obtain the optimal model after sev-
eral stable iterations of learning on the training set images. The main parameter settings
for model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value
epoch 500

batch size 16
initial learning rate 0.001

momentum 0.937
weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics
Multiple evaluation criteria were employed to analyze the proposed modified

Yolov4-tiny model from diverse angles in order to evaluate the detection performance of
the algorithm in complex road scenarios more objectively. In this work, precision (P), re-
call (R), mean average precision (𝑚𝐴𝑃), F-1 score, and frames per second (FPS) were uti-
lized to evaluate the performance of the algorithm. FPS denoted the number of images
processed per second in the evaluation metrics. While true positives (𝑇𝑃s) indicated that

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

4.2. Experiment Configuration
In this study, we built neural networks with the Pytorch deep-learning framework

and trained them on a GPU server using the parameters in Table 2 for the experimental
environment.

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration
Operating system Windows11

CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradi-
ent descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR.
The TSR-YOLO model was updated and optimized to obtain the optimal model after sev-
eral stable iterations of learning on the training set images. The main parameter settings
for model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value
epoch 500

batch size 16
initial learning rate 0.001

momentum 0.937
weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics
Multiple evaluation criteria were employed to analyze the proposed modified

Yolov4-tiny model from diverse angles in order to evaluate the detection performance of
the algorithm in complex road scenarios more objectively. In this work, precision (P), re-
call (R), mean average precision (𝑚𝐴𝑃), F-1 score, and frames per second (FPS) were uti-
lized to evaluate the performance of the algorithm. FPS denoted the number of images
processed per second in the evaluation metrics. While true positives (𝑇𝑃s) indicated that

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

4.2. Experiment Configuration
In this study, we built neural networks with the Pytorch deep-learning framework

and trained them on a GPU server using the parameters in Table 2 for the experimental
environment.

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration
Operating system Windows11

CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradi-
ent descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR.
The TSR-YOLO model was updated and optimized to obtain the optimal model after sev-
eral stable iterations of learning on the training set images. The main parameter settings
for model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value
epoch 500

batch size 16
initial learning rate 0.001

momentum 0.937
weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics
Multiple evaluation criteria were employed to analyze the proposed modified

Yolov4-tiny model from diverse angles in order to evaluate the detection performance of
the algorithm in complex road scenarios more objectively. In this work, precision (P), re-
call (R), mean average precision (𝑚𝐴𝑃), F-1 score, and frames per second (FPS) were uti-
lized to evaluate the performance of the algorithm. FPS denoted the number of images
processed per second in the evaluation metrics. While true positives (𝑇𝑃s) indicated that

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

4.2. Experiment Configuration
In this study, we built neural networks with the Pytorch deep-learning framework

and trained them on a GPU server using the parameters in Table 2 for the experimental
environment.

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration
Operating system Windows11

CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradi-
ent descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR.
The TSR-YOLO model was updated and optimized to obtain the optimal model after sev-
eral stable iterations of learning on the training set images. The main parameter settings
for model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value
epoch 500

batch size 16
initial learning rate 0.001

momentum 0.937
weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics
Multiple evaluation criteria were employed to analyze the proposed modified

Yolov4-tiny model from diverse angles in order to evaluate the detection performance of
the algorithm in complex road scenarios more objectively. In this work, precision (P), re-
call (R), mean average precision (𝑚𝐴𝑃), F-1 score, and frames per second (FPS) were uti-
lized to evaluate the performance of the algorithm. FPS denoted the number of images
processed per second in the evaluation metrics. While true positives (𝑇𝑃s) indicated that

4.2. Experiment Configuration

In this study, we built neural networks with the Pytorch deep-learning framework and
trained them on a GPU server using the parameters in Table 2 for the experimental environment.

Sensors 2023, 23, 749 14 of 23

Table 2. Experimental environmental parameters.

Experimental Environment Environment Configuration

Operating system Windows11
CPU Intel(R) Core (TM) i7-10750 H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060

Programming language Python 3.10
Deep-learning framework Pytorch 1.12

Acceleration platform CUDA11.3;cuDNN8.2

When training the network model in the above experimental setting, no pretrained
model was used. The input image size of the network was set to 416 × 416, and the weight
parameters of the convolutional neural network were optimized using a stochastic gradient
descent (SGD) optimizer. The learning rate was adjusted using cosine annealing LR. The
TSR-YOLO model was updated and optimized to obtain the optimal model after several
stable iterations of learning on the training set images. The main parameter settings for
model training are shown in Table 3.

Table 3. Experimental parameters of network training.

Attribute Value

epoch 500
batch size 16

initial learning rate 0.001
momentum 0.937

weight_decay 0.0005
input shape (416, 416)

mosaic true
mixup true

lr_decay_type cos

4.3. Evaluation Metrics

Multiple evaluation criteria were employed to analyze the proposed modified Yolov4-
tiny model from diverse angles in order to evaluate the detection performance of the
algorithm in complex road scenarios more objectively. In this work, precision (P), recall
(R), mean average precision (mAP), F-1 score, and frames per second (FPS) were utilized to
evaluate the performance of the algorithm. FPS denoted the number of images processed
per second in the evaluation metrics. While true positives (TPs) indicated that the meaning
of the identified traffic signs matched their actual meaning, false positives (FPs) occurred
when traffic signs were identified, but the results of the detection contradicted the actual
meaning of the signs. False negatives (FNs) were missed traffic signs by the model, P(R)
was a function with R as a parameter, and “classes” was the number of classes in the dataset.
Average precision (AP) was the average accuracy of a single category’s detection result. It
showed how well the model worked at detecting the category’s target. The mAP metric is
often used to measure the accuracy of multicategory target detection. It was the average of
the AP values of all the categories in the dataset and is one of the most important metrics
for measuring how well target detection works. As a result, the metrics could be calculated
using the equations below.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

AP =
∫ 1

0
P(R)d(R) (10)

Sensors 2023, 23, 749 15 of 23

mAP =
1

classes

classes

∑
i=1

∫ 1

0
P(R)d(R) (11)

F− 1Score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(12)

4.4. Experimental Results and Analyses
4.4.1. Evaluation Results

Using the CCTSDB2021 public dataset, the TSR-YOLO method was evaluated and
compared to the original YOLOv4-tiny algorithm to produce more intuitive results. Table 4
displays the experimental detection results, as well as the evaluation metrics of AP, preci-
sion, recall, F-1 score, and mAP for each category in the dataset.

Table 4. Performance of the improved YOLOv4-tiny ablation results for the CCTSDB2021 dataset.

Network Class
Evaluation Indicator

AP (%) Precision (%) Recall (%) F-1 Score (%) mAP (%)

YOLOv4-tiny
prohibitory 81.05

91.60 78.13 84.33 84.49warning 84.56
mandatory 87.86

Proposed
prohibitory 92.51

96.62 79.73 87.37 92.72warning 93.54
mandatory 92.11

The mAP value of the TSR-YOLO algorithm for the CCTSDB2021 dataset was 8.23%
higher than that of the original YOLOV4-tiny algorithm, as shown in Table 4, indicating
that the algorithm proposed in this study had a high detection accuracy. Meanwhile, the
F-1 score, recall, and precision of the TSR-YOLO algorithm were 3.04%, 1.60%, and 5.02%
higher than those of YOLOV4-tiny, respectively. In addition, for the AP values of each class
of the dataset, the AP values of the proposed algorithm for the prohibitive traffic sign class,
the warning traffic sign class, and the mandatory traffic sign class were 92.51%, 93.54%,
and 92.11%, respectively, which were improved by 11.46%, 8.98%, and 4.25%, respectively,
compared with the original algorithm. The detection accuracy of the algorithm for each
traffic sign class was improved to varying degrees, especially the detection accuracy of
prohibitive traffic signs, which was greatly enhanced. To further compare the AP values in
more detail, the PR curves for each category of these two algorithms are shown separately
in Figure 11. The AP value for each category of traffic signs was the region contained by
the PR curve and the coordinate axes. The AP value was higher and the performance was
improved when the area that the angle and coordinate axes covered was larger. The figure
also demonstrates that the TSR-YOLO model achieved a high detection performance in all
three traffic sign categories, with considerable improvements in each category compared to
YOLOv4-tiny, indicating that it was more capable of accurately identifying traffic signs in
difficult settings.

In order to evaluate the efficacy of the proposed algorithm, a relevant test was con-
ducted in a natural scene using an in-car camera by selecting a video containing traffic
signs for frame extraction and processing, processing the video into multiple images, and
evaluating the processed images with the algorithm. Red identification boxes indicate
prohibitive traffic signs, blue identification boxes represent mandatory traffic signs, and
green identification boxes represent warning traffic signs in Figures 12 and 13.

Sensors 2023, 23, 749 16 of 23

Sensors 2023, 23, x FOR PEER REVIEW 16 of 24

values in more detail, the PR curves for each category of these two algorithms are shown
separately in Figure 11. The AP value for each category of traffic signs was the region
contained by the PR curve and the coordinate axes. The AP value was higher and the
performance was improved when the area that the angle and coordinate axes covered was
larger. The figure also demonstrates that the TSR-YOLO model achieved a high detection
performance in all three traffic sign categories, with considerable improvements in each
category compared to YOLOv4-tiny, indicating that it was more capable of accurately
identifying traffic signs in difficult settings.

(a1) (b1)

(a2) (b2)

(a3) (b3)

Figure 11. Comparison of PR curves for different categories, where (a1–a3) are the PR curves for
each type obtained by the YOLOv4-tiny algorithm, and (b1–b3) are the PR curves for each type
accepted by the TSR-YOLO model.

Figure 11. Comparison of PR curves for different categories, where (a1–a3) are the PR curves for each
type obtained by the YOLOv4-tiny algorithm, and (b1–b3) are the PR curves for each type accepted
by the TSR-YOLO model.

These test images were captured on urban roads, as shown above, and were consistent
with detecting traffic signs in complex scenarios. The detection precision of the algorithm
described in this study was extremely high, and it achieved wide adoption.

These test images were captured on the highway, as shown above, and the improved
YOLOv4-tiny algorithm achieved full recognition with a very high detection accuracy.

In conclusion, the method presented in this work could detect traffic signs in compli-
cated environments.

Sensors 2023, 23, 749 17 of 23

Sensors 2023, 23, x FOR PEER REVIEW 17 of 24

In order to evaluate the efficacy of the proposed algorithm, a relevant test was con-
ducted in a natural scene using an in-car camera by selecting a video containing traffic
signs for frame extraction and processing, processing the video into multiple images, and
evaluating the processed images with the algorithm. Red identification boxes indicate pro-
hibitive traffic signs, blue identification boxes represent mandatory traffic signs, and
green identification boxes represent warning traffic signs in Figures 12 and 13.

Figure 12. Urban road test results.

Figure 13. Highway test results.

These test images were captured on urban roads, as shown above, and were con-
sistent with detecting traffic signs in complex scenarios. The detection precision of the
algorithm described in this study was extremely high, and it achieved wide adoption.

These test images were captured on the highway, as shown above, and the improved
YOLOv4-tiny algorithm achieved full recognition with a very high detection accuracy.

In conclusion, the method presented in this work could detect traffic signs in compli-
cated environments.

4.4.2. Performance Comparison
The algorithm described in this study was thoroughly validated by comparing it to

advanced traffic-sign-detecting methods using the CCTSDB2021 dataset. Multiple

Figure 12. Urban road test results.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 24

In order to evaluate the efficacy of the proposed algorithm, a relevant test was con-
ducted in a natural scene using an in-car camera by selecting a video containing traffic
signs for frame extraction and processing, processing the video into multiple images, and
evaluating the processed images with the algorithm. Red identification boxes indicate pro-
hibitive traffic signs, blue identification boxes represent mandatory traffic signs, and
green identification boxes represent warning traffic signs in Figures 12 and 13.

Figure 12. Urban road test results.

Figure 13. Highway test results.

These test images were captured on urban roads, as shown above, and were con-
sistent with detecting traffic signs in complex scenarios. The detection precision of the
algorithm described in this study was extremely high, and it achieved wide adoption.

These test images were captured on the highway, as shown above, and the improved
YOLOv4-tiny algorithm achieved full recognition with a very high detection accuracy.

In conclusion, the method presented in this work could detect traffic signs in compli-
cated environments.

4.4.2. Performance Comparison
The algorithm described in this study was thoroughly validated by comparing it to

advanced traffic-sign-detecting methods using the CCTSDB2021 dataset. Multiple

Figure 13. Highway test results.

4.4.2. Performance Comparison

The algorithm described in this study was thoroughly validated by comparing it
to advanced traffic-sign-detecting methods using the CCTSDB2021 dataset. Multiple
evaluation criteria were used in this experiment to perform a quantitative, all-around
evaluation from many different points of view. The results of the comparison are shown in
Table 5.

The results of the detection are shown in Table 5. First, Faster R-CNN is a two-stage
detection model that is relatively new. The algorithm had a high detection accuracy and
could detect traffic signs with precision, but its model was relatively vast and its detection
speed was relatively slow. The YOLOv3, SSD, and YOLOv4 algorithms were the most
representative one-stage model algorithms. Chen et al. proposed a more advanced T-YOLO
based on Yolov3, and from the table, we can see that the mAP value of this algorithm
reached up to 97.30%, but the FPS value of this algorithm was only 19.30. Shan et al.
changed an SSD model to further improve the algorithm’s detection. Ren et al. combined a
classical MobileNetv2 network with an SSD algorithm, which significantly improved the
detection accuracy and speed, and the mAP value of YOLOv4 reached 95.8%; the size of

Sensors 2023, 23, 749 18 of 23

this model was 243.94 MB. It can be concluded that the detection accuracies of these models
were relatively high. Nevertheless, the models were typically very large, and the detection
speeds were slow, making them unsuitable for edge devices on smart automobiles in
complicated scenarios for real-time detection. Yolov4-tiny is a great, light-weight detection
model, and the speed of detection and the size of the model were better-suited for real-time
detection on edge devices. However, this technique had low detection accuracy. TSR-
YOLO combined several optimization modules and improved the YOLOv4-tiny algorithm
in terms of detecting traffic signs. In conclusion, the algorithm described in this research
surpassed prior algorithms by balancing detection accuracy, detection speed, and model
size and could better match the requirements of intelligent vehicle-sensing systems for the
real-time detection of complicated road environments.

Table 5. Detection results of different networks for CCTSDB dataset.

Model
Evaluation Indicator

P/% R/% mAP@0.5/% Speed (fps) Size (MB)

Shan et al. [31] - - 85.00 - -

Chen et al. [32] 91.30 - 97.30 19.30 -

Ren et al. [43] - - 93.20 45.00 -

YOLOv4 [44] 88.10 92.80 95.80 - 243.94

Faster R-CNN [44] 91.60 90.70 93.50 21.70 -

YOLOv4-tiny 91.60 78.13 84.49 112.69 23.40

Ours 96.62 79.73 92.72 80.55 41.37

The TSR-YOLO algorithm was tested with YOLOv4-tiny in four complex environ-
ments selected from the CCTSDB2021 dataset, including a well-lit environment, a night
environment, a rainy environment, and a snowy environment. The test results are depicted
in Figures 14–17, where “prohibitory” represents prohibitive traffic signs, “warning” repre-
sents warning traffic signs, and “mandatory” represents mandatory traffic signs. (a) and (c)
represent the detection results of TSR-YOLO, whereas (b) and (d) represent the detection
results of YOLOv4-tiny. Figure 14 shows that the method described in this paper worked
well in places where there was enough light. In the first figure, the TSR-YOLO algorithm’s
detection accuracy for prohibitive traffic signs was 100% and 58%, while YOLOv4-tiny’s
detection accuracy was 98% and one of the traffic signs was not detected. The algorithm
shown in this study was 14% more accurate than YOLOv4-tiny’s detection accuracy, and the
improvement was observable. The second figure shows that the TSR-YOLO algorithm and
YOLOv4-tiny algorithm detected 100% of the warning traffic signs, but the YOLOv4-tiny
algorithm incorrectly identified the background as a traffic sign. The algorithm in this
work had more advantages in an environment with ideal lighting conditions. In a night
environment, the detection results are shown in Figure 15.

As shown above, the TSR-YOLO algorithm had a higher detection accuracy in the
nighttime scenario than the YOLOv4-tiny method. However, the detection results of the
two methods did not differ much, with an error rate of less than 3%. Figure 16 displays the
results for detection on rainy days.

Compared to the YOLOv4-tiny method, the detection results of the TSR-YOLO algo-
rithm in rainy conditions were increased by around 7%, which considerably enhanced the
detection accuracy. From the first image, the algorithm in this paper had more accurate
target localization than YOLOv4-tiny in rainy environments. Detection results in a snowy
climate are shown in Figure 17.

Sensors 2023, 23, 749 19 of 23Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

(a) (b)

(c) (d)

Figure 14. Comparison results of different algorithms in excellent lighting conditions, where (a,c)
are the results of TSR-YOLO, (b,d) are the results of YOLOv4-tiny.

(a) (b)

(c) (d)

Figure 15. Comparison results of different algorithms in a night scenario, where (a,c) are the re-
sults of TSR-YOLO, (b,d) are the results of YOLOv4-tiny.

Figure 14. Comparison results of different algorithms in excellent lighting conditions, where (a,c) are
the results of TSR-YOLO, (b,d) are the results of YOLOv4-tiny.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

(a) (b)

(c) (d)

Figure 14. Comparison results of different algorithms in excellent lighting conditions, where (a,c)
are the results of TSR-YOLO, (b,d) are the results of YOLOv4-tiny.

(a) (b)

(c) (d)

Figure 15. Comparison results of different algorithms in a night scenario, where (a,c) are the re-
sults of TSR-YOLO, (b,d) are the results of YOLOv4-tiny.
Figure 15. Comparison results of different algorithms in a night scenario, where (a,c) are the results
of TSR-YOLO, (b,d) are the results of YOLOv4-tiny.

Sensors 2023, 23, 749 20 of 23
Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

(a) (b)

(c) (d)

Figure 16. Comparison results of different algorithms in rainy weather, where (a,c) are the results
of TSR-YOLO, (b,d) are the results of YOLOv4-tiny.

(a) (b)

(c) (d)

Figure 16. Comparison results of different algorithms in rainy weather, where (a,c) are the results of
TSR-YOLO, (b,d) are the results of YOLOv4-tiny.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

(a) (b)

(c) (d)

Figure 16. Comparison results of different algorithms in rainy weather, where (a,c) are the results
of TSR-YOLO, (b,d) are the results of YOLOv4-tiny.

(a) (b)

(c) (d)

Figure 17. Comparison results of different algorithms in snowy weather, where (a,c) are the results of
TSR-YOLO, (b,d) are the results of YOLOv4-tiny.

Sensors 2023, 23, 749 21 of 23

The detection results of the TSR-YOLO algorithm differed greatly from those of the
YOLOv4-tiny method, as depicted in the images above. The YOLOv4-tiny algorithm had a
scenario of leakage detection with a relatively low detection rate. The technique presented
in this research improved the detection accuracy by approximately 20% compared to the
YOLOv4-tiny algorithm, and there was no leakage detection, which improved the accuracy
of traffic sign detection. In a snowy environment, the TSR-YOLO algorithm outperformed
the YOLOv4-tiny method.

The above results demonstrate that TSR-YOLO had a significant effect on detection
accuracy in normal lighting conditions, increasing it by 14%. In a snowy environment,
the effect of the 20% boost was astounding. Even though TSR-YOLO did not improve
the detection effect as dramatically as on sunny days and in snowy environments, it still
improves the detection effect by 7% on rainy days. Due to noises such as rain, the detection
results showed that TSR-YOLO could find traffic signs more accurately than the original
algorithm. This shows that the algorithm was more robust. In a dark environment, the
majority of the image backgrounds were black, background interference was minimal,
and due to the effect of light, the traffic signs were clearer and easier to detect. Thus,
the detection accuracies of TSR-YOLO and YOLOv4-tiny were nearly equivalent, and the
rate of accuracy for each was close to 100%. In conclusion, the improved network was
more adaptable to a complex natural environment and had improved localization and
recognition accuracy.

5. Discussion

Compared to the YOLOv4-tiny algorithm, the TSR-YOLO algorithm significantly
improved the detection accuracy for Chinese traffic sign recognition in complex scenarios,
but the improved method still had limitations. First, TSR-YOLO could only roughly
recognize traffic signs in three categories—warning, prohibitive, and mandatory—without
fine-grained division, which was insufficient for scenarios requiring more precise traffic
sign detection results. Second, this study only performed tests in four situations: a well-lit
environment, a night environment, a rainy environment, and a snowy environment. It
did not take into account all natural situations, such as other extreme weather conditions
and conditions where traffic signs are blocked, faded, or broken. For future research,
we plan to optimize the TSR-YOLO model to make it suitable for environments with
greater complexity.

6. Conclusions

An enhanced traffic sign detection algorithm based on YOLOv4-tiny was proposed to
address the issue of the low accuracy of current lightweight networks at detecting traffic
signs in complex circumstances. Some improvement strategies were offered based on
YOLOv4-tiny. The k-means++ clustering technique first built suitable anchor boxes for
a traffic sign dataset. A BECA module was then implemented to improve the model’s
ability to extract essential feature information in response to the fact that the extracted
characteristics of the backbone network were mostly concentrated on a CSP module. In
addition, a dense SPP module was added to the upgraded feature extraction network so
that the convolutional neural network could fuse local and global features more effectively.
Lastly, a Yolo detecting layer was added to more precisely detect and localize small targets
at a great distance in a complicated environment, hence enhancing the algorithm’s detection
performance and achieving improved detection results. The experiments showed that,
for the CCTSDB2021 dataset, the algorithm described in this paper was faster and more
accurate than both YOLOv4-tiny and other excellent models. Therefore, the suggested
network was more suited for real-time traffic sign detection on edge terminals deployed in
intelligent vehicle-driving systems.

Author Contributions: Writing—original draft preparation, W.S.; writing—review and editing, W.S.
and S.A.S. All authors have read and agreed to the published version of the manuscript.

Sensors 2023, 23, 749 22 of 23

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are openly available in
CCTSDB 2021 at https://doi.org/10.22967/HCIS.2022.12.023.

Acknowledgments: We would like to thank the anonymous reviewers for their helpful remarks.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Radu, M.D.; Costea, I.M.; Stan, V.A. Automatic Traffic Sign Recognition Artificial Intelligence—Deep Learning Algorithm. In

Proceedings of the 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Bucharest,
Romania, 25–27 June 2020; pp. 1–4.

2. Zhang, J.; Zou, X.; Kuang, L.-D.; Wang, J.; Sherratt, R.S.; Yu, X. CCTSDB 2021: A More Comprehensive Traffic Sign Detection
Benchmark. Hum. Cent. Comput. Inf. Sci. 2022, 12, 23.

3. Islam, K.T.; Wijewickrema, S.; Raj, R.G.; O’Leary, S. Street Sign Recognition Using Histogram of Oriented Gradi-ents and Artificial
Neural Networks. J. Imaging 2019, 5, 44. [CrossRef] [PubMed]

4. Pan, Y.; Kadappa, V.; Guggari, S. Chapter 15—Identification of Road Signs Using a Novel Convolutional Neural Network. In
Cognitive Informatics, Computer Modelling, and Cognitive Science; Sinha, G.R., Suri, J.S., Eds.; Academic Press: Cambridge, MA, USA,
2020; pp. 319–337. ISBN 978-0-12-819443-0.

5. Khan, M.N.; Das, A.; Ahmed, M.M.; Wulff, S.S. Multilevel Weather Detection Based on Images: A Machine Learning Approach
with Histogram of Oriented Gradient and Local Binary Pattern-Based Features. J. Intell. Transp. Syst. 2021, 25, 513–532. [CrossRef]

6. Hechri, A.; Mtibaa, A. Two-Stage Traffic Sign Detection and Recognition Based on SVM and Convolutional Neural Networks. IET
Image Process. 2020, 14, 939–946. [CrossRef]

7. Yu, Q.; Zhou, Y. Traffic Safety Analysis on Mixed Traffic Flows at Signalized Intersection Based on Haar-Adaboost Algorithm and
Machine Learning. Saf. Sci. 2019, 120, 248–253. [CrossRef]

8. Kuang, X.; Fu, W.; Yang, L. Real-Time Detection and Recognition of Road Traffic Signs Using MSER and Random Forests. Int. J.
Online Eng. 2018, 14, 34. [CrossRef]

9. Hu, C.; He, X. Traffic Sign Detection Based on MSERs and SVM. Comput. Sci. 2022, 49, 325–330.
10. Dai, X.; Yuan, X.; Le, G.; Zhang, L. Detection method of traffic signs based on color pair and MSER in the complex environment.

J. Beijing Jiaotong Univ. 2018, 42, 107–115. (In Chinese)
11. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
12. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28
June 2014; pp. 580–587.

13. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of
the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.

14. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Realtime Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

15. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In
Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2015; Volume 28.

16. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

17. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

18. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
19. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
20. Zhang, H.; Qin, L.; Li, J.; Guo, Y.; Zhou, Y.; Zhang, J.; Xu, Z. Real-Time Detection Method for Small Traffic Signs Based on Yolov3.

IEEE Access 2020, 8, 64145–64156. [CrossRef]
21. Zhang, J.; Xie, Z.; Sun, J.; Zou, X.; Wang, J. A cascaded R-CNN with multiscale attention and imbalanced samples for traffic sign

detection. IEEE Access 2020, 8, 29742–29754. [CrossRef]
22. Cui, L.; Lv, P.; Jiang, X.; Gao, Z.; Zhou, B.; Zhang, L.; Shao, L.; Xu, M. Context-Aware Block Net for Small Object Detection. IEEE

Trans. Cybern. 2020, 52, 2300–2313. [CrossRef]

https://doi.org/10.22967/HCIS.2022.12.023
http://doi.org/10.3390/jimaging5040044
http://www.ncbi.nlm.nih.gov/pubmed/34460482
http://doi.org/10.1080/15472450.2021.1944860
http://doi.org/10.1049/iet-ipr.2019.0634
http://doi.org/10.1016/j.ssci.2019.07.008
http://doi.org/10.3991/ijoe.v14i03.7925
http://doi.org/10.1145/3065386
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1109/ACCESS.2020.2984554
http://doi.org/10.1109/ACCESS.2020.2972338
http://doi.org/10.1109/TCYB.2020.3004636

Sensors 2023, 23, 749 23 of 23

23. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. Scaled-YOLOv4: Scaling Cross Stage Partial Network. In Proceedings of the
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021;
pp. 13029–13038.

24. Liu, C.; Li, S.; Chang, F.; Wang, Y. Machine Vision Based Traffic Sign Detection Methods: Review, Analyses and Perspectives.
IEEE Access 2019, 7, 86578–86596. [CrossRef]

25. Guofeng, T.; Huairong, C.; Yong, L.; Kai, Z. Traffic Sign Recognition Based on SVM and Convolutional Neural Network. In
Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20
June 2017; pp. 2066–2071.

26. Yucong, S.; Shuqing, G. Traffic Sign Recognition Based on HOG Feature Extraction. J. Meas. Eng. 2021, 9, 142–155. [CrossRef]
27. Madani, A.; Yusof, R. Traffic Sign Recognition Based on Color, Shape, and Pictogram Classification Using Sup-port Vector

Machines. Neural Comput. Appl. 2018, 30, 2807–2817. [CrossRef]
28. Wali, S.B.; Abdullah, M.A.; Hannan, M.A.; Hussain, A.; Samad, S.A.; Ker, P.J.; Mansor, M.B. Vision-Based Traffic Sign Detection

and Recognition Systems: Current Trends and Challenges. Sensors 2019, 19, 2093. [CrossRef]
29. Zuo, Z.; Yu, K.; Zhou, Q.; Wang, X.; Li, T. Traffic Signs Detection Based on Faster R-CNN. In Proceedings of the 2017 IEEE

37th International Conference on Distributed Computing Systems Workshops (ICDCSW), Atlanta, GA, USA, 5–8 June 2017; pp.
286–288.

30. Li, J.; Wang, Z. Real-Time Traffic Sign Recognition Based on Efficient CNNs in the Wild. IEEE Trans. Intell. Transp. Syst. 2019, 20,
975–984. [CrossRef]

31. Shan, H.; Zhu, W. A Small Traffic Sign Detection Algorithm Based on Modified SSD. IOP Conf. Ser. Mater. Sci. Eng. 2019, 646,
012006. [CrossRef]

32. Chen, C.; Wang, H.; Zhao, Y.; Wang, Y.; Li, L.; Li, K.; Zhang, T. A depth based traffic sign recognition algorithm. Telecommun.
Technol. 2021, 61, 76–82.

33. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

34. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks.
arXiv 2019, arXiv:1910.03151.

35. Chen, J. Design of Fruit and Vegetable Electronic Scale System BASED on Deep Learning; Southwest Jiaotong University: Chengdu,
China, 2021. [CrossRef]

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recogni-tion. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

37. Available online: https://github.com/ultralytics/yolov3 (accessed on 8 April 2018).
38. Sharma, D.K. Information Measure Computation and Its Impact in MI COCO Dataset. In Proceedings of the 2021 7th International

Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 19–20 March 2021; Volume 1,
pp. 1964–1969.

39. Satarkar, H.; Zagade, N.; Gupta, S.; Pundlik, S. Comparative Study between Segmentation Neural Networks on Pascal VOC
Dataset. Int. Res. J. Eng. Technol. 2021, 8, 5.

40. Sinaga, K.P.; Yang, M.-S. Unsupervised K-Means Clustering Algorithm. IEEE Access 2020, 8, 80716–80727. [CrossRef]
41. Mehta, S.; Paunwala, C.; Vaidya, B. CNN Based Traffic Sign Classification Using Adam Optimizer. In Proceedings of the 2019

International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1293–1298.
42. Liu, Z.; Qi, M.; Shen, C.; Fang, Y.; Zhao, X. Cascade Saccade Machine Learning Network with Hierarchical Classes for Traffic Sign

Detection. Sustain. Cities Soc. 2021, 67, 102700. [CrossRef]
43. Ren, K.; Huang, L.; Fan, C. Real-time Small Traffic Sign Detection Algorithm based on Multi-scale Pixel Feature Fusion. Signal

Process. 2020, 36, 1457–1463. [CrossRef]
44. Liu, Y.; Shi, G.; Li, Y.; Zhao, Z. M-YOLO: Traffic Sign Detection Algorithm Applicable to Complex Scenarios. Symmetry 2022,

14, 952. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2019.2924947
http://doi.org/10.21595/jme.2021.22022
http://doi.org/10.1007/s00521-017-2887-x
http://doi.org/10.3390/s19092093
http://doi.org/10.1109/TITS.2018.2843815
http://doi.org/10.1088/1757-899X/646/1/012006
http://doi.org/10.27414/d.cnki.gxnju.2021.002369
http://doi.org/10.1109/TPAMI.2015.2389824
https://github.com/ultralytics/yolov3
http://doi.org/10.1109/ACCESS.2020.2988796
http://doi.org/10.1016/j.scs.2020.102700
http://doi.org/10.16798/j.issn.1003-0530.2020.09.010
http://doi.org/10.3390/sym14050952

	Introduction
	Related Work
	The Proposed Method
	The Traffic Sign Recognition System
	The YOLOv4-Tiny Network
	The Proposed TSR-YOLO Algorithm
	The Improvement of CSPDarknet53-Tiny
	The Improvement of the Feature Pyramid and Detection Network

	Anchor Boxes Using K-Means++ Clustering
	Traffic Detection Using TSR-YOLO

	Experimental Section
	Dataset
	Experiment Configuration
	Evaluation Metrics
	Experimental Results and Analyses
	Evaluation Results
	Performance Comparison

	Discussion
	Conclusions
	References

