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In this work, we introduce DIRECTGO, a new MATLAB toolbox for derivative-free global optimization. DIRECTGO collects various

deterministic derivative-free DIRECT-type algorithms for box-constrained, generally-constrained, and problems with hidden constraints.

Each sequential algorithm is implemented in two ways: using static and dynamic data structures for more efficient information

storage and organization. Furthermore, parallel schemes are applied to some promising algorithms within DIRECTGO. The toolbox is

equipped with a graphical user interface (GUI), ensuring the user-friendly use of all functionalities available in DIRECTGO. Available

features are demonstrated in detailed computational studies using a comprehensive DIRECTGOLib v1.0 library of global optimization

test problems. Additionally, eleven classical engineering design problems illustrate the potential of DIRECTGO to solve challenging

real-world problems. Finally, the appendix gives examples of accompanying MATLAB programs and provides a synopsis of its use on

the test problems with box and general constraints.
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1 INTRODUCTION

The DIRECT (DIviding RECTangles) algorithm [39] is a well-known and widely used solution technique for derivative-free

global optimization problems. The DIRECT algorithm extends classical Lipschitz optimization [62–64, 68, 71, 72, 78, 81],

where the Lipschitz constant is not assumed to be known. This propertymakes DIRECT-typemethods especially attractive

for solving various real-world optimization problems (see, e.g., [2, 3, 9, 14, 16, 25, 50, 61, 66, 89] and the references

given therein). Moreover, a recent review and comparison in [75] revealed that, on average, DIRECT-type algorithms

performance is one of the best among all tested state-of-the-art derivative-free global optimization approaches. The

DIRECT-type algorithms often outperform algorithms belonging to other well-known classes, such as Genetic [34],

Simulated annealing [42], and Particle swarm optimization [41].

While the original DIRECT addresses only box-constrained optimization problems, various DIRECT-type modifications

and extensions have been proposed. Based on the type of constraints, DIRECT-type algorithms can be classified into

four main categories:

∗
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• Box-constrained (see, e.g., [19, 22, 25, 37, 39, 48–51, 66, 76] and the references given therein);

• Linearly-constrained/symmetric (see, e.g., [27, 60, 65–67] and the references given therein);

• Generally-constrained (see, e.g., [13, 21, 37, 44, 89] and the references given therein);

• Containing hidden constraints (see, e.g., [24, 58, 84] and the references given therein).

MATLAB [53] is one of the most broadly used mathematical computing environments in scientific and technical computing

(see, e.g., [7, 33, 96]). Many widely used implementations of the original DIRECT algorithm (see, e.g., [6, 20, 24]) as well

as various later introduced DIRECT-type extensions (see, e.g., [44, 47, 48, 66]), were developed using MATLAB. Motivated

by this, we developed a DIRECT-type global optimization toolbox (DIRECTGO) within the MATLAB environment. The

DIRECTGO toolbox is equipped with a graphical user interface (GUI), which links to a DIRECTGOLib v1.0 [86, 91]

library and ensures the user-friendly use of all functionalities available in DIRECTGO. The DIRECTGOLib v1.0 library

is a continuation of our previous DIRECTLib [90], which was widely used in our different previous studies (see, e.g.,

[88, 89, 93]). However, DIRECTLib was designed as a static library and did not offer the global optimization community

comfortable opportunities to contribute to it. Therefore, a new DIRECTGOLib v1.0 is designed as an open-source

GitHub repository to which other researchers can easily contribute.

The first publicly available DIRECT implementations and many others introduced later typically use static data

structures for storage and organization. Our recent work [93] showed that the MATLAB implementation of the same

DIRECT-type algorithm based on dynamic data structure often has a significant advantage over implementation based

on the static data structure. Therefore, each algorithm in DIRECTGO is implemented using both static and dynamic data

structures. As various applications can benefit from parallel computing, the SPMD (Single Program Multiple Data)

parallel scheme (see [93] for more information) is used to implement some approaches.

1.1 Contributions and structure

We summarize our main contributions below:

• We develop a new MATLAB toolbox (DIRECTGO) for derivative-free global optimization, consisting of 36 different

DIRECT-type algorithms (see Table 1 for the details).

• We implement each DIRECT-type algorithm using two types of data structures, static and dynamic [30, 93].

• We adapt the SPMD parallel scheme [93] for selected DIRECT-type algorithms.

• We create a new library (DIRECTGOLib v1.0 [91]) of test and engineering global optimization problems for

usage with DIRECTGO and convenient contribution to it through GitHub [86].

• We perform a comprehensive experimental study on the effectiveness of various DIRECT-type approaches.

• We design a user-friendly application with a graphical user interface (GUI).

• We make DIRECTGO open-source, i.e., freely available to anyone [85].

The rest of the paper is organized as follows. Section 2 provides the classification of existing DIRECT-type algorithms

and describes the algorithms implemented within our toolbox in more detail. The parallel scheme used in implementing

some algorithms is also discussed here. DIRECTGO toolbox is introduced and described in Section 3. The detailed

computational study of the DIRECTGO toolbox using classical global optimization test and engineering design problems

DIRECTGOLib v1.0 [91] are presented in Sections 4 and 5, respectively. Finally, in Section 6, we conclude the work and

discuss the possible future directions.
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Table 1. Classification of DIRECT-type implementations (within the DIRECTGO toolbox) based on the type of constraints.

Problem type Algorithm name

Implementation

Description and References

st dy pa

DIRECT v4.0 + + + Finkel’s implementation [20] of the original DIRECT [39] algorithm
DIRECT-restart + + + Our implementation of the algorithm from [19] (based on Finkel’s DIRECT [20] implementation)

DIRECT-m + + + Our implementation of the algorithm from [22] (based on Finkel’s DIRECT [20] implementation)

DIRECT-l + + + Our implementation of the algorithm from [25] (based on Finkel’s DIRECT [20] implementation)

DIRECT-rev + + + Our implementation of the algorithm from [37] (based on Finkel’s DIRECT [20] implementation)

DIRECT-a + + + Our implementation of the algorithm from [46] (based on Finkel’s DIRECT [20] implementation)

DIRMIN + + + Our implementation of the algorithm from [50] (based on Finkel’s DIRECT [20] implementation)

PLOR + + + Our implementation of the algorithm from [56] (based on Finkel’s DIRECT [20] implementation)

Box glbSolve + + − Björkman’s implementation [6] of the original DIRECT [39] algorithm

constrained glbSolve-sym, glbSolve-sym2 + + − Our implementation of algorithms from [27] (based on Björkman’s glbSolve [6] implementation)

MrDIRECT, MrDIRECT075 + + − Our implementation of algorithms from [48, 49] (based on Björkman’s glbSolve [6] implementation)

BIRECT + + − Our implementation of the algorithm from [59] (based on Björkman’s glbSolve [6] implementation)

GB-DISIMPL-C, GB-DISIMPL-V + + − Our implementation of algorithms from [60] (based on Björkman’s glbSolve [6] implementation)

Gb-BIRECT, BIRMIN, Gb-glbSolve + + − Our implementation of algorithms from [61] (based on Björkman’s glbSolve [6] implementation)

DISIMPL-C, DISIMPL-V + + − Our implementation of algorithms from [65] (based on Björkman’s glbSolve [6] implementation)

ADC + + − Our implementation of the algorithm from [76] (based on Björkman’s glbSolve [6] implementation)

Aggressive DIRECT + + + Our implementation of the algorithm from [2]

DIRECT-G, DIRECT-L, DIRECT-GL + + + Our implementation of algorithms from [88]

Linearly

Lc-DISIMPL-C, Lc-DISIMPL-V
+ + −

Our implementation of algorithms from [66, 67] (based on Björkman’s glbSolve [6] implementation)

constrained

Generally DIRECT-L1 + + + Finkel’s implementation of the algorithm from [20]

constrained DIRECT-GLc, DIRECT-GLce, + + +
Our implementation of algorithms from [89] (based on our DIRECT-GL [88] implementation)

DIRECT-GLce-min

DIRECT-NAS + + − Finkel’s implementation of the algorithm from [24]

Hidden DIRECT-Barrier + + − Our implementation of the algorithm from [24] (based on Finkel’s DIRECT [20] implementation)

constraints subDIRECT-Barrier + + − Our implementation of the algorithm from [58] (based on Finkel’s DIRECT [20] implementation)

DIRECT-GLh + + − Our implementation of the algorithm from [84] (based on our DIRECT-GL [88] implementation)

st - implementation using static data structures.

dy - implementation using dynamic data structures.

pa - parallel implementation using dynamic data structures.

2 THEORETICAL AND ALGORITHMIC BACKGROUNDS

This section provides the classification of existing DIRECT-type algorithms and describes the algorithms implemented

within our DIRECTGO toolbox in more detail. For a thorough review, we refer to a recent survey [38].

The derivative-free DIRECT algorithm [39] is an efficient deterministic technique to solve global optimization [36, 79,

94] problems subject to simple box constraints

min

x∈𝐷
𝑓 (x), (1)

where 𝑓 : R𝑛 → R denotes the objective function and the feasible region is an 𝑛-dimensional hyper-rectangle

𝐷 = [a, b] = {x ∈ R𝑛 : 𝑎 𝑗 ≤ 𝑥 𝑗 ≤ 𝑏 𝑗 , 𝑗 = 1, . . . , 𝑛}. The objective function 𝑓 (x) is supposed to be Lipschitz-continuous

(with an unknown Lipschitz constant) but can be non-linear, non-differentiable, non-convex, and multi-modal.

The DIRECT algorithm includes three main steps: selection, sampling, and partitioning (subdivision). At the initial

iteration, the DIRECT algorithm normalizes the feasible region 𝐷 to be the unit hyper-cube �̄� and refers to the original

space 𝐷 only when evaluating the objective function. Regardless of the dimension, the first evaluation of the objective

function is done at the midpoint c1 ∈ �̄� (see the left panel of Fig. 1). Then DIRECT selects �̄� and samples at c1 ± 𝛿𝑒 𝑗 , 𝑗 =

1, . . . , 𝑛, where 𝑒 𝑗 is the 𝑗th unit vector and 𝛿 is equal to one-third of the maximum side length of �̄� . The subdivision

procedure in DIRECT is based on 𝑛-dimensional trisection along all longest dimensions (sides). When several dimensions

have the maximum side length, DIRECT starts trisection from the dimension with the lowest𝑤 𝑗
and continues to the

highest [38, 39]. Here𝑤 𝑗
is defined as the best function values sampled along dimension 𝑗

𝑤 𝑗 = min{𝑓 (c𝑖 + 𝛿𝑖e𝑗 ), 𝑓 (c𝑖 − 𝛿𝑖e𝑗 )}, (2)
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where c𝑖 is the center of the hyper-rectangle �̄�𝑖 , and 𝑗 ∈ 𝑀 — set of dimensions with the maximum side length. Figure 1

illustrates the DIRECT algorithm’s selection, sampling, and subdivision (trisection) for a two-dimensional Rosenbrock

test function.
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Fig. 1. Illustration of selection, sampling, and subdivision (trisection) used in the original DIRECT algorithm [39] on a two-dimensional
Rosenbrock test function in the first two iterations.

The selection procedure at the initial step is trivial as we have only one candidate �̄� . To formalize the selection of

potentially optimal hyper-rectangles (POHs) in the future iterations, we define the current partition at the iteration 𝑘

P𝑘 = {�̄�𝑘
𝑖 : 𝑖 ∈ I𝑘 },

where �̄�𝑘
𝑖
= [a𝑖 , b𝑖 ] = {x ∈ R𝑛 : 0 ≤ 𝑎

𝑗
𝑖
≤ 𝑥 𝑗 ≤ 𝑏

𝑗
𝑖
≤ 1, 𝑗 = 1, . . . , 𝑛,∀𝑖 ∈ I𝑘 } and I𝑘 is the index set identifying the

current partition P𝑘
. The next partition P𝑘+1

is obtained after the subdivision of the selected POHs from the current

partition P𝑘
. DIRECT assesses the potentiality based on the lower bound estimates for the objective function 𝑓 over

each hyper-rectangle �̄�𝑘
𝑖
as stated in Definition 2.1.

Definition 2.1. (Potentially optimal hyper-rectangle) Let c𝑘
𝑖
denote the center sampling point and 𝛿𝑘

𝑖
be a measure of

the hyper-rectangle �̄�𝑘
𝑖
. Let Y > 0 be a positive constant and 𝑓min be the best currently found value of the objective

function. A hyper-rectangle �̄�𝑘
𝑗
, 𝑗 ∈ I𝑘 is said to be potentially optimal if there exists some rate-of-change (Lipschitz)

constant �̃� > 0 such that

𝑓 (c𝑘𝑗 ) − �̃�𝛿𝑘𝑗 ≤ 𝑓 (c𝑘𝑖 ) − �̃�𝛿𝑘𝑖 , ∀𝑖 ∈ I𝑘 , (3)

𝑓 (c𝑘𝑗 ) − �̃�𝛿𝑘𝑗 ≤ 𝑓min − Y |𝑓min |, (4)

where the measure of the hyper-rectangle �̄�𝑘
𝑖
is

𝛿𝑘𝑖 =
1

2

∥b𝑘𝑖 − a𝑘𝑖 ∥2 . (5)

The hyper-rectangle 𝐷𝑘
𝑗
is potentially optimal if the lower Lipschitz bound for the objective function computed by

the left-hand side of (3) is the smallest one with some positive constant �̃� among the hyper-rectangles of the current

partition P𝑘
. In (4), the parameter Y is used to protect from an excessive refinement of the local minima [39, 60]. Authors

obtained good results for Y values ranging from 10
−3

to 10
−7

in [39].
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Fig. 2. Visualization of selected potentially optimal rectangles in the fifth iteration of the DIRECT algorithm on a two-dimensional
Rosenbrock test problem.

A geometric interpretation of the selection procedure is given on the right panel of Fig. 2. Here, each hyper-rectangle

is represented as a point. The 𝑥-axis shows the measure (𝛿𝑘
𝑖
) while the 𝑦-axis – the objective function value attained

at the midpoint (c𝑘
𝑖
) of a certain hyper-rectangle. The hyper-rectangles meeting conditions (3) and (4) are points on

the lower-right convex hull (highlighted in blue color). Condition (4) prevents wasting function evaluations on tiny

hyper-rectangles where only a negligible improvement can be expected.

Then at each subsequent iteration, DIRECT performs a selection of POHs, which are sampled, evaluated, and

trisected. Almost all DIRECT-type extensions and modifications follow the same algorithmic framework, summarized in

Algorithm 1.

Algorithm 1:Main steps of DIRECT-type algorithms

1 Initialization. Normalize the search space 𝐷 to be the unit hyper-rectangle �̄� , but refer to the original space 𝐷

when making function calls. Evaluate the objective 𝑓 at the center point c1. Set 𝑓min = 𝑓 (c1), 𝑐min = c1.

Initialize algorithmic performance measures, and stopping criteria.
2 while stopping criteria are not satisfied do
3 Selection. Identify the sets 𝑆 of POHs (subregions of �̄�).

4 Sampling. For each POH (�̄� 𝑗 ∈ 𝑆) sample and evaluate the objective function at new domain points. Update

𝑓min, cmin, and algorithmic performance measures.

5 Subdivision. Each POH (�̄� 𝑗 ∈ 𝑆) subdivide (trisect) and update the partition (P).
6 end
7 Return 𝑓min, cmin, and performance measures.

2.1 DIRECT-type algorithms for box-constrained global optimization

Many different DIRECT extensions have been suggested. Most of them focused on improving the selection of POHs,

while others introduced new partitioning and sampling strategies. The summary of all box-constrained proposals
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considered in the DIRECTGO toolbox is given in Table 2. Most algorithms are based on the trisection of 𝑛-dimensional

POHs, and just ADC, BIRECT, and both DISIMPL versions use different partitioning strategies. Below we briefly review the

DIRECT-type approaches for box-constrained global optimization implemented in the current release of the DIRECTGO

toolbox.

Adaptive diagonal curves (ADC) based algorithm with a new two-phase technique balancing local and global

information was introduced in [76]. Independently on dimensionality, the ADC algorithm evaluates the objective

function at two vertices a𝑘
𝑖
and b𝑘

𝑖
of the main diagonal, as shown in Fig. 3. Notice that up to 2

𝑛
hyper-rectangles can

share the same vertex, leading (in a long sequence) to a smaller number of sampled points than the total number of

hyper-rectangles in the current partition. Furthermore, as in the revised version of DIRECT [37], ADC trisects each

selected POH along just one of the longest dimensions. Such a diagonal scheme potentially obtains more

comprehensive information about the objective function than center-based sampling, which sometimes may take many

iterations to find the solution. For example, a hyper-rectangle containing the optimum with a bad function value at the

midpoint makes him undesirable for further selection. The ADC algorithm intuitively reduces this chance for both

sampling points in the hyper-rectangle containing the optimum solution.
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Fig. 3. Illustration of the diagonal trisection strategy introduced in the ADC algorithm on a two-dimensional Rosenbrock test function
in the first two iterations.

BIRECT (BIsecting RECTangles) [59] is motivated by the diagonal partitioning strategy [76, 77, 79]. As the name

suggests, the bisection is used instead of a trisection typical for DIRECT-type algorithms. In BIRECT, the objective

function is evaluated at two points on the diagonal equidistant between themselves and a diagonal’s vertices, as shown

in Fig. 4. Such a sampling strategy enables the reuse of sampling points in descendant hyper-rectangles. Moreover, as

in the ADC case, using two-points-based diagonal sampling, potentially more comprehensive information about the

objective function is considered than in the center-based sampling.

In DISIMPL [65], simplicial partitions are considered instead of hyper-rectangles. The hyper-cube �̄� is partitioned

into 𝑛! simplices by the standard face-to-face simplicial division based on the combinatorial vertex triangulation at the

first iteration. After this, all simplices share the diagonal of the feasible region and have equal hyper-volume. In [65],

we proposed two different sampling strategies. Both are included in the DIRECTGO toolbox: i) DISIMPL-C evaluating the

objective function at the geometric center of the simplex; ii) DISIMPL-V evaluating the objective function on all unique

vertices of the simplex. For box-constrained problems, the total number of initial simplices grows speedily with the
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Fig. 4. Illustration of the diagonal bisection strategy used in the BIRECT algorithm on a two-dimensional Rosenbrock test function in
the first two iterations.

dimension increase. Therefore, DISIMPL effectively can be used only for small box-constrained problems. However, the

DISIMPL approach is auspicious (among all DIRECT-type methods) for symmetric optimization problems [65, 66] and

problems with linear constraints [67].

In the DIRECT-restart algorithm [19], the authors introduced an adaptive scheme for the Y parameter. Condition

(4) is needed to stop the DIRECT from wasting function evaluations on minor hyper-rectangles where only a negligible

improvement can be expected. The DIRECT-restart algorithm starts with Y = 0, and the same value for Y is maintained

while improvement is achieved. However, if five consecutive iterations have no improvement in the best function value,

the search may be stagnated around a local optimum. Therefore, the algorithm switches to Y = 0.01 value to prevent an

excessive local search. If the algorithm finds an improvement or fails to see the progress within 50 iterations in this

phase, DIRECT-restart switches to Y = 0. Then, if another 50 iterations pass without improvement, this may indicate

that the global minimum has been found, and one should work on refining it to higher accuracy.

The authors of MrDIRECT [49] and MrDIRECT075 [45] algorithms introduced three different levels to perform the

selection procedure:

• At level 2, DIRECT is run as usual, with Y = 10
−5
.

• At level 1, the selection is limited to only 90% of �̄�𝑘
𝑖
∈ P𝑘

; 10% of the largest hyper-rectangles are ignored. Here,

Y = 10
−7

is used.

• At level 0, the selection is limited to 10% of the largest hyper-rectangles (ignored at level 1) using Y = 0.

Both algorithms cycle through these levels using “W-cycle”: 21011012. The main difference between the proposed

algorithms is that MrDIRECT uses fixed Y = 10
−4

value at all levels, while MrDIRECT075 follows above-mentioned rules.

In [2], the authors relaxed the selection criteria of POHs and proposed an aggressive version of the DIRECT algorithm.

Aggressive DIRECT’s main idea is to select and divide at least one hyper-rectangle from each group of different

diameters (𝛿𝑘
𝑖
) having the lowest function value. Therefore, using Aggressive DIRECT in the situation presented

in Fig. 2, a hyper-rectangle with the slightest measure 𝛿𝑘
𝑖
would also be selected and divided. The aggressive version

performs more function evaluations per iteration than other DIRECT-type methods. From the optimization point of view,

such an approach seems less favorable since it “wastes” function evaluations by exploring unnecessary (non-potentially

optimal) hyper-rectangles. However, such a strategy is much more appealing in a parallel environment, as was shown
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in [28, 29, 31, 98]. Note that the authors did not specify which hyper-rectangle should be selected from the same group

(𝛿𝑘
𝑖
) if more than one with identical objective function values exist. Thus, the hyper-rectangle with the larger index

value was selected in our implementations.

In [25], the algorithm named DIRECT-l was proposed. In most DIRECT-type algorithms, the measure of the hyper-

rectangle is calculated by a half-length of a diagonal (see (5)). In DIRECT-l, this measure is evaluated by the length

of its longest side. This measure corresponds to the infinity norm and allows the DIRECT-l algorithm to group more

hyper-rectangles with the same measure. Thus, there are fewer different measures, so fewer POHs are selected Moreover,

with DIRECT-l at most one hyper-rectangle selected from each group, even if there is more than one POH in the same

group. Such a strategy allows a reduction in the number of divisions within a group. Once again, the same rule is

adapted [88] to determine which hyper-rectangle to select from several possible ones.

In [22], the authors concluded that the original DIRECT algorithm is sensitive to the objective function’s additive

scaling. Additionally, the algorithm does not operate well when the objective function values are large enough. The

authors proposed a scaling of function values by subtracting the median (𝑓
median

) of the collected function values to

overcome this. DIRECT-m replaces the equation (4) in Definition 2.1 to:

𝑓 (c𝑗 ) − �̃�𝛿 𝑗 ≤ 𝑓min − Y |𝑓min − 𝑓
median

|. (6)

Similarly, in [46], the authors extended the same idea in DIRECT-a to reduce the objective function’s additive scaling.

Instead of the median value, the authors proposed to use the average value (𝑓average) at each iteration

𝑓 (c𝑗 ) − �̃�𝛿 𝑗 ≤ 𝑓min − Y |𝑓min − 𝑓average |. (7)

Another extension of the DIRECT algorithm was proposed in [27]. The authors introduced glbSolve-sym

(glbSolve-sym2) as DIRECT extensions for symmetric Lipschitz continuous functions. When solving symmetric

optimization problems, there exist equivalent subregions in the hyper-rectangle. The algorithm determines which

hyper-rectangles can be safely discarded, considering the problem’s symmetrical nature, and avoids exploration over

equivalent subregions.

In the PLOR algorithm [56], the set of POHs is reduced to just two, corresponding to the first and last point on the

Pareto front (see the right panel in Fig. 2). Therefore, only hyper-rectangles with the lowest function value and the

most extensive measure, breaking ties in favor of a better center-point function value, are selected.

Our recent extension, DIRECT-GL [88], introduced a new approach to identifying the extended set of POHs. Here,

using a novel two-step-based strategy, the set of the best hyper-rectangles is enlarged by adding more medium-measured

hyper-rectangles with the smallest function value at their centers and, additionally, closest to the current minimum

point. The first step of the selection procedure forces the DIRECT-GL algorithm to work more globally (compared to

the selection used in DIRECT [39]). In contrast, the second step assures a faster and broader examination around the

current minimum point. The original DIRECT-GL version performs a selection of POHs in each iteration twice [88], and

the algorithm separately handles the found independent sets 𝐺 (using Definition 2 from [88] - DIRECT-G) and 𝐿 (using

Definition 3 from [88] - DIRECT-L). Following the same trend from [93], the version used in this paper slightly differs

compared to [88]. In the current version of DIRECT-GL, identifying these two sets is performed in succession, and the

unique union of these two sets (𝑆 = 𝐺 ∪ 𝐿) is used in Algorithm 1, Line 3. This modification was introduced to reduce

the data communication between the computational units in the parallel algorithm version [83]. At the same time, we

found that this way modified DIRECT-GL was, on average, more effective than the original one.
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Several globally biased (Gb-) versions of DIRECT-type algorithms were introduced and investigated [60, 61]. Proposed

approaches are primarily oriented for solving extremely difficult global optimization problems and contain a phase

that constrains itself to large subregions. The introduced step performs until a sufficient number of divisions of hyper-

rectangles near the current best point is done. Once those subdivisions around the current best minima point are

performed, the neighborhood contains only small measure hyper-rectangles and all larger ones located far away from

it. Therefore, the two-phase strategy makes the DIRECT-type algorithms examine larger hyper-rectangles and return to

the general phase only when an improved minimum is obtained. The proposed globally biased strategy is combined

with glbSolve, BIRECT, DISIMPL-C, and DISIMPL-V algorithmic frameworks within our DIRECTGO toolbox.

Finally, three different hybridized DIRECT-type algorithms are proposed (DIRECT-rev [37], DIRMIN [50], BIRMIN [61]).

In our implementation, all algorithms are combined with the same local search routine – fmincon. The DIRMIN algorithm

suggests running a local search starting from the midpoint of every POH. However, such an approach likely generates

more local searches than necessary, as many start points will converge to the same local optimum. The other authors of

the DIRECT-rev and BIRMIN algorithms tried to minimize the usage of local searches. They suggested using fmincon

only when some improvement in the best current solution is obtained. The authors in [37] additionally incorporated

the following two enhancements. First, in the DIRECT-rev algorithm, selected hyper-rectangles are trisected only on

one longest side. Second, only one POH is selected if several equally good exist (the same measure and objective values)

in Definition 2.1. We have applied the same rule from [88] to determine which hyper-rectangle to select from several

ones when needed.

2.2 DIRECT-type algorithms for generally constrained global optimization

The original DIRECT algorithm [39] only solves optimization problems with the variables’ bounds. In this subsection,

we consider a generally constrained global optimization problem of the form:

min

x∈𝐷
𝑓 (x)

s.t. g(x) ≤ 0,

h(x) = 0,

(8)

where 𝑓 : R𝑛 → R, g : R𝑛 → R𝑚 , h : R𝑛 → R𝑟 are (possibly non-linear) continuous functions. The feasible region is a

non-empty set, consisting of points that satisfy all constraints, i.e., 𝐷 feas = 𝐷 ∩ Ω ≠ ∅, where Ω = {x ∈ R𝑛 : g(x) ≤
0, h(x) = 0}. As for the box-constrained problems, it is also assumed that the objective and all constraint functions are

Lipschitz-continuous (with unknown Lipschitz constants) but can be non-linear, non-differentiable, non-convex, and

multi-modal.

The first DIRECT-type algorithm for problems with general constraints was introduced in [37]. Finkel in [21]

investigated three different constraint handling schemes within the DIRECT framework. The comparison revealed

various disadvantages of the initial proposals. Recently, various new promising extensions for general global optimization

problems were introduced (see, e.g., [4, 13, 44, 69, 70, 89] and the references given therein). Below we briefly review

approaches implemented in the current release of the DIRECTGO toolbox (see Table 1).

An exact L1 penalty approach DIRECT-L1 [20] is transforming the original constrained problem (8) in the form:

min

x∈𝐷
𝑓 (x) +

𝑚∑︁
𝑖=1

max{𝛾𝑖𝑔𝑖 (x), 0} +
𝑟∑︁
𝑖=1

𝛾𝑖+𝑚 |ℎ𝑖 (x) |, (9)
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Table 2. Summary of main characteristics of DIRECT-type algorithms for box-constrained global optimization
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(“levels”). MrDIRECT075 uses different Y values at each
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into the BIRMIN algorithm.
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where𝛾𝑖 are penalty parameters. Experiments in [21] showed promising results of this approach. Nevertheless, the biggest

drawback is the users’ requirement to set penalty parameters for each constraint function manually. In practice, choosing

penalty parameters is an essential task and can significantly impact the algorithm’s performance [21, 44, 66, 67, 89].

In [89], we have introduced a new DIRECT-type extension based on the DIRECT-GL [88] algorithm. The new

DIRECT-GLce algorithm uses an auxiliary function approach that combines objective and constraint functions and does

not require penalty parameters. The DIRECT-GLce algorithm works in two phases, where during the first phase, the

algorithm finds feasible points and in the second phase improves a feasible solution. A separate step for handling

infeasible initial points is beneficial when the feasible region is small compared to the entire search space. In the first

phase, DIRECT-GLce samples the search space and minimizes the sum of constraint violations, i.e.:

min

x∈𝐷
𝜑 (x), (10)

where

𝜑 (x) =
𝑚∑︁
𝑖=1

max{𝑔𝑖 (x), 0} +
𝑟∑︁
𝑖=1

|ℎ𝑖 (x) |. (11)

The algorithm works in this phase until at least one feasible point (x ∈ 𝐷 feas

Y𝜑
) is found, where

𝐷 feas

Y𝜑
= {x : 0 ≤ 𝜑 (x) ≤ Y𝜑 , x ∈ 𝐷}. (12)

The Y𝜑 is a small user-specified tolerance for the sum of constraint functions Eq. (11). When feasible points are located,

the effort is switched to improve the feasible solutions. In the second phase, DIRECT-GLce uses the transformed problem

(8):

min

x∈𝐷
𝑓 (x) + ˜b (x, 𝑓 feas

min
),

˜b (x, 𝑓 feas

min
) =


0, x ∈ 𝐷 feas

Y𝜑

0, x ∈ 𝐷 inf

Ycons

𝜑 (x) + Δ, otherwise,

(13)

where

𝐷 inf

Ycons

= {x : 𝑓 (x) ≤ 𝑓 feas

min
, Y𝜑 < 𝜑 (x) ≤ Ycons, x ∈ 𝐷}, (14)

and Ycons is a small tolerance for constraint function sum, which automatically varies during the optimization process.

An auxiliary function b (x, 𝑓 feas

min
) depends on the sum of the constraint functions and the parameter Δ = |𝑓 (x) − 𝑓 feas

min
|,

equal to the absolute difference between the best feasible function value found so far (𝑓 feas

min
) and the objective value

at an infeasible center point. The purpose of the parameter Δ is to forbid the convergence to infeasible regions by

penalizing the objective value at infeasible points. In such a way, the formulation (13) does not require any penalty

parameters and determines the convergence of the algorithm to a feasible solution. The value of b (x, 𝑓 feas

min
) is updated

when a smaller value of 𝑓 feas

min
is found. This way, the new DIRECT-GLce algorithm divides more hyper-rectangles with

center points lying close to the boundaries of the feasible region, i.e., the potential solution.
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The proposed DIRECT-GLce algorithm has two extensions: The first one is DIRECT-GLc (see Table 1), which is a

simplified version of DIRECT-GLce and instead of (13) minimizes the transformed problem:

min

x∈𝐷
𝑓 (x) + b (x, 𝑓 feas

min
),

b (x, 𝑓 feas

min
) =


0, x ∈ 𝐷 feas

Y𝜑

𝜑 (x) + Δ, otherwise,

(15)

Experimental investigation in [89] showed that the algorithm has the most wins in this comparison and can solve

about 50% of the problems with the highest efficiency. Unfortunately, the DIRECT-GLc algorithm’s efficiency decreases,

solving more challenging problems (with non-linear constraints and 𝑛 ≥ 4), where DIRECT-GLce is significantly

better. Therefore, DIRECT-GLc should be used only for simpler optimization problems (with linear constraints and

𝑛 ≤ 4). The second extension of the DIRECT-GLce algorithm is DIRECT-GLce-min, where the algorithm is incorporated

with MATLAB optimization solver fmincon. In [89], we observed that embedding a local minimization procedure into

DIRECT-GLce-min (see Table 1) significantly reduces the total number of function evaluations compared to DIRECT-GLce

and can significantly improve the quality of the final solution.

2.2.1 DIRECT-type algorithms for linearly constrained global optimization. Let us note that all previously described

algorithms for a generally constrained problem can be directly applied to solve linearly constrained problems. In this

section, we consider optimization problems with only linear constraints.

In [67], we have extended the original simplicial partitioning-based DISIMPL algorithm [65, 66] for such problems with

linear constraints. Simplices may cover a search space defined by linear constraints. Therefore, a simplicial approach may

tackle such linear constraints very subtly. In such a way, the new algorithms (Lc-DISIMPL-C and Lc-DISIMPL-V) [67]

perform the search only in the feasible region, in contrast to other DIRECT-type approaches. Nevertheless, the authors

in [67] showed that the feasible region’s calculation requires solving 2𝑛 +𝑚 linear 𝑛-dimensional systems, and such

operation is exponential in complexity. Therefore, the proposed algorithm can be effectively used for relatively small 𝑛

and𝑚 values.

2.3 DIRECT-type algorithms for problems with hidden constraints

Optimization problems with hidden constraints often occur when the objective function is not defined everywhere [10].

Typical examples of such situations are the simulation crashes [17] and failure of computations within the objective

function [9, 11, 15, 82]. As in [10, 17], we call these internal to 𝑓 constraints “hidden constraints” and assume that 𝑓 fails

to return a value when evaluated at x ∉ 𝐷 feas
. Some authors alternatively may use other terms like “crash,” “unknown,”

“unspecified,” and “forgotten” constraints [1, 17].

In this subsection, we consider the solution to the constrained global optimization problem:

min

x∈𝐷 feas

𝑓 (x),
(16)

where 𝑓 : R𝑛 → R ∪ {∞} denotes an extended real-valued, most likely “black-box” objective function. A priori an

unknown feasible region 𝐷 feas
is defined as a non-empty set

𝐷 feas = 𝐷 \ 𝐷hidden ≠ ∅,

and 𝐷hidden
are not given by explicit formulae hidden constraints. Such a problem formulation leads to a complex and

analytically undefined feasible region. Hidden constraints are typically handled by returning NaN or ∞ evaluating
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the objective function at x ∉ 𝐷 feas
. Therefore, using NaN hyper-rectangles with an infeasible center point would not

be selected as potential optimal at all [84]. In the case of∞ (or any other high value), they would be left unexplored

as long as there are the same size hyper-rectangles with feasible centers [21, 84]. Unfortunately, most DIRECT-type

algorithms cannot be directly (without any modifications) applied for the problem’s (16) solution. In the current version

of the DIRECTGO toolbox, four such algorithms are available (see Table 1).

One of the first proposed modifications for such problems was the barrier method (DIRECT-Barrier) [24]. The

DIRECT-Barrier is relatively straightforward and assigns a predefined high value to infeasible hyper-rectangles.

However, such an approach produces other well-known problems discussed and reviewed by a few authors [21, 66, 89].

The main issue is that the barrier approach makes exploration around the edges of feasibility very slow. Significant

penalties used by the barrier method ensure that no infeasible hyper-rectangle can be potentially optimal as long as

there is the same measure hyper-rectangle with the feasible center midpoint. For DIRECT-Barrier, the priority is

the examination of regions where feasible points are found already. Another critical issue concluded in [21] is that

hyper-rectangles, even with the sizeable feasible region, will not be explored in a reasonable number of function

evaluations. To sum up, the barrier approach is not the best fit for the problem (16).

The second DIRECT-type approach for hidden constraints is based on Neighbourhood Assignment Strategy (NAS) [24].

DIRECT-NAS’s main idea is to assign the value at infeasible point xinf ∉ 𝐷 feas
relative to the objective values attained

in the feasible points from the neighborhood of xinf
. DIRECT-NAS iterates over all infeasible midpoints by creating

surrounding hyper-rectangles around them by keeping the same center points in every iteration. These hyper-rectangles

are increased by doubling the length of each dimension. If more than one feasible center point inside the enlarged region,

DIRECT-NAS assigns the smallest function value to the infeasible midpoint plus a small epsilon 𝑓 (xfeas) + 𝜖 𝑓 (xfeas),
where 𝜖 = 10

−6
was proposed to use. If inside the enlarged region has no feasible points, DIRECT-NAS assigns the

largest objective function value found so far 𝑓max + _, where _ = 1 was proposed to use. This strategy does not allow

the DIRECT-NAS algorithm to move beyond the feasible region by penalizing infeasible midpoints with large values.

However, the algorithm’s principal concern is the slow convergence caused by many additional calculations.

Another recent idea to handle hidden constraints within the DIRECT framework is to use a subdividing step for

infeasible hyper-rectangles. The proposed subDIRECT-Barrier [58] incorporates the previously mentioned barrier

approach techniques. Specifically, if the center point is identified as infeasible, then subDIRECT-Barrier assigns a

considerable penalty value to it. An extra subdividing step is performed only in specific iterations, during which

all infeasible hyper-rectangles are identified as potentially optimal and subdivided together with others POHs. The

sub-dividing step can decompose the boundaries of the hidden constraints quite efficiently. Still, subDIRECT-Barrier

has several apparent drawbacks. The algorithm performance depends on when (how often) the subdividing step is

performed. Therefore, new subdivisions can grow drastically, especially for higher dimensionality problems.

The most recent version for hidden constraints DIRECT-GLh [84] is based on our previous DIRECT-GL [88] algorithm.

For hyper-rectangles with infeasible midpoints, DIRECT-GLh assigns a value depending on how far the center is from

the current best minima xmin. Such a technique does not require any additional computation. Simultaneously, distances

from the xmin point are already known, as they are used to selecting potential optimal hyper-rectangle schemes adapted

from DIRECT-GL [88]. In such a way, DIRECT-GLh does not penalize infeasible hyper-rectangles with large values (as was

suggested by previous proposals), which are close to the xmin and assure a faster and more comprehensive examination

of hidden regions. Moreover, this approach employs additional procedures to efficiently handle infeasible initial points

(see [84] for experimental justification).
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2.4 Implementation of DIRECT-type algorithms within DIRECTGO

2.4.1 Sequential implementation of the algorithms. The performance of DIRECT-type algorithms highly depends

on computer implementation. Most publicly available DIRECT implementations (see, e.g., DIRECT v4.0 [20] and

glbSolve [6]) use static data memory management [6, 20, 24]. In the “Impelmentation” column of Table 1, we provide

information on which data structures were used in our implementations and whether a particular algorithm was

implemented in parallel. Below we look at the main advantages and disadvantages of each of them.

With static data management, all information received after the domain partitioning is stored in the contiguous

memory blocks. This includes objective and constraint function values, index numbers, center point coordinates, side

lengths of hyper-rectangles, and so on. Such implementation can quickly access the elements for further selection,

sampling, and subdivision steps. An apparent drawback of the static data structure is unpredictable memory demand

due to different characteristics of the optimization problems. Thus many DIRECT-type algorithmic implementations use

large static arrays to store the current state of the space partitioning. If any array is insufficient to store the required

information, this can lead to code failure.

Another disadvantage of static data structures used in DIRECT implementations is that they require unnecessary

recalculations in each iteration. One of the essential tasks in the DIRECT-type algorithms is the selection step. This step

requires sorting all existing hyper-rectangles by the same size of diameter. Such sorting becomes especially inefficient

when the optimization process is longer and the amount of data gets large, e.g., for higher dimensionality problems or

when a solution with high accuracy is required.

In [30], the authors proposed using dynamic data structures. Information received after space partitioning is sorted

by hyper-rectangle diameters and stored in columns. All rectangles of the same diameter are stored in the column

in any order. In [30], the authors mentioned the idea of sorting columns by function values in descending order or

inserting all new data in sorted sequences separately. However, any of these ideas have not been investigated further.

With dynamic data structures, the selection step is much more efficient. It can be performed only in the set consisting

of the best function values from each column. Such implementation saves lots of time compared with the static data

structure-based implementation.

In [93], we have compared two different implementations (static and dynamic) of the same DIRECT-GLce algorithm.

The dynamic implementation of the code required, on average, 62% less total execution time than static-based. The

difference was even more significant when the number of function evaluations was high.

One of the apparent drawbacks of the dynamic data structure is unpredictable columns size. Fully processed POHs

must be removed from the previous columns and added to a new/existing column. During the algorithm’s execution,

there can be many hyper-rectangle diameters. Depending on the dimension of the problem, usually, the initial array is

allocated of reasonably large size. If the array provides insufficient size, new blocks of columns will be reallocated as

needed. In practice, only a few of these columns need reallocation at any given time.

2.4.2 Parallel implementations of the algorithms. We use the MathWorks official extension to the MATLAB language –

the Parallel Computing Toolbox [53] for parallel implementations. The Parallel Computing Toolbox provides several

parallel programming paradigms [52], like threads, parallel for-loops, and SPMD (Single Program Multiple Data). In [93],

we concluded that the SPMD-based parallel implementation of the DIRECT-GLce is the most efficient and significantly

outperforms the other two based on parfor-loops.

Therefore, in the DIRECTGO toolbox, parallel implementations are based on the SPMD functionality within the Parallel

Computing Toolbox, used to allocate the work across multiple labs in the MATLAB software environment. Each lab stores
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Fig. 5. Flowchart diagram for the parallel implementations of selected DIRECT-type algorithms.

information on its main memory block, and data is exchanged through the message passing over the interconnection

network [53]. The master-slave paradigm is used to implement dynamic load balancing. The flowchart of the parallel

algorithmic framework is illustrated in Fig. 5. One lab is the master, denoted by 𝑙𝑎𝑏1, and the other labs are slaves

𝑙𝑎𝑏𝑖 , 𝑖 = 2, . . . , 𝜌 . The master also acts as a slave. Each iteration must be done in a sequence to preserve the determinism.

The master performs the following tasks:

• The initialization step: normalizes the domain (𝐷) and evaluates the objective and constraint functions at the
center point. Here, only the optimization problem and the information about the domain 𝐷 are shared with

slaves 𝑙𝑎𝑏𝑖 , 𝑖 = 2, . . . , 𝜌 .

• At each iteration:

– checks the stopping conditions and informs the slaves if any of them have been met.

– finds the full set of POHs by performing a selection step considering the combined set of local POHs.

– splits the full set of POHs among all slaves and itself equally.

– gives instructions to the slaves having an excess of POHs (in their local memory) to share them with those

who have a deficit, including itself.

– sends or receives POHs according to its instructions.

– performs the sampling, subdivision, and local selection steps as the slave.

– receives from slaves the information about their local POHs sets.

The slaves perform the following tasks:
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• At each iteration:

– Send or receive POHs, according to the master’s instructions.

– Perform the sampling and subdivision steps sequentially.

– Perform the selection using the information in their local memory and send local POHs to the master.

– Terminate when such an instruction from the master is received.

The master lab decides which hyper-rectangles will be sampled and subdivided and how these tasks will be distributed

among all available slave labs. Additionally, the master lab is responsible for stopping the algorithm. The master lab

also performs load balancing by distributing the selected hyper-rectangles to the rest of the slave labs. When the slave

labs (𝑙𝑎𝑏𝑖 , 𝑖 = 1, . . . , 𝜌) receive tasks from the master lab, each sequentially performs the sampling and subdivision

steps. Then finds a local set of POHs and sends local data back to the master lab for the further global selection step.

After this, each slave becomes idle until further instructions are received. Suppose any of the termination conditions

are satisfied. In that case, all slave labs receive the notification that the master lab has become inactive, and the slave

labs will terminate themselves without further messaging. We refer to [93] for a more detailed description and analysis

of parallel schemes.

We should note that not all DIRECT-type implementations can use the latter scheme of parallelism. For example,

implementations using the conhull function, which returns all the points on a convex hull, cannot. To preserve the

determinism, only the master should select POHs and have all data stored in its memory. The framework shown in Fig. 5

is inappropriate, and a new one should be developed. The DIRECT-NAS algorithm has an additional expensive constraint

handling step not addressed in the proposed parallel scheme. As summarized in Table 1, currently, 17 DIRECT-type

algorithms are implemented in parallel within the DIRECTGO toolbox.

3 DIRECTGO TOOLBOX

The sequential and parallel implementation of DIRECT-type algorithms presented in the previous sections forms the

basis for our DIRECTGO toolbox. The toolbox consists of two main parts:

• DIRECTGO.mltbx - MATLAB toolbox package containing implementations of DIRECT-type algorithms (from

Table 1), including an extensive DIRECTGOLib v1.0 library of the box and generally constrained test and practical

engineering global optimization problems, often used for benchmarking DIRECT-type algorithms.

• DIRECTGO.mlappinstall - A single MATLAB app installer containing everything necessary to install and run

the DIRECTGO toolbox, including a graphical user interface (GUI).

3.1 Graphical user interface

After installation (using DIRECTGO.mlappinstall), DIRECTGO can be launched from MATLAB APPS, located in the

toolbar. The graphical interface of the main DIRECTGO toolbox window is shown in Fig. 6. Application is divided into

three main parts: i) selection of the problem’s type from DIRECTGOLib v1.0; ii) setting up an optimization problem

and algorithmic options; iii) selection of DIRECT-type algorithm, his implementation, and convergence plot of obtained

results.

The first step is to specify the objective and constraint functions, loading them from the integrated DIRECTGOLib

v1.0 library or selecting them from other sources. Examples of the structure needed are present. All test problems

from the DIRECTGOLib v1.0 library have up to three key features: i) known globally optimal solutions, ii) a complete
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description of the problem, including objective and constraint functions (if any), and iii) problem visualization (only for

two-dimensional problems).

After selecting the optimization problem, the second step is to set up the bound constraints for each variable. First, the

user needs to specify the algorithm and the type of implementation. Two implementations are based on different data

structures (static and dynamic), and the third is a parallel version of the algorithm. For simplicity, some toolbox options

are set to default values and not displayed in the GUI but can be changed in the toolbox settings. After the termination,

the Results part displays the final solution and performance metrics. Additionally, the convergence process is shown

in the Convergence status part.

3.2 MATLAB toolbox

After installation of the MATLAB toolbox (using DIRECTGO.mltbx), all implemented DIRECT-type algorithms and test

problems can be freely accessed in the command window of MATLAB. Unlike using GUI, algorithms from the command

line require more programming knowledge, and configurations must be done manually. All algorithms can be run using

the same style and syntax:

1. f_min = algorithm(P);

2. f_min = algorithm(P, OPTS);

3. f_min = algorithm(P, OPTS, D);

4. [f_min, x_min] = algorithm(P, OPTS, D);

5. [f_min, x_min, history] = algorithm(P, OPTS, D);

The left side of the equations specifies the output parameters. After the termination, the algorithm returns the best

objective value (f_min), solution point (x_min), and history of the algorithmic performance during all iterations

(history). The information presented here is the iteration number, the total number of objective function evaluations,

the current minimum value, and execution time.

The algorithm name (algorithm) and at least one input parameter are needed to specify on the right side. The first

one is the problem structure (P) consisting of an objective function:

>> P.f = 'objfun';

If the problem involves additional constraints, they also must be specified:

>> P.constraint = 'confun';

The second parameter (OPTS) customizes the default algorithmic settings. The third parameter (D) is used to specify the

bound constraints for each variable (see Eq. (1)).

4 EXPERIMENTAL INVESTIGATION OF DIRECT-TYPE ALGORITHMS IN THE DIRECTGO TOOLBOX

This section presents the performance evaluation of DIRECT-type algorithms on test and engineering design problems

from the DIRECTGOLib v1.0 [86, 91]. The DIRECTGOLib v1.0 library consists of the box and generally constrained test

and practical engineering global optimization problems for various DIRECT-type algorithms benchmarking. Experimental

results presented in this section are also available in digital form in the Results/TOMS directory of the Github repository

https://github.com/blockchain-group/DIRECTGO [85]). The most recent version of DIRECTGOLib v1.1 [87, 92] has a

https://github.com/blockchain-group/DIRECTGO
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Fig. 6. The graphical user interface (GUI) of DIRECTGO toolbox.

few additional test functions introduced in other parallel studies but has not been considered in this article. Despite this,

our vision is to develop DIRECTGOLib further so that all algorithms can use the latest version of DIRECTGOLib without

any additional preparations.

We distinguish the following classes (types) of global optimization problems:

• BC – Box-Constrained problems;

• LC – Linearly-Constrained problems;

• GC – Generally-Constrained problems.

A summary of all optimization problems in DIRECTGOLib v1.0 and their properties is given in Appendix A, Table 13. We

note that some test problems have several variants, e.g., Bohachevsky, Shekel, and some of them, like Alpine, Csendes, and

Griewank, can be used by changing the problem’s dimensionality. We used the following dimensions in our experimental

setting: 𝑛 = 2, 5, 10, 15. For some test problems, the second dimension (𝑛 = 2) was skipped because the problem was

then too easy to solve, and sometimes we skipped 𝑛 = 15 because the resulting problem was too hard that none of the

algorithms were able to solve it. The fourth column in Table 13 indicates the exact dimensions used for all test problems.

All computations were carried out on a 6-core computer with 8th Generation Intel R Core
TM

i7-8750H @ 2.20GHz

Processor, 16 GB of RAM, and MATLAB R2020b. Performance analysis was carried out using physical cores only and

disabled hyper-threading.

All global minima 𝑓 ∗ are known for all test problems. Therefore, the investigated algorithms were stopped when it

was generated such the point x with whom the percent error

𝑝𝑒 = 100% ×

𝑓 (x)−𝑓 ∗

|𝑓 ∗ | , 𝑓 ∗ ≠ 0,

𝑓 (x), 𝑓 ∗ = 0,
(17)

is smaller than the tolerance value Ype, i.e., 𝑝𝑒 ≤ Ype. Additionally, we stopped the tested algorithms when the number

of function evaluations exceeded the prescribed maximal limit (equal to 2 × 10
6
) or took more than 43, 000.00 seconds.
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In any of these situations, the final result is set to 2 × 10
6
to further process results. Two different values for Ype

were considered: 10
−2
, 10

−8
. By default, algorithms were tested using the Ype = 10

−2
value. Algorithms incorporating

additional schemes to speed up the solution’s refinement have been tested using the Ype = 10
−8

value.

Additionally, we analyze and compare the algorithms’ performance by applying the data profiles [57] to the

convergence test (17). The data profile is a popular and widely used tool for benchmarking and evaluating the

performance of several algorithms (solvers) when run on a large problem set. Benchmark results are generated by

running a certain algorithm 𝑣 (from a set of algorithmsV under consideration) for each problem 𝑢 from a benchmark

setU and recording the performance measure of interest. The performance measure could be, for example, the number

of function evaluations, the computation time, the number of iterations, or the memory used. We used a number of

function evaluations and the execution (computation) time criteria.

The data profiles provide the percentage of problems that can be solved with a given budget of the desired performance

measure. The data profile is defined

_𝑣 (𝛼) =
1

𝑐𝑎𝑟𝑑 (U) size
{
𝑢 ∈ U : 𝑡𝑢,𝑣 ≤ 𝛼

}
, (18)

where 𝑡𝑢,𝑣 > 0 is the number of performance measure required to solve problem 𝑢 by the algorithm 𝑣 , and 𝑐𝑎𝑟𝑑 (U) is
the cardinality of U. In our case, the _𝑣 (𝛼) shows the percentage of problems that can be solved within 𝛼 function

evaluations, or seconds.

In the experimental studies, the developed DIRECT-type algorithms (within the DIRECTGO toolbox) were compared

among themselves and with three TOMLAB DIRECT-type solvers:

• TOMLAB/glbSolve [35] – implementation of the DIRECT algorithm [39];

• TOMLAB/glcSolve [35] – implementing an extended DIRECT version [37, 39] capable of handling linear and

non-linear constrained problems;

• TOMLAB/glcCluster [35] – implementation of the DIRECT algorithm [39], hybridized with local search subroutine

and clustering techniques.

We note that the TOMLAB/glcCluster algorithm has a large number and different input parameters that may

significantly impact the algorithm’s performance. Even a parameter such as the maximum allowed number of function

evaluations can significantly impact the algorithm’s performance. Our aim was not to find the optimal parameters

values, as this is a complex process, but to investigate how these algorithms compare using the default values (provided

by TOMLAB software developers). When the algorithm reaches the default limit for the maximum number of function

evaluations (𝑀max) set in the default parameters, we restarted the algorithm using the final status from the previous

run (“warm start” [35]) with doubled 2𝑀max. In such a way, sometimes a default 𝑀max value was doubled up to our

maximal limit of evaluations 2 × 10
6
was reached.

The Scripts/TOMS directory of the Github repository (https://github.com/blockchain-group/DIRECTGO) provides

four different MATLAB scripts for cycling through all different classes of test problems used in this paper. The constructed

scripts can be handy for reproducing the results presented here, as well as for comparison and evaluation of newly

developed algorithms.

4.1 Comparison of DIRECT-type algorithms for box constrained optimization

Table 3 summarizes experimental results using Ype = 10
−2
. The smallest number of unsolved problems is achieved using

DIRECT-GL (3/81). At the same time, the second, third and fourth best algorithms are TOMLAB/glcCluster (4/81),

https://github.com/blockchain-group/DIRECTGO
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Table 3. The performance of DIRECT-type algorithms from DIRECTGO and TOMLAB based on the number of function evaluations
(𝑓𝑒𝑣𝑎𝑙 .), the total execution time in seconds (𝑡𝑖𝑚𝑒), and the total number of iterations (𝑖𝑡𝑒𝑟 .) criteria on a set of box-constrained
problems (from DIRECTGOLib v1.0) using Ype = 10

−2 in (17).

Algorithm

Avg. # local Failed Average results Average results (𝑛 ≤ 4) Average results (𝑛 ≥ 5) Median results

searches 𝑓𝑒𝑣𝑎𝑙 . 𝑡𝑖𝑚𝑒 𝑖𝑡𝑒𝑟 . 𝑓𝑒𝑣𝑎𝑙 . 𝑡𝑖𝑚𝑒 𝑖𝑡𝑒𝑟 . 𝑓𝑒𝑣𝑎𝑙 . 𝑡𝑖𝑚𝑒 𝑖𝑡𝑒𝑟 . 𝑓𝑒𝑣𝑎𝑙 . 𝑡𝑖𝑚𝑒 𝑖𝑡𝑒𝑟 .

DIRECT − 16/81 452, 244 263.29 1, 645 135, 328 220.05 2, 535 638, 666 183.98 1, 121 7, 795 0.61 51

DIRECT-restart − 23/81 608, 719 5, 518.88 155 268, 291 3, 088.88 84 808, 971 6, 948.29 197 12, 861 1.05 48

DIRECT-m − 27/81 745, 865 340.83 2, 505 123, 565 384.15 2, 543 1, 111, 924 315.35 2, 482 17, 559 2.91 135

DIRECT-l − 24/81 627, 987 4, 486.48 65, 377 134, 552 952.43 22, 558 918, 243 6, 565.33 90, 565 7, 185 15.44 437

DIRECT-rev∗ 3 7/81 223, 483 1, 971.68 27, 093 67, 176 437.96 4, 081 315, 429 2, 873.87 40, 629 545 0.13 13

DIRECT-a − 41/81 1, 019, 956 830.72 4, 645 203, 905 600.68 3, 699 1, 499, 986 966.03 5, 201 2, 000, 000 285.43 176

DIRMIN∗ 748 5/81 155, 384 18.45 72 67, 178 22.73 91 207, 271 15.94 61 361 0.04 1

PLOR − 31/81 775, 748 2, 584.88 57, 574 275, 890 2, 162.11 39, 006 1, 069, 782 2, 833.57 68, 496 3, 311 1.12 437

glbSolve − 23/81 624, 411 472.42 2, 326 135, 726 335.40 2, 627 911, 873 314.68 2, 149 20, 823 1.16 54

glbSolve-sym − 36/81 923, 592 4, 152.72 10, 128 467, 654 1, 288.24 10, 426 1, 191, 790 5, 837.70 9, 953 199, 533 446.61 470

glbSolve-sym2 − 35/81 899, 684 5, 283.04 10, 388 603, 737 1, 594.43 10, 931 1, 073, 771 7, 452.82 10, 069 124, 961 594.60 355

MrDIRECT − 18/81 502, 032 178.35 2, 689 73, 156 9.05 373 754, 313 277.93 4, 051 9, 721 0.52 93

MrDIRECT075 − 16/81 477, 176 241.40 3, 605 69, 755 18.71 520 716, 835 372.40 5, 420 8, 547 0.83 103

BIRECT − 9/81 255, 671 1, 914.41 6, 829 68, 112 914.36 2, 729 366, 000 2, 502.68 9, 241 2, 112 1.28 71

GB-DISIMPL-C − 46/81 1, 156, 420 3, 903.78 11, 887 224, 138 1, 945.78 16, 156 1, 704, 821 5, 055.54 9, 376 2, 000, 000 138.44 24

GB-DISIMPL-V − 36/81 898, 336 19, 858.76 2, 109 73, 335 1, 623.49 1, 934 1, 383, 631 30, 585.39 2, 211 66, 257 4, 298.97 39

Gb-BIRECT − 13/81 367, 464 2, 451.11 20, 203 70, 721 789.93 7, 937 542, 019 3, 428.28 27, 419 5, 782 1.56 153

BIRMIN∗ 1 5/81 125, 541 2, 575.78 13, 106 66, 982 1, 433.43 6, 628 159, 987 3, 247.76 16, 917 322 0.07 21

Gb-glbSolve − 25/81 671, 030 668.70 8, 092 137, 164 1059.04 15, 501 985, 069 439.08 3, 733 22, 541 2.40 69

DISIMPL-C − 46/81 1, 149, 469 4, 257.54 11, 952 215, 702 1, 979.85 13, 649 1, 698, 744 5, 593.43 10, 953 2, 000, 000 126.36 22

DISIMPL-V − 34/81 844, 074 18, 265.14 709 67, 988 1, 436.35 431 1, 300, 595 28, 164.43 872 21, 828 667.34 25

ADC − 30/81 753, 474 16, 537.93 20, 962 74, 665 1, 768.67 8, 999 1, 152, 774 25, 225.73 28, 000 8, 868 43.91 603

Aggressive DIRECT − 14/81 475, 318 20.71 95 172, 708 11.37 88 653, 324 26.21 99 65, 253 2.34 44

DIRECT-G − 10/81 310, 535 32.85 348 84, 905 16.21 309 443, 259 42.64 371 9, 835 0.45 51

DIRECT-L − 16/81 430, 885 99.07 622 68, 918 39.97 362 643, 807 133.84 775 9, 601 0.52 46

DIRECT-GL − 3/81 152, 505 11.78 99 9, 469 0.68 47 236, 645 18.30 130 7, 737 0.33 36

TOMLAB/glbSolve − 20/81 534, 930 1, 421.26 1, 676 201, 103 1, 214.37 2, 576 731, 298 1, 542.98 1, 147 13, 991 1.89 49

TOMLAB/glcCluster∗ 21 4/81 116, 281 2, 202.07 2 68, 612 1, 390.14 2 148, 607 2, 760.65 2 10, 043 1.31 1

∗
– a hybrid version of the algorithm, enriched with the local search subroutine

BIRMIN (5/81) and DIRMIN (5/81), hybrid versions enriched with the local search subroutines. In column ‘Avg. # local
searches’ we report the average number of local searches performed by each hybridized algorithm. Hybridization of

the BIRMIN algorithm allows solving more problems compared to, e.g., the globally biased version Gb-BIRECT (12/81).
Among traditional DIRECT-type algorithms, the second and third best algorithms are BIRECT and DIRECT-G. Both

methods failed to solve (9/81) and (10/81) test problems accordingly.

Furthermore, hybridization significantly reduces the total number of function evaluations (see Average results and
Median results columns). The BIRECT and PLOR were the most effective algorithms among the traditional algorithms

based on themedian number of function evaluations (seeMedian results column). However, for PLOR, such performance

needs to be interpreted correctly. As PLOR restricts POH set to only two hyper-rectangles per iteration, a lower number of

function evaluations are required to get closer to the solution for simpler (low-dimensional) problems. However, looking

at the average number of function evaluations, even restricted to the simplest subset of problems (see Average results
(𝑛 ≤ 4)), PLOR performance is among the worst. PLOR has failed on a larger number of simpler test problems than other

approaches. In contrast, DIRECT-GL is only in eight place based on the median number of function evaluation criteria but

is the only algorithm that solves all simpler (𝑛 ≤ 4) problems and is the best performing algorithm, including hybridized
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Fig. 7. Data profiles of DIRECT-type algorithms from DIRECTGO and TOMLAB on the whole set of box-constrained optimization problems
from DIRECTGOLib v1.0using Ype = 10

−2 in (17).

versions. Moreover, on average, DIRECT-GL required approximately 35% percent fewer evaluations of the objective

function than the second-best, BIRECT algorithm, among all traditional DIRECT-type algorithms on a class of more

challenging problems (see Average results (𝑛 ≥ 5)). Not surprisingly, the hybridized TOMLAB/glcCluster and BIRMIN
algorithms within this class deliver the best average performance. Compared with the best traditional DIRECT-type

algorithm, DIRECT-GL, TOMLAB/glcCluster, and BIRMIN require approximately 37% and 32% fewer evaluations.

Based on the execution time (𝑡𝑖𝑚𝑒), DIRECT-GL and Aggressive DIRECT are the best among all traditional algorithms.

Aggressive DIRECT does not have a traditional POH selection procedure. Instead, the algorithm selects at least one

candidate from each group of different measures. Therefore, the number of selected hyper-rectangles per iteration

is larger, especially for higher dimensionality test problems. Consequently, the number of iterations (𝑖𝑡𝑒𝑟 .) using

Aggressive DIRECT is among the smallest. Overall, DIRECT-GL showed the most promising performance among all

tested traditional DIRECT-type algorithms.

The data profiles of all algorithms are shown in Fig. 7. Again, the data profiles confirm that the hybridized algorithms

(enriched with fmincon procedure) are more efficient than traditional DIRECT-type approaches. All three versions

(DIRECT-rev, DIRMIN, and BIRMIN) can solve about 60% of problems in less than 1, 000 function evaluations (see the

left panel of Fig. 7). However, by increasing the maximal budget of function evaluations, which is needed for more

challenging problems, the TOMLAB/glcCluster, and traditional DIRECT-GL algorithm outperformed all others, including
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Table 4. The performance of selected DIRECT-type algorithms from DIRECTGO and TOMLAB based on the number of function evaluations
(𝑓𝑒𝑣𝑎𝑙 .), the total execution time in seconds (𝑡𝑖𝑚𝑒), and the total number of iterations (𝑖𝑡𝑒𝑟 .) criteria on a set of box-constrained
problems (from DIRECTGOLib v1.0) using Ype = 10

−8 in (17)

Algorithm

Avg. # local Failed Average results Average results (𝑛 ≤ 4) Average results (𝑛 ≥ 5) Median results

searches 𝑓𝑒𝑣𝑎𝑙 . 𝑡𝑖𝑚𝑒 𝑖𝑡𝑒𝑟 . 𝑓𝑒𝑣𝑎𝑙 . 𝑡𝑖𝑚𝑒 𝑖𝑡𝑒𝑟 . 𝑓𝑒𝑣𝑎𝑙 . 𝑡𝑖𝑚𝑒 𝑖𝑡𝑒𝑟 . 𝑓𝑒𝑣𝑎𝑙 . 𝑡𝑖𝑚𝑒 𝑖𝑡𝑒𝑟 .

DIRECT − 40/81 1, 066, 171 918.13 7, 823 809, 880 1, 483.54 17, 456 1, 216, 930 585.54 2, 157 1, 297, 025 268.16 224

DIRECT-restart − 29/81 778, 771 7, 840.37 200 333, 394 4, 377.27 114 1, 035, 618 10, 191.29 252 53, 629 6.00 91

DIRECT-rev∗ 3 15/81 396, 246 1, 095.13 19, 360 200, 403 1, 145.29 9, 595 511, 449 1, 065.63 25, 104 844 0.16 21

DIRMIN∗ 1, 001 12/81 345, 763 43.52 164 135, 323 33.49 106 469, 551 49.41 198 501 0.09 2

glbSolve − 55/81 1, 423, 737 1, 027.22 9, 609 825, 086 1, 720.33 19, 061 1, 775, 885 619.51 4, 050 2, 000, 000 340.86 1, 201

MrDIRECT − 38/81 996, 523 2, 021.44 11, 177 706, 737 1, 733.35 21, 678 1, 166, 986 2, 190.90 5, 001 542, 125 66.20 406

MrDIRECT075 − 39/81 1, 036, 760 473.40 6, 438 207, 944 104.02 2, 539 1, 524, 299 690.68 8, 732 1, 125, 661 141.77 806

BIRMIN∗ 4 12/81 298, 791 4, 827.15 18, 742 136, 309 2, 867.45 11, 448 394, 369 5, 979.91 23, 033 379 0.06 21

DIRECT-L − 21/81 572, 082 151.41 952 136, 742 86.78 695 828, 164 189.42 1, 104 23, 069 1.45 87

DIRECT-GL − 6/81 277, 242 29.66 241 85, 123 26.84 252 390, 254 31.32 235 28, 211 1.17 60

TOMLAB/glcCluster∗ 76 29/81 753, 378 16, 307.54 4 338, 957 6, 959.64 3 990, 121 22, 553.22 5 66, 391 54.86 3

∗
– a hybrid version of the algorithm, enriched with the local search subroutine

hybridized ones. While DIRECT-GL delivers the best overall performance (based on function evaluations), data profiles in

Fig. 7 reveal that other DIRECT-type extensions (PLOR, DIRECT-l, BIRECT, Gb-BIRECT) perform better when the maximal

budget of function evaluations is ≤ 10
5
. Moreover, they can solve about 70% of problems (mainly lower dimensionality)

quicker. The two-step-based selection strategy in DIRECT-GL selects a more extensive set of POH. While for more

straightforward problems, this is detrimental, it often helps to locate a global solution with higher accuracy faster.

In terms of execution time (see the right panel in Fig. 7), DIRECT-GL is the fastest among the traditional DIRECT-type

algorithms (excluding hybridized).

Some algorithms have integrated schemes helping speed up the refinement of solutions. Therefore, we tested them

with a much higher precision solution (Ype = 10
−8
). In Table 4, we summarize our experimental findings. First, the

number of failed problems is much higher when higher accuracy is needed (see the Failed column in Tables 3 and 4).

The smallest number of unsolved problems is achieved using DIRECT-GL (6/81), where all failed test problems belong

to the (𝑛 ≥ 5) class. The DIRECT-GL algorithm turns out to be more efficient even than hybrid methods. Overall,

DIRECT-GL required approximately 7% fewer function evaluations and took 32% less time than the second and third best

algorithms, BIRMIN and DIRMIN, accordingly (see Average results column in Table 4). However, the BIRMIN algorithm

has the best median value (seeMedian results column), solving at least half of the problems with the best performance.

Finally, let us stress the inefficiency of the original DIRECT algorithm (DIRECT and glbSolve implementations). As the

median value is more than 2, 000, 000, glbSolve failed more than half of the test problems to solve. The performance of

the TOMLAB/glcCluster algorithm, which showed the best average results in the previous study, has also decreased

significantly (see the Average results column in Tables 3 and 4). It turns out that the use of fmincon with default

parameters in hybridized methods (DIRECT-rev, DIRMIN, and BIRMIN) is much more effective in finding a solution

with higher accuracy than the TOMLAB/glcCluster. Furthermore, TOMLAB/glcCluster turned out to be the slowest

algorithm among all involved in this study.

Finally, the data profiles of the selected algorithms are shown in Fig. 8. Once again, the date profiles confirm that the

hybridized algorithms are more efficient than traditional DIRECT-type approaches. However, by increasing the maximal

budget of function evaluations, the traditional DIRECT-GL algorithm starts outperforming all algorithms, including

hybridized ones.
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Fig. 8. Data profiles of selected DIRECT-type algorithms from DIRECTGO and TOMLAB on the whole set of box-constrained optimization
problems from DIRECTGOLib v1.0using Ype = 10

−8 in (17).

4.2 Comparison of DIRECT-type algorithms for constrained global optimization

The comparison presented in this section was carried out using 80 global optimization test problems with various

constraints. In DIRECTGOLib v1.0, 35 test problems contain linear constraints, 39 problems have non-linear constraints

where 5 include equality constraints. All necessary details about the test problems are given in Appendix A, Table 13. We

used the same stopping condition in these experimental investigations as in the previous ones, and the value Ype = 10
−2
.

Let us stress that 5 of the test problems contain equality constraints, which we transform into inequality constraints

as follows:

h(x) = 0 → |h(x) − Y
h
| ≤ 0, (19)

where Y
h
> 0 is a small tolerance for equality constraints. In our experiments, it was set to 10

−8
.

4.2.1 Test results on problems with hidden constraints. In the first part, we compared DIRECT-type versions devoted to

problems with hidden constraints. We have used all constrained test problems but assumed that any information about

the constraints is unavailable. In the experimental investigation, the hidden search area (𝐷hidden) was defined as

𝐷hidden = {x ∈ 𝐷 : g(x) ≤ 0, h(x) = 0} (20)

Still, this information is unavailable for the tested algorithms and used only to determine whether a certain point

is feasible or not. Obtained experimental results are summarized in the upper part of Table 5 (see ‘Performance of

DIRECT-type algorithms for problems with hidden constraints’). First, let us note that 13 out of the 80 test problems

contain complex constraints leading to a tiny feasible region. As the algorithms within this class do not use any

information about constraint functions, none of the tested algorithms could find a single feasible point for these 13 test

problems.

The best among all DIRECT-type algorithms for problems with hidden constraints is DIRECT-GLh (failed to solve

(18/80)), while the second-best is DIRECT-NAS (failed to solve (29/80)). The median number of function evaluations

(see 𝑓𝑒𝑣𝑎𝑙 in Median results) is similar for both. Still, DIRECT-GLh is the best, primarily based on the number of

iterations (𝑖𝑡𝑒𝑟 .) and the execution 𝑡𝑖𝑚𝑒: DIRECT-GLh took around 4.5 times fewer iterations and approximately 33
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Table 5. The performance of DIRECT-type algorithms from DIRECTGO and TOMLAB based on the number of function evaluations
(𝑓𝑒𝑣𝑎𝑙 .), the total execution time in seconds (𝑡𝑖𝑚𝑒), and the total number of iterations (𝑖𝑡𝑒𝑟 .) criteria on a set of constrained (hidden,
general, and linear) optimization problems

Algorithm Parameter Failed Average results Average results (Non-lin. constr.) Average results (Lin. constr.) Median results

𝑓𝑒𝑣𝑎𝑙 . 𝑡𝑖𝑚𝑒 𝑖𝑡𝑒𝑟 . 𝑓𝑒𝑣𝑎𝑙 . 𝑡𝑖𝑚𝑒 𝑖𝑡𝑒𝑟 . 𝑓𝑒𝑣𝑎𝑙 . 𝑡𝑖𝑚𝑒 𝑖𝑡𝑒𝑟 . 𝑓𝑒𝑣𝑎𝑙 . 𝑡𝑖𝑚𝑒 𝑖𝑡𝑒𝑟 .

Performance of DIRECT-type algorithms for problems with hidden constraints

DIRECT-NAS – 29/80 711, 720 15, 372.02 20, 049 943, 276 20, 453.13 31, 129 414, 006 8, 839.17 5, 802 9, 124 18.68 144

DIRECT-Barrier – 46/80 1, 192, 521 2, 908.88 38, 069 1, 260, 510 3, 821.84 51, 635 1, 105, 106 1, 735.09 20, 627 2, 000, 000 723.03 2596

subDIRECT-Barrier 𝑠𝑢𝑏 = 2 53/80 1, 364, 353 860.50 6, 896 1, 316, 302 886.75 6, 042 1, 426, 132 826.76 7, 994 2, 000, 000 295.60 65

subDIRECT-Barrier 𝑠𝑢𝑏 = 3 48/80 1, 240, 771 773.74 3, 623 1, 270, 693 773.81 902 1, 202, 301 773.65 7, 121 2, 000, 000 286.48 251

subDIRECT-Barrier 𝑠𝑢𝑏 = 5 47/80 1, 229, 037 1, 359.66 11, 199 1, 367, 032 1, 526.87 10, 660 1, 051, 614 1, 144.67 11, 892 2, 000, 000 559.34 1, 294

DIRECT-GLh – 18/80 470, 807 312.40 104 648, 370 491.81 92 242, 513 81.74 119 7, 068 0.57 32

Performance of DIRECT-type algorithms for generally constrained optimization problems

DIRECT-GLc – 11/80 330, 659 67.46 352 480, 785 106.79 542 137, 639 16.90 108 3, 759 0.34 37

DIRECT-GLce – 7/80 258, 462 40.02 270 380, 598 62.13 368 101, 430 11.59 143 9, 768 0.86 75

DIRECT-GLce-min∗ – 2/80 62, 233 10.72 45 109, 975 18.99 77 852 0.09 4 124 0.04 1

DIRECT-L1 𝛾 = 10 43/80 1, 087, 528 228.17 1, 688 1, 206, 763 363.14 2, 617 934, 227 54.63 494 2, 000, 000 0.19 49

DIRECT-L1 𝛾 = 10
2

41/80 1, 051, 478 870.98 3, 369 1, 181, 710 1, 425.34 3, 974 884, 038 158.24 2, 591 2, 000, 000 2.49 64

DIRECT-L1 𝛾 = 10
3

40/80 1, 042, 671 1, 144.35 8, 203 1, 151, 444 1, 249.36 5, 178 902, 820 1, 009.33 12, 093 1, 564, 860 62.27 241

TOMLAB/glcSolve – 24/80 607, 397 11, 031.02 13, 568 801, 828 14, 550.11 20, 288 357, 415 6, 506.48 4, 927 3, 013 2.75 145

TOMLAB/glcCluster∗ – 8/80 207, 226 3, 780.92 2 364, 484 6, 718.99 2 5, 038 3.40 1 2, 734 1.40 1

Performance of DIRECT-type algorithms devoted for problems with linear constraints only

Lc-DISIMPL-C – 5/35 N/A N/A N/A N/A N/A N/A 290, 402 6, 424.68 387 443 0.12 27

Lc-DISIMPL-V – 3/35 N/A N/A N/A N/A N/A N/A 171, 738 3, 686.81 24 16 0.01 1

∗
– a hybrid version of the algorithm, enriched with the local search subroutine

N/A – not available

times less execution time than the second-best DIRECT-NAS, algorithm. The speed is the essential factor differentiating

DIRECT-GLh from DIRECT-NAS.

For an extra subdividing step-based subDIRECT-Barrier, the user must define how often this step is activated.

Unfortunately, the authors in [58] did not make any sensitivity analysis and guidance. In our experiments, we start the

subdividing step at 𝑠𝑢𝑏𝑘 , 𝑘 = 1, 2, . . . iterations. We tested three different values for the variable 𝑠𝑢𝑏, i.e., 𝑠𝑢𝑏 = 2, 3, and

5. Our experience showed that an extra subdividing step combined with a traditional barrier approach based on

subDIRECT-Barrier did not significantly improve performance (based on the number of Failed problems and the

Average results) over the original DIRECT-Barrier. The most obvious difference is that, on average,

subDIRECT-Barrier subdivides much more POH per iteration because of an extra subdividing step, leading to a

smaller number of iterations (𝑖𝑡𝑒𝑟 .) and the execution 𝑡𝑖𝑚𝑒 . subDIRECT-Barrier algorithm suffers solving larger

dimensionality and problems where 𝐷hidden
contains non-linear constraints (see Average results (Non-lin. constr.)

column). Therefore, this limits subDIRECT-Barrier applicability primarily to low-dimensional problems.

Finally, in Fig. 9, the comparative performance of algorithms using the data profiles is demonstrated. They confirm

that the DIRECT-GLh is the most effective optimizer in this class and has the highest efficiency based on the function

evaluations and execution time.

4.2.2 Test results on problems with general constraints. Better performance of DIRECT-type algorithms can be expected

when the constraint function information is known. Let us note that all DIRECT-type algorithms considered in the

previous section are included in this analysis. The new experimental results are added in the middle part of Table 5 (see

‘Performance of DIRECT-type algorithms for generally constrained optimization problems). First, let us note that the

recently proposed DIRECT-GLc and DIRECT-GLce algorithms can be much more successful (compared to the algorithms

for problems with hidden) in solving problems containing complex and tiny feasible regions. The best average results

among traditional DIRECT-type algorithms for constrained optimization were obtained using the DIRECT-GLce (failed
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Fig. 9. Data profiles of DIRECT-type algorithms for problems with hidden constraints on the whole set of constrained optimization
test problems. Explicit information about the constraints for all these algorithms was unknown.

to solve 7/80). Interestingly, the performance based on the number of failed problems using DIRECT-GLc is worse,

but based on the median results, it outperforms DIRECT-GLce quite clearly. It looks that DIRECT-GLc is effective on

simpler problems, but the effectiveness drops in solving more complicated problems, e.g., higher dimensionality with

non-linear constraints. We also note that the solution point is often located on the feasible region’s boundaries for

optimization problems with general constraints. The common problem of some DIRECT-type algorithms in this class

(DIRECT-Barrier, subDIRECT-Barrier) is that hyper-rectangles with infeasible midpoints situated closely to the edges

of feasibility are penalized with large values, resulting in a low probability of being elected as POH. In such situations,

these algorithms converge very slowly.

The best traditional DIRECT-type algorithm based on the median value was the TOMLAB/glcSolve method (see

Median results column in Table 5). However, this is the only category where this algorithm showed the best results.

Overall, the TOMLAB/glcSolve algorithm required 57% times more objective function evaluations than DIRECT-GLce.

Furthermore, the TOMLAB/glcSolve appears to be the slowest algorithm in this class.

Hybridized DIRECT-GLce-min and TOMLAB/glcCluster are the only two candidates among all approaches within this

class. Again, incorporating the local minimization procedure into DIRECT-GLce improves the performance significantly,

e.g., it reduces the overall number of function evaluations approximately seven times. Moreover, DIRECT-GLce-min

fails to solve only two test problems. TOMLAB/glcCluster fails to solve eight test instances and, on average, is around

353 times slower than the DIRECT-GLce-min method.

Finally, in Fig. 10, the comparative performance using the data profiles tool is demonstrated. Data profiles confirm the

same trends, i.e., the hybridized versions are the best performing, and the overall advantage of methods that incorporate

constrained information versus designed explicitly for problems with hidden constraints (see also Fig. 9).

4.2.3 Test results on problems with linear constraints. In the final part, we test the performance of DIRECT-type

algorithms on problems with linear constraints. We consider all previously tested algorithms and two specifically

designed simplicial partitions-based Lc-DISIMPL-V and Lc-DISIMPL-C [67]. The main advantage of simplices is that

they can cover a feasible region defined by linear constraints. Thus any infeasible areas are not involved in the search.

Moreover, for most problems from DIRECTGOLib v1.0, the solution is located at the intersection of linear constraints.



26 Stripinis and Paulavičius

10
1

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluations

P
r
o
p
o
r
t
i
o
n
o
f
p
r
o
b
l
e
m
s
s
o
l
v
e
d

Based on function evalutions

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Seconds

Based on the execution time

DIRECT-NAS

DIRECT-Barrier

subDIRECT-Barrier (𝑠𝑢𝑏 = 2)

subDIRECT-Barrier (𝑠𝑢𝑏 = 3)

subDIRECT-Barrier (𝑠𝑢𝑏 = 5)

DIRECT-GLh

DIRECT-L1 (𝛾 = 10)

DIRECT-L1 (𝛾 = 10
2
)

DIRECT-L1 (𝛾 = 10
3
)

DIRECT-GLc

DIRECT-GLce

DIRECT-GLce-min

- - - TOMLAB/glcSolve

....... TOMLAB/glcCluster

Fig. 10. Data profiles of DIRECT-type algorithms from DIRECTGO and TOMLAB on the whole set of constrained optimization test
problems.
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Fig. 11. Data profiles of DIRECT-type algorithms for problems with constraints on the subset of constrained optimization test problems
containing linear constraints.

Therefore Lc-DISIMPL-V finds it in the early or even in the first iteration. The data profiles (see Fig. 11) reveal the

overall effectiveness of the Lc-DISIMPL-V algorithm for such problems with linear constraints. The latter algorithm

even outperformed the hybridized DIRECT-GLce-minmethod, which is surprisingly enough. Nevertheless, the efficiency

of simplicial partition-based algorithms suffers from the problem dimension. Three higher dimensionality linearly

constrained problems were unsolved by the Lc-DISIMPL-V algorithm (see the bottom part of Table 5, ‘Performance

of DIRECT-type algorithms devoted to problems with linear constraints only’). Moreover, simplicial partition-based

implementations are pretty slow. For example, on average, DIRECT-GLce is approximately 307 times faster than

Lc-DISIMPL-V. Moreover, DIRECT-GLce, DIRECT-GLce-min, and TOMLAB/glcCluster solved all test problems with

linear constraints.
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5 DIRECTGO PERFORMANCE ON ENGINEERING PROBLEMS

In this section, the algorithms from DIRECTGO and TOMLAB were tested on eleven engineering design problems:

tension/compression spring, three-bar truss, NASA speed reducer, pressure vessel, welded beam, and six different

versions of the general non-linear regression problem. The general non-linear regression problem is box-constrained,

while the others involve different constraints. Only the most promising algorithms (based on Section 4) were

considered. We used the same stopping rule as the global minimums are known for all these engineering problems. A

detailed description of all engineering problems and mathematical formulations is given in Appendix B.

5.1 Tension/compression spring design problem

Here, we consider the tension-compression string design problem. This problem aims to minimize the string weight

under the constraints on deflection, shear stress, surge frequency, and limits on the outside diameter. A detailed

description of the practical problem can be found in [40], while in Appendix B.1, we give a short description and

mathematical formulation.

A comparison of found solutions and performance metrics by the algorithms from DIRECTGO and TOMLAB is shown in

Table 6. Four considered algorithms were able to solve this problem. Based on the number of function evaluation criteria,

a slightly unexpectedly DIRECT-NAS was significantly better than other algorithms. The surprise is that the algorithm

does not use any information about the constraint functions. However, the DIRECT-NAS algorithm was approximate four

times slower than the second-best method DIRECT-GLce. Another surprise was that none of the hybridized algorithms

performed well on this practical problem. Moreover, the TOMLAB/glcCluster algorithm failed to find a solution within

the given time limit.

Table 6. Performance of the DIRECT-type algorithms from DIRECTGO and TOMLAB on a tension/compression design problem

Algorithm (input) Parameter Iterations 𝑓𝑒𝑣𝑎𝑙 Time (s) 𝑓𝑚𝑖𝑛

DIRECT-NAS – 297 17, 659 77.46 0.012680

DIRECT-Barrier – 40, 478 > 2 × 10
6

2, 465.81 0.012867

subDIRECT-Barrier 𝑠𝑢𝑏 = 2 256 > 2 × 10
6

207.89 0.012708

subDIRECT-Barrier 𝑠𝑢𝑏 = 3 2, 187 > 2 × 10
6

198.94 0.012741

subDIRECT-Barrier 𝑠𝑢𝑏 = 5 15, 626 > 2 × 10
6

722.79 0.012867

DIRECT-GLh – 700 > 2 × 10
6

214.81 0.012683

DIRECT-GLc – 675 423, 209 47.53 0.012680

DIRECT-GLce – 624 178, 115 20.45 0.012680

DIRECT-GLce-min∗ – 624 178, 115 20.70 0.012680

DIRECT-L1 𝛾 = 10
1

34, 395 > 2 × 10
6

3, 265.38 0.012755

DIRECT-L1 𝛾 = 10
2

33, 897 > 2 × 10
6

3, 147.87 0.012867

DIRECT-L1 𝛾 = 10
3

33, 571 > 2 × 10
6

3, 041.00 0.012867

TOMLAB/glcSolve – 64 > 2 × 10
6

560.36 0.014669

TOMLAB/glcCluster∗ – 12 1, 528, 205 > 43, 000.00 0.014669

∗
– a hybrid version of the algorithm, enriched with the local search subroutine
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5.2 Three-bar truss design problem

Here, we consider the three-bar truss design problem. The goal is to minimize the volume subject to stress constraints.

A detailed description of the problem is given in [74], while in Appendix B.2, we provide a brief description and

mathematical formulation.

A comparison of found solutions and performance metrics is shown in Table 7. Here, hybridized DIRECT-GLce-min

was the most efficient optimizer. However, none of the algorithms (with the proper input parameters) had any difficulty

solving this problem, and they found the solution in less than one-second time.

Table 7. Performance of the DIRECT-type algorithms from DIRECTGO and TOMLAB on a three-bar truss design problem

Algorithm (input) Parameter Iterations 𝑓𝑒𝑣𝑎𝑙 Time (s) 𝑓𝑚𝑖𝑛

DIRECT-NAS – 29 339 0.05 263.915790

DIRECT-Barrier – 13 125 0.02 263.915790

subDIRECT-Barrier 𝑠𝑢𝑏 = 2 512 > 2 × 10
6

141.63 283.223781

subDIRECT-Barrier 𝑠𝑢𝑏 = 3 17 333 0.02 263.915800

subDIRECT-Barrier 𝑠𝑢𝑏 = 5 14 161 0.02 263.915790

DIRECT-GLh – 12 231 0.03 263.915790

DIRECT-GLc – 17 727 0.08 263.911750

DIRECT-GLce – 33 1, 055 0.13 263.915790

DIRECT-GLce-min∗ – 6 93 0.03 263.895850

DIRECT-L1 𝛾 = 10
1

1 1 0.01 199.705600
𝑎

DIRECT-L1 𝛾 = 10
2

2 11 0.01 262.344700
𝑎

DIRECT-L1 𝛾 = 10
3

17 179 0.03 263.915790

TOMLAB/glcSolve – 25 647 0.43 263.910482

TOMLAB/glcCluster∗ – 1 992 0.55 263.910482

∗
– a hybrid version of the algorithm, enriched with the local search subroutine

a – result is outside the feasible region

5.3 NASA speed reducer design problem

Here we consider the NASA speed reducer design problem. The goal is to minimize the overall weight subject to

constraints on the gear teeth’ bending stress, surface stress, transverse deflection of the shaft, and stresses in the shafts.

A detailed description of the problem can be found in [74], while in Appendix B.3, we provide a short description and

mathematical formulation.

A comparison of the found solutions and performance metrics is shown in Table 8. Only three algorithms

(DIRECT-GLce, DIRECT-GLce-min, and TOMLAB/glcCluster) were able to tackle this problem. Again, the hybridized

DIRECT-GLce-min algorithm showed the best performance. Note that the found solutions with DIRECT-L1 are better

than the best-known value 𝑓𝑚𝑖𝑛 . However, the reported solution point is outside the feasible region and violates some

constraints. The TOMLAB/glcSolve was very close to a solution, but could not find it with a required accuracy within

the maximum time limit.
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Table 8. Performance of the DIRECT-type algorithms from DIRECTGO and TOMLAB on a NASA speed reducer design problem

Algorithm (input) Parameter Iterations 𝑓𝑒𝑣𝑎𝑙 Time (s) 𝑓𝑚𝑖𝑛

DIRECT-NAS – 6, 719 325, 691 > 43, 000.00 3, 006.874789

DIRECT-Barrier – 32, 031 > 2 × 10
6

2, 625.88 3, 006.838136

subDIRECT-Barrier 𝑠𝑢𝑏 = 2 64 > 2 × 10
6

389.49 3, 045.559256

subDIRECT-Barrier 𝑠𝑢𝑏 = 3 243 > 2 × 10
6

85.07 3, 040.464809

subDIRECT-Barrier 𝑠𝑢𝑏 = 5 11, 112 > 2 × 10
6

1, 234.33 3, 006.838136

DIRECT-GLh – 528 > 2 × 10
6

169.74 3, 003.135167

DIRECT-GLc – 1, 623 > 2 × 10
6

373.40 3, 002.869474

DIRECT-GLce – 254 123, 175 9.70 2, 996.572800

DIRECT-GLce-min∗ – 55 10, 229 0.93 2, 996.348212

DIRECT-L1 𝛾 = 10
1

4 67 0.01 2, 943.869936
𝑎

DIRECT-L1 𝛾 = 10
2

4 67 0.02 2, 982.462161
𝑎

DIRECT-L1 𝛾 = 10
3

661 26, 667 3.01 2, 995.382568
𝑎

TOMLAB/glcSolve – 66, 305 1, 504, 889 > 43, 000.00 2, 996.659779

TOMLAB/glcCluster∗ – 1 12, 736 7.35 2, 996.347954

∗
– a hybrid version of the algorithm, enriched with the local search subroutine

a – result is outside the feasible region

5.4 Pressure vessel design problem

In this subsection, we consider a pressure vessel design problem, and the goal is to minimize the total cost of the

material, form, and weld a cylindrical vessel. A detailed description of the problem can be found in [40], while in

Appendix B.4, we provide a short description and mathematical formulation.

A comparison of the found solutions and performance metrics is shown in Table 9. Five algorithms solved this

problem: DIRECT-NAS, DIRECT-GLh, DIRECT-GLce, TOMLAB/glcCluster, and DIRECT-GLce-min was the most efficient

optimizer again. DIRECT-NAS is the best performing and outperformed the second-best by approximately 1.8 times,

among traditional DIRECT-type algorithms. However, the DIRECT-NAS algorithm was about 26 times slower than the

second-best method (DIRECT-GLh). As in the previous case, the DIRECT-L1 returned a better than the best-know value

𝑓𝑚𝑖𝑛 , but the solution points lay outside the feasible region.

5.5 Welded beam design problem

The fifth engineering problem is the welded beam design. The goal is to minimize a welded beam for a minimum cost,

subject to seven constraints. The detailed description is presented in [54, 55], while in Appendix B.5, we provide a short

description and mathematical formulation.

A comparison of the algorithms is shown in Table 10. In total, six algorithms were able to solve the problem, and once

again, the DIRECT-GLce-minwas the most efficient one. Again, the DIRECT-NAS algorithm showed the best performance

(based on the total number of function evaluations) among traditional DIRECT-type algorithms but significantly suffered

based on the execution time.

5.6 General non-linear regression problem

In the final part, a general non-linear regression design problem is considered in the form of fitting a sum of damped

sinusoids to a series of observations. The detailed description of the problem can be found in [26, 61, 80], while in
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Table 9. Performance of the DIRECT-type algorithms from DIRECTGO and TOMLAB on a pressure vessel design problem

Algorithm (input) Parameter Iterations 𝑓𝑒𝑣𝑎𝑙 Time (s) 𝑓𝑚𝑖𝑛

DIRECT-NAS – 273 31, 081 126.64 7, 164.437307

DIRECT-Barrier – 26, 379 > 2 × 10
6

1, 600.15 7, 234.041903

subDIRECT-Barrier 𝑠𝑢𝑏 = 2 128 > 2 × 10
6

190.11 7, 234.402264

subDIRECT-Barrier 𝑠𝑢𝑏 = 3 729 > 2 × 10
6

99.05 7, 234.222516

subDIRECT-Barrier 𝑠𝑢𝑏 = 5 15, 626 > 2 × 10
6

1, 328.98 7, 234.041903

DIRECT-GLh – 252 55, 837 4.80 7, 164.437300

DIRECT-GLc – 2, 358 > 2 × 10
6

433.87 7, 224.704257

DIRECT-GLce – 322 88, 585 8.52 7, 164.437301

DIRECT-GLce-min∗ – 1 134 0.24 7, 163.739570

DIRECT-L1 𝛾 = 10
1

86 2, 117 0.34 7, 025.940549
𝑎

DIRECT-L1 𝛾 = 10
2

86 2, 099 0.33 7, 037.428049
𝑎

DIRECT-L1 𝛾 = 10
3

87 2, 295 0.23 7, 152.303079
𝑎

TOMLAB/glcSolve – 123 > 2 × 10
6

529.69 8, 260.982616

TOMLAB/glcCluster∗ – 1 10, 026 5.74 7163.739569

∗
– a hybrid version of the algorithm, enriched with the local search subroutine

a – result is outside the feasible region

Table 10. Performance of the DIRECT-type algorithms from DIRECTGO and TOMLAB on a welded beam design problem

Algorithm (input) Parameter Iterations 𝑓𝑒𝑣𝑎𝑙 Time (s) 𝑓𝑚𝑖𝑛

DIRECT-NAS – 698 86, 863 4, 692.00 1.724970

DIRECT-Barrier – 22, 934 > 2 × 10
6

1, 363.24 1.728488

subDIRECT-Barrier 𝑠𝑢𝑏 = 2 128 > 2 × 10
6

152.58 1.728060

subDIRECT-Barrier 𝑠𝑢𝑏 = 3 729 > 2 × 10
6

128.37 1.728043

subDIRECT-Barrier 𝑠𝑢𝑏 = 5 10, 954 > 2 × 10
6

860.06 1.728037

DIRECT-GLh – 189 158, 747 11.70 1.724970

DIRECT-GLc – 211 108, 683 9.19 1.724970

DIRECT-GLce – 366 104, 191 9.80 1.724970

DIRECT-GLce-min∗ – 3 163 0.06 1.724884

DIRECT-L1 𝛾 = 10
1

21, 143 > 2 × 10
6

1, 995.01 1.728491

DIRECT-L1 𝛾 = 10
2

20, 879 > 2 × 10
6

1, 814.33 1.728491

DIRECT-L1 𝛾 = 10
3

20, 767 > 2 × 10
6

1, 679.76 1.728488

TOMLAB/glcSolve – 86 > 2 × 10
6

526.06 2.473711

TOMLAB/glcCluster∗ – 1 9, 884 5.85 1.724852

∗
– a hybrid version of the algorithm, enriched with the local search subroutine

Appendix B.6, we provide a short description and mathematical formulation. The problem is multi-modal and is

considered challenging, especially with the increase in the number of samples (𝑇 ). The higher number of sinusoids (𝜍 )

leads to a more accurate but, at the same time, more challenging optimization problem.

Our experiments have used three different values for 𝜍 = 1, 2, and 3 (correspond to 3, 6, and 9-dimensional problems)

and two different values, 𝑇 = 10 and 𝑇 = 100 for each dimension 𝑛 as was done in [61].

The obtained results are summarized in Tables 11 and 12. Solving the lowest dimension (𝑛 = 3) cases (corresponding
to 𝜍 = 1,𝑇 = 10 and 𝜍 = 1,𝑇 = 100) all algorithms located solution correctly (the success rate is 100%). Among the
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Table 11. Performance of the DIRECT-type algorithms from DIRECTGO and TOMLAB on a non-linear regression design problem

Algorithm Iter. 𝑓𝑒𝑣𝑎𝑙 Time(s) 𝑓𝑚𝑖𝑛 Iter. 𝑓𝑒𝑣𝑎𝑙 Time(s) 𝑓𝑚𝑖𝑛 Iter. 𝑓𝑒𝑣𝑎𝑙 Time(s) 𝑓𝑚𝑖𝑛

𝜍 = 1,𝑇 = 10 𝜍 = 2,𝑇 = 10 𝜍 = 3,𝑇 = 10

DIRECT 31 501 0.03 0.000021 9, 328 > 2 × 10
6

362.84 0.001228 3, 186 > 2 × 10
6

215.58 0.007295

DIRECT-restart 31 501 0.03 0.000021 327 > 2 × 10
6

24, 247.41 0.018320 1, 690 1, 945, 435 > 43, 000.00 0.034164

DIRECT-m 31 501 0.08 0.000021 10, 174 > 2 × 10
6

692.12 0.001229 3, 254 > 2 × 10
6

233.60 0.007284

DIRECT-l 121 1, 329 3.38 0.000021 103, 675 > 2 × 10
6

2, 761.66 0.004189 122, 325 > 2 × 10
6

4, 207.92 0.097183

DIRECT-rev∗ 1 103 0.13 9.29 × 10
−14

1 343 0.12 1.68 × 10
−12

2 2, 218 0.52 8.37 × 10
−9

DIRECT-a 31 501 0.06 0.000021 11, 505 > 2 × 10
6

799.78 0.000691 3, 585 > 2 × 10
6

338.38 0.007331

DIRMIN∗ 3 415 0.18 4.36 × 10
−13

1 395 0.07 1.67 × 10
−12

2 2, 567 0.33 8.37 × 10
−12

PLOR 35 305 0.04 0.000021 203, 119 > 2 × 10
6

6, 746.14 0.018320 93, 457 > 2 × 10
6

2, 287.23 0.009475

glbSolve 31 517 0.17 0.000021 2, 805 1, 978, 935 190.77 0.000097 1, 415 > 2 × 10
6

134.80 0.021190

glbSolve-sym 27 369 0.22 0.000021 13, 177 > 2 × 10
6

859.96 0.283888 9, 085 > 2 × 10
6

1, 572.94 0.144776

glbSolve-sym2 25 331 0.23 0.000021 13, 180 > 2 × 10
6

901.01 0.283888 9, 086 > 2 × 10
6

1, 661.46 0.144776

MrDIRECT 106 1, 615 0.48 0.000021 15, 563 > 2 × 10
6

558.19 0.000289 8, 796 > 2 × 10
6

391.51 0.021800

MrDIRECT075 106 1, 493 0.57 0.000021 17, 801 > 2 × 10
6

649.95 0.000665 15, 189 > 2 × 10
6

604.55 0.021733

BIRECT 58 616 0.43 0.000094 8, 729 471, 930 438.66 0.000096 36, 981 > 2 × 10
6

5, 185.32 0.004731

GB-DISIMPL-C 240 4, 504 3.56 0.000084 11, 407 871, 606 11, 908.40 0.000099 124, 966 > 2 × 10
6

18, 480.38 0.022092

GB-DISIMPL-V 223 2, 563 2.61 0.000093 13, 021 204, 286 > 43, 000.00 0.004809 14 5, 676 18, 021.63 0.470434
𝛽

Gb-BIRECT 57 616 0.29 0.000095 12, 546 356, 724 293.07 0.000097 45, 716 > 2 × 10
6

9, 055.27 0.003564

BIRMIN∗ 5 101 0.03 1.04 × 10
−13

15 316 0.03 3.82 × 10
−7

85, 458 722, 243 5, 438.98 8.40 × 10
−9

Gb-glbSolve 31 501 0.25 0.000021 16, 421 > 2 × 10
6

1, 384.93 0.000353 9, 656 > 2 × 10
6

489.68 0.009475

DISIMPL-C 223 4, 856 5.88 0.000084 7, 417 664, 424 36, 619.83 0.000099 6, 620 1, 296, 672 > 43, 000.00 0.011085

DISIMPL-V 150 2, 344 2.18 0.000091 7, 506 188, 518 > 43, 000.00 0.004860 6 5, 447 13, 480.53 0.474346
𝛽

ADC 549 2, 459 1.81 0.000089 126, 297 398, 856 > 43, 000.00 0.004755 97, 369 213, 600 > 43, 000.00 0.096970

Aggressive DIRECT 31 5, 061 0.41 0.000087 311 > 2 × 10
6

68.24 0.005848 213 > 2 × 10
6

64.41 0.099088

DIRECT-G 36 863 0.14 0.000088 2, 604 > 2 × 10
6

124.51 0.000289 1, 974 > 2 × 10
6

110.58 0.075381

DIRECT-L 71 3, 087 0.32 0.000085 1, 576 427, 475 43.53 0.000098 3, 294 > 2 × 10
6

333.59 0.000158

DIRECT-GL 27 1, 617 0.29 0.000021 184 62, 965 3.32 0.000099 652 543, 207 36.50 0.000086

TOMLAB/glbSolve 32 501 0.05 0.000021 2, 768 1, 993, 523 3, 282.31 0.000098 1, 209 > 2 × 10
6

1, 566.85 0.031797

TOMLAB/glcCluster∗ 1 5, 688 0.51 9.77 × 10
−10

1 12, 065 1.53 2.11 × 10
−9

2 47, 903 259.97 0.000001

Success rate (%) 100.00 42.86 17.86

𝛽
– algorithm crash, lack of memory

∗
– a hybrid version of the algorithm, enriched with the local search subroutine

N/A – not available

hybridized methods, the BIRMIN and DIRECT-rev proved the most effective. Among the traditional algorithms, the

PLOR algorithm is the most efficient in solving the first problem (with 𝜍 = 1,𝑇 = 10 parameters). However, by increasing

the number of samples 𝑇 , PLOR performed worst among all DIRECT-type algorithms. The most efficient algorithm for

the case with 𝜍 = 1 and 𝑇 = 100 was glbSolve.

For the higher dimensionality case (𝑛 = 6), more than half of the algorithms failed to find the correct solution. The

success rates for these two cases are 42.86% and 39.28%, respectively. The DIRECT-GL algorithm has shown a significant

advantage among the traditional DIRECT-type algorithms. The best two performing hybridized methods were the

BIRMIN and DIRECT-rev.

Finally, most DIRECT-typemethods have faced significant challenges in solving two variants of the highest dimensional

(𝑛 = 9) case. The success rates on these two cases are only 17.86% and 17.86%, respectively. While hybridized methods

had no significant difficulties, among the traditional, only the DIRECT-GL algorithm solved both variants.

6 CONCLUSION

This paper has introduced a new open-source DIRECT-type MATLAB toolbox (DIRECTGO) for derivative-free global

optimization. The new toolbox combines various state-of-the-art DIRECT-type algorithms for the global solution

of box-constrained, generally-constrained, and optimization problems with hidden constraints. All algorithms were

implemented using two different data structures: static and dynamic. Additionally, several parallel schemes were adopted
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Table 12. Performance of the DIRECT-type algorithms from DIRECTGO and TOMLAB on a non-linear regression design problem

Algorithm Iter. 𝑓𝑒𝑣𝑎𝑙 Time(s) 𝑓𝑚𝑖𝑛 Iter. 𝑓𝑒𝑣𝑎𝑙 Time(s) 𝑓𝑚𝑖𝑛 Iter. 𝑓𝑒𝑣𝑎𝑙 Time(s) 𝑓𝑚𝑖𝑛

𝜍 = 1,𝑇 = 100 𝜍 = 2,𝑇 = 100 𝜍 = 3,𝑇 = 100

DIRECT 89 1, 923 0.15 0.000025 9, 191 > 2 × 10
6

367.06 0.001696 3, 722 > 2 × 10
6

309.91 0.034532

DIRECT-restart 88 1, 839 0.15 0.000026 379 916, 449 > 43, 000.00 0.018320 1, 153 > 2 × 10
6

4, 625.37 0.059241

DIRECT-m 88 1, 807 0.28 0.000026 9, 596 > 2 × 10
6

627.22 0.001697 3, 736 > 2 × 10
6

330.63 0.034538

DIRECT-l 167 2, 037 4.81 0.000026 106, 353 > 2 × 10
6

2, 543.40 0.006783 125, 804 > 2 × 10
6

4, 253.70 0.114946

DIRECT-rev∗ 1 95 0.13 9.30 × 10
−14

1 318 0.09 1.13 × 10
−12

7 3, 677 0.54 5.65 × 10
−11

DIRECT-a 88 1, 799 0.22 0.000026 11, 545 > 2 × 10
6

821.49 0.001255 3, 809 > 2 × 10
6

501.22 0.034546

DIRMIN∗ 3 416 0.19 1.15 × 10
−13

1 415 0.08 5.83 × 10
−10

3 3, 653 0.53 6.12 × 10
−11

PLOR 6, 811 45, 423 10.90 0.000025 203, 159 > 2 × 10
6

8, 147.64 0.020558 91, 574 > 2 × 10
6

2, 395.47 0.041690

glbSolve 37 669 0.07 0.000026 2, 602 1, 713, 841 195.49 0.000096 1, 165 > 2 × 10
6

169.23 0.041937

glbSolve-sym 62 1, 239 0.29 0.000026 13, 098 > 2 × 10
6

873.50 0.298576 9, 235 > 2 × 10
6

1, 579.90 0.161607

glbSolve-sym2 59 1, 149 0.26 0.000026 13, 098 > 2 × 10
6

894.10 0.298576 9, 225 > 2 × 10
6

1, 633.59 0.161607

MrDIRECT 124 1, 991 0.60 0.000026 15, 324 > 2 × 10
6

547.68 0.001146 9, 328 > 2 × 10
6

436.52 0.043663

MrDIRECT075 124 1, 857 0.56 0.000026 17, 627 > 2 × 10
6

680.61 0.001247 15, 660 > 2 × 10
6

670.92 0.034531

BIRECT 86 1, 042 0.22 0.000096 13, 028 675, 332 238.64 0.000097 36, 473 > 2 × 10
6

6, 874.16 0.019857

GB-DISIMPL-C 226 4, 098 2.90 0.000098 27, 508 > 2 × 10
6

5, 240.49 0.003371 121, 510 > 2 × 10
6

21, 508.76 0.044617

GB-DISIMPL-V 227 2, 353 2.04 0.000004 11, 838 168, 651 > 43, 000.00 0.008066 14 5, 676 19, 133.02 0.488079
𝛽

Gb-BIRECT 85 1, 042 0.26 0.000097 15, 029 414, 268 370.36 0.000091 48, 312 > 2 × 10
6

10, 437.74 0.014167

BIRMIN∗ 5 105 0.02 1.15 × 10
−13

15 292 0.06 2.23 × 10
−7

89, 360 730, 887 6, 871.27 2.30 × 10
−9

Gb-glbSolve 86 1, 691 0.44 0.000026 16, 218 > 2 × 10
6

1, 316.70 0.000712 13, 339 > 2 × 10
6

599.68 0.041748

DISIMPL-C 214 4, 556 5.31 0.000098 7, 518 650, 936 32, 115.01 0.000088 7, 148 1, 309, 272 > 43, 000.00 0.014357

DISIMPL-V 179 3, 024 2.76 0.000087 10, 124 244, 502 > 43, 000.00 0.008066 6 5, 447 11, 406.93 0.488079
𝛽

ADC 644 2, 848 2.46 0.000088 127, 872 355, 695 > 43, 000.00 0.007043 73, 097 190, 302 > 43, 000.00 0.115773

Aggressive DIRECT 36 6, 921 0.52 0.000091 311 > 2 × 10
6

91.84 0.006979 213 > 2 × 10
6

98.15 0.117012

DIRECT-G 40 1, 045 0.11 0.000045 2, 361 > 2 × 10
6

151.77 0.000786 2, 031 > 2 × 10
6

147.34 0.094152

DIRECT-L 67 2, 833 0.30 0.000093 689 294, 415 23.61 0.000099 3, 617 > 2 × 10
6

382.54 0.000248

DIRECT-GL 29 1, 829 0.18 0.000025 188 65, 645 3.93 0.000097 251 158, 989 9.99 0.000099

TOMLAB/glbSolve 89 1, 997 0.21 0.000026 2, 495 1, 666, 955 2, 160.47 0.000097 1, 162 > 2 × 10
6

1, 557.18 0.041937

TOMLAB/glcCluster∗ 1 6, 092 0.57 1.28 × 10
−9

1 12, 034 1.18 4.47 × 10
−10

1 18, 008 4.91 0.000008

Success rate (%) 100.00 39.28 17.86

𝛽
– algorithm crash, lack of memory

∗
– a hybrid version of the algorithm, enriched with the local search subroutine

N/A – not available

to promising algorithms. Furthermore, an online test library DIRECTGOLib v1.0, containing 119 global optimization

test and engineering problems, has been presented.

The performance of various algorithms within DIRECTGO has been investigated via a detailed numerical study using

the test problems from DIRECTGOLib v1.0. A further 11 examples of using the DIRECTGO for engineering design

optimization have been investigated. The results demonstrate the promising performance of DIRECTGO in tackling these

challenging problems. We also gave guidance on which algorithms to use for specific optimization problems.

Motivated by the promising performance, we plan to extend this work to facilitate the broader adoption of DIRECTGO.

We plan to include newly appearing promising DIRECT-type algorithms within this toolbox continuously. Another

direction is extending the developed algorithms using a hybrid CPU-GPU scheme. Finally, we will consider advanced

data structures for better organization and reduced communication overhead.

SOURCE CODE STATEMENT

All implemented DIRECT-type algorithms (DIRECTGO toolbox) are available at the GitHub repository: https://github.

com/blockchain-group/DIRECTGO and can be used under the MIT license. We welcome contributions and corrections

to it.

https://github.com/blockchain-group/DIRECTGO
https://github.com/blockchain-group/DIRECTGO
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DATA STATEMENT

DIRECTGOLib - DIRECT Global Optimization test problems Library is designed as a continuously-growing open-source

GitHub repository (https://github.com/blockchain-group/DIRECTGOLib) to which anyone can easily contribute.

Therefore, the most recent version is slightly different from the one used in these studies. The exact data underlying

this article (DIRECTGOLib v1.0) can be accessed either on GitHub or at Zenodo (connected with GitHub):

• at GitHub: https://github.com/blockchain-group/DIRECTGOLib/tree/v1.0,

• at Zenodo: https://doi.org/10.5281/zenodo.6491863,

and used under the MIT license.
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https://doi.org/10.1007/978-3-319-29975-4_11
https://doi.org/10.1137/0709036
https://doi.org/10.1137/0709036
https://doi.org/10.1109/22.146318
https://github.com/blockchain-group/pDIRECT-GLce
https://github.com/blockchain-group/pDIRECT-GLce
https://doi.org/10.1007/s11590-021-01726-z
https://github.com/blockchain-group/DIRECTGO
https://github.com/blockchain-group/DIRECTGOLib/tree/v1.0
https://github.com/blockchain-group/DIRECTGOLib/tree/v1.0
https://github.com/blockchain-group/DIRECTGOLib/tree/v1.1
https://github.com/blockchain-group/DIRECTGOLib/tree/v1.1
https://doi.org/10.1007/s11590-017-1228-4
https://doi.org/10.1007/s00158-018-2181-2
https://doi.org/10.5281/zenodo.3948890
https://doi.org/10.5281/zenodo.3948890
https://doi.org/10.5281/zenodo.6491863
https://doi.org/10.5281/zenodo.6491863
https://doi.org/10.5281/zenodo.6491951
https://doi.org/10.5281/zenodo.6491951
https://doi.org/10.1016/j.amc.2020.125596
https://doi.org/10.1016/j.amc.2020.125596
http://www.sfu.ca/~ssurjano/index.html
https://doi.org/10.1109/MCI.2017.2742868
https://doi.org/10.1080/10556780902909948
https://doi.org/10.1108/02644400110365851


DIRECTGO: A new DIRECT-type MATLAB toolbox for derivative-free global optimization 37

Table 13. Key characteristics of the DIRECTGOLib v1.0 [86, 91] test problems for global optimization

Problem

Source

Problem properties

𝑓 ∗

Type Name 𝑛 g h 𝑎 𝐷 �̃�

BC Ackley [32, 95] 2, 5, 10 0 0 0 [−15, 30]𝑛 [−15, 35]𝑛 0.0000

Alpine [12] 5, 10, 15 0 0 0 [0, 10]𝑛 − −2.8081
𝑛

Beale [32, 95] 2 0 0 0 [−4.5, 4.5]𝑛 − 0.0000

Bohachevsky1 [32, 95] 2 0 0 0 [−100, 100]𝑛 [−100, 110]𝑛 0.0000

Bohachevsky2 [32, 95] 2 0 0 0 [−100, 100]𝑛 [−100, 110]𝑛 0.0000

Bohachevsky3 [32, 95] 2 0 0 0 [−100, 100]𝑛 [−100, 110]𝑛 0.0000

Booth [32, 95] 2 0 0 0 [−10, 10]𝑛 − 0.0000

Branin [18, 32, 95] 2 0 0 0 [−5, 10] × [0, 15] − 0.3978

Bukin6 [95] 2 0 0 0 [−15, 5] × [−3, 3] − 0.0000

Colville [32, 95] 4 0 0 0 [−10, 10]𝑛 − 0.0000

Cross_in_Tray [95] 2 0 0 0 [−10, 10]𝑛 − −2.0626

Csendes [12] 5, 10, 15 0 0 0 [−10, 10]𝑛 [−10, 21]𝑛 0.0000

Dixon_and_Price [32, 95] 2, 5, 10 0 0 0 [−10,−10]𝑛 − 0.0000

Drop_wave [95] 2 0 0 0 [−5.12,−5.12]𝑛 [−5.12,−6.12]𝑛 −1.0000

Easom [32, 95] 2 0 0 0 [−100, 100]𝑛 − −1.0000

Eggholder [95] 2 0 0 0 [−512, 512]𝑛 − −959.6406

Goldstein_and_Price [18, 32, 95] 2 0 0 0 [−2, 2]𝑛 − 3.0000

Griewank [32, 95] 5, 10, 15 0 0 0 [−600, 600]𝑛 [−600, 700]𝑛 0.0000

Hartman3 [32, 95] 3 0 0 0 [0, 1]𝑛 − −3.8627

Hartman6 [32, 95] 6 0 0 0 [0, 1]𝑛 − −3.3223

Holder_Table [95] 2 0 0 0 [−10, 10]𝑛 − −19.2085

Hump [32, 95] 2 0 0 0 [−5, 5]𝑛 − −1.0316

Langermann [95] 2 0 0 0 [0, 10]𝑛 − −4.1558

Levy [32, 95] 5, 10, 15 0 0 0 [−5, 5]𝑛 − 0.0000

Matyas [32, 95] 2 0 0 0 [−10, 10]𝑛 [−10, 15]𝑛 0.0000

McCormick [95] 2 0 0 0 [−1.5, 4] × [−3, 4] − −1.9132

Michalewicz [32, 95] 2 0 0 0 [0, 𝜋 ]𝑛 − −1.8013

Michalewicz [32, 95] 5 0 0 0 [0, 𝜋 ]𝑛 − −4.6876

Michalewicz [32, 95] 10 0 0 0 [0, 𝜋 ]𝑛 − −9.6601

Perm [32, 95] 8 0 0 0 [−𝑖, 𝑖 ]𝑛 − 0.0000

Permdb [32, 95] 5 0 0 0 [−𝑖, 𝑖 ]𝑛 − 0.0000

Powell [32, 95] 4 0 0 0 [−4, 4]𝑛 [−4, 5]𝑛 0.0000

Power_Sum [32, 95] 4 0 0 0 [0, 4]𝑛 − 0.0000

Qing [12] 5, 10, 15 0 0 0 [−500, 500]𝑛 − 0.0000

Rastrigin [32, 95] 2, 5, 10 0 0 0 [−5.12, 5.12]𝑛 [−6.12, 5.12]𝑛 0.0000

Rosenbrock [18, 32, 95] 5, 10, 15 0 0 0 [−5, 10]𝑛 − 0.0000

Rotated_H_Ellip [95] 5, 10, 15 0 0 0 [−65.536, 65.536]𝑛 −65.536, 66.536]𝑛 0.0000

Schwefel [32, 95] 2, 5, 10 0 0 0 [−500, 500]𝑛 − 0.0000

Shekel5 [32, 95] 4 0 0 0 [0, 10]𝑛 − −10.1531

Shekel7 [32, 95] 4 0 0 0 [0, 10]𝑛 − −10.4029

Shekel10 [32, 95] 4 0 0 0 [0, 10]𝑛 − −10.5364

Shubert [32, 95] 2 0 0 0 [−10, 10]𝑛 − −186.7309

Sphere [32, 95] 5, 10, 15 0 0 0 [−5, 5]𝑛 [−5.12, 6.12]𝑛 0.0000

Styblinski_Tang [12] 5, 10, 15 0 0 0 [−5, 5]𝑛 − −39.1661𝑛

Sum_of_Powers [95] 5, 10, 15 0 0 0 [−1, 1]𝑛 [−1, 2.5]𝑛 0.0000

Sum_Square [95] 5, 10, 15 0 0 0 [−10, 10]𝑛 [−10, 15]𝑛 0.0000

Trid6 [32, 95] 6 0 0 0 [−36, 36]𝑛 − −50.0000

Trid10 [32, 95] 10 0 0 0 [−100, 100]𝑛 − −210.0000

Zakharov [32, 95] 2, 5, 10 0 0 0 [−5, 10]𝑛 [−5, 11]𝑛 0.0000

LC Bunnag1 [97] 4 1 0 1 [0, 3]𝑛 − 0.1111

Bunnag2 [97] 4 2 0 2 [0, 4]𝑛 − −6.4052

Bunnag3 [97] 5 3 0 1 [0, 3] × [0, 2] × [0, 4] × [0, 4] × [0, 2] − −16.3692

Bunnag4 [97] 6 2 0 1 [0, 1]5 × [0, 20] − −213.0470

Bunnag5 [97] 6 5 0 1 [0, 2] × [0, 8] × [0, 2] × [0, 1]2 × [0, 2] − −11.0000

Continued on next page
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Table 13 Continued from previous page

Problem

Source

Problem properties

𝑓 ∗

Type Name 𝑛 g h 𝑎 𝐷 (Default) 𝐷 (Perturbed)

Bunnag6 [97] 10 11 0 3 [0, 1]𝑛 − −268.0146

Bunnag7 [97] 10 5 0 0 [0, 1]𝑛 − −39.0000

G01 [43] 13 9 0 6 [0, 10]9 × [0, 100]3 × [0, 10] − −15.0000

Genocop9 [97] 3 5 0 2 [0, 10]𝑛 − −2.4714

Genocop10 [97] 4 5 0 0 [0, 3] × [0, 10]2 × [0, 1] − −4.5280

Genocop11 [97] 6 5 0 0 [0, 5] × [0, 8] × [0, 5] × [0, 1]2 × [0, 2] − −11.0000

Horst1 [36] 2 3 0 1 [0, 3] × [0, 2] − −1.0625

Horst2 [36] 2 3 0 2 [0, 2.5] × [0, 2] − −6.8995

Horst3 [36] 2 3 0 0 [0, 1] × [0, 1.5] − −0.4444

Horst4 [36] 3 4 0 2 [0.5, 2] × [0, 3] × [0, 2.8] − −6.0858

Horst5 [36] 3 4 0 0 [0, 1.2]2 × [0, 1.7] − −3.7220

Horst6 [36] 3 7 0 2 [0, 6] × [0, 5.0279] × [0, 2.6] − −32.5784

Horst7 [36] 3 4 0 2 [0, 6] × [0, 3]2 − −52.8769

hs021 [97] 2 1 0 1 [2, 50] × [−50, 10] − −99.9599

h𝑠021mod [97] 7 3 0 1 [2, 50] × [−50, 50] × [0, 50] × [2, 10] × [−10, 10] ×
[−10, 0] × [0, 10]

− 4.0400

hs024 [97] 2 3 0 2 [0, 5]𝑛 − −1.0000

hs035 [97] 3 1 0 1 [0, 3]𝑛 − 0.1111

hs036 [97] 3 1 0 1 [0, 20] × [0, 11] × [0, 15] − −3300.0000

hs037 [97] 3 2 0 1 [0, 42]𝑛 − −3456.0000

hs038 [97] 4 2 0 0 [−10, 10]𝑛 − 0.0000

hs044 [97] 4 6 0 2 [0, 5]𝑛 − −15.0000

hs076 [97] 4 3 0 1 [0, 1] × [0, 3] × [0, 1]2 − −4.6818

P9 [23] 3 9 0 2 [10
−5, 3] × [10

−5, 4]2 − −13.4020

P14 [23] 3 4 0 2 [10
−5, 3] × [10

−5, 4] × [0, 1] − −4.51420

s224 [97] 2 4 0 1 [0, 6] × [0, 11] − −304.0000

s231 [97] 2 2 0 0 [−10, 10]𝑛 − 0.0000

s232 [97] 2 3 0 2 [0, 100]𝑛 − −1.0000

s250 [97] 3 2 0 1 [0, 20] × [0, 11] × [0, 42] − −3300.0000

s251 [97] 3 1 0 1 [0, 42]𝑛 − −3456.0000

zecevic2 [97] 3 2 0 1 [0, 10]𝑛 − −4.1249

GC circle [97] 3 10 0 3 [0, 10]𝑛 − 4.5742

G02 [43] 20 2 0 1 [0, 10]𝑛 − −0.8036

G04 [43] 5 6 0 2 [78, 102] × [33, 45] × [27, 45]3 − −30665.5386

G06 [43] 2 2 0 2 [13, 100] × [0, 100] − −6961.8138

G07 [43] 10 8 0 6 [−10, 10]𝑛 − 24.3062

G08 [43] 2 2 0 0 [0, 10]𝑛 − −0.0958

G09 [43] 7 4 0 2 [−10, 10]𝑛 − 680.6300

G10 [43] 8 6 0 6 [100, 10, 000] × [1, 000, 10, 000]2 × [10, 1, 000]5 − 7049.2480

G12 [43] 3 1 0 0 [0.2, 10]𝑛 − −1.0000

G16 [43] 5 38 0 4 [704.4148, 906.3855] × [68.6, 288.88] ×
[0, 134.75] × [193, 287.0966] × [25, 84.1988]

− −1.9051

G18 [43] 9 13 0 6 [0, 10]𝑛 − −0.8660

G19 [43] 15 5 0 0 [0, 10]𝑛 − 32.6555

G24 [43] 2 2 0 2 [0, 3] × [0, 4] − −5.5080

Goldstein_and_PriceC [58] 2 2 0 1 [−2, 2]𝑛 − 3.5389

Gomez [5] 2 1 0 1 [−1, 1]𝑛 − −0.9711

Himmelblau [8] 5 5 0 2 [78, 102] × [33, 45] × [27, 45]3 − −31025.5602

P1 [23] 5 0 3 3 [−5, 5]𝑛 − 0.0293

P2a [23] 5 10 0 5 [0, 500]5 − −400.0000

P2b [23] 5 10 0 5 [0, 500]5 − −600.0000

P2c [23] 5 10 0 4 [0, 500]5 − −750.0000

P2d [23] 5 12 0 5 [0, 100] × [0, 200] × [0, 100] × [0, 200] × [1, 3] − −400.0000

P3a [23] 6 1 4 5 [0, 1]4 × [10
−5, 16]2 − 0.3888

P3b [23] 2 1 0 1 [10
−5, 16]𝑛 − 0.3888

P4 [23] 2 1 0 1 [0, 6] × [0, 4] − −6.6666

P5 [23] 3 2 0 2 [0, 9.422] × [0, 5.903] × [0, 267.42] − 201.1600

Continued on next page



DIRECTGO: A new DIRECT-type MATLAB toolbox for derivative-free global optimization 39

Table 13 Continued from previous page

Problem

Source

Problem properties

𝑓 ∗

Type Name 𝑛 g h 𝑎 𝐷 (Default) 𝐷 (Perturbed)

P6 [23] 2 1 0 1 [0, 115.8] × [10
−5, 30] − 376.2900

P7 [23] 2 4 0 1 [−2, 2]𝑛 − −2.8284

P8 [23] 2 2 0 1 [−8, 10] × [0, 10] − −118.7000

P10 [23] 2 2 0 2 [0, 1]𝑛 − 0.7417

P11 [23] 2 1 0 1 [0, 1]𝑛 − −0.5000

P12 [23] 1 2 0 0 [0, 2] − −16.7390

P13 [23] 3 0 2 2 [10
−5, 34] × [10

−5, 17] × [100, 300] − 189.3500

P15 [23] 3 0 3 3 [10
−5, 12.5] × [10

−5, 37.5] × [0, 50] − 0.0000

P16 [23] 2 6 0 0 [1, 3] × [1, 4] − 0.7049

s365mod [97] 7 9 0 5 [0, 19]𝑛 − 52.1399

Tproblem [21] 2, 3, 4, 5,

6, 7, 8

1 0 1 [−4, 4]𝑛 − −𝑛

zy2 [97] 2 3 0 1 [0, 10]𝑛 − 2.0000

zecevic3 [97] 2 2 0 1 [0, 10]𝑛 − 97.3094

zecevic4 [97] 4 2 0 1 [0, 10]𝑛 − 7.5575

Concluded

B THE MATHEMATICAL FORMULATION OF ENGINEERING PROBLEMS

B.1 Tension/compression spring design problem

The design variables of the tension/compression spring design problem [40] are the number of the wire diameter 𝑥1,

the winding diameter 𝑥2, and active coils of the spring 𝑥3. The objective function and the mechanical constraints are

given by:

min 𝑓 (x) = 𝑥2

1
𝑥2 (𝑥3 + 2)

s.t. 𝑔1 (x) = 1 −
𝑥3

2
𝑥3

71875𝑥4

1

≤ 0, 𝑔2 (x) =
𝑥2 (4𝑥2 − 𝑥1)

12566𝑥3

1
(𝑥2 − 𝑥1)

+ 2.46

12566𝑥2

1

− 1 ≤ 0, 𝑔3 (x) = 1 − 140.54𝑥1

𝑥3𝑥
2

2

≤ 0,

𝑔4 (x) =
𝑥1 + 𝑥2

1.5
− 1 ≤ 0

where 0.05 ≤ 𝑥1 ≤ 0.2, 0.25 ≤ 𝑥2 ≤ 1.3, 2 ≤ 𝑥3 ≤ 15. The best known solution x∗ =

(0.05169591, 0.35688327, 11.29337893), where 𝑓 (x∗) = 0.01267867. Two of the constraint functions are active (𝑔1 and 𝑔2).

B.2 Three-bar truss design problem

The three-bar truss design problem [74] has two design variables and three constraints. The optimization problem is

formulated as follows:

min 𝑓 (x) = 100(2
√

2𝑥1 + 𝑥2)

s.t. 𝑔1 (x) =
√

2𝑥1 + 𝑥2√
2𝑥2

1
+ 2𝑥1𝑥2

2 − 2 ≤ 0, 𝑔2 (x) =
𝑥2√

2𝑥2

1
+ 2𝑥1𝑥2

2 − 2 ≤ 0, 𝑔3 (x) =
1

𝑥1 +
√

2𝑥2

2 − 2 ≤ 0

where 0 ≤ 𝑥1 ≤ 1, 0 ≤ 𝑥2 ≤ 1. The best known solution x∗ = (0.78867531, 0.40824778), where 𝑓 (x∗) = 263.89584337.

One of the constraint functions is active (𝑔1).
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B.3 NASA speed reducer design problem

The design variables of the NASA speed reducer design problem [74] are the face width 𝑥1, the module of teeth 𝑥2,

the number of teeth on the pinion 𝑥3, the length of the first shaft between the bearings 𝑥4, the distance of the second

shaft between the bearings 𝑥5, the diameter of the first shaft 𝑥6, and, finally, the width of the second shaft 𝑥7. The

optimization problem is formulated as follows:

min 𝑓 (x) = 0.7854𝑥1𝑥
2

2
(3.3333𝑥2

3
+ 14.9334𝑥3 − 43.0934) − 1.508𝑥1 (𝑥2

6
+ 𝑥2

7
) + 7.4777(𝑥3

6
+ 𝑥3

7
)

+ 0.7854(𝑥4𝑥
2

6
+ 𝑥5𝑥

2

7
)

s.t. 𝑔1 (x) =
27

𝑥1𝑥
2

2
𝑥3

− 1 ≤ 0, 𝑔2 (x) =
397.5

𝑥1𝑥
2

2
𝑥2

3

− 1 ≤ 0, 𝑔3 (x) =
1.93𝑥3

4

𝑥2𝑥3𝑥
4

6

− 1 ≤ 0, 𝑔4 (x) =
1.93𝑥3

5

𝑥2𝑥3𝑥
4

7

− 1 ≤ 0,

𝑔5 (x) =
(( 745𝑥4

𝑥2𝑥3

)2 + 16.9 × 10
6)0.5

110𝑥3

6

− 1 ≤ 0, 𝑔6 (x) =
(( 745𝑥5

𝑥2𝑥3

)2 + 157.5 × 10
6)0.5

85𝑥3

7

− 1 ≤ 0,

𝑔7 (x) =
𝑥2𝑥3
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− 1 ≤ 0, 𝑔8 (x) =
5𝑥2

𝑥1

− 1 ≤ 0, 𝑔9 (x) =
𝑥1

12𝑥2

− 1 ≤ 0, 𝑔10 (x) =
1.5𝑥6 + 1.9

𝑥4

− 1 ≤ 0,

𝑔11 (x) =
1.1𝑥7 + 1.9

𝑥5

− 1 ≤ 0

where 2.6 ≤ 𝑥1 ≤ 3.6, 0.7 ≤ 𝑥2 ≤ 0.8, 17 ≤ 𝑥3 ≤ 28, 7.3 ≤ 𝑥4 ≤ 8.3, 7.8 ≤ 𝑥5 ≤ 8.3, 2.9 ≤ 𝑥6 ≤ 3.9, 5 ≤ 𝑥7 ≤ 5.5. The

best known solution x∗ = (3.5, 0.7, 17, 7.3, 7.8, 3.35021467, 5.28668323), where 𝑓 (x∗) = 2996.34816924. Three constraints

are active (𝑔5, 𝑔6 and 𝑔8).

B.4 Pressure vessel design problem

There are four design variables in the pressure vessel design problem [40](in inches): the thickness of the pressure

vessel 𝑥1, the thickness of the head 𝑥2, the inner radius of the vessel 𝑥3, and the length of the cylindrical component 𝑥4.

The optimization problem is formulated as follows:

min 𝑓 (x) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥
2

3
+ 3.1661𝑥2

1
𝑥4 + 19.84𝑥2

1
𝑥3

s.t. 𝑔1 (x) = −𝑥1 + 0.0193𝑥3 ≤ 0, 𝑔2 (x) = −𝑥2 + 0.00954𝑥3 ≤ 0, 𝑔3 (x) = −𝜋𝑥2

3
𝑥4 −

4

3

𝜋𝑥3

3
+ 1296000 ≤ 0,

𝑔4 (x) = 𝑥4 − 240 ≤ 0, 𝑔5 (x) = 1.1 − 𝑥1 ≤ 0, 𝑔6 (x) = 0.6 − 𝑥2 ≤ 0

where 1 ≤ 𝑥1 ≤ 1.375, 0.625 ≤ 𝑥2 ≤ 1, 25 ≤ 𝑥3 ≤ 150, 25 ≤ 𝑥4 ≤ 240. The best known solution x∗ =

(1.1, 0.625, 56.99481865, 51.00125173), where 𝑓 (x∗) = 7163.73956887. Three constraints are active (𝑔1, 𝑔3 and 𝑔5).

B.5 Welded beam design problem

The welded beam design problem [54, 55] is to design a welded beam at minimum cost, subject to some constraints

[54, 55]. The objective is to find a minimum fabrication cost. Considering the four design variables and constraints

of shear stress 𝜏 , bending stress in the beam 𝜎 , buckling load on the bar 𝑃𝑐 , and end deflection on the beam 𝛿 . The

optimization model is summarized in the following equation:
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min 𝑓 (x) = 1.10471𝑥2

1
𝑥2 + 0.04811𝑥3𝑥4 (14 + 𝑥2)

s.t. 𝑔1 (x) = 𝜏 (x) − 13600 ≤ 0, 𝑔2 (x) = 𝜎 (x) − 3 × 10
4 ≤ 0, 𝑔3 (x) = 𝑥1 − 𝑥4 ≤ 0, 𝑔4 (x) = 𝑃 − 𝑃𝑐 (x) ≤ 0

𝑔5 (x) = 0.10471𝑥2

1
+ 0.04811𝑥3𝑥4 (14 + 𝑥2) − 5 ≤ 0, 𝑔6 (x) = 𝛿 (x) − 0.25 ≤ 0, 𝑔7 (x) = 0.125 − 𝑥1 ≤ 0,

with:

𝜏 (x) =
√︁
(𝜏1)2 + (𝜏1) (𝜏2)𝑥2/𝑅 + (𝜏2)2, 𝑃𝑐 =

4.013𝐸

√︃
𝑥2

3
𝑥4”6/36

𝐿2
(1 − 𝑥3

2𝐿

√︂
𝐸

4𝐺
), 𝑅 =

√︄
𝑥2

2
)

4

+ ( 𝑥1 + 𝑥3

2

)2,

𝜏1 =
𝑃

√
2𝑥1𝑥”

, 𝜏2 =
𝑀𝑅

𝐽
, 𝜎 (x) = 6𝑃𝐿

𝑥4𝑥
2

3

, 𝐽 = 2(
√

2𝑥1𝑥2 (
𝑥2

2

12

+ 1

4

(𝑥1𝑥3)2)), 𝛿 (x) = 4𝑃𝐿3

𝐸𝑥4𝑥
3

3

, 𝑀 = 𝑃𝐿 + 𝑥2

2

,
𝑃 = 6000, 𝐿 = 14, 𝐸 = 3 × 10

7, 𝐺 = 12 × 10
6,

where 0.1 ≤ 𝑥1 ≤ 2, 0.1 ≤ 𝑥2 ≤ 10, 0.1 ≤ 𝑥3 ≤ 10, 0.1 ≤ 𝑥3 ≤ 2. The best known solution x∗ =

(0.20572963, 3.47048893, 9.03662399, 0.20572964), where 𝑓 (x∗) = 1.72485237. One of the constraint functions is active

(𝑔3).

B.6 General non-linear regression problem

Parameter estimation in the general non-linear regression model [26, 61, 80] can be reduced to solving the minimization

problem:

min 𝑓 (x) =
𝑇∑︁
𝑡=1

(^ (𝑡) − 𝜙 (x, 𝑡))2

with:

𝜍∑︁
𝑞=1

^ (𝑡) = 𝑒𝑡𝑑𝑞 sin(2𝜋𝑡𝜔𝑞 + \𝑞),
𝜍∑︁

𝑞=1

𝜙 (x, 𝑡) = 𝑒 (𝑥3(𝑞−1)+1
𝑡 )

sin(2𝜋𝑡𝑥
3(𝑞−1)+2

+ 𝑥
3(𝑞−1)+3

)

where −1 ≤ 𝑥
3(𝑞−1)+1

≤ 0, 0 ≤ 𝑥
3(𝑞−1)+2,3(𝑞−1)+2

≤ 1, 𝑞 = 1...𝜍 . d is non-positive damping coefficients, 𝝎 is

frequencies, and 𝜽 is phases of the sinusoids (𝜍 ) (hereafter, 𝑑𝑞 ∈ [−1, 0], 𝜔𝑞 ∈ [0, 1], \𝑞 ∈ [0, 1], 𝑞 = 1...𝜍 ). For signal

approximation, the parameter x of the problem is determined to fit best the real-valued signal values observed in the

uniformly distributed time moments 𝑡 = 1, 2, ...,𝑇 . The general non-linear regression problem is multi-modal, especially

with the increase in the number of samples 𝑇 . The increase of the sinusoid number 𝜍 leads to a more accurate but at

the same time more challenging optimization problem. In our experimental study, six versions of the problem were

considered. The sinusoid number was fixed to 𝜍 = 1, 2, and 3 (corresponding to 3, 6, and 9-dimensional cases), while the

value of 𝑇 to 10 and 100. The best known solutions: i) 𝑓 (x∗) = 0 and x∗ = (−0.2, 0.4, 0.3) for 𝑛 = 3; ii) 𝑓 (x∗) = 0 and

x∗ = (−0.3, 0.3, 0.1,−0.2, 0.4, 0.3) for 𝑛 = 6; iii) 𝑓 (x∗) = 0 and x∗ = (−0.4, 0.6, 0.2,−0.3, 0.3, 0.1,−0.2, 0.4, 0.3) for 𝑛 = 9.

C QUICK DIRECTGO USER GUIDE

This section provides a brief user guide on how to use DIRECTGO software. The following subsections provide examples

of using algorithms (their implementations) to solve box constrained and problems with various constraints, including

the parallel usage of the algorithms.
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C.1 Example of box constrained global optimization algorithm usage

Any DIRECT-type algorithmic implementation from the DIRECTGO MATLAB toolbox for box constrained global

optimization can be called using the same style and syntax introduced in Section 3.2. In this example we use the PLOR

algorithm and solve Bukin6 test problem (see Table 13).

The Bukin6 test problem is defined in MATLAB in the following way:

function y = Bukin6(x)

if nargin == 0 % Extract info from the function

y.nx = 2; % Dimension of the problem

xl = [-15; -3];

y.xl = @(i) xl(i); % Lower bounds for each variable

xu = [5; 3];

y.xu = @(i) xu(i); % Upper bounds for each variable

y.fmin = @(nx) get_fmin(nx); % Known solution value

y.xmin = @(nx) get_xmin(nx); % Known solution point

return

end

term1 = 100*sqrt(abs(x(2) - 0.01*x(1)^2));

term2 = 0.01*abs(x(1) + 10);

y = term1 + term2; % Return function value at x

end

function fmin = get_fmin(~)

fmin = 0;

end

function xmin = get_xmin(~)

xmin = [-10; 1];

end

Each test problem in the DIRECTGOLib v1.0 stores the information about the problem structure together with the

objective function. In this case, in the Bukin6.m file, the following information is stored: i) the dimensionality of the

problem; ii) the lower and upper bounds for each variable; iii) the objective function value of the known solution; iv)

the solution point. For some problems, the optimum might depend on the number of variables, therefore the solution

values and points are returned as a functions for all test problems in DIRECTGOLib v1.0.

The optimization problem is passed to the algorithm as part of a P structure. For a box-constrained problem, only

one field of the P structure is needed:

>> P.f = 'Bukin6';

When a user wants to change the default algorithmic settings, the OPTS structure should be used:
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>> opts.maxevals = 50; % Maximal number of function evaluations

>> opts.maxits = 100; % Maximal number of iterations

>> opts.testflag = 1; % 1 if global minima is known, 0 otherwise

>> opts.tol = 0.01; % Tolerance for termination if testflag = 1

Now we are ready to call the dynamic data structure based PLOR implementation (dPlor.m) to solve this problem:

>> [f_min, x_min, history] = dPlor(P, OPTS);

The iterative output stored in the history parameter contains the following information:

>> history

history =

1.0000 5.0000 16.7833 0.0023

2.0000 7.0000 16.7833 0.0030

3.0000 13.0000 5.6500 0.0039

4.0000 19.0000 5.6500 0.0046

5.0000 27.0000 1.9537 0.0053

6.0000 33.0000 1.9537 0.0060

7.0000 41.0000 0.7167 0.0070

8.0000 47.0000 0.7167 0.0077

9.0000 55.0000 0.3060 0.0086

Here, the first column shows the iteration number, while the second is the total number of function evaluations. The

third column shows how the best objective function value improves at each iteration, while the last column shows the

execution time in seconds. In this example, the PLOR algorithm was terminated when the maximum number of function

evaluations (opts.maxevals = 50) exceeded.

The convergence plot is shown on the right panel of Fig. 12, while the left panel illustrates the Bukin6 test function

over its domain.

C.2 Example of constrained global optimization algorithm usage

Any DIRECT-type algorithmic implementation for constrained global optimization problems can be used the same way as

box-constrained problems. However, for constrained problems, implemented algorithms extract additional information

from the function’s definition, such as the number of inequality constraints, the number of equality constraints, and the

constraint functions. Let us take the G06 problem (see Table 13) as an example, defined in the following way:

function y = G06(x)

if nargin == 0 % Extract info from the function

y.nx = 2; % Dimension of the problem

y.ng = 2; % Number of g(x) constraints
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Fig. 12. The Bukin6 test function (on the left side) and the convergence plot (on the right side) of the PLOR algorithm in the first 9

iterations.

y.nh = 0; % Number of h(x) constraints

xl = [13, 0];

y.xl = @(i) xl(i); % Lower bounds for each variable

y.xu = @(i) 100;

y.fmin = @(nx) get_fmin(nx); % Known solution value

y.xmin = @(nx) get_xmin(nx); % Known solution point

y.confun = @(i) G06c(i); % Constraint functions

return

end

y = (x(1) - 10)^3 + (x(2) - 20)^3; % Return function value at x

end

function [c, ceq] = G06c(x)

c(1) = -(x(1) - 5)^2 - (x(2) - 5)^2 + 100;

c(2) = (x(1) - 6)^2 + (x(2) - 5)^2 - 82.81;

ceq = [];

end

function fmin = get_fmin(~)

fmin = -6961.8138751273809248;

end

function xmin = get_xmin(~)
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xmin = [14.0950000002011322; 0.8429607896175201];

end

Same as in Appendix C.1, the constrained optimization problem is passed to the algorithm as part of a P structure:

>> P.f = 'G06';

Next, assume that a user wants to stop the search as soon as the known solution is within a 0.01% error. The OPTS

structure should be specified as follows:

>> opts.maxevals = 10000; % Maximal number of function evaluations

>> opts.maxits = 1000; % Maximal number of iterations

>> opts.testflag = 1; % 1 if global minima is known, 0 otherwise

>> opts.tol = 0.01; % Tolerance for termination if testflag = 1

>> opts.showits = 1; % Print iteration status

The desired solver (in this case implementation of the DIRECT-GLc algorithm) is run using:

>> [f_min, x_min, history] = dDirect_GLc(P, OPTS);

Since opts.showits = 1, the optimization result after the each iteration is printed in the MATLAB command window:

Phase_II - searching feasible point:

con viol: 2404.4400000000 fn evals: 5

con viol: 515.5511111111 fn evals: 7

...

con viol: 0.1374240038 fn evals: 123

con viol: 0.0000000000 fn evals: 159 f_min: -5612.1483164940

Phase_I - Improve feasible solution:

Iter: 1 f_min: -5886.5625227848 time(s): 0.05935 fn evals: 197

Iter: 2 f_min: -5931.8554991123 time(s): 0.06473 fn evals: 241

...

Iter: 13 f_min: -6873.0583159376 time(s): 0.13197 fn evals: 947

Iter: 14 f_min: -6901.5099081387 time(s): 0.13869 fn evals: 1027

Minima was found with Tolerance: 1

We see that the solution 𝑓min = −6901.5099081387 (within a 0.01% error) was found after 14 iterations.

C.3 Parallel algorithm usage

This section briefly explains how to use parallel versions of the algorithms.We can see which algorithms are implemented

in parallel in Table 1. Assume a user wishes to use parallel code for the PLOR algorithm. First, a parallel implementation

of the PLOR algorithm (parallel_dPlor.m) should be chosen. Next, a user should specify the number of workers

(computational threads). For parallel PLOR, it is reasonable to select 2, as only two POH are selected per iteration. In
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this case, MATLAB parallel pool size should be specified using the parpool command, after which the parallel algorithm

should be executed:

>> parpool(2);

>> [f_min, x_min, history] = parallel_dPlor(P, OPTS);

By default, the parpool command starts the MATLAB pool on the local machine with one worker per physical CPU core.

Using parpool(2), we limit the number of workers to 2. After this, the parallel code is executed using both workers.

However, it should be taken into account that creating parallel parpool takes some time. Therefore, using the parallel

PLOR algorithm is inefficient in solving simple problems. The use of parallel codes should address higher-dimensionality,

more expensive optimization problems [93]. When all necessary calculations in parallel mode are finished, the following

command:

>> delete(gcp);

shuts down the parallel pool.
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