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ALaDyn: A High-Accuracy PIC Code for the
Maxwell–Vlasov Equations

Carlo Benedetti, Andrea Sgattoni, Giorgio Turchetti, and Pasquale Londrillo

Abstract—In this paper, we present Acceleration by Laser and
Dynamics of charged particles (ALaDyn), a particle-in-cell code, to

investigate the interaction of a laser pulse with a preformed plasma
and/or an externally injected beam. The code, fully parallelized,
works in 1-D, 2-D, and 3-D Cartesian geometry, and it is based
on compact high-order finite-difference schemes ensuring higher
spectral accuracy. We discuss the features, the performances,
and the validation tests of the code. We finally present a pre-
liminary application on a physically relevant case based on the
PLASMON-X experiment of the CNR-INFN.

Index Terms—Implicit compact schemes, laser–plasma interac-
tion, particle-in-cell (PIC) simulations.

I. INTRODUCTION

P LASMA-BASED acceleration [1] has received much the-

oretical and experimental attention due to the high longitu-

dinal electric fields that can be excited in a plasma without the

limitations found in conventional accelerators. Electron beams

up to 1 GeV with a low energy spread and small emittance have

been obtained using the laser-wakefield acceleration scheme

(LWFA), and the energy doubling of 42-GeV electrons from

the SLAC linac in a meter-scale plasma has been recently

achieved (PWFA) [2]–[6]. Rapid progresses are expected from

the new laser generation with multiterawatt pulses of a few

femtoseconds length.

The activity of the PLASMON-X experiment [7], a joint

project of the CNR-INFN, is closely related to these topics. The

main purposes of the project are as follows: 1) acceleration of

electrons auto or externally injected into plasma electron waves

excited by ultrashort (∼20 fs) high-power (100–300 TW) laser

pulses (laser FLAME) and 2) development of a monochromatic

and tunable X-ray source (20–1000 keV) based upon Thomson

scattering of laser pulses by relativistic electrons.

The basic physical phenomena of the interaction of a laser

pulse and/or a charged beam with a plasma are understood

[8], but a complete 3-D relativistic treatment which deals with

experiments, allowing also to have some insight in the details of

the underlying physics, requires a numerical approach. Several

codes (particle in cell, PIC) have been already proposed in

this respect [9]–[11]; in all the cases, the description of the
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fields/particles dynamics is second-order accurate (fields on a

Yee lattice evolved with the leap-frog scheme and particles push

with the Boris algorithm) [12].

The relativistic PIC-code ALaDyn [13] we are presenting has

been developed at the Department of Physics of the Bologna

University in the framework of the PLASMON-X collabo-

ration. The code, fully parallelized with MPI, is a suite of

functions written in C (an independent FORTRAN90 version

is also available) and organized into a library. The key points in

developing a numerical scheme to solve the Maxwell–Vlasov

equations concern the fields’ propagation and the particles’

evolution. A small error in the dispersion relation and phase

velocity of the electromagnetic wave jointly with a reli-

able approximation to the characteristics of the phase-space-

distribution function can only be obtained in the fully 3-D

case by a PIC code. In ALaDyn, we have implemented high-

order discretization methods for the differential operators in

configuration space (compact finite-differences schemes [14])

jointly with accurate time-integration schemes (high-order

Runge–Kutta). Using high-order schemes, we can adopt, for

a fixed accuracy, a coarser computational grid (allowing the

use of a higher particles-per-cell number) and a larger time

step as compared to standard PIC codes. The code can run in

one, two, and three spatial dimensions in Cartesian geometry.

The parallelization is achieved through a simple longitudinal-

domain decomposition (dynamically updated); the planning of

a more sophisticated decomposition strategy is underway. In

laser–plasma interactions, the great disparity in the temporal/

spatial scales involved in the simulation leads to large compu-

tational requirements both in terms of CPU time and memory

need. In general, we need to study the propagation of a short

laser pulse (or a probe beam) through a plasma, which is several

times longer than the pulse. Because only the region of the

plasma near the laser pulse is of interest, in our code, the

solution of the Maxwell equations is performed in a moving

window which moves with the pulse. This allows us to save

a considerable amount of memory. Another relevant feature

of the code is the possibility to perform the simulations in a

boosted Lorentz frame. Since the ranges of space and time

scales spanned by a system are not invariant under Lorentz

transformation, it can be proved that the existence of a reference

frame (the boosted frame) where the imbalance between these

scales is significantly reduced as compared to the laboratory

frame, implying, in some case, the reduction of the simulation

run time [15], [16]. The code has been designed and developed

in order to be as flexible as possible. The background plasma

can be completely defined by the user by simply adding the

desired functions and structures. Several modules describing
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different types of laser pulses are already available (planar

wave, focalized pulses in 2-D/3-D), but the user can easily add

its own modules. The possibility to include external fields will

be soon considered. An arbitrary number of particles species

can be introduced in the simulation (e.g., electrons/ions of the

plasma, electrons of the beam, test particles, etc.). The number

of numerical particles associated to each specie can be set

separately so that each species is represented by a suitable

number of macroparticles. Concerning the interpolation of the

fields at particles’ position and the current deposition, linear and

quadratic shape functions are available.

A crucial point is the validation of the code which can be

achieved at different levels by comparison with the available

analytical results and/or through the benchmarking with other

Vlasov codes (PIC or fluid). The first step is testing the propa-

gation of an electromagnetic pulse in the free space. The second

one is to test the Maxwell–Liouville version of the code, where

the particles move in the field of an assigned wave packet with-

out affecting it. Finally, we can consider the fully self-consistent

Maxwell–Vlasov version of the code in the case of classi-

cal electrostatic (plasma oscillations, Landau damping [17],

two-streams instability) and electromagnetic (1-D solitons [21])

plasma-physics problems.

The rest of this paper is organized as follows. In Sections II

and III, we describe in some details the algorithms and the

features of ALaDyn. In Section IV, we discuss the validation

tests. In Section V, we present the application of the code to

a physically relevant case based on the PLASMON-X exper-

iment. Finally, in Section VI, we summarize this paper and

discuss future plans.

II. BASIC ALGORITHMS

We study the dynamics of the laser–plasma interaction in the

mean field approximation. In this case, we have to solve the

Vlasov equations for all the species jointly with the Maxwell

equations for the fields

∂fs

∂t
+ v · ∂fs

∂r
+ qs

(

E +
v

c
× B

)

· ∂fs

∂p
= 0 (1)

where fs and qs are, respectively, the phase-space distribution

and the elementary charge for species s (s = electrons, ions,

etc.). The electric and magnetic fields (E,B) satisfy

∂B

∂t
= −c∇× E

∂E

∂t
= c∇× B − 4πJ (2)

where the current density J, defined as

J =
∑

s

qs

∫

vfs(p, r, t)dp (3)

couples the Vlasov [(1)] and the Maxwell equations [(2)]. The

remaining two Maxwell

∇ · E = 4πρ ∇ · B = 0 (4)

can be considered “initial conditions” for the system and remain

satisfied for any time if they are satisfied at t = 0, provided that

the local charge conservation holds, namely,

∂ρ

∂t
+ ∇ · J = 0. (5)

Considering the typical spatial/temporal scales involved in the

laser–plasma interaction, the direct solution of (1), where fs

and the fields are discretized on a grid, is easily feasible only

in the case of one spatial dimension (2-D phase space). The

case with two spatial dimensions (4-D phase space) is already

extremely demanding in terms of memory and CPU time, and

it is clear that the fully 3-D case is beyond the present computer

capabilities. Taking into account these difficulties, in ALaDyn,

we solve (1) by using the PIC scheme. In the PIC technique,

the (continuous) single-particle phase-space distribution fs is

sampled by a (possibly) large-number Ns of numerical particles

according to

qsfs → CNs

Ns
∑

i=1

qiδ (r − ri(t)) δ (p − pi(t)) (6)

where δ(·) is the Dirac delta, qi, ri, and vi are, respectively, the

charge and the coordinates of the ith numerical particle, and

CNs
is a normalization constant [22]. With this approximation,

the characteristics of (1) are obtained by solving the following

relativistic equations of motion:
{

dri

dt =vi≡ pi

miγi

,
dpi

dt =qi

(

E(ri, t)+
vi

c ×B(ri, t)
)

, i=1, . . . , Ns

(7)

γi and mi being respectively the relativistic factor and the mass

for the ith numerical particle (we set qi/mi = qs/ms). The

main approximation in this approach is given by the evaluation

of the self-consistent fields at the particle position (the same

procedure applies to the current density), since the fields E,

B (and J) are discretized on a spatial grid. The interpolation

procedure, from particles position to grid points and vice versa,

is equivalent to replace the delta function in (6) with a smooth

function S(·) (shape function), δ(r − ri) → S(r − ri). The

choice of a suitable expression for S is important to keep

under control the statistical noise which is always present in

a PIC simulation due to the finite number of numerical particles

exploited to sample the phase-space distribution.

The evolution of the electromagnetic fields is obtained by di-

rect integration of (2). The curl operators in the right-hand side

of (2) are represented by high-order compact finite-difference

schemes [14]. These are implicit schemes which require the

inversion of a band matrix on the grid. Letting fi correspond

to the value of the function f(x) on the ith grid point xi = ih,

where h is the discretization step. The values f ′
i which approx-

imate the derivative (df/dx)(xi) in xi are obtained from the

following set of linear equations:

αf ′
i−1 + f ′

i + αf ′
i+1 = a

fi+1 − fi−1

2h

+ b
fi+2 − fi−2

4h

+ c
fi+3 − fi−3

6h
(8)
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Fig. 1. Numerical-dispersion relation ω(k) for planar waves obtained with
several finite-differences schemes as compared with (black plot) the exact
solution ω(k) = ck; h is the spatial discretization step.

Fig. 2. Numerical values for the normalized phase velocity vph/c of a plane
wave in the (kx, ky) plane obtained (left panel) with a compact scheme and
(right panel) with an explicit scheme.

where the relations between a, b, c, and α are derived by

matching the Taylor-series coefficients of various orders. The

“classical” second-order accurate expression for the derivatives

is obtained setting α = b = c = 0, a = 1. Casting (8) in vector

form, we have

f ′ = T −1Uf (9)

where T is a tridiagonal matrix and U is a band matrix. The

increase in the computational cost to determine f ′ as compared

to the second-order accurate expression is largely compensated

by the improvement in the accuracy. In Fig. 1, we show the

numerical dispersion relation ω(k) for planar waves obtained

for implicit and explicit schemes at various order. We see that,

even with few (approximately eight) points per wavelength, the

compact high-order schemes provide a very good resolution of

the phase velocity of the wave. With these schemes, we have

also a global improvement of the isotropy in the wave phase

velocity. In Fig. 2, we show the value of the normalized phase

velocity vph/c for plane waves in the (kx, ky) plane for com-

pact (left panel) and explicit (right panel) schemes. An increase

in the accuracy of the spatial derivatives evaluation, which

provides a better description of small-scale structures, requires

high-order integration schemes in order to avoid instabilities.

In ALaDyn, time integration, for both fields and particles, is

carried out by using Runge–Kutta schemes on the fourth order

Fig. 3. Parallel scaling of ALaDyn (red) in the 2-D and (black) in the 3-D
case. In 2-D, the computational mesh consisted of 400 × 1600 point (10 parti-
cles/cell). In the 3-D case, we have taken a mesh of 100 × 100 × 200 points
(10 particles/cell).

(but also schemes of second and third orders are available) [23].

The use of high-order algorithms in space and time allows us to

adopt a coarser computational grid (allowing the use of a higher

particles-per-cell number) and a larger time step as compared to

standard second-order accurate PIC codes.

Another relevant point is the interpolation scheme adopted

to evaluate the fields at particles’ position and to perform the

current deposition. High-order (greater or equal to third order)

shape functions significantly reduce the statistical noise [24],

but the computational costs in 2-D/3-D simulations seems to be

quite high. In ALaDyn, the standard interpolation is done with

second-order shape functions. In addition, linear-interpolation

algorithms are available for quick and low-accuracy

simulations.

III. FEATURES OF ALaDyn

The code ALaDyn is a library written in C. The basic

functions have been independently rewritten by one of us in

FORTRAN90 in order to highlight possible bugs in the code

and test different solutions. ALaDyn works in one, two, and

three spatial dimensions in Cartesian geometry. The dimension-

ality can be set at run time. The code has been parallelized with

MPI. The parallelization strategy is based on the longitudinal-

domain decomposition. The domains are dynamically updated

in order to maintain an optimal load balance between the CPUs.

We are also considering the implementation of a more general

domain decomposition in order to improve the scalability of

the code. In Fig. 3, we show the simulation time (in microsec-

onds) corresponding to one particle push (with a fourth-order

Runge–Kutta) multiplied by the number of processors (nproc)
for a given computational mesh as a function of nproc in 2-D

and in 3-D.

The great disparity in the spatial scales involved in the

laser–plasma interaction makes the direct numerical simulation

of this process very demanding in terms of memory and CPU-

time requirements. The typical case is represented by the LWFA

where a laser pulse of ∼10-µm length propagates through a

plasma of several millimeters. Since only the region near the



BENEDETTI et al.: ALaDyn: HIGH-ACCURACY PIC CODE FOR THE MAXWELL–VLASOV EQUATIONS 1793

laser pulse is of interest, the solution of the Maxwell equations

is performed in a computational moving window, which follows

the pulse. With the moving-window technique, only the fields

around the laser pulse need to be stored and managed, allowing

a considerable reduction in the memory need.

Another feature included in ALaDyn is the possibility to re-

duce the run-time of the simulation performing the calculations

in a suitable reference frame. Since the space and time scales

involved in the laser–plasma interaction are not invariant under

Lorentz transformation, we can find a reference frame (the

boosted Lorentz frame) in which the imbalance of these scales

(and so the simulation run-time) is considerably reduced1 as

compared to the laboratory frame (for a detailed description of

this technique, see [16] and the references therein). The princi-

pal drawbacks of this technique are related to the diagnostic

(density plots, fields distribution), which is more difficult to

perform due to the loss in the contemporaneity between the two

reference frames.

Concerning the particles implementation in ALaDyn, several

different types can be loaded in the simulation as in the follow-

ing example.

/ ∗ Declaration of the species ∗ /
PARTICLES e_plsm, i_plsm, e_inj, e_test;

/ ∗ Creation of the species ∗ /
/ ∗ e_plsm: electrons of the plasma (active) ∗ /
createParticles(&e_plsm, ELECTRON, . . .
/ ∗ i_plsm: ions of the plasma (virtual) ∗ /
createParticles(&i_plsm, ION, . . .
/ ∗ e_inj: injected electron beam (active) ∗ /
createParticles(&e_inj, ELECTRON, . . .
/ ∗ e_test: electrons as test particles

(passive, direct knowledge of each particle) ∗ /
createParticles(&e_test,

ELECTRON AS TEST_PARTICLE, . . .

The number of numerical particles associated to each species

can be decided separately for each species by using the follow-

ing function:

void setMacroparticlesNumber(
PARTICLES ∗ particles,

int Nparticles, . . .)

so that every particle family is described by the suitable number

of numerical particles. The code has been developed in order to

be as flexible as possible. The user can completely define the

background plasma structure and profile by simply adding few

C instructions as in the following example:

/ ∗ Plasma definition ∗ /
typedef struct {
double L_rise, L_plateau, L_descent;

double electron_density;
double ion_density;

1This applies mainly in the case of the propagation of a laser pulse in an
underdense plasma.

} PLASMA;
double plasmaProfile(double ∗ position,
PARTICLES ∗ particles, . . .)
{

/∗
This function returns the local value of

the density for the species〈particles〉 in
the position 〈position〉.
∗/
. . . .

}

Several modules describing different types of laser pulse

have already been included in ALaDyn: planar wave with “cos2-

like” longitudinal profile and linearly polarized and focalized

pulses in 2-D and 3-D with Gaussian transversal profile. The

user can easily add its own laser-pulse modules by linking the

corresponding function.

Finally, we recall that two execution modes are available:

FROM_MAXWELL_EQUATIONS and ANALYTICAL. In the former,

the electromagnetic fields and the particles are self-consistently

evolved; in the latter, the particles move in a prescribed field

without affecting it.

IV. VALIDATION TESTS

The validation of an electromagnetic PIC code is not an

easy task due to the highly nonlinear physics involved in the

laser–matter interaction. Few are the known analytical solutions

that can be taken as a reference, and the benchmarking with

other codes (PIC or Vlasov fluid) is the only remaining option.

We present some validation tests performed with ALaDyn.

If not stated elsewhere, in all the simulations presented, the

spatial derivatives have been computed with an eighth-order

compact scheme and the time integration using a fourth-order

Runge–Kutta.

A. Propagation of a Focalized Pulse

We consider a focalized 3-D laser pulse linearly polarized

(cos2-like longitudinal profile, Gaussian transversal profile)

propagating in the free space along z-direction. The evolu-

tion of the pulse can be computed “analytically” by using

FFT. In Fig. 4 (see the figure caption for the pulse parame-

ters), we show the behavior of the transverse electric field

(Ex(x = 0, y = 0, z, t) obtained with ALaDyn using a grid with

nine points/wavelength in the longitudinal direction and three

points/wavelength in the transversal ones. Even with few points

per wavelength, the agreement with the analytical solution is

very good also for long times.

B. First Integral Conservation

In this case, we consider a test particle (electron) in a

planar wave with finite length (cos2-like longitudinal profile,

λ0 = 1 µm, a0 = eA0/mec
2 = 1). The energy conservation

implies that I = γ − uz = cost, where uz = pz/mec and γ is

the relativistic factor. For particles initially at rest, I = 0 and

so uz = u2
x/2. In Fig. 5 (left panel), we show the behavior
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Fig. 4. Behaviour of Ex(x = 0, y = 0, z, t) for t = 0 (left), 208 (center), and 416 fs (right). The black plot is the analytical solution; the red diamonds are the
solution obtained with ALaDyn. The parameters of the pulse are λ0 = 1 µm, ∆tFWHM = 15 fs, w0 = 2 µm, and ZRayleigh = 12.6 µm (= 42 fs.) In the PIC
simulation, we have taken nine points per wavelength in the longitudinal direction and three points per wavelength in the transversal ones.

Fig. 5. (Left) Values of ux(t), uz(t) for two particles (red and blue circles)
initially at rest (simulation with six grid points per wavelength). (Right) Plot of
∆I(t) ≡ I(t) − I(0) changing the number of grid points/wavelength from 6
to 18.

of ux(t), uz(t) for two particles initially at rest. In the right

panel, we plot the variation of the first integral, defined by

∆I(t) = I(t) − I(0), changing the number of grid points per

wavelength. Again, with a coarse grid (eight to ten points/λ0)

the results are quite good.

C. Plasma Oscillations

Let us consider a uniform plasma (n0 = 2 ·
1019 electrons/cm3) with a small perturbation in the density

of ∼3%. The longitudinal electric field undergoes periodic os-

cillations at the plasma frequency ω
(th)
p = 2.5229 · 1014 rad/s.

In Fig. 6, we show the normalized electric field E/E
(th)
max as a

function of the normalized time t′ = tω
(th)
p /2π. The simulation

was performed with 200 particles/cell and 25 points per plasma

wavelength, the time step was dt = Tplasma/15. The value of

the plasma frequency and the oscillation amplitude obtained

from the simulation are both in good agreement with the

theoretical ones. The numerical plasma frequency is found to

be ω
(ALaDyn)
p = 2.51 · 1014 rad/s (relative error < 0.4%).

D. Linear Landau Damping

This test deals with the linear Landau damping of a Langmuir

wave in an electron/ion plasma. In the simulation, we consider a

periodic domain in x; L is the periodicity. The ions are station-

ary, and the initial phase-space distribution for the electrons is

fe(x, v, t = 0) = (1 + α sin(kx)) exp(−v2/2)/
√

2π, (10)

Fig. 6. Plasma oscillations. The black plot is the theoretical prediction, the red
diamonds are the result obtained with ALaDyn. The simulation was performed
with 200 particles/cell and 25 points per plasma wavelength.

Fig. 7. Linear Landau damping. The solid black line is the theoretical damp-
ing rate; the dashed black plot is the behavior of log(E1(t)/E1(0)) obtained
with a Vlasov-fluid code with a grid of (512 × 1024) points. The remaining
curves are the results obtained with ALaDyn, respectively, with (red) 104,
(green) 105, and (blue) 106 particles/cell and a grid of 16 points.

where k ≡ 2π/L = 0.4 and α = 0.02. Here, and in the

subsequent sections, time is normalized to the inverse of

the electron plasma frequency (ω−1
p,e); space is normalized

to the Debye length (λD) and velocity to the electron

thermal speed (λDωp,e). In Fig. 7, we show the behavior of

log(E1(t)/E1(0)), where E1 is the amplitude of the funda-

mental harmonic of the electric field, obtained in different
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Fig. 8. Nonlinear Landau damping. The solid black line is the theoretical
damping rate in the linear phase; the dashed black plot is the behavior
of log(E1(t)/E1(0)) obtained with a Vlasov-fluid code with a grid of
(512 × 1024) points. The remaining curves are the results obtained with
ALaDyn, respectively, with (red) 102, (green) 103, and (blue) 104 particles/cell
and a grid of 32 points.

simulations changing the number of particles per cell from 104

to 106 (see figure caption for details); the number of grid points

is fixed to 16. The solid black line is the theoretical damping

rate obtained from the linear-dispersion relation (γ = 0.0661),
the dashed black plot is the result obtained with a Vlasov-fluid

code with a grid of (512 × 1024) points. The linear-damping

regime is valid as long as 0 ≤ t < tbounce ≡ 2πα−1/2 ≃ 40.

The linear Landau damping is a very “delicate” phenomenon

from the numerical point of view. The agreement with

theoretical results is quantitatively good only if the number of

particles per cell is sufficiently large (> 103) to suppress the

statistical noise.

E. Nonlinear Landau Damping

This test is similar to the previous one. The parameters are

k ≡ 2π/L = 0.5 and α = 0.4. In Fig. 8, we show the behavior

of log(E1(t)/E1(0)) obtained in different simulations, chang-

ing the number of particles per cell from 102 to 104 (see figure

caption for details); the number of grid points is fixed to 32.

The solid black line is the theoretical damping rate in the

linear phase which ends at tbounce ≡ 2πα−1/2 ≃ 10. For t >
tbounce ≃ 10, we are well within the nonlinear phase [18]–[20].

The dashed black plot is the result obtained with a Vlasov-fluid

code with a grid of (512 × 1024) points. We have a quantitative

agreement with the Vlasov fluid using less particles per cell as

compared to the previous case. Dealing, in this case, with large

density perturbations, the statistical noise is not an issue.

F. Two-Stream Instability

We consider now the symmetric two-stream instability. In

the simulation, we take a periodic domain in x (L is the

periodicity). The ions are stationary, and the initial phase-space

distribution for the electrons is

fe(x, v, t=0)=
e−

(v−v0)2

2σ2 +e−
(v+v0)2

2σ2

2
√

2πσ2
(1 + α sin(kx)) (11)

Fig. 9. Two-stream instability. The black plot is the behavior of
log(E1(t)/E1(0)) obtained with a Vlasov-fluid code with a grid of
(512 × 1024) points. The remaining curves are the results obtained with
ALaDyn, respectively, with (red) 102, (green) 103, and (blue) 104 particles/cell
and a grid of 128 points.

where v0 = 1.5, σ = 0.7, k ≡ 2π/L = 0.5, and α = 0.4. In

Fig. 9, we show the behavior of log(E1(t)/E1(0)) obtained in

different simulations, changing the number of particles per cell

from 102 to 104 (see figure caption for details); the number of

grid points is fixed to 128. The black plot is the result obtained

with a Vlasov-fluid code with a grid of (512 × 1024) points. As

in the previous case, we have a quantitative agreement with the

fluid solution with few particles per cell.

G. Electromagnetic Solitons in 1-D

We consider the behavior of an electromagnetic soliton in an

electron–positron plasma [21]. The initial phase-space distribu-

tions compatible with a steady soliton are given by

fe + (z, uz) = fe − (z, uz) =
exp (−βγ(z, uz))

2K1(β)
(12)

where γ(z, uz) =
√

1 + |a|2 + u2
z , a(z, t) = ax(z, t) +

iay(z, t) = a0(z) exp(iωt) is the (normalized) vector potential

of the circularly polarized electromagnetic pulse, β is a free

parameter, and Kj(·) is the modified Bessel function of the

second kind of order j. The amplitude of the vector potential

satisfies the following differential equation:

d2a0

dz2
+ ω2a0 = 2a0

K0(β
√

1 + a2
0)

K1(β)
(13)

where ω is the laser frequency. The initial condition for a

localized soliton is a0(0) = A0, (da0/dz)(0) = 0, where A0

is the solution of

1

2
ω2A2

0 +
2

β

(

√

1 + A2
0

K1(β
√

1 + A2
0)

K1(β)
− 1

)

= 0. (14)

We have considered the case with ω = 0.1, β = 100, and

A0 = 2. In Fig. 10, we show the electron density when t = 0
(red) and when t = 1000 (≃ 159 plasma periods) (blue); the

black line is the theoretical profile. We have considered two

simulations; the number of particles per cell was, respectively,
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Fig. 10. Electromagnetic soliton with ω = 0.1, β = 100, and A0 = 2.
Electron density profile (red) when t = 0 and (blue) when t = 1000
( ≃ 159 plasma periods). The black line is the theoretical value. The left panel
refers to a simulation with 5000 particles/cell. The right panel to a simulation
with 50 particles/cell. The number of grid points is fixed to 128.

Fig. 11. Electromagnetic soliton with ω = 0.1, β = 100, and A0 = 2.
(Left) Behavior of (red) Ex(t) and (blue) Ey(t) in the center of the soliton;
the black line is the theoretical value. The number of particles per cell was
50 particles/cell. The number of grid points in the spatial grid is 128. (Right)

Plot of the invariant E = (E2
x + E2

y)1/2 for the two simulations with, respec-
tively, (red) 50 and (blue) 5000 particles/cell.

5000 (left plot) and 50 (right plot). The number of grid points

is fixed to 128. The density profile remains stationary even

with few particles per cell a part for the statistical fluctuations

(∼15% in the right plot). In Fig. 11 (left panel), we plot the

behavior of Ex(t) (red) and Ey(t) (blue) in the center of the

soliton, for the simulation with 50 particles/cell. The black

line is the theoretical prediction. The parameters are the same

as in Fig. 10. In Fig. 11 (right panel), it is also shown that

the behavior of the invariant E = (E2
x + E2

y)1/2 for the two

simulations with 50 (red) and 5000 (blue) particles/cell. The

invariant is well conserved in both cases a part for the intrinsic

statistical noise. The maximum dissipation rate, due to the

overall numerical collisionality, was registered in the second

simulation (50 particles/cell) and is equal to −1.35 · 10−6.

H. Charge Conservation

In ALaDyn, electromagnetic fields are evolved using only

Faraday and Ampère–Maxwell laws [(2)]. We recall that the

remaining Maxwell equations [(4)] are automatically satisfied

(and can be neglected) if, and only if, the continuity equation

holds. In a PIC code, the introduction of the computational grid,

the discretized representation of the operators ∇·, ∇×, ∂/∂t,
and the use of the shape function S(·) for the particles can

lead to microscopic inconsistencies, violating the local charge

conservation [12], [25]. To remove these inconsistencies, stan-

dard PIC codes [9]–[11] implement the charge-conserving cur-

Fig. 12. Density distribution along z-axis obtained (black) weighting the
particles and (red) by direct integration of the continuity equation. The two
plots refer to two different times in the same simulation (see Section V for
details).

rent deposition scheme proposed in [25] and developed for

a standard Yee lattice. Up to now, ALaDyn is not enforcing

charge conservation, so a priori, there is no guarantee that

Gauss’ law is satisfied. We notice however that, in some of the

previous benchmarks (e.g., linear/nonlinear Landau damping,

two-stream instability), we tested basically the electrostatic

aspects of our code, and the good agreement between PIC

and Vlasov-fluid2 results suggests that the code is correctly

working. To investigate more in detail the reliability of the code

from the point of view of the charge conservation, we have

performed a 2-D simulation of the interaction of a laser pulse

with a plasma (see Section V for details). During the simulation,

we have compared the density distribution obtained weighting

the particles on the computational grid and the one obtained by

direct integration of the continuity equation (∂ρ/∂t = −∇ · J).
In Fig. 12, we show the particle (electron) density along the

longitudinal (z) axis obtained with the particles weighting

(black plot) and by direct integration of the continuity equation

(red plot). The figures refer to two different times in the same

simulation. No significant differences appear between the black

and red plots in both figures. The main discrepancies are due to

the statistical noise.

V. CASE STUDY

As a first application of ALaDyn, we consider an LWFA

experiment. For the laser, we choose the parameters of the laser

FLAME of the PLASMON-X experiment [7] (see Table I).

2In the Vlasov-fluid solver, we adopted for the benchmarks; the charge
conservation is correctly enforced, since the electrostatic field is obtained
directly from a spectral Poisson solver.
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TABLE I
PARAMETERS OF THE LASER

Fig. 13. Electron density during the simulation (see the text for details).

The plasma has a flat-top profile with a length of 1.5 mm;

the density in the plateau is ne = 2 · 1019 electrons/cm3. We

have performed a 2-D simulation. The computational window

was a square of (125 × 125) µm, and the mesh consisted of

1350 × 400 points, corresponding to approximately 9 × 3 grid

points/wavelength. The velocity of the moving window was

fixed to 0.98c. The simulation used about 20 · 106 numerical-

particles (electrons) corresponding to ∼40 particles/cell; we

assumed that the ions are at rest. The spatial derivatives have

been computed with an eighth-order compact scheme and the

time integration with a Runge–Kutta scheme of the fourth order.

The time step was chosen such that c∆t = 0.67∆z in order to

comply with the Courant condition. In Fig. 13, we show the

evolution of the electron density with the formation of the bub-

ble, the autoinjected electrons, and the accelerated bunch leav-

ing the plasma. In Fig. 14 (left panel), we plot the electric fields

and the longitudinal phase space (right panel) for the electrons

at two different times. The maximum value of the longitudinal

accelerating field is found to be Ez ∼ 1.0−1.3 TV/m. From the

linear theory, we obtain Emax
z ∼ (

√
ne/2)(a2

0/2/
√

a2
0/2 + 1)

(in volts per centimeter), and since for our laser-pulse a0 = 4.8,

we have Emax
z ∼ 0.7 TV/m, which is in agreement with the

simulation. The electrons in phase with the accelerating field

reach a peak energy of approximately 200–250 MeV. Finally, in

Fig. 15, we show the energy spectrum of the ejected electrons

obtained in four simulations, changing the numerical parame-

ters (mesh dimension, numerical particles) and fixing the phys-

ical ones. No significant differences arise between the different

simulations, ensuring the robustness of the numerical results.

VI. CONCLUSION

In this paper, we have presented ALaDyn, a relativistic fully

self-consistent electromagnetic PIC code designed to study

the laser–plasma interaction in 1-D, 2-D, and 3-D. The code,

organized into a library of functions, is written in C and

Fig. 14. (Left) Longitudinal electric field and (right) longitudinal phase space
(z, pz) for the electrons at two different times (see the text for details).

Fig. 15. Kinetic energy of the ejected electrons in different simulations
changing the numerical parameters (mesh dimension, numerical particles) and
fixing the physical ones.

parallelized with MPI. It is based on high-order discretization

methods (compact finite-differences schemes) for the differ-

ential operators in configuration space and on accurate time-

integration schemes (high-order Runge–Kutta) ensuring high

spectral accuracy. The goal is to use a coarser computational

grid (allowing the use of a higher particles-per-cell number)

and a larger time step as compared to standard PIC codes. The

principal features of the code are as follows: flexibility in the

definition of the plasma and of the laser pulse, implementation

of the moving window, and implementation of the Lorentz

boost technique. Several validation tests have already been

made, and the benchmark with the PIC code VORPAL [9]

is planned. ALaDyn was developed in the framework of the

PLASMON-X collaboration and, during the period 2008–2010,

will provide the simulation platform for the experiment.
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