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Abstract The tsunami data assimilation method enables tsunami forecasting directly from observations,

without the need of estimating tsunami sources. However, it requires a dense observation network to

produce desirable results. Here we propose a modified method of tsunami data assimilation for regions with

a sparse observation network. The method utilizes interpolated waveforms at virtual stations. The tsunami

waveforms at the virtual stations between two existing observation stations are estimated by shifting

arrival times with the linear interpolation of observed arrival times and by correcting the amplitudes for

their water depths. In our new data assimilation approach, we employ the Optimal Interpolation algorithm

to both the real observations and virtual stations, in order to construct a complete wavefront of tsunami

propagation. The application to the 2004 Sumatra‐Andaman earthquake and the 2009 Dusky Sound, New

Zealand, earthquake reveals that addition of virtual stations greatly helps improve the tsunami

forecasting accuracy.

Plain Language Summary Data assimilation is a method to combine observation and numerical

simulation and is widely used in weather forecast. The data assimilation methods have been recently applied

for tsunami forecast in North America and Japan where dense observation networks exist. In this study,

we proposed a data assimilation method by introducing virtual observation data from neighboring real

observations. We applied the method for the Indian Ocean with the 2004 Sumatra‐Andaman earthquake

tsunami and offshore New Zealand with the 2009 Dusky Sound earthquake tsunami. We found that the

method greatly improved the forecasting accuracy and the method could be used for the regions with sparse

observation network.

1. Introduction

Tsunami early warning systems play an important role in mitigating the destructive consequences of tsuna-

mis. Various methods have been applied in the past for early tsunami warning, namely, the Method of

Splitting Tsunami model (Titov et al., 2005), tsunami Forecasting based on Inversion for initial sea‐

Surface Height (Tsushima et al., 2009), Near‐field Tsunami Inundation Forecasting (Gusman et al., 2014),

and Time Reverse Imaging (Hossen et al., 2015). One promising method that can be used for tsunami early

warning is the tsunami data assimilation first introduced by Maeda et al. (2015). It forecasts the tsunami

heights and arrival times at nearshore points directly from the offshore observations, without the need of

considering the earthquake source parameters such as strike, dip, and rake angles of the fault as well as slip

values and fault dimensions. This method has already been successfully applied to synthetic tsunamis

around Japan based on the Seafloor observation network for earthquakes and tsunamis along the Japan

Trench (Maeda et al., 2015) and the real tsunamis recorded by pressure gauges in the Cascadia subduction

zone (Gusman et al., 2016). Although a large computational load was an obstacle to apply this data assimila-

tion technique in real time, Wang et al. (2017) accelerated the forecasting process based on the data assim-

ilation by the introduction of Green's Function‐based Tsunami Data Assimilation (GFTDA). The forecasted

waveforms are superimposed by precalculated Green's functions, without the need of simulating tsunami

propagation during the assimilation process.
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The tsunami data assimilation method relies on a dense observation network, preferably located offshore in

deep ocean. Examples of offshore devices are Deep‐Ocean Assessment and Reporting of Tsunamis (DARTs;

Gonzalez et al., 2005; Rabinovich & Eblé, 2015) and Ocean Bottom Seismometer (OBS) Pressure Gauges

(Heidarzadeh & Gusman, 2018; Sheehan et al., 2015). Such offshore tsunami observation devices usually

require a large investment, and many regions with significant tsunami hazard may only afford a few

DARTs or OBSs rather than a dense network.

A typical example of a region with sparse offshore tsunami observations is the Indian Ocean, which suffered

from the 2004 Sumatra‐Andaman earthquake and tsunami (Fujii & Satake, 2007; Nalbant et al., 2005). Only

six ocean bottom gauges are currently available for tsunami detection in the Bay of Bengal (north Indian

Ocean): stations 23217, 23218, 23219, 23227, 23223, and 23401. These stations were installed after the

2004 Sumatra‐Andaman earthquake.

Another example is the Puysegur subduction zone, south New Zealand, which is the result of subduction of

the Australian Plate beneath southwestern New Zealand (Beavan et al., 2010). This subduction zone is

believed to be capable of hosting megathrust earthquakes and generating tsunamis that can affect New

Zealand, Tasmania, and the southeastern coast of Australia (Hayes & Furlong, 2010; Hayes et al., 2009).

As part of the Marine Observations of Anisotropy Near Aotearoa (MOANA) seismic experiment, OBSs were

deployed from January 2009 to February 2010 offshore the South Island of New Zealand (Yang et al., 2012).

They were equipped with differential pressure gauges (DPGs) with the sampling rates of 40 Hz. Unlike

Absolute Pressure Gauges, the amplitude corrections are necessary for DPGs, and such corrections were

already provided by Sheehan et al. (2019). However, the MOANA network is not as dense as the Japanese

Seafloor observation network for earthquakes and tsunamis along the Japan Trench, and some of the

MOANA DPGs did not record the tsunami. Therefore, in the previous study (Sheehan et al., 2019), the W‐

phase inversion was combined with data assimilation to compensate for the sparse observation. In addition

to the Optimal Interpolation scheme introduced byMaeda et al. (2015), the Ensemble Kalman Filter method

has been applied to tsunami data assimilation with sparse observation data (Yang et al., 2019), but at the

price of relatively high computation cost.

In this study, we introduce a novel methodology to solve the problem of sparse observation at a low cost. We

artificially create stations in the area between adjacent real observation points and build virtual dense obser-

vation network. We apply our methodology to the synthetic tsunami data of the 2004 Sumatra‐Andaman

earthquake and the real tsunami data of the 2009 Dusky Sound earthquake.

2. Methodology

2.1. Linear Interpolation With Huygens‐Fresnel Principle

Our approach is based on a linear interpolation of real data for computing the artificial waveforms for vir-

tual stations. The principle of this method is similar to the Huygens‐Fresnel principle in optics. According

to the Huygens‐Fresnel principle (e.g., Hadamar, 1924), every point on a wavefront is itself the source of

spherical wavelets. The resulting amplitude at any position in the scattered field will be the vector sum

of the amplitudes of all the individual waves. For the data assimilation of tsunami wave, the observation

stations resemble the points on the wavefront, and we need a wavefront that is densely sampled.

Therefore, we can apply linear interpolation to construct artificial waveforms at the location of virtual

points (or stations).

Virtual stations do not exist, and their “waveforms” are only used for building the assimilation wavefield.We

consider several virtual stations between two real stations (Figure 1). The virtual stations were located with

equal distances along a straight line between the real stations. The effects of the number of stations, or the

distance between the virtual stations, will be discussed in the supporting information. More generally, the

interpolation scheme can be applied to three or more real stations (e.g., virtual stations inside a triangle),

but we only consider the two stations for the sake of simplicity. The network of stations (both real and

virtual) could form a wavefront together as the Huygens‐Fresnel principle.

The first task for constructing the virtual waveform is a linear interpolation of two real arrival times to esti-

mate the tsunami arrival time at the virtual station. We define a threshold for tsunami arrival in each station.

In real practice, the tsunami waveform should be obtained after the removal of high‐frequency seismic
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signal and low‐frequency tidal signals. We use tarrA and tarrB to represent the

arrival times of two real stations, respectively. Then we calculate the

arrival time of the ith virtual station between two real stations as

tarri ¼ wiA·t
arr
A þ wiB·t

arr
B ; (1)

wherewiA and wiB are two weight parameters for linear interpolation. The

subscripts A and B represent the two neighboring real stations.

Practically, wiA and wiB are the relative distance between the virtual and

real stations, if the tsunami velocity around the two stations are assumed

to be constant. The sum of them equals to one. For instance, if the ith vir-

tual station is located in the middle point of two real stations, the value of

weight parameters will be 0.5. After obtaining the arrival time of the vir-

tual station, we interpolate the amplitudes of the two real observations

to obtain that of the artificial waveform by taking the water depths at

the stations into consideration. We record the tsunami waveforms after the arrival time of two real stations

and represent them as YA t−tarrA

� �

and YB t−tarrB

� �

, respectively. The tsunami waveform of the ith virtual sta-

tion is calculated as follows.

yi t−t
arr
i

� �

¼
wiA·YA t−tarrA

� �

dA
−

1
4

þ
wiB·YB t−tarrB

� �

dB
−

1
4

� �

·di
−

1
4
; (2)

where wiA and wiB are weight parameters and dA, dB, and di are the water depth of two real stations and the

ith virtual station. The correction to water depths follows the Green's law, that the tsunami amplitude is

inversely proportional to the fourth root of water depth change (Satake, 2015).

The main characteristic of our linear interpolation method is that we calculate the virtual waveforms by

shifting the arrival times considering the distance and correct the amplitudes considering the water depths

at the stations. The arrival times are linearly interpolated by assuming constant velocity, or water depth,

because we do not know the direction of wave arrival. On the contrary, the corrections of amplitudes depend

only on the water depths at the stations, which are known. We acknowledge that the virtual waveform cal-

culated by our linear interpolationmethodmay not be exactly the same as the real observations, especially in

some places with abrupt changes in bathymetry, but it can still improve the performance of data assimila-

tion. We validate our method with real data in part 4. The virtual stations help construct a more complete

tsunami waveform. On the other hand, because the interpolation depends on the waveform information

of the two adjacent real stations, the virtual waveforms cannot be computed until the tsunami arrives at both

real stations.

2.2. Optimal Interpolation

We assimilate the tsunami height at both real and virtual observation to forecast the tsunami waveforms.

The tsunami wavefield at the nth time step is represented as xn(η(nΔt, x, y),M(nΔt, x, y),N(nΔt, x, y)), where

η is tsunami height, M and N are velocities in two directions, Δt is the time step, and x and y are the spatial

coordinates. The Optimal Interpolation method (Gusman et al., 2016; Kalnay, 2003; Maeda et al., 2015;

Mulia et al., 2017) is performed as the following equations.

x f
n ¼ Fxan−1; (3)

xan ¼ x f
n þ PHT RþHPHT

� �

−1
yn−Hx f

n

� �

: (4)

At each time step, the forecasted tsunami wavefieldx f
n is simulated by solving the tsunami propagation equa-

tions using the assimilated wavefield in the last time step xan−1. The propagation matrix F corresponds to the

tsunami propagation model. H is the observational operator, and yn is the vector of tsunami observation.

Equation (4) is used to bring the forecasted tsunami wavefield closer to the observed tsunami wavefield,

where P = < ε
f
ε
fT> and R = < ε

O
ε
OT> are the covariance matrices of the forward numerical simulation

and the observations, respectively. The standard error between grids is assumed to be homogeneous in

Figure 1. Illustration of the linear interpolation process. We first find the

tsunami arrival time of two real stations and calculate the arrival time of

virtual station(s) by weighted average. Then, we calculate the virtual wave-

form(s) by shifting the arrival time with correction to water depth. The

virtual waveform(s) will be adopted in Optimal Interpolation along with real

waveforms.
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space, and the correlation between two points merely depends on a Gaussian correlation with a specific

characteristic distance (Kalnay, 2003; Maeda et al., 2015).

2.3. Green's Function‐Based Tsunami Data Assimilation

To further reduce the computational cost during the data assimilation process, we use the GFTDA (Wang

et al., 2017). The location of real and virtual stations is fixed. We calculate the Green's functions between

stations and nearshore points by using the well‐validated tsunami code JAGURS (Baba et al., 2015).

GFTDA requires the linearity of the tsunami propagation model, and we adopt the linear long‐wave model

based on long‐wave approximation (Satake, 1995) in our computation of Green's functions. The number of

the Green's functions is n × (n+m), where n is the number of stations (real and virtual) andm is the number

of nearshore points. Although the calculation of Green's functions is time‐consuming, once it is calculated

and stored in advance, the data assimilation process will be very quick.

2.4. Accuracy of Data Assimilation

To evaluate the performance of data assimilation method quantitatively, we adopt the geometric mean ratio

K and accuracy between the synthetic observation and forecasting using the following equations (Aida, 1978;

Gusman et al., 2016):

log Kð Þ ¼
1

N
∑N

i¼1 log
Aobs
j

A
pred
j

 !

; (5)

Accuracy %ð Þ ¼
1

K
×100% K≥1ð Þ or K×100% K<1ð Þ; (6)

whereAobs
j andA

pred
j stand for the maximum amplitude of the computed and forecasted waveforms and N is

the number of nearshore points. Although at some time the positive and negative logarithm terms may

cancel each other and the geometric mean ratio becomes anomalously high (Wang et al., 2017), a mean

value close to 1 generally indicate accurate forecasting. The overall forecasting accuracy is then calculated

by equation (6).

3. Application to Synthetic Tsunami Simulation

3.1. The 2004 Sumatra‐Andaman Earthquake

To test the effectiveness of our improved tsunami data assimilation method, we performed a numerical

simulation of the 2004 Sumatra‐Andaman earthquake. The earthquake occurred at 00:58:53 UTC on 26

December 2004 and generated a tsunami that caused more than 283,000 deaths (Lay et al., 2005). The

tsunami propagated across the Bay of Bengal (Figure 2) and arrived at the coasts of India and Sri Lanka

about 2 hr after the earthquake (Fujii & Satake, 2007). Because no ocean bottom gauges were installed at

the time of the 2004 Indian Ocean tsunami, we use synthetic data in our assimilation experiment.

3.2. Simulation Procedure

The fault models and seismic parameters are based on the source model by Fujii and Satake (2007). They

estimated the slip distributions by inverting the tide gauge and satellite altimeter data assuming a rupture

velocity of 1.5 km/s. We calculated the seafloor displacement from the faulting (Okada, 1985) and used it

as the initial condition for tsunami propagation (Figure 2). The linear long‐wave model was employed in

numerical simulation. The bathymetry grid data are derived from the General Bathymetric Chart of the

Ocean with a grid size of 2 arc minute. The computation domain for Green's functions is 70–100°E,

0–25°S, with the total grid number of 675,000. In numerical simulation, the time step is 1 s, which satisfies

the Courant‐Friedrichs‐Lewy condition, a necessary condition for stability. We stored the simulated tsunami

waveforms at six ocean bottom gauges in the Bay of Bengal as the synthetic observation. Then, we used

linear interpolation to compute the waveforms at 25 virtual stations with an average interval of around

50 km (Figure 2). The effects of interpolation intervals and the characteristic distances of OI are examined

in the supporting information.

To validate our method of tsunami forecasting, we compared the tsunami waveforms of seven nearshore

points along the coasts of India, Sri Lanka, and Maldives (Figure 2). Because the tsunami waveforms
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computed from the source model by Fujii and Satake (2007) do not match well with the real observation,

probably due to inaccurate bathymetry data near the stations, we used the synthetic waveforms. The

Green's functions of observations (real and virtual stations) and nearshore points were computed and stored

in advance. The characteristic distance of Optimal Interpolation is 20 km.

3.3. Data Assimilation

We set the earthquake origin time as t = 0. When the propagating tsunami reaches the real ocean bottom

gauges, in this example around 30 min at ocean bottom gauge 23217, the data assimilation process begins.

Figure 2. (a) The bathymetrymap of the Bay of Bengal. The six ocean bottom gauge locations used in our numerical simu-

lation are indicated with red large triangles. The 25 virtual stations indicated with red small triangles are interpolated

between ocean bottom gauges. The nine nearshore points (green circles) record the tsunami waveform, and we compare

them with the forecasted waveforms calculated by tsunami data assimilation. (b) Synthetic tsunami waveforms of six

ocean bottom gauges. The assimilation begins at 30 min after the earthquake.
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The time window is defined as the period during which the observed data are used for assimilation (Wang

et al., 2017). After the time window, the tsunami height and arrival time can be forecasted by the

superposition of Green's functions.

Figure 3 compares the simulated and forecasted tsunami waveforms of seven nearshore stations, with an

assimilation time of 60 min. The forecasted waveforms generally match with the simulated waveforms of

all stations. However, without virtual stations, the forecasted waveforms underestimate the maximum

amplitude of the first tsunami peak. To the contrary, the assimilation with virtual stations has a better

performance, improving both amplitudes and periods of the tsunami waves. For example, in the nearshore

point of Male, the simulated maximum amplitude of the first tsunami peak is 1.16 m. The amplitudes of

assimilation without and with virtual stations are 1.06 and 0.51 m, respectively, indicating significant

improvement of the results by inclusion of virtual stations. Overall, the forecast accuracy increases from

51.4% to 73.1% with the help of virtual stations.

It is important to note that the tsunami forecasting is made at the time window of 60 min (90 min after the

earthquake), when the first tsunami peak has passed all ocean bottom gauges. Because the tsunami arrives at

the Indian coast around 150 min after the earthquake and arrives at Sri Lanka andMaldives even later, there

is enough time to conduct the data assimilation process and transfer appropriate warning messages to the

public at risk.

4. Application to Real Tsunami Data

4.1. The 2009 Dusky Sound Earthquake

The Mw 7.8 Dusky Sound earthquake occurred near the southwestern coast of New Zealand, at 09:22:29

UTC on 15 July 2009 (Beavan et al., 2010; Fry et al., 2010; Heidarzadeh & Gusman, 2018; Sheehan et al.,

2012). It was the largest event ever recorded at the Puysegur subduction zone. The earthquake generated

a tsunami that was recorded by tide gauges around the southwestern South Island (Berezina, 2017; Clark

et al., 2011) and the DART gauges in the south Pacific. The OBS network in this region also detected the sig-

nal of the tsunami.

4.2. Data and Assimilation Setting

At the time of the earthquake, there were up to 30 OBSs in the west and east of the South Island (Figure 3).

Among the stations in the west, NZ15 was trawled up by a fishing vessel, and NZ17 was not recovered (Yang

et al., 2012). NZ01 and NZ02 waveforms were clipped (Sheehan et al., 2019). In addition, some OBSs are too

Figure 3. Comparison of the observed and forecasted waveforms at seven nearshore points. The black lines represent the

simulated waveforms. The blue lines represent the assimilated waveforms without virtual stations, while the red lines

represent the assimilated waveforms with virtual stations. The assimilation time window is 60 min for both cases.
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far from the tide gauge, so the tsunami arrived even later than the tide gauge. In our study, we used seven

OBSs for tsunami data assimilation: NZ08, NZ09, NZ10, NZ11, NZ12, NZ13, and NZ16. All OBS data are

available at the Ocean Bottom Seismograph Instrument Pool website (http://www.obsip.org). The data

processing is similar to the work of Sheehan et al. (2019). To extract the tsunami signals from OBSs, we

first reduced aliasing of tide signals and processed the records by removing trend, removing mean,

decimating, applying 5% Hann Window, and band‐pass filtering from 0.0002 to 0.005 Hz using a fourth‐

order Butterworth filter. Then we tapered again and deconvolved the instrument responses. Because the

tsunami was recorded by DPGs, finally, the tsunami amplitude at each station was corrected by the ratio

between the observed and simulated peak amplitude (Beavan et al., 2010) at the station.

Tide gauge data was used for waveform comparison in order to validate our method. To remove the tide

signal and high‐frequency component, we applied a fourth‐order band‐pass filter with the frequency band

of 0.000167 to 0.00333 Hz. Because our region of interest is the western coast of South Island, we only used

the tide gauge observation of Charleston (Figure 4a). The tsunami amplitude of tide gauges is usually

affected by local bathymetry and harbor effects (Baba et al., 2004; Heidarzadeh et al., 2016; Kontar et al.,

2013; Leonard, 2006).

We used 28 virtual stations interpolated between seven real OBS pressure gauges, with the average interpo-

lation interval of around 50 km. We chose neighboring station pairs so that virtual stations do not overlap to

each other. These data were assimilated in order to forecast the tsunami waveform at the tide gauge

Charleston. Because the station NZ13 is nearly located in the line between NZ09 and NZ12, it provides us

with an opportunity to validate our linear interpolation method (part 2.1). We interpolated a virtual wave-

form of NZ13 using the data of NZ09 and NZ12 (yellow line in Figure 4b) and compared it with the real

Figure 4. Tsunami data assimilation of 2009 Dusky Sound earthquake. (a) Distribution of Ocean Bottom Seismometers (OBSs) and the tide gauge Charleston.

The seven OBS pressure gauges indicated with red large triangles are used for data assimilation. The 28 virtual stations indicated with red small triangles are

interpolated between ocean bottom gauges. (b) The real observed tsunami waveforms of seven OBS pressure gauges. The assimilation begins at 30 min after the

earthquake. The real (black line) and virtual (yellow line) waveforms of NZ13 are compared. (c) Comparison of the observed and forecasted waveforms at the tide

gauge Charleston with an assimilation time window of 40 min.
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waveform (black line). The arrival time and amplitude of the first tsunami peak are very similar between two

waveforms. This validates our linear interpolation method based on Huygens‐Fresnel principle. Though

there are some discrepancies, virtual waveforms could be used as the supplement of real observation in

tsunami data assimilation.

The characteristic distance of Optimal Interpolation is 20 km. The bathymetry grid data are also derived

from the General Bathymetric Chart of the Ocean with a grid size of 0.5 arc minute. The computation

domain for Green's functions is 163–175°E, 49–37°S, with the total grid number of 2,073,600. The time step

of numerical simulation is 1 s. Unlike the results of Sheehan et al. (2019), we used only real OBS tsunami

data as inputs. We interpolated virtual stations to overcome the problem of sparse observations.

4.3. Data Assimilation

The data assimilation process begins at 30 min after the earthquake, when the tsunami arrives at the first

OBS (NZ10). Figure 4c shows the comparison between observed and forecasted waveforms of the tide gauge

Charleston, at the time window of 40 min (i.e., 40 min after the tsunami arrival at NZ10). The forecasted

waveform matches the observed waveform reasonably, and their periods are similar. However, without vir-

tual stations, the amplitudes of the forecasted waveform (8.4 cm) are smaller than those of the observations

(16.0 cm). The accuracy is only 52.5%. Our new method with virtual stations gives a better forecasting of

tsunami amplitudes (13.4 cm), with an accuracy of 83.8%. Because the tsunami arrives at Charleston

112 min after the earthquake, the tsunami forecasting is made around 32 min before arrival. By combining

the tsunami data assimilation with nonlinear tsunami inundation models on coastal regions of interest (Liu

et al., 2009), the inundation forecasts will also be possible.

5. Conclusions

We proposed a newmethod for tsunami data assimilation for regions with sparse deep‐ocean tsunami obser-

vation network. In our method, we produced artificial waveforms at virtual stations by interpolating real

data of available real stations. Although no new information other than water depth was adopted, we used

the existing information in order to construct a relatively dense observation network. We demonstrated that

for synthetic 2004 Sumatra‐Andaman earthquake, our method forecasted the tsunami waveforms at the

coasts of India, Sri Lanka, and Maldives, with a forecasting accuracy of more than 70%. The application to

2009 Dusky Sound, New Zealand, earthquake suggested that our method overcame the insufficient number

of observation and improved the accuracy from 52.5% to 83.8%. In this study, Charleston is the only tide

gauge stations on the targeted coast. Other tide gauges were either too close to be useful (tsunami arrived

even before the OBS stations) or quite far in Australia. This method could be implemented for future

tsunami warning systems in those regions without a dense observation network. The assimilation process

costs less than 10 s by using GFTDA. Although at the present time the system does not have real‐time trans-

mission, the recorded tsunami data can be used to evaluate the performance of tsunami forecasting methods.
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