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Introduction

Topological-antitopological fusion or tt*-geometry is a topic of mathematical and physi-
cal interest. In about 1990 physicists studied topological-field-theories and their moduli
spaces, in particular N = 2 supersymmetric field-theories and found a special geometric
structure called topological-antitopological fusion (see the works of Cecotti and Vafa [CV]
and Dubrovin [D]). These geometries are realized on the tangent bundle of some manifold
and part of their data is a Riemannian metric. One can replace the tangent bundle by
an abstract vector bundle. This step allows to consider ¢¢*-bundles as a generalization of
variations of Hodge structures, as it was done in Hertling’s paper [Her].

The starting point of this thesis is a correspondence between tt*-bundles and pluri-
harmonic maps into the space of positive definite metrics found by Dubrovin [D]. The
aim is to find a version of this correspondence for tt*-bundles on abstract vector bundles.
The obvious interest of this correspondence is either to construct pluriharmonic maps or
to construct tt*-geometries. We first analyze pluriharmonic maps which are associated
to solutions of tt*-bundles coming from already known geometries. Famous examples of
such solutions are harmonic bundles, variations of Hodge structures, special complex and
special Kahler manifolds and flat nearly Kahler manifolds. In the last two cases indefinite
metrics appear. This means one needs to understand the above-mentioned correspon-
dence for tt*-geometries with pseudo-Riemannian metrics.

Recently, special para-Kéhler geometry was introduced in [CMMS]. It arises as one
of the special geometries of Euclidean supersymmetry. This motivates us to search for
para-complex versions of tt*-geometries and for a correspondence to the para-complex
analogue of pluriharmonic maps. In fact, we introduce the para-complex notion of #¢*-
geometry, which we call para-tt*-geometry and establish a correspondence to the para-
complex analogue of pluriharmonic maps. This result leads to the question, if there
exist para-complex versions of the above-mentioned solutions of ¢t*-geometry: harmonic
bundles, variations of Hodge structures, special complex and special Kahler manifolds and
flat nearly Kahler manifolds and if they are solutions of para-tt*-geometry. We answer
positively to this question in this thesis, since we show, that one can generalize all these
geometries to the para-complex category and that these generalizations supply solutions
of para-tt*-geometry.

Let us describe the results of the work. It is a compilation of already published results
and of newer unpublished ones. To compress this work we treat at places, where it does
not impose too much confusion, the complex case and the para-complex case at the same
time. The needed notions of para-complex geometry are introduced in chapter 1. For the
rest of the introduction we may ask the reader who is not familiar with these notations
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12 Introduction

to skip the prefix 'para’ if it disturbs him.

We explain the structure of a (para-)tt*-bundle: A (para-)tt*-bundle (E, D, S) con-
sists of a (real) vector bundle E over a (para-)complex manifold (M, J) endowed with a
connection D and a section S of T*M ® End(F), such that the family of connections

Do D + cos(0)S + sin(6)S,,0 € R, for M complex,
D + cosh(0)S + sinh(0)S;,0 € R, for M para-complex,

is flat. A metric (para-)tt*-bundle (F, D, S, g) is a (para-)tt*-bundle (E, D,S) endowed
with a D-parallel metric g, such that S is symmetric with respect to g.

First, we establish the correspondence between (para-)tt*-bundles on abstract vector
bundles over simply connected manifolds and (para-)pluriharmonic maps, generalizing
Dubrovin [D]. In fact we show the following result in theorem 4.1 and in theorem 4.2.:

Theorem 1

(i) A metric (para-)tt*-bundle with a metric of signature (p,q) over a simply connected
(para-)complex manifold (M, J) gives (after firing a D°-parallel frame) rise to an
admissible (para-)pluriharmonic map f from M to GL(r,R)/O(p, q).

(ii) An admissible (para-)pluritharmonic map f from a simply connected (para-)complex
manifold (M, J) to GL(r,R)/O(p,q) gives rise to a metric (para-)tt*-bundle (E =
M x R", D, S).

For the definition of admissible (para-)pluriharmonic maps we refer to definition 2.9.
In other words we could roughly say, that our construction defines a bijection

¢ : { framed metric (para-)tt*-bundles — { admissible (para-)pluriharmonic maps
of rank r and sign. (p,q) } into GL(r,R)/O(p,q) }. (0.0.1)

from the space of framed metric (para-)tt*-bundles of rank r over a simply connected
(para-)complex manifold (M, J) to the space of (para-)pluriharmonic maps from (M, J)
to GL(r,R)/O(p,q). The case of a metric ¢t*-bundle of rank r with metric of signature
(r,0) follows from this theorem, since in this case the pluriharmonic maps are shown to
be admissible using a result of Sampson [Sam]. Our correspondence contains the classical
correspondence shown by Dubrovin [D]. If the manifold M is not simply connected,
one has to replace the (para-)pluriharmonic maps by twisted (para-)pluriharmonic maps.
We also show a version for unimodular oriented metric ¢¢*-bundles. The target space of
the (para-)pluriharmonic maps is for unimodular oriented metric ¢t*-bundles the space
SL(r,R)/SO(p, q).

Adapting a rigidity result of Gordon [G] about harmonic maps to pluriharmonic maps
we are able to prove a rigidity result for ¢¢*-bundles with a positive definite metric over a
compact Kéhler manifold (cf. theorem 4.6 and [Sch5]). Further we apply this to special
Kéhler manifolds and obtain a new proof Lu’s theorem [Lu] in the case of a simply
connected compact special Kéhler manifold (cf. theorem 4.7 and [Sch5]).

We now shortly discuss the above-mentioned classes of t¢*-bundles:

From [Her| and [Schl, Sch2| we knew, that harmonic bundles are objects, which are
closely related to tt*-bundles. A correspondence between these bundles and harmonic
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maps from compact Kéhler manifolds to GL(r,C)/U(r) was given in Simpson’s paper
[Sim]:

U harmonic bundles { harmonic maps
with pos. def. metric over — from
comp. Kéhler manifolds M } M to GL(r,C)/U(r) }.

From Sampson’s theorem [Sam] it follows that in this case the notion of harmonic map and
pluriharmonic map coincide. In other words there exists a correspondence between har-
monic bundles and pluriharmonic maps from compact Kahler manifolds to GL(r, C)/U(r).
This correspondence can be recovered from a more general result, discussed in this thesis,
which is an application of our theorem 1. This is described briefly in the next paragraph
and was published in [Sch4].

We generalize the notion of a harmonic bundle by admitting indefinite metrics. With this
definition we construct metric and symplectic ¢t*-bundles from harmonic bundles and we
apply the correspondence of theorem 1 to prove that the target space of the admissible
pluriharmonic maps can be restricted to the totally geodesic subspace GL(r, C)/U(p, q) of
GL(2r,R)/O(2p, 2q). This means, that the application of our construction roughly gives
rise to a map:

U : { framed harmonic bundles — { admissible pluriharmonic maps
over complex manifolds M } from M to GL(r,C)/U(p,q) }.

Simpson’s result for positive definite signature is recovered, since for positive definite
signature the above map ® (cf. equation (0.0.1)) is essentially bijective. Our result is a
generalization of Simpson’s work (for more information compare section 5.5), as arbitrary
signature of the bundle metric is admitted and the compactness and the Kahler condition
are not needed. We restrict to simply connected manifolds M, since the case with non-
trivial fundamental group can be obtained by utilizing the corresponding theorems in
chapter 4. The pluriharmonic maps are then replaced by twisted pluriharmonic maps.

Moreover, we introduce the notion of para-harmonic bundles, i.e. harmonic bundles in
para-complex geometry (cf. [Sch9]). We use the same recipe as in complex geometry to
relate these bundles to para-pluriharmonic maps into GL(r,C)/U™(C"), where GL(r,C)
is the para-complex analogue of the general complex linear group and U™(C") is the para-

complex version of the unitary group. Hence we extend the map ¥ to para-harmonic
bundles:

U : { framed para-harmonic bundles — { admissible para-pluriharmonic maps
over para-complex manifolds M } from M to GL(r,C)/U™(C") }.

The next class of solutions are variations of Hodge structures (VHS). These are by
Hertling’s work [Her| tt*-geometries. Locally VHS are described by their period map,
i.e. a holomorphic map into the so-called period domain, which is an open set in a flag
manifold. We weaken the second Riemannian bilinear relation. Then we relate the pluri-
harmonic map associated to a tt*-bundle, which comes from a given VHS of odd weight,
to the period map of this VHS. Likewise we introduce a para-complex version of VHS
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and associate to this a kind of period map. The para-complex version of a VHS carries a
metric para-tt*-bundle. For odd weight we express the para-pluriharmonic map associated
to this para-tt*-bundle in terms of the para-complex period map.

In all these examples of (para-)tt*-geometries the (para-)complex structure of the

base manifold (M, .J) has been integrable. However, in the study of (para-)tt*-bundles
(T'M, D, S) on the tangent bundle 7'M it is reasonable to consider almost (para-)complex
manifolds, since like this nearly (para-)Kéhler manifolds with flat Levi-Civita connection
arise as solutions of (para-)tt*-geometry. We give a constructive classification of Levi-
Civita flat nearly (para-)K&hler manifolds in a common work with V. Cortés [CS2].
Let us explain the structure of this part of the thesis, which is also subject of [Sch7, Sch§].
Part of the t#*-bundle (T M, D, S) is now a one-parameter family of flat connections D’
on the tangent bundle T'M. Every almost (para-)complex manifold (M, .J) endowed with
a flat connection V carries a natural one-parameter family of flat connections given by

V? = exp(0.J) o Vo exp(—6.J), with 6 € R,

We study (para-)tt*-bundles for which the families D? and V? are equivalent in the sense
of the following:

Definition 1 Two one-parameter families of connections V° and D? on some vector
bundle E with 6 € R are called (linearly) equivalent with factor a € R if they satisfy the
equation V¥ = DY

To consider such one-parameter families of connections is motivated by our previous
study of special (para-)Kahler solutions of (para-)tt*-bundles. Like this we obtain a
duality between Levi-Civita flat nearly (para-)Kéahler manifolds and special (para-)Kéhler
manifolds, which are both of importance in mathematics and theoretical physics.

Afterwards we restrict to (para-)tt*-bundles (T'M, D, S) as above such that the con-
nection D is (para-)complex, i.e. satisfies DJ = 0. These are recovered uniquely from the
(para-)complex structure J and the connection V. In addition compatibility conditions
on the pair (V,J) are given and it is shown that for special (para-)complex and nearly
(para-)Kéhler manifolds these compatibility conditions on (V,.J) hold.

More precisely, we give a class of tt*-bundles (T'M, D, S), which corresponds to special
(para-)complex manifolds with torsion and non integrable almost (para-)complex struc-
ture J and a class of solutions which corresponds to flat almost (para-)complex manifolds
satisfying the nearly Kéhler condition (with torsion).

In the sequel we study whether the above (para-)tt*-bundles (T'M, D,S) (over almost
(para-)complex manifolds) provide metric and symplectic (para-)tt*-bundles, respectively.
Solutions of the first type are, for example, given by special (para-)Kéhler manifolds and
solutions of the second kind arise on flat nearly (para-)K&hler manifolds. Otherwise,
neither the nearly (para-)Kéhler condition is compatible with metric (para-)tt*-bundles
nor the condition to be special (para-)complex is compatible with symplectic (para-)tt*-
bundles.

Finally it remains to analyze if one can transfer the relation between (para-)pluriharmonic
maps and (para-)tt*-geometry to the case of (non-integrable) almost (para-)complex struc-
ture of the base (M, J).

Since the (para-)complex structures are no longer integrable, we generalize the notion
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of (para-)pluriharmonic maps to the case of a source manifold (M, .J) with an (non-
integrable) almost complex structure J: This is done by using the (para-)pluriharmonic
map equation, where a nice connection (cf. definition 2.6) on M is chosen. Then we
introduce S!-pluriharmonic maps which generalize the notion of associated families of
pluriharmonic maps from complex manifolds (see for example [ET]) to maps from almost
(para-)complex manifolds into pseudo-Riemannian manifolds. We give conditions for an
S!-pluriharmonic map to be (para-)pluriharmonic and a result, which relates general-
ized (para-)pluriharmonic maps to harmonic maps. With these notions and results we
associate pluriharmonic maps into Sp(R?*")/U(p, q), respectively SOy(2p,2q)/U(p, q), to
the above metric and symplectic ¢¢*-bundles. Similiarly we associate para-pluriharmonic
maps into Sp(R?*") /U™ (C™), respectively into SOy(n,n)/U™(C™), to the above metric and
symplectic para-tt*-bundles.

As already mentioned, special (para-)complex and special (para-)Kéahler manifolds
are an interesting class of ett*-bundles, respectively metric ett*-bundles. In the complex
case this follows from the results of Hertling [Her] who associated a VHS of weight 1 to
any special complex manifold. We give a direct differential geometric approach and a
characterization of the tangent bundles of special complex and special Kahler manifolds
as special tt*-bundles (cf. [CS1]). The associated pluriharmonic map is expressed in terms
of the dual Gaufl map, which is a holomorphic map into the pseudo-Hermitian symmetric
space Sp(R?")/U(k,l), where n = k + [. These results are generalized to para-complex
geometry. This is done in [Sch3] and is detailled in this thesis. The approach, which uses
a VHS of weight 1, has also been successfully transferred to (para-)complex geometry and
is part of this thesis.
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Introduction

La fusion topologique-antitopologique est un sujet d’interét en physique comme en mathé-
matique. Dans les années 1990, les physiciens ont étudié les espaces modules au sein des
théories des champs topologiques et plus particulierement dans celle des champs N=2-
supersymétriques (cf. les travaux de Cecotti et Vafa [CV] et de Dubrovin [D]). Au cours
de leur étude, ils ont découvert une structure géométrique, appelée fusion topologique-
antitopologique, ou géométrie tt*. A la base, cette géométrie était réalisée sur le fibré tan-
gent a une variété et une métrique Riemannienne faisait partie des données géométriques.
Mais on peut également remplacer le fibré tangent par un fibré vectoriel abstrait. Ce point
de vue, que l'on trouve dans I'article de Hertling [Her], permet de considérer la géométrie
tt* comme une généralisation des variations de structures de Hodge.

Le point de départ de cette these est la correspondance existant entre les fibrés ¢¢* sur
le fibré tangent et les applications pluriharmoniques dans I'espace des métriques définies
positives. Cette correspondance a été découverte par Dubrovin [D]. Son intérét est d’une
part de construire des applications pluriharmoniques, d’autre part des fibrés tt*. Nous
analyserons les applications pluriharmoniques associées a des fibrés t¢* provenant de solu-
tions déja connues de la géométrie tt*. Des exemples célebres sont: les fibrés harmoniques,
les variations de structures de Hodge, les variétés spéciales Kahlériennes et les variétés
approximativement Kahlériennes plates. Dans les deux derniers cas les métriques peuvent
étre indéfinies. Il est donc nécessaire de généraliser la correspondance précédente pour le
cas des fibrés tt* avec des métriques indéfinies.

Plus récemment, la géométrie spéciale para-Kéhlérienne a été introduite par [CMMS]
comme une des géométries spéciales de la supersymétrie Euclidienne. Notre motivation
est d’étudier s’il existe des versions para-complexes des géométries tt* et si I'on peut
trouver une correspondance entre ces versions et les analogues para-complexes des ap-
plications pluriharmoniques. Nous répondons par I'affirmative a ces deux problemes. Se
pose alors la question de savoir s’il existe des versions para-complexes des solutions citées
ci-dessus: des fibrés harmoniques, des variations de structures de Hodge, des variétés
spéciales Kahlériennes et des variétés approximativement Kéahlériennes plates, et de savoir
si leurs généralisations sont des solutions de la géométrie para-tt*. Nous démontrons en
effet que ces exemples peuvent étre généralisés dans le cadre para-complexe et qu’ils sont
des solutions de la géométrie para-tt*.

Décrivons les résultats de cette these. Ce travail rassemble des résultats publiés et
des résultats plus récents. Pour comprimer le texte, nous avons, lorsque le risque de
confusion n’est pas trop grand, traité les cas complexe et para-complexe en méme temps.
Les notions de base de géométrie para-complexe sont détaillées dans le premier chapitre.

17
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Pour l'introduction, le lecteur peu habitué aux notions de la géométrie para-complexe,
pourra supprimer le préfixe 'para’.

Expliquons la structure d’un fibré (para-)tt* : un fibré (para-)tt* (E,D,S) est la
donnée d’un fibré vectoriel sur une variété (para-)complexe (M, J), muni d’une connexion
D, et d’une section S dans T*M ® End(E), pour lesquels les connexions de la famille

D D + cos(0)S + sin(6)S;,0 € R, pour M complexe,
D + cosh(0)S + sinh(0)S,,0 € R, pour M para-complexe,

sont plates. Un fibré (para-)tt* métrique (E, D, S, g) est un fibré (para-)tt* (E, D, S) muni
d’une métrique parallele pour D et pour laquelle la section S est g-symétrique.

Généralisant Dubrovin [D], nous établissons d’abord la correspondance entre les fibrés
(para-)tt*, définis sur des fibrés vectoriels abstraits et des applications (para-)pluriharmoni-
ques. En fait, nous démontrons dans les théoremes 4.1 et 4.2 le résultat suivant :

Théoréme 1

(i) Un fibré (para-)Jtt* métrique (E, D, S, g) sur une variété (para-)complexe simplement
connexe (M, J) induit (aprés avoir choisi un répére D°-plat de E) une application
(para- )pluriharmonique admissible de la variété M dans GL(r,R)/O(p,q).

(ii) Une application (para-)pluriharmonique admissible d’une variété (para-)compleze
simplement connexe (M, J) dans GL(r,R)/O(p, q) induit un fibré (para-)tt* métrique
(E7 D7 S7 g)'

Pour la définition des applications (para-)pluriharmoniques admissibles, nous faisons ré-
férence a la définition 2.9.
Pour résumer, on pourrait dire que nous avons trouvé une bijection

® : { fibrés (para-)tt* métriques — { applications pluriharmoniques admissibles
de rang r et sign. (p,q) } dans GL(r,R)/O(p,q) }. (0.0.2)

entre I'espace des fibrés (para-)tt* métriques (avec repere fixé) de rang r et signature (p, q)
sur une variété (para-)complexe (M, J) et 'espace des applications pluriharmoniques ad-
missibles de (M, J) dans GL(r,R)/O(p, q). Le cas d’un fibré (para-)tt* métrique avec une
métrique de signature (r,0) ou (0,7) est une conséquence de notre théoreme, puisque
dans ce cas, on peut montrer, en utilisant un théoreme de Sampson [Sam]|, que les appli-
cations pluriharmoniques sont admissibles. Si la variété M n’est pas simplement connexe,
il faut remplacer les applications (para-)pluriharmoniques par des applications (para-
)pluriharmoniques twistées. Nous établissons également une version de ce résultat pour
des fibrés (para-)tt* métriques orientés unimodulaires. Pour des fibrés (para-)tt* métriques
orientés unimodulaires, I’espace cible des applications (para-)pluriharmoniques est donné
par lespace symétrique SL(r,R)/SO(p, q).

En adaptant au cas des applications pluriharmoniques un résultat de rigidité de Gor-
don [G] concernant les applications harmoniques, nous sommes capables d’obtenir un
résultat de rigidité pour des fibrés ¢t* métriques sur des variétés Kahlériennes compactes
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(cf. théoreme 4.6 et [Sch5]). Nous appliquons ensuite ce résultat au cas spécial Ké&hlérien
et nous obtenons une nouvelle preuve du théoreme de Lu [Lu] dans le cas d'une variété
spéciale Kahlérienne compacte simplement connexe (cf. théoreme 4.7 et [Schb]).

Nous allons a présent examiner les classes de fibrés (para-)tt* citées ci-dessus :

Grace au travail de Hertling [Her] et en utilisant [Sch1, Sch2], nous savions jusqu’alors
que les fibrés harmoniques étaient des objets reliés a la géométrie ¢¢*. Une correspondance
entre les fibrés harmoniques et les applications harmoniques des variétés Kahlériennes
compactes dans GL(r,C)/U(r) était donnée par Simpson [Sim)]:

U fibrés harmoniques { applications harmoniques
avec métrique pos. déf . sur — de M dans
des var. Kéhler. comp. M } GL(r,C)/U(r) }.

Le théoréme de Sampson [Sam| implique que dans ce cas, les notions d’harmonicité
et de pluriharmonicité coincident. Ainsi, il existe une correspondance entre les fibrés
harmoniques et les applications pluriharmoniques des variétés Kahlériennes compactes
dans GL(r,C)/U(r). On peut également déduire cette correspondance d’un résultat plus
général, qui est une application de notre théoreme 1. Cette correspondance est explicitée
brievement dans le paragraphe suivant et a été publiée dans [Sch4].

Dans cette these, nous généralisons la notion de fibré harmonique en incluant le cas
des métriques indéfinies. A partir de cette généralisation, nous construisons des fibrés tt*.
En appliquant alors notre correspondance donnée dans le théoreme 1, nous demontrons
que l'on peut restreindre les applications pluriharmoniques au sous-espace totalement
géodésique GL(r,C)/U(p,q) de GL(r,R)/O(2p,2q). Ainsi, notre construction induit, sans
détailler, une application

U fibrés harmoniques { applications harmoniques admissibles
avec métrique de sign. (p,q) — de M dans
sur des var. complexe M } GL(r,C)/U(p,q) }

Notre résultat est une généralisation du travail de Simpson (plus d’informations se trou-
vent dans la section 5.5.) : en effet, d'une part, on peut retrouver son résultat avec une
application ® essentiellement bijective, et d’autre part, nous admettons des métriques
a signature arbitraire et nous n’avons besoin ni de la condition de compacité ni de la
condition Kéahlérienne. Nous traitons le cas des variétés simplement connexes, le cas
général pouvant étre obtenu facilement en utilisant les théoremes correspondants dans le
chapitre 4 et en remplacant les applications pluriharmoniques par des applications pluri-
harmoniques twistées.

Nous introduisons de plus la notion de fibré para-harmonique, c’est-a-dire de fibré
harmonique en géométrie para-complexe (cf. [Sch9]). Nous utilisons par la suite une
technique analogue afin d’obtenir une correspondance entre les fibrés para-harmoniques
et des applications para-pluriharmoniques a valeurs dans GL(r,C)/U™(C"). On désigne
par GL(r,C) la version para-complexe du groupe linéaire général complexe et par U™ (C")
I’analogue para-complexe du groupe unitaire. Nous généralisons ainsi I’application ¥ aux
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fibrés para-harmoniques:

U : { fibrés para-harmoniques { appl. para-pluriharm. admissibles
sur des var. — de M dans
para-complexes M } GL(r,C)/U™(C") }.

La prochaine classe de solutions est celle des variations de structures de Hodge (VHS). On
sait d’apres les travaux de Hertling [Her| qu’elles sont en effet des géométries tt*. Locale-
ment, une VHS est décrite par son application de périodes, qui est une application holo-
morphe sur le domaine des périodes, sous-ensemble ouvert dans une variété de drapeaux.
Nous affaiblissons la deuxieme relation riemannienne bilinéaire. Nous donnons ensuite
I’expression explicite de 'application pluriharmonique associée a la géométrie tt* donnée
par une VHS, en termes de 'application de périodes de cette VHS. De la méme maniere,
nous introduisons une version para-complexe des variations de structures de Hodge, ap-
pelée les para-VHS. Nous associons une application de périodes a ces para-VHS. Les
para-VHS sont des solutions de la géométrie para-tt*. L’application para-pluriharmonique
associée a une géométrie para-tt*, qui provient d’'une para-VHS, est exprimée a ’aide de
I’application de périodes.

Dans tous les exemples des géométries (para-)tt* discutés ci-dessus, la structure (para-
Jcomplexe de la variété (M, J) était intégrable. Dans I’étude des fibrés (para)-tt* (T'M, D, S)
sur le fibré tangent 7'M il était nécessaire d’analyser des variétés presque (para-)complexes,
car des variétés approximativement Kahlériennes plates apparaissaient alors comme so-
lutions de la géométrie (para-)tt*. Une classification constructive des variétés approxima-
tivement Kédhlériennes plates est le sujet d'un travail en commun avec V. Cortés [CS2].
Expliquons la structure de cette partie de la these, dont le sujet est également développé
dans [Sch7, Sch8]. La donnée d’'un fibré (para-)tt* induit une famille & un parametre de
connexions plates DY. D’autre part, chaque variété presque complexe (M, .J) munie d'une
connexion plate porte une famille naturelle a un parametre de connexions défini par

VY = exp(0J) o V o exp(—0.J), avec § € R.

Nous étudions les fibrés (para-)tt* pour lesquels les deux familles & un parametre de
connexions sont equivalentes dans le sens de la définition suivante:

Définition 1 Deux familles a un parameétre de connezions sont dites équivalentes linéaires
avec facteur o € R, si elles satisfont a l'équation V¢ = D,

Nos études précédentes des solutions des fibrés (para-)tt* provenant des variétés spéciales
(para-)K&hlériennes ont motivé 'examen de ces familles & un parametre de connexions.
De cette maniere, nous avons obtenu une dualité entre des variétés approximativement
K&hlériennes plates et des variétés spéciales (para-)Kéhlériennes. Dans les deux cas, il
s’agit de géométries importantes en mathématique et en physique théorique.

Nous considérons ensuite comme ci-dessus la restriction du probléme aux fibrés (para-)tt*
du type (T'M, D, S) pour lesquels la connexion D est (para-) complexe, c’est-a-dire vérifie
DJ = 0. Ces fibrés sont donnés de fagon unique par la structure (para-)complexe J et
la connexion V. De plus, on trouve des conditions de compatibilité pour (V,.J) et on
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peut montrer que dans le cas des variétés spéciales (para-)complexes et approximative-
ment (para-)K&hlériennes ces conditions sont remplies. Plus précisément, nous donnons
deux classes de solutions correspondant respectivement a des variétés spéciales (para-
Jecomplexes avec torsion d'une part, et a des variétés plates presque (para-)complexes
satisfaisant la condition approximativement K&hlérienne (avec torsion) d’autre part. Par
la suite, nous étudions si ces fibrés (para-)tt* (T'M, D, S) peuvent donner des fibrés (para-
)tt* métriques (T'M, D, S, g) ou symplectiques (7'M, D, S,w). Les solutions du premier
type proviennent par exemple des variétés spéciales (para-)Kéhlériennes et celles du second
type de variétés approximativement (para-)K&hlériennes. En effet, les variétés spéciales
(para-)Kéahlériennes (M, J, V, g) n’admettent pas de fibré tt* symplectique (T'M, D, S,w =
g(J-,+)), de méme que les variétés approximativement (para-)K&hlériennes (M, J, g) n’ad-
mettent aucun fibré (para-)tt* métrique (T'M, D, S, g). Plus précisément, la condition
pour une variété d’étre approximativement (para-)Kahlérienne n’est pas compatible avec
des fibrés (para-)tt* métriques, et celle d’étre spéciale (para-)complexe n’est pas compat-
ible avec des fibrés symplectiques (para-)tt*.

En conclusion, il reste a analyser si I’on peut obtenir la méme relation entre les applica-
tions (para-)pluriharmoniques et la géométrie (para-)tt* dans le cas ou 'on a comme base
une variété presque (para-)complexe (M, J).

Comme les structures (para-)complexes ne sont alors plus intégrables, il faut généraliser
la notion d’application pluriharmonique au cas d’une variété de départ (M, J) avec une
structure presque complexe J : on y parvient en choisissant une connexion idoine (cf.
définition 2.6) sur la variété M et en utilisant 1’équation (para-)pluriharmonique. Nous
introduisons ensuite la notion d’application S!-pluriharmonique qui généralise la notion
de famille associée a une application pluriharmonique (cf. [ET]) dans le cas des applica-
tions de variétés presque (para-)complexes vers des variétés pseudo-Riemanniennes. Nous
donnons des conditions pour lesquelles une application S!-pluriharmonique est (para-
)pluriharmonique et nous trouvons des conditions d’harmonicité pour des applications
(para-)pluriharmoniques. Ces notions nous permettent d’associer des applications pluri-
harmoniques vers Sp(R?*)/U(p, q) (respectivement vers SOy (2p,2q)/U(p,q)) aux fibrés
tt* métriques (respectivement symplectiques) du dernier paragraphe. Nous associons
également des applications pluriharmoniques vers Sp(R*")/U™(C™) (respectivement vers
SOy(n,n)/UT(C™)) aux fibrés para-tt* métriques (respectivement symplectiques) décrits
ci-dessus.

Comme nous l'avons déja remarqué, les variétés spéciales (para-)complexes et spéciales
(para-)Kéhlériennes forment une classe intéressante de fibrés (para-)tt*, respectivement
de fibrés (para-)tt* métriques. Dans le cas complexe, c’est une conséquence d’un travail
de Hertling [Her|, qui associe une VHS de poids 1 a chaque variété spéciale Kéahlérienne.
Dans [CS1], nous donnons une approche utilisant la géométrie différentielle et une car-
actérisation des fibrés tangents des variétés spéciales complexes et spéciales Kéhlériennes
comme des fibrés tt*. L’application pluriharmonique associée peut étre exprimée avec
I’application de Gaufl duale, qui est une application holomorphe dans ’espace symétrique
pseudo-Hermitien Sp(R?**)/U(k,l) avec n = k + [. Ces résultats ont été généralisés a
la géométrie para-complexe et publiés dans [Sch3]. Egalement, nous avons généralisé
I’approche avec des VHS de poids 1. Plus précisement, on peut construire des para-VHS
de poids 1 a partir d'une variété spéciale para-complexe. Les détails se trouvent dans
cette these.
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Chapter 1

Differential geometry on ecomplex
manifolds

In this chapter we recall some definitions and results of special ecomplex geometry given
in [CMMS] and prove some results which are analogous to those proven for special Kéahler
manifolds in [ACD]. We give here just a sketch of the results needed in this thesis. The
interested reader can find further information in [CMMS].

1.1 ecomplex manifolds

Definition 1.1

(i) A complex structure on a (real) finite dimensional vector space V' is a linear map
J € End(V) satisfying J* = —Idy. A complex vector space (V,J) is a vector space
endowed with a complex structure J. A complex subspace of the complex vector space
V' is a subspace W of the real vector space V, such that the restriction of J to W is
a complex structure, i.e. W is J-invariant.

(ii) A para-complex structure on a (real) finite dimensional vector space V' is a non-
trivial involution 7 € End(V), i.e. 72 = Idy and T # Idy, such that the two
eigenspaces VE = ker(Id F 7) of T have the same dimension. A para-complex
vector space (V,7) is a vector space endowed with a para-complex structure T. A
para-complex subspace of the para-complex vector space V' is a subspace W of the
real vector space V, such that the restriction of T to W is a para-complex structure.

Remark 1.1 It is well-known, that the eigenspaces of a complex structure have the same
dimension. We remark, that for para-complex structures the condition on the eigenspaces
to have the same dimension is not trivial. This condition can also be restated by requiring
that the para-complex structure T is trace-free.

In the rest of this work we want to enrich our language by the following e-notation:
If a word has a prefix € with € € {£1}, i.e. is of the form eX, this expression is replaced
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X X, for e = —1,
para-X, for e = 1.

Using this construction we denote an ecomplex structure on the vector space V' by the
symbol J¢, where J¢ satisfies J* = eldy .

Definition 1.2

(i) An almost ecomplex structure on a smooth manifold M is an endomorphism field
J¢ € D(End(TM)),p+— J,, such that J is an ecomplex-structure for all p € M.

(ii) An almost para-complex structure is called integrable if the eigendistributions T=M
are both integrable.

(i1i) An integrable almost ecomplex structure is called ecomplex structure. A manifold
with an ecomplex structure is called ecomplex manifold.

We remark, that the integrability of an almost ecomplex structure J¢ is equivalent to the
vanishing of the Nijenhuis! tensor of J¢ defined by

Nye(X,Y) = [JX, JY] + €[X,Y] = J[X, JY] — J[JX,Y],

where X, Y € I'(T'M).
This is a well-known result in complex geometry. More information can be found in [KN]
chapter IX. The para-complex case is done in [CMMS].

Definition 1.3 A smooth map f : (M, J¢) — (N, Je) from an ecomplex manifold (M, J¢)
to an ecomplexr manifold (NJ J€) is called eholomorphic if df o J¢ = J¢odf and anti-
eholomorphic if df o J¢ = —J¢ o df.

To go further we introduce the algebra C. of ecomplex numbers. This is the real
algebra generated by 1 and the symbol 7 subject to the relation :2 = e. As one observes
for e = —1 this algebra coincides with the complex numbers C. For ¢ = 1 the symbol 7 is
also denoted by e. We use the notation

C. = C, for e = —1,
C, for e = 1.

If one regards e as a unit vector in a one-dimensional R-vector space with negative definite
scalar product, then C' is the (real) Clifford algebra Cly; = R®R. In the same manner we
obtain Cl; y = C by considering the complex unit ¢ as a unit vector in a one-dimensional
R-vector space with positive definite scalar product (Here we used the sign convention of
[LM].).

As for complex numbers we define the ecomplex conjugation by

T C.—C., z+iy— x—1y, forz,yeR, (1.1.1)

In [KN] the Nijenhuis tensor was defined with a factor 2.
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which is a C.-anti-linear involution, i.e. iz = —iZ.
Real and imaginary parts are defined as

t=Rez:=(z+2%)/2and y = Imz:=€i(z — 2)/2. (1.1.2)

One has 2z = 22 — ey? where z € C,. Therefore the algebra C is sometimes called the
hypercomplex numbers.
The circle

St =S'={z=2+iyeClz*+¢* =1}

is replaced by the four hyperbola
{z=z+eyecCla®—y*=+1}.

We define St to be the hyperbola given by the one parameter group z(6) = cosh(6) +
esinh(f),0 € R :
S} := {2(#) = cosh(#) + esinh(d) |§ € R}

and use the notation

sl Sl_l =S for e = —1,
‘ Si, for € = 1.
In addition we define
cos(x), for e = —1,
cose(x) ==
cosh(z), for e =1
and
_ sin(x), for e = —1,
sing(z) =
sinh(z), for e = 1

to obtain with z.(0) = cos.(6) + i sin.(f) :

St =

€

z.(#) with 6 € [0, 2], for e = —1,
z¢(0) with 6 € R, for e = 1.

Every ecomplex vector space V is isomorphic to a trivial free C.-module C* for some k.
Obviously ecomplex subspaces W C V' correspond to free submodules of V.

We regard further the ecomplexification
TM® =TM ®g C.
of the tangent bundle TM of an almost ecomplex manifold (M, J¢) and extend
J:TM —-TM

Ce-linearly to
J¢: TM® — TMC.
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Then for all p € M the free C.-module T, M%< decomposes as C.-module into the direct
sum of two free C.-modules

p

Ce _ 1,0 0,1
T,M% =T} M & T M, (1.1.3)
where
Ty OM = {X + eiJX|X € T,M} and T)"'M = {X — eiJ°X|X € T,M}.

The subbundles T,°M and T;"'M can be characterized as the +i-cigenbundles of the
linear map J¢ : TMC — TMC ie. J=ion T"OM and J¢ = —i on TO' M.
In the same manner we decompose

T*MCe — ALYOT* M @ AT S
into the +i-eigenbundles of the dual ecomplex structure

(J)* : T*MC — T* M.
This decomposition induces a bi-grading on the C.-valued exterior forms

AFT* M€ = @ AP T* M.
k=p+q

We remark that the vector bundles AP T* M are eholomorphic vector bundles in the sense
of the following definition (cf. [AK] for ¢ = —1 and [LS] for € = 1):

Definition 1.4

(i) Let (M, J) be an ecomplex manifold. An ecomplex vector bundle of rank r is a
smooth real vector bundle m : E — M of rank 2r where the total space E is endowed
with a fiberwise ecomplex structure J¥ € T'(End (E)). We will denote it by (E, J<F).

(7i) An eholomorphic vector bundle is an ecomplex vector bundle 7w : E — M whose total
space E is an ecomplex manifold, such that the projection 7 is an eholomorphic map
and admits local eholomorphic trivializations.

An (local) eholomorphic section of an eholomorphic vector bundle m : E — M is a
(local) section of E which is an eholomorphic map. The set of eholomorphic sections
of E will be denoted by O(E).

Finally we obtain a bi-grading on the C.-valued differential forms on M
Qf (M) = @ ().
k=p+q

In para-complex geometry there exists another bi-grading:
The decomposition of TM over a para-complex manifold M in T+M and T~ M induces
a bi-grading on exterior forms

NT*M = AT M. (1.1.4)

k=p+q
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We remark that for the cases (1, 1) and (14, 1—) the two bi-gradings coincide in the sense
that
AV TM = (A T*M) @ C..

In complex geometry it is well-known, that every complex manifold admits a complex
torsion-free connection (see for example [KN] chapter IX). We generalize this theorem to
the ecomplex case, which was done in [Sch3]:

Theorem 1.1  Every almost ecomplex manifold (M, J) admits an almost ecomplex
affine connection with torsion T satisfying

Ny = —4eT,

where Nje is the Nijenhuis-tensor of the almost ecomplex structure J€.

Proof: Let V be a torsion-free connection on M. We define Q € T'((T*M)?* ® TM) as
AQ(X,Y) = [(Vyey J)X + J((Vy J)X) + 2J((Vx J)Y)]
and further 3
VxY =VxY +eQ(X,Y).
Now we compute
(VxJVY = VxJV — JVxY = VxJY +eQ(X,JY) - JVxY — eJQ(X,Y)
= (VxJ)Y +e(Q(X,JY) - JQIX,Y)).

[

::A&,Y)
Hence we have to show eA(X,Y) = —(VxJ)Y. It is

QX JY) = e(VyJ)X + J((Vyey J)X) +2J((Vx J) JY),

4JQ(X,Y) = J(VyyJ)X +e((VyJ)X) +2e((Vx J)Y).
With J = el we get J[(VxJ) JV] = —J[J(VxJ)Y] = —¢(VxJ)Y and we obtain
finally

A =4(Q(X,JY) = JQ(X,Y)) = —4e(Vx J)Y.
It remains to compute the torsion of V :
TYy = T¥y +e(QX,Y) = QY, X)) = eQ(X.Y) - Q(Y, X)).

With the definition of ) we find

4eTYy = (Vyy JVX + J((VyJ)X) + 2J((Vx J)Y)
— ((Vyex JV)Y + J((VxJ)Y) +2J((Vy J)X))
= (VyayJ)X = (VyexJ)Y + J((VxJ)Y) = J((VyJ)X)
= (VyeyJX) = (VyexJY) = J(Vyey X — VyexY)
+ JIVx(JY) = JVxY] = J([Vy(JX) = JVyX]
= [JV, JX]+ €Y, X]|+ J[Vx(JY) = Vyey X] + J[VjexY — Vy JX]
= [JV,JX] + €Y, X]| = J[JY, X]| = JVY,JX] = Nyje(Y, X) = =Ny (X,Y).
O
If the ecomplex structure is integrable we get a usefull corollary:
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Corollary 1.1  Every ecomplex manifold (M, J¢) admits an ecomplex torsion-free affine
connection.

An important question in ecomplex geometry is which kind of connections on a given
ecomplex vector bundle give rise to an eholomorphic structure. To answer to this question
we first need the definition of adapted connections, which can be found in [AK] for e = —1
and in [LS] for e = 1.

Definition 1.5

1. A connection V on an ecomplez vector bundle (E, J€E) 1s called ecomplex if it com-
mutes with the ecomplex structure on E, i.e. J€ is V-parallel. The set of all such
connections will be denoted by P(E, JF).

2. Let (E,J) be an eholomorphic vector bundle over an ecomplex manifold (M, J€)
and U C M be an arbitrary open set. Let V be a connection on the vector bundle
(B, JE).

Then V is called adapted if the following equation

Vyex€ = JEVE (1.1.5)

is satisfied for all X € T(TM|y), £ € O(E\y).

Conversely, let (E, JE ) be an eholomorphic vector bundle over an ecomplex manifold
(M, J¢) endowed with an adapted connection V € P(E, J<”), then a section £ € I'(Ep),
where U C M is an open set, is eholomorphic if and only if it satifies equation (1.1.5) for
all X € I'(T'M|y) (cf. Lemma 3 of [LS]).

The following proposition is well-known in complex geometry, compare for example
the work of Atiyah, Hitchin and Singer [AHS] theorem 5.2 or proposition 3.7 in the book
of Kobayashi [K]. The variety of its applications in complex geometry motivated us to
search for a generalization.

For vector bundles over real surfaces this proposition was generalized to para-complex
geometry by Erdem [E]. We gave in [LS] a different proof and more general result by
adapting the methods of complex geometry to the para-complex setting.

Proposition 1.1  Let (E, JEE) be an ecomplex vector bundle over an ecomplex manifold
(M, J) and ¥V be a connection in P(E,JE) with vanishing (0,2)-curvature then there
exists a unique eholomorphic vector bundle structure on (E, JEE) such that V is adapted
to this eholomorphic vector bundle structure.

1.2 eKahler manifolds

The notion of a (pseudo-)Kéahler manifold is classical and the notion of a para-Kéhler
manifold can be found in [CMMS].
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Definition 1.6  Let (V, J¢) be an ecomplex vector space. An ehermitian scalar product
g on'V is a pseudo-Fuclidean scalar product for which J¢ is an e-isometry, i.e.

(J)g=g(J% J)=—eg(-").

An ehermitian vector space (V, J¢, g) is an ecomplex vector space (V, J¢) endowed with an
ehermitian scalar product g. The pair (J¢, g) is called ehermitian structure on the vector
space V.

Definition 1.7  Let (V,7,g) be a para-hermitian vector space. The para-unitary group
of V' is the automorphism group

U(V) = Aut(V,7,9) ={L € GL(V)|[L,7] =0 and L*g = g}.

Its Lie-algebra will be denoted by u™ (V).

Definition 1.8 An almost ehermitian manifold (M, J¢, g) is an almost ecomplex mani-
fold (M, J¢) endowed with a pseudo-Riemannian metric g such that (J)*g = —eg. If J¢
is integrable, we call (M, J, g) an ehermitian manifold. The two-form w := g(J*,-) is
called the fundamental two-form of the almost ehermitian manifold (M, J¢, g).

Definition 1.9  An eKahler manifold (M, J¢, g) is an ehermitian manifold such that J*
1s parallel with respect to the Levi-Civita-connection D of g, i.e. DJ¢ = 0.

Remark 1.2 The fundamental two-form w satisfies (J)*w = —ew and hence is of type
(1,1) (considered as C.-valued two-form).

Since DJ = 0 implies Nye = 0 and dw = 0, any eKdahlerian manifold is an ehermitian
manifold with closed fundamental two-form.

On an eKahler manifold the fundamental two-form w is called eKahler-form. In fact,
eKahler manifolds are characterized to be ehermitian manifolds with closed fundamental
two-form (compare [CMMS] for the para-complez case).

1.3 Nearly cKahler manifolds

In this section we introduce some notions and results of nearly eKahler geometry. The
complex case is due to Gray in his classical papers [G1, G2, G3]. Recent studies are the
works Friedrich and Ivanov [FI] and Nagy [N1, N2]. The para-complex version is very
recent and to our knowledge first appeared in the paper of Ivanov and Zamkovoy [IZ].

Definition 1.10 An almost ehermitian manifold (M, J¢, g) is called nearly eKahler man-
ifold, if its Levi-Civita connection V = V9 satisfies the equation

(VxJVY = —(VyJI)X, VX,V eI (TM). (1.3.1)

A nearly e Kdhler manifold is called strict, iof V.J¢ # 0.
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We recall that the tensor V.J¢ defines two tensors A and B by
AX,)Y, Z) = g((VxJ)Y,Z) and B(X,Y,Z) .= —eg((VxJ)Y,JZ) with XY, Z € TM,

which are both (real) three-forms of type (3,0) + (0, 3). B
A connection of particular importance in nearly eKahler geometry is the connection V
defined by

_ 1
VxY :=VxY — §E(VXJE)J5Y, for all X, Y € I'(T'M). (1.3.2)
The torsion of the connection V is given by
Tﬁ(X, Y)=—e(VxJ)JY, forall XY € T'(TM) (1.3.3)

and it vanishes if and only if (M, J¢, g) is an eKé&hler manifold.

We remark, that the connection V can be characterized to be the unique connection with
totally skew-symmetric torsion (cf. Friedrich and Ivanov [FI| for case ¢ = —1 with a
Riemannian metric.). In [CS2] we give a self-contained proof of this result using direct
arguments for nearly pseudo-Kahler and nearly para-Kahler manifolds.

Proposition 1.2 Let (M, J, g) be a nearly eKdhler manifold. Then there exists a
unique connection V with totally skew-symmetric torsion TV satisfying Vg = 0 and V. J¢ =

0.
More precisely, it holds

TV = =28 with S = —%efvgje (1.3.4)

and {Sx, J} = 0, for all vector fields X.

1.4 Affine special eccomplex and special eKahler man-
ifolds

Definition 1.11  An affine special ecomplex manifold (M, J¢, V) is an ecomplexr mani-
fold (M, J¢) endowed with a torsion-free flat connection V such that VJ¢ is a symmetric
(1,2)-tensor field, i.e. (VxJ)Y = (VyJ)X for all X,Y € TM.

An affine special eKadhler manifold (M, J¢, g, V) is an affine special ecomplex manifold
(M, J, V), such that (M, J¢, g) is an eKdhler manifold and V is symplectic, i.e. Vw = 0,
where w is the e Kahler-form.

Since projective special ecomplex and projective special eKéahler manifolds do not occur
in this thesis, we omit the adjective affine. The definition of a special eKahler manifold
can be found in [ACD, F] for e = —1. Special para-Kéahler manifolds were first considered
in [CMMS] and special para-complex manifolds in [Sch3].

In the following part of this subsection we are going to generalize some results to ecomplex
geometry, which are known from the affine special and the affine special Kéahler case (see
[ACD]). The para-complex results were published in [Sch3].
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Remark 1.3 Given a linear connection ¥V on the tangent bundle T M of a manifold M
and an invertible endomorphism field A € T'(End(TM)) we define the connection

VX = AV(ATIX).
This connection is flat if and only if the connection V is flat, since
VX =0sVAUX)=0,

where X s a local vector field on M.
Again, given a linear flat connection on the real tangent bundle TM of an ecomplex
manifold (M, J¢), we define a one-parameter family of flat connections by

et‘)Je)

V0= V) = yleosd@ s 79 for g € R, (1.4.1)

Lemma 1.1 Let V be a flat connection with torsion T on an ecomplex manifold (M, J¢).
Then it is

V=V + A% where A’ = 7'V (™) = —sin () e/ V J*

and the torsion T? of the connection V? is given by

T =T + alt(A%) = T — sin (0) " dV J“. (1.4.2)

Proposition 1.3  Let V be a torsion-free flat connection on an ecomplexr manifold
(M, J). Then the triple (M, J,V) defines a special ecomplex manifold if and only if
one of the following conditions holds:

a) dVJe=0.

b) The flat connection V? is torsion-free for some 0 with

0 #0, fore=1,
0 £0 mod 7w, fore=—1.

b’) The flat connection V? is torsion-free for all § with

0#£0, fore=1,
0 £ 0 mod w, fore=—1.

c) There exists an element 0 with

0 #0, fore=1,
0 £0 mod 7, fore=—1,

such that [*7° X, e%7°Y] = 0 for all V-parallel local vector fields X andY on M.



32 Chapter 1
¢’) It holds [e*7° X, e%7°Y] = 0 for all § with

0#0, fore=1,
0 £ 0 mod 7, fore=—1
and for all V-parallel local vector fields X andY on M.
d) There exists an element 0 with
0 #0, fore=1,
0 %0 mod w, fore=—1,
such that d(n o e %) =0 for all V-parallel local one-forms on M.
d’) It holds d(no e %) = 0 for all 6 with
0#0, fore=1,
0 %0 mod 7, fore=—1

and for all V-parallel local one-forms on M.

Proof: The property a) defines special ecomplex manifolds.
As V is torsion-free, the torsion of V? is by equation (1.4.2):
T% = —sin (0) " aV Je.

Since sin (f) # 0 for 6 with

0 #0, fore=1,
0 # 0 mod m, for e = —1,

we get the equivalence of a) and b) respectively b’).
Let X and Y be V-parallel local vector fields. Then ¢?/°X and /Y are V?-parallel, by
the definition of V?. Therefore

T X, Y = ["7° X, Y.

This gives b) < ¢) and V') < ).
For a V-parallel one-form 7 and X, Y as before we compute:
d(77 o G_GJE)(GGJCX, 69J6Y)
= XY — Y (X) e X, YY)
— _77<€79JE [eeJéX’ €9J€YD,

as the functions n(X) and n(Y’) are constant. This proves ¢) < d) and ) < d'). a

Proposition 1.4  If (M, J¢,V) is a special ecomplex manifold, then (M, J¢,V?) is a
special ecomplexr manifold for any 6.

If (M, J¢,g,V) is a special eKihler manifold, then (M,J¢, g,V%) is a special eKdhler
manifold for any 6.
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Proof: From above we know, that the connection V? is torsion-free and flat.
In order to prove this proposition we compute V?J¢ and Vlw.
Let X, Y, Z e I'(TM) :

(V&IVY = VRX(JY) = JVEY ="' V(e JY) = Je Vi (e Y)
e@JEVX(JEe—GJey) o BGJE JGVX(G_QJEY)
= T (VxTVe Y E (VY.
At (x) we have used J¢(V.J) = —(VJ)J¢, which follows from J* = eld.
This shows d¥’.J¢ = 629J€vaE =0.

Further we find utilizing w(-, e w(e %" .), which is a consequence of (J¢)*w = —ew :

) =
Viw(X,Y) = Zw(X,Y)-w(VLX,Y) —w(X,V5Y)
= Zw(X,Y) —w(e' Ve X Y) - w(X, e Ve ?Y)
= Zw(X,)Y) - w(VZe’GJE e Y)Y —w(e X, Ve Y
= Zw(X,Y) - Zw(e ™ X e o Y) = 0.

a

Given an ecomplex manifold with a flat connection V, we define the conjugate con-
nection via

VY = VYIY = eJ (Vi JY) = ViV + eJ(VxJ)Y for X,Y € T(TM).

Proposition 1.5 Let (M, J¢) be an ecomplex manifold with a torsion-free flat connection
V. Then the following statements are equivalent:

a) (M, J, V) is a special ecomplex manifold.

b) The conjugate flat connection V¢ is torsion-free.

Proof: The torsion of the connection V¢ is
TV =TV +ealt(J(VJ)) = eJd" J°.

Therefore V¢ is torsion-free if and only if dvJ¢ = 0. a

Proposition 1.6  Let (M, J¢, V) be a special ecomplex manifold. Then D := 5(V + V°)
defines a torsion-free ecomplex connection, i.e. a torsion-free connection such that DJ¢ =
0.

Proof: As it is a convex combination of torsion-free connections, D is a torsion-free
connection. For any X € I'(T'M) we compute:

1
DxJ¢=VyJ+ ie[JEVXJG, JU)=VxJ = VxJ =0.
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Proposition 1.7 Let (M, J¢, g,V) be a special e Kihler manifold and VY the Levi-Civita
connection of g. Then the following hold:
(i) V9 =3(V+V)=D.
(i1) The conjugate connection V€ is g-dual, i.e.:
Xg(Y,Z) = g(VKY. Z) + g(Y,Vx Z).

Equivalently

for all vector fields X,Y,Z € I'(T'M).

(iii) The tensor Vg is completely symmetric.

Proof: (i) follows immediately from (ii) and proposition 1.6.
(ii) follows from a direct calculation which only uses the fact that w is V-parallel and
Je-e-anti-invariant: With X,Y,Z € T'(T'M) one finds

X9V, 2) = X(ew(JY,2))=ew(VxJY,Z)+ ew(JY,VxZ)
= —w(JVxJVY, JZ)+g9(Y,VxZ)
= w(JZ,JVxJY)+g(Y,VxZ)
= 9(Z,eJVx(JY))+g(Y,VxZ)
= g(VLY,Z)+g9(Y,VxZ).

Finally we show (iii): From part (ii) it follows

(Vxg)(Y, Z) = (Vyg)(X, 2) = Xg(V,Z) —g(VxY,Z) = g(Y,VxZ)
—Yg(X,2)+9(Vy X, Z) + g(X,VyZ)

D g(VxY, Z) + g(VY, Z)

+9(Vy X, Z) = g(V3 X, Z)
= g(-[X,Y]+[X,Y],Z)=0.

The symmetry of g finishes the proof. O

Proposition 1.8 Let (M, J¢, g,V) be a special e Kihler manifold and D the Levi-Civita
connection of g. Define the endomorphism field S as

1 1 1
§ =V =D =V = (V+V) = (V= V) = —eJ (V).
Then S is
(i) symmetric, i.e. SxY =Sy X;VX,Y € (T M),

(i1) w-skew-symmetric, i.e. w(Sx-, ) = —w(-, Sx-),

(11i) g-symmetric, i.e. g(Sx-,+) = g(-,Sx*) for all X € T'(TM) and
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(iv) anti-commutes with J¢, i.e.

{Sx,J} :=SxJ +JSx =0 forall X € I'(TM). (1.4.3)

Proof: Let X,Y,Z € I'(TM).

(i) For a special ecomplex manifold V and V¢ are torsion-free (by definition and propo-
sition 1.5), so V — V¢ = —eJ(VJ) = 25 is symmetric.

(ii) In fact Dg = 0 (proposition 1.7) and DJ¢ = 0 (proposition 1.6) imply Dw = 0. In
addition Vw = 0 yields

(ili) Using Xg(Y,Z) — g(VxY, Z) = g(Y, V& Z) we prove the g-symmetry of S

29(SxY, Z) = g((V = V)xY,Z) = ¢(VxY,Z)—g(VKY.Z)
= Xg(Y,2) =g(Y, V& 2) = Xg(Y, Z) + g(Y,Vx Z)
= g(Y,(V = V)xZ) =29(Y,5x 7).
(iv) Now we need only the w-skew-symmetry of S, the g-symmetry of S and w = g(J¢,-) =
—g(-, J¢) to get for all X|Y,Z € I'(TM)
9(SxJY, Z) = g(JY, Sx Z) = (Y, Sx Z) = —w(SxY, Z) = —g(JSxY, Z)
and consequently {Sx, J} = 0. a

1.5 The extrinsic construction of special eKahler
manifolds

Now we shortly explain the extrinsic construction of special eKahler manifolds given in
[ACD, CMMS].

1.5.1 The special Kahler case

We consider the complex vector space V = T*C" = C?* with canonical coordinates
(z%,..., 2" wy,...,w,) endowed with the standard complex symplectic form

Q= Z dz' A dw;
i=1

and the standard real structure x : V' — V with fixed points V* = T*R". These define a
hermitian form v :=iQ(-, k).

Let (M, J) be a complex manifold of complex dimension n. We call a holomorphic im-
mersion ¢ : M — V' non-degenerate (respectively Lagrangian) if ¢* is non-degenerate
(respectively, if ¢*Q = 0). If ¢ is non-degenerate it defines a (possibly indefinite) Kahler
metric ¢ = Re ¢*y on the complex manifold (M, J) and the corresponding Kéahler form
g(J-,+) is a J-invariant symplectic form.

The following theorem gives a description of simply connected special Kahler manifolds
in terms of the above data:
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Theorem 1.2  [ACD] Let (M, J,g,V) be a simply connected special Kdihler manifold
of complex dimension n, then there exists a holomorphic non-degenerate Lagrangian im-
mersion ¢ : M — V = T*C" inducing the Kdahler metric g, the connection V and the
symplectic form w = g(J-,-) = 2¢* (3.1, da* A dy;) on M. Moreover, ¢ is unique up to an
affine transformation of V' preserving the complex symplectic form €2 and the real structure
k. The flat connection V is completely determined by the condition V¢*dzt = V¢*dy; = 0,
i=1,...,n, where ' = Re 2" and y; = Rew;.

1.5.2 The special para-Kahler case

First we have to introduce a canonical non-degenerate exact C-valued two-form €2 of type
(2,0) on the cotangent bundle N = T*M of an arbitrary para-complex manifold (M, 1),
which is para-holomorphic, i.e. it is a para-holomorphic section of the para-holomorphic
vector bundle A20T*N. Its explicit form is given by the following consideration:

We take local para-holomorphic coordinates (z',...,2") on an open subset U C M™.

Any point of TyM = Hom(T;M,R) = Homc (T, M,C), p € U, where Home(T; M, C)
are the homomorphisms from the para-complex vector space (T;M,7,) to C, can be ex-
pressed as Y w; dzfp. The coordinates 2z and w; can be regarded as local para-holomorphic
coordinates of the bundle T M. The coordinates w; induce linear para-holomorphic co-
ordinates on each fiber TyM for p € U. In these coordinates the two form 2 is given

by
0= Zdzi A dw; = —d (Z widzi) .
=1 =1

We observe, that >  w;dz" does not depend on the choice of coordinates and hence
) does not depend on the choice of coordinates, too. The form 2 will be called the
symplectic form of T M.

In the following, we denote by V' the para-holomorphic vector space T*C™ = C?", endowed
with its standard para-complex structure 7y, its symplectic form €2 and the para-complex
conjugation - : V' — V, v — ¥ with fixed point set T*R™ = R?". On this space we take
a system of para-holomorphic linear coordinates (2%, w;) which are real-valued on T*R".
The algebraic data (€2, 1) defines a para-hermitian scalar product on V' via

gv(v,w) = Revy(v,w) = Re(eQ(v,w)), Vv,w € V with v(v,w) = eQ(v, w)
and (V, 1y, gv) is a flat para-Kéhler manifold, whose para-Kéhler form is given by
wy (v,w) == gy (Tyv,w) = Im(eQ(v,w)), Yv,we V.

Let (M, T) be a para-complex manifold. We call a para-holomorphic immersion ¢ : M —
V' para-Kahlerian if ¢ = ¢*gy is non-degenerate and Lagrangian if ¢*(2 = 0. Any para-
Kahlerian immersion ¢ : M — V induces on M the structure of a para-Kahler manifold
(M, 1, g) with para-Kéhler form w(-, ) = g(7-, ) = ¢*wy. For a para-Ké&hlerian Lagrangian
immersion the para-Kéahler form w = g(7-,-) of M is given by

w= Zid:%i A di;,
=1
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where 7' = Re(¢*2") and §° = Re(¢*w;). Additionally, a para-Kahlerian Lagrangian
immersion ¢ : M — V induces a canonical flat torsion-free connection V on M which is
characterized by the condition, that V(Re ¢*df) = 0 for all para-complex affine functions

fonV.
With this information we now can give the extrinsic description of para-Kahler manifolds:

Theorem 1.3 [CMMS] Let ¢ : M — V be a para-Kdihlerian immersion with induced
geometric data (1,9,V). Then (M, 1,9,V) is a special para-Kdhler manifold. Conversely,
any simply connected special para-Kdihler manifold (M, 1,g,V) admits a para-Kdhlerian
Lagrangian immersion inducing the special geometric data (1,9,V) on M. The para-

Kahlerian Lagrangian immersion ¢ is unique up to an affine linear transformation of
V' whose linear part belongs to the group Aut(V,€,~) = Autg(V, 7v,Q,~) = Sp(R*").

1.6 Variations of eHodge structures

In this section we introduce the notion of variations of eHodge structures in para-complex
geometry and recall variations of Hodge structures which are classical objects in complex
geometry. We follow the notations of [CMP] which is a reference for further study of
variations of Hodge structures. The para-complex version seems to be new.

1.6.1 eHodge structures and their variations

Definition 1.12

(a) A real eHodge structure of weight w € N is a real vector space H on the ecomplexification
of which there is a decomposition into ecomplex vector spaces

H = @5 H" withp,q € N (1.6.1)
w=p+q
and where
Hpra = HP with p,q € N. (1.6.2)

The ecomplex conjugation ~ is relative to the real structure on H® = H ® C..

(b) Suppose, that an e Hodge structure of weight w carries a bilinear formb: Hx H — R
which satisfies the following Riemannian bilinear relations

(i) The C.-linear extension of the bilinear form b, also denoted by b, satisfies
b(z,y) =0 if v € H" and y € H™* for (r,s) # (w — p,w —q) = (¢, p),

(i) The bilinear form b defines an ehermitian sesquilinear scalar product (compare
definition 2.10) on HPY by

h(z,y) = (=1)"C 2P0z, ),

Then we call this e Hodge structure weakly polarized.
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(c) Suppose, that a Hodge structure of weight w carries a bilinear form b: H x H — R
which satisfies the following Riemannian bilinear relations

(i) The C-linear extension of the bilinear form b, also denoted by b, satisfies
b(z,y) =0 if v € H* and y € H™ for (r,s) # (w —p,w — q) = (¢, p),
(ii) The bilinear form b defines a positive definite hermitian sesquilinear form on
HP1 by
h(z,y) = (=120 %z, ).

Then we call this Hodge structure strongly polarized.

(d) An eHodge structure of weight w is called polarized if it is weakly polarized or strongly
polarized.

Closely related to the eHodge decomposition is the eHodge filtration

FP=@H" p=0,...w, (1.6.3)

azp

which satisfies for an eHodge structure of weight w the relation
HC = FP @ Fv—rtl p=1,..., w. (1.6.4)

Any filtration which obeys equation (1.6.4) is called an eHodge filtration.
Such as an eHodge decomposition induces an eHodge filtration we obtain from an eHodge
filtration an eHodge decomposition by

HP = FP N F4, with p+ ¢ = w.

This eHodge decomposition satifies the relation (1.6.3).
We remark further, that the first Riemannian bilinear relation (cf. definition 1.12) is
equivalent to

(FPY: = Fvptl p=1,... w,

where | is taken with respect to the bilinear from b.

Now we are going to consider deformations of these structures:

Definition 1.13 A (real) variation of eHodge structures (eVHS) is a triple (E,V, FP),
where E is a real vector bundle over an (connected) ecomplex base manifold (M, J), V is
a flat connection and F? is a filtration of E% by eholomorphic subbundles of E%<, which
1s a point-wise e Hodge structure satisfying the infinitesimal period relation or the Griffiths
tranversality

V, FP C FPt Wy e THO M. (1.6.5)

A polarization of a variation of e Hodge structures (E,V, F?) consists of a non-degenerate
bilinear form

beT(E*® EY) (1.6.6)

having the following properties
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(i) b induces a polarization on each fiber obeying the first and the second bilinear rela-
tion.

(i1) b is parallel with respect to V.

1.6.2 ¢VHS and special eKahler manifolds

Each fiber of the ecomplex tangent bundle
TM® =T"M @ T"'M

carries a natural eHodge structure of weight 1 :

0=F?CF'=T"M c F? = T M. (1.6.7)

The complex version of the next lemma and proposition was proven in [Her] and we
generalize it to the para-complex case.

Lemma 1.2 Let V be a torsion-free flat connection on the ecomplex manifold (M, J¢).
Then F' = TYOM s an eholomorphic subbundle of F° = TCM with respect to the
eholomorphic structure defined by V (compare proposition 1.1) if and only if (V,J¢) is
special (see definition 1.11).

Proof: The condition of F'! to be eholomorphic is equivalent to
VX =0 for all X,Y € O(T°M)
and the condition of (V, J¢) to be special is equivalent to
(VxJ)NY) = (VgJ)(X) for all X,Y € O(T*"M),

due to the following short argument :
Let X,V € T(T'°M)

(VxJ)Y) =VxJY — JVxY =iVyxY — JVyY,

which is symmetric as one sees by choosing vector fields X and Y such that [X,Y] = 0.
Let X,Y € I'(T%' M)

(VxJ)Y) =VxJY — JVyY = —iVxY — JVyY,

which is again symmetric as one sees by choosing vector fields X and Y such that [ X, Y] =
0.

Let now X,Y € T'(T*°M) be eholomorphic vector fields, i.e. Lx(J) = 0 where L is the
Lie-derivative. Then it holds

0 = Lx(J)Y =[X,JY] - JI[X,Y]
= VxJY —V,5X - JVxY + JVyX

= (VxJ)Y — (V)X +VyJX -V, 3 X
= [(VxJ)Y — (Vg J)X] + 2V X.



40 Chapter 1

This finishes the proof. O

From the lemma we obtain:

Proposition 1.9 Let (M, J) be an ecomplex manifold, V be a torsion-free flat connec-
tion and F* defined as in equation (1.6.7).

1. Then (M, J¢, V) is an affine special ecomplex manifold if and only if V and F* give
a variation of eHodge structures of weight 1 on TM®«.

2. Then (M,J,V,g) is an affine special eKdahler manifold if and only if V, F* and
w(+ ) = g(J, ) give a variation of polarized e Hodge structures of weight 1 on
TMC.
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Harmonic and epluriharmonic maps

In this chapter we introduce the notion of harmonic maps and epluriharmonic maps. We
discuss the relation between them and we give a generalization of epluriharmonic maps
and of associated families of pluriharmonic maps to maps from almost ecomplex manifolds
into pseudo-Riemannian manifolds. Afterwards we discuss the target spaces which are of
importance in the context of eplurihamonic maps associated to ett*-geometry.

2.1 Harmonic maps

First we recall the notion of a harmonic map.

Definition 2.1 Let (M, g) and (N, h) be pseudo-Riemannian manifolds and f : M — N
be a C*-map.

(i) One defines the energy density of f by

e(f) = 5 G, ), (2.11)

where df is seen as a section in T*M ® f*T'N and G is the metric on T*M ® f*T'N
induced by the metrics g and h.

(ii) If the energy density e(f) is integrable we define the energy E(f) of f as
E = l,. 2.1.2
(=] etrvol, (2.12)

(i1i) The critical points of E(f) with respect to compact supported C*°-variations are
called harmonic maps where the variation of E(f) with respect to the family of maps
fi with t € (—¢,€) is defined by

SE(f) = /Mate(ft)vol .

41
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The following proposition states the well-known harmonic map equations, which are the
Euler-Lagrange equations of the harmonic functional.

Proposition 2.1  Let (M, g) and (N, h) be pseudo-Riemannian manifolds and f : M —
N be a C*-map. Denote by V9 the Levi-Civita connection of g, by V" the Levi-Civita
connection of h and by V the connection induced by V9 and V" on T*M ® f*TN. Then
f is harmonic if and only if it satisfies the equation

tr , Vdf = 0. (2.1.3)

First we recall a result about a special class of harmonic morphisms which is needed
later:

Proposition 2.2  Let M, X and Y be pseudo-Riemannian manifolds and ¥ : X — Y
be a totally geodesic immersion. Then a map f : M — X is harmonic if and only if
Vo f:M—Y isharmonic.

Proof: Note 7(f) =tr ,Vdf and let U : X — Y be an arbitrary map. Then we calculate
tr (VXd(U o f)) = tr ,(VXdW o df) = tr ,(dV (VY df)) + tr,(I1(df,df)),

where I is the second fundamental form of ¥, which vanishes, if ¥ is totally geodesic.
This shows

T(Wo f)=dVor(f).

The proof is finished, since ¥ is an immersion and therefore has maximal rank. O

We now restrict to compact source manifolds and to Riemannian metrics to obtain a
theorem which is due to Gordon [G]. First we need a definition:

Definition 2.2 A subset U of a manifold Y s said to be convex supporting if and
only if every compact subset of U has a Y -open neighborhood admitting a strictly convex
C?-function F. The function F is called support function and it is in general not globally

defined.

Theorem 2.1  (¢f. [G] p. 434.) Let M and N be Riemannian manifolds with M
compact and connected.

(A) The image of any harmonic map f : M — N cannot be contained in any convex
supporting subset of N unless it is constant. Hence, any harmonic map from M to
N s necessarily constant if N is convexr supporting.

(B) If 1 (M) is finite and N has a covering space which is convex supporting with respect
to the lifted metric of N, then every harmonic map from M to N 1is necessarily
constant.
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Remark 2.1 As also discussed in Example (a) in [G] (p. 434) a complete simply con-
nected Riemannian manifold M with non-positive Riemannian sectional curvature is con-
ver supporting. In fact, for a fixred po € M the squared geodesic distance from py to
p s strictly convex and hence a support function. We are especially interested in the
space GL(r,R)/O(r) and in the space SL(r,R)/SO(r), which is a Riemannian symmet-
ric space of mon-compact type. As Riemannian symmetric spaces of mnon-compact type
are non-positively curved, they are convexr supporting (compare also [BR] p. 71). For
GL(r,R)/O(r) we have the de Rham-decomposition GL(r,R)/O(r) = RxSL(r,R)/SO(r),
where R corresponds to the connected central subgroup R>° = {\Id|\ > 0} C GL(r,R).
Therefore GL(r,R)/O(r) is non-positively curved.

2.2 epluriharmonic maps from ecomplex manifolds

In this section we discuss general results about epluriharmonic maps from ecomplex man-
ifolds into pseudo-Riemannian manifolds.

Definition 2.3 An ecomplex curve or eRiemannian surface is an ecomplex manifold of
ecomplex dimension one. An ecomplex curve in an ecomplex manifold M is an ecomplex
curve %¢ which is an ecomplex submanifold of M.

Definition 2.4 A map f : (M,J) — (N, h) from an ecomplex manifold (M, J¢) to a
pseudo-Riemannian manifold (N, h) is epluriharmonic if and only if the restriction of f
to any ecomplex curve 3¢ in M is harmonic.

Remark 2.2 Notice that the harmonicity of f restricted to 3¢ is independent of the choice
of a (pseudo-)Riemannian metric in the conformal class induced by J¢ on X, by conformal
invariance of the harmonic map equation for (real) surfaces.

The following notion was introduced in [AK] for holomorphic and in [LS] for para-
holomorphic vector bundles.

Definition 2.5 Let (M, J) be an ecomplex manifold. A connection D on TM is called
adapted if it satisfies
Djey X = JDy X (2.2.1)

for all vector fields which satisfy LxJ¢ =0 (i.e. for which X + e JeX is eholomorphic).

On every ecomplex manifold (M, J¢) there exists an ecomplex torsion-free connection, as
we have shown in corollary 1.1. The following proposition ensures now the existence of
an adapted connection.

Proposition 2.3 (¢f. [CS1] for e = —1, [Sch3] fore=1)

(i) Every ecomplex torsion-free connection D on an ecomplex manifold (M, J¢) is adapted.

(ii) On every ecomplex manifold there exists an adapted connection.
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Proof: (i) The conditions TP = 0 and DJ¢ = 0 yield

DyoyX — JDy X = [JV, X] + Dx(JY) — JDy X = [JY, X] — JY, X] = —(Lx J)Y.
(2.2.2)

The right-hand side vanishes if LxJ¢ = 0.

(i) The existence of an ecomplex torsion-free connection D on (M, J€) follows from corol-

lary 1.1. Part (i) implies now the statement (ii). a

Proposition 2.4 (¢f. [CS1] fore = —1 and [Sch3] fore =1) Let (M, J¢) be an ecomplex
manifold and (N,h) be a pseudo-Riemannian manifold with Levi-Civita connection V",
D an adapted connection on (M, J) and V the connection on T*M @ f*T'N which is
induced by D and V".

A map f: M — N is epluriharmonic if and only if it satisfies the equation

V'of =0, (2.2.3)

where Of = df'° € T(N"*T*M ®¢, (TN)%) is the (1,0)-component of (df ) and V" is
the (0,1)-component of V.=V’ 4+ V".

Equivalently one regards o = Vdf € T(T*M @ T*M ® f*T'N).

Then f is epluriharmonic if and only if

a(X,)Y) —ea(JX,JY)=0
for all XY € TM. This can also be expressed as
abt = 0.

Moreover, the epluriharmonic equation (2.2.3) is independent of the adapted connection
chosen on M.

We recall, that in the case (1,1) and (14,1-) the two gradings defined for differential forms
on para-complex manifolds in section 1.1 coincide in the sense that

A T*M = (A" T*M) ® C..

Proof: The fact that D is adapted implies D”Z = 0 for all local eholomorphic vector
fields Z, i.e. Fgﬁ = Fzﬁ = 0 in terms of Christoffel symbols of D with respect to eholo-
morphic coordinates z®. This implies that the Christoffel symbols of the connection D do
not contribute to the epluriharmonic equation (2.2.3). Therefore the epluriharmonicity is
independent of the adapted connection chosen on M. In the rest of the proof we suppose
the connection D to be torsion-free (see proposition 2.3).

Let 3¢ C M be an ecomplex curve in (M, J¢). On X¢ an ehermitian metric g in the
econformal class of J¢ is chosen. As g is ehermitian it is of type (1, 1). Hence the trace of
Vdfse with respect to g is zero if and only if V"0fzc = 0, as Vdf is symmetric. Since
this holds for all curves X in M the proposition is proven. O

From the definition of epluriharmonic maps and proposition 2.2 we obtain:
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Corollary 2.1 Let (M, J¢) be an ecomplex manifold, X and Y be pseudo-Riemannian
manifolds and ¥ : X — Y a totally geodesic immersion. Then a map f : M — X is
epluriharmonic if and only if Vo f: M —'Y is epluriharmonic.

Applying Theorem 2.1 to pluriharmonic maps we find:

Corollary 2.2  Let (M, J,g) be a connected compact Kdihler manifold and N be a Rie-
mannian manifold.

(i) The image of any pluriharmonic map f : M — N cannot be contained in any convex
supporting subset of N unless it is constant. Hence, any pluriharmonic map from
M to N is necessarily constant if N is convex supporting.

(i1) If w1 (M) is finite and N has a covering space which is convex supporting with respect
to the lifted metric of N, then every pluriharmonic map from M to N is necessarily
constant.

Proof: Since (M, J, g) is Kéhler, the metric ¢ is hermitian and the Levi-Civita connection
D on M is adapted. Therefore we find

tr, Vdf = tr ,(Vdf)"' =0,

as (Vdf)"! vanishes by the pluriharmonic map equation (2.2.3). O

2.3 A generalization of epluriharmonic maps from al-
most eccomplex manifolds into pseudo-Riemannian
manifolds

In this section, which is also subject of [Sch7, Sch8], we generalize the notion of an
epluriharmonic map to maps from almost ecomplex manifolds into pseudo-Riemannian
manifolds. Afterwards we show that maps admitting a generalization of an associated
family (compare the paper of Eschenburg and Tribuzy [ET]) give rise to an epluriharmonic
map and we give conditions under which an epluriharmonic map is harmonic.

Let (M, J¢) be an almost ecomplex manifold of real dimension 2n. From theorem 1.1
we know that on every almost ecomplex manifold there exists a connection with torsion
T = —1€eNye where Ny is the Nijenhuis tensor of J¢.

Definition 2.6  Let (M, J¢) be an almost ecomplex manifold. A connection D on the
tangent bundle of M 1is called nice if it is ecomplex and its torsion satisfies T'= AN je for
some function A € C*(M,R).

We introduce the notion of an epluriharmonic map from an almost ecomplex manifold:
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Definition 2.7  Let (M, J, D) be an almost ecomplex manifold endowed with a nice
connection D on TM and N be a smooth manifold endowed with a connection V™. Denote
by V the connection on T*M & f*T'N which is induced by D and V.

A smooth map f: M — N s epluriharmonic if and only if it satisfies the equation
(Vdf)"' = 0. (2.3.1)

We recall, that in the case (1,1) and (1+4,1-) the two gradings defined for differential forms
on para-complex manifolds in section 1.1 coincide in the sense that

AMT*M = (A" T*M) ® C..

As preparation for associated families we recall an integrability condition satisfied by the
differential of a smooth map. Let N be a smooth manifold with a connection V¥ on
its tangent bundle having torsion tensor TV. Given a second smooth manifold M and a
smooth map f: M — N, the differential F' :=df : TM — f*I'N = FE induces a vector
bundle homomorphism between the tangent bundle of M and the pull-back of T'N via f.
The torsion tensor TV of N induces a bundle homomorphism 7% : A2E — E satisfying
the identity

VyF(W) = Vg F(V) = F([V.W]) = T*(F(V), F(W)), (2.3.2)

where VF = f*V denotes the pull-back connection, i.e. the connection which is induced
on E by V¥ and where V,W € T'(TM).

In the rest of the section we denote by D a nice connection on the almost ecomplex
manifold (M, J¢). Under this assumption we restate the condition (2.3.2)

TE(F(V),F(W)) = VyF(W) = Vg F(V) - F([V,W]) (2.3.3)
= VyF(W) -V F(V)
— F(DyW)+ F(DwV) + F(T(V,W))
= VyE(W) = Vi F(V)
— F(DyW)+ F(DwV) + A F(Ny(V,W))
= (VWwE)W = (VwF)V + AF(N,;(V,W)),

where V is the connection induced on T*M ® E by D and V¥.

Later in this work we consider the case where N is a pseudo-Riemannian symmetric space
with its Levi-Civita connection V.

Given an element o € R we define R, : TM — T M as

Ra(X) = cose(a) X + sin (o) X.

This defines a parallel endomorphism field on the tangent bundle T'M of M. The eigen-
values of which are e on T'°M and e~ on T%'M, as one sees easily.
An associated family for f is a family of maps f, : M — N,«a € R, such that

b, ,o0dfy =df oR,, VaeR, (2.3.4)

for some bundle isomorphism ®, : fXT'N — f*T'N,a € R, which is parallel with respect
to V¥ in the sense that
Ooo (faVY) = (FVY) o,

One observes, that each map f, of an associated family itself admits an associated family.
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Theorem 2.2 Let (M, J) be an almost ecomplex manifold endowed with a nice con-
nection D, N a smooth manifold endowed with a torsion-free connection VY and let
f:(M,D,J¢) — (N,V¥) be a smooth map admitting an associated family f., then f is
epluriharmonic. More precisely, each map of the associated family f, is epluriharmonic.

Proof: As ®, is parallel with respect to V¥, V¥ is torsion free and D is nice, we can
apply equation (2.3.3) to the family df, = F, = ®_' o df o R, to obtain

(Vv E )W — (VwFE,)V + AF(Ny(V,W)) =0.
Since R, is D-parallel we obtain
(VxFa) = (I);l o (VXF) o) :Ra. (235)

IfZ=X—eJX and W =Y +eJY have different type it holds Nye(Z, W) =0, where
we have extended the Nijenhuis tensor ecomplex linearly. This implies

(VZFQ>W = (VwFa)Z, Va € R
and using equation (2.3.5) we obtain

(VZEI)W = €“d (V)W
(VwFE)Z = e @ N (VyF)Z =e @& (V,F)W

for all a € R. Since this should coincide, it follows (Vdf)"Y) = 0, ie. f: (M,D,J) —
(N, V) is epluriharmonic. The rest follows, since each map of the associated family f,
admits an associated family g3 = fa1g)- O

This motivates the definition

Definition 2.8 Let (M, J¢) be an almost ecomplex manifold endowed with a nice con-
nection D and N be a smooth manifold endowed with a torsion-free connection V. A
smooth map f : (M,D,J) — (N,V¥) is said to be S!-pluriharmonic if and only if it
admits an associated family.

Given an chermitian metric g on M then in general a nice connection D is not the
Levi-Civita connection V9 of g. Therefore the epluriharmonic equation (2.3.1) does not
imply the harmonicity of f. But if the tensor D — V9 is trace-free the epluriharmonic
equation implies the harmonic equation. This is true in the case of a special eKéhler
manifold (M, J¢, g, V) and for a nearly eKdhler manifold (M, .J¢, g), where D = V and
V — V9 is skew-symmetric.

Proposition 2.5 Let (M, J¢, g) be an almost ehermitian manifold endowed with a nice
connection D and N be a pseudo-Riemannian manifold with its Levi-Civita connection
V. Suppose that the tensor S = V9 — D is trace-free.

Then an epluriharmonic map f: (M, D, J°) — N is harmonic.
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Proof: We consider
tro(Vdf) = D_gleiei) [VEdf(e) = df (Dees)]
_ ig@i, ) [VEdf(e)) - dF(97 = S).e0)]
_ ig(ei, ) [VEdf (es) — df (V)]

= tr,(V9df)

where V¥ is the connection induced on T*M @ E by V¢ and V¥ and e; is an orthogonal
basis for g on T'M. From the epluriharmonic equation and since g is ehermitian we obtain

tr o(Vdf) = tr ,(VdfY) = 0.

2.4 Special targets

In this subsection we discuss the manifolds, which are the target spaces of the epluriharmonic
maps associated to ett*-bundles later in this work.

2.4.1 The space of pseudo-Riemannian metrics

To unify the results we use the notations

Go(r) = GL(r,R), G1(r) = SL(r,R),

go = glg(r), g1 = slr(r),

Ko(p,q) = O(p, q), Ki(p,q) = SO(p,q),

k) =€ =s0(p,q),

S%(p,q) = S(p,q) = GL(r,R)/O(p,q), S*(p,q) = SL(r,R)/SO(p,q).

These objects are also written with an index i € {0;1}.

Let Sym) (R") be the symmetric r X r matrices of symmetric signature (p, ¢) in Go(r)
and Sym), ,(R") the elements of Sym, ,(R") with determinant, (—1)?. These define pseudo-
scalar products of same symmetric signature (p, q¢) by

<.’ ‘>A = <A.’ ‘>]R7‘,

where (-, -)g- is the Euclidean standard scalar product. The natural action of an element
g € Gi(r) is given by (g7t g7t )4 = {(¢71)!Ag™!-, )r-. This gives an action of G;(r)
A (971! Ag™" on Sym, (R") which we use to identify Sym/  (R") with S*(p,q) in the
following proposition:
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Proposition 2.6  (cf. [Sch3, Sch6]) Let W' be the canonical map

where G;(r) carries the pseudo-Riemannian metric induced by the Ad-invariant trace-
form. Then W' is a totally-geodesic immersion and a map f from an ecomplex manifold
(M, J) to Si(p,q) is epluriharmonic if and only if the map W' o f : M — Gi(r) is
epluriharmonic.

Proof: The proof is done by expressing the map ¥ in terms of the well-known Cartan
immersion. For further information see for example [Hel], [CE], [GHL], [KN].

1)

First we study the identification S*(p, ¢) =Sym, ,(R").
The group G;(r) operates on Sym}, (R") via

Gy(r) x Sym! (R") — Sym} (R"), (9,B) g-B:=(g7")'Bg".

The stabilizer of the point [, , = diag(1,, —1,) is K;(p,q) and the above action is
transitive by Sylvester’s theorem. Therefore by the orbit-stabilizer theorem (com-
pare the book of Gallot, Hulin, Lafontaine [GHL] 1.100) we obtain a diffeomorphism

U Sip,q) =Sym! (R, gKi(p,q)— g Ipq=(9"")"Ipeg "

We recall some results about symmetric spaces (For more information we refer to
[CE] theorem 3.42 and [KN] volume IT chapter X and XI and [Lo] to extend the
proof of [CE] to non-compact groups G. A further reference is [ON].). Let G be a
Lie-group and ¢ : G — G a group-homomorphism with ¢? = Idg. Let K denote
the subgroup K = G° = {g € G|o(g) = g}. The Lie-algebra g of G decomposes
ing="hop with doga.(h) =, do,(p) = —p. Moreover we have the following
information: The map ¢ : G/K — G with ¢ : [gK] — go(g™') defines a totally
geodesic immersion called the Cartan immersion.

We want to utilize this:

Therefore we define

o Gi(r) — Gi(r), g — (g7h)

where gt = I, ,¢'I,, , is the adjoint with respect to the pseudo-scalar product (-, ) ==

Ipaq
<'7Ip7q'>R“
o is obviously a homomorphism and an involution with G;(r)? = K;(p,q). By a
direct calculation one gets daldci = —h' and hence

h = {heg(r)|h'=—h}=o(p,q) = s0(p,q),
p = {heg(r)|n' =n} = sym'(pq).
Thus we end up with
¢S (p,q) — Gi(r), | (2.4.1)
g = 90(97") = 99" = (91,49 ) Ipg = Rp,, 0 V' 0 A(g). (2.4.2)

Here Ry, is the right multiplication by h and A is the map induced by A : G; —
Gy, h— (b1 on G;/K;. Both maps are isometries of the invariant metrics. Hence
U is a totally-geodesic immersion.
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3) Using point 1) and 2) corollary 2.1 finishes the proof. O

Remark 2.3 (c¢f. [CS1, Sch3, Sch6])

Above we have identified Gi(r)/K;(p, q) with Sym}, (R") via U*.

Let us choose o = eK;(p,q) as base point and suppose that W' is chosen to map o to I =
Iq. By construction V" is G;(r)-equivariant. We identify the tangent-space TsSym', ,(R")
at S € Sym!, (R") with the (ambient) vector space of symmetric matrices:

TsSym (R7) = Sym'(R") := {A € g;(r)|A' = A} . (2.4.3)

For W'(S) = S, the tangent space T5S*(p, q) is canonically identified with the vector space
of S-symmetric matrices:

TS (p, q) = sym'(S) := {A € gi(r)|A'S = SA}. (2.4.4)

Note that sym'(I,,) = sym'(p, q).
Proposition 2.7 The differential of ¢* := (V)" at S € Sym! (R") is given by

Sym‘(R") 5 X — —55_1)( € S7'Sym’(R") = sym‘(S) . (2.4.5)

Using this proposition we relate now the differentials
dfy : TyM — Sym'(R") (2.4.6)
of amap f: M — Syméyq(RT) at x € M and
0f, - T,M — symi(f()) (2.4.7)

of amap f=pof:M— S pq): df, = dpdf, = —1f(z) " df,.

One can interpret the one-form A := —2df = f~'df with values in g;(r) as connection
form on the vector bundle £ = M x R". We note, that the definition of A is the
pure gauge. This means, that A is gauge-equivalent to A" = 0, as for A = 0 one has
A= fTYA'f + f~Ydf = f~'df. The curvature vanishes, since it is independent of gauge.
Thus we get:

Proposition 2.8 Let f: M — Gy(r) be a C®-mapping and A := f=1df : TM — g;(r).
Then the curvature of A vanishes, i.e. for X, Y € I'(T'M) it holds

Y(Ax) — X(Ay) = Ay.x) + [Ax, Ay]. (2.4.8)

In the next proposition we give the equations for epluriharmonic maps from an ecomplex

manifold to G;(r).
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Proposition 2.9 Let (M, J¢) be an ecomplex manifold, f: M — G;(r) a C*-map and
A defined as in proposition 2.8.
The eplurtharmonicity of f is equivalent to the equation

1 1
Y(Ax> + —[Ay, Ax] — EJCY(AJex) — Ei[AJEY’ AJeX] = O, (249)

2
for eholomorphic X,Y € T'(TM).

Proof: Again the epluriharmonicity of the map f does not depend on the adapted connec-
tion chosen on M. This means, that we can take it torsion-free and ecomplex (compare
proposition 2.3 and proposition 2.4). We calculate the tensor

Vdf (X,Y) = VY(df(Y)) — df (DxY).
for (real parts of) eholomorphic vector fields X, Y. The contribution to the (1,1)-part of
the second term vanishes for (real parts of) eholomorphic X, Y, since

DXy — 6DJ6X<]€Y = DXY — EJE_DJ€XY = DXy — 6JE2DXy =0.

Therefore we only have to regard the pulled back Levi-Civita connection V on G;(r).
Let X,Y € I'(T'M). To find the epluriharmonic equations we write df (X) and df (V') that
are sections in_f*T'G; ( ), as linear combination of left invariant vector fields f*E;; =
Eijo f , with E;j(g9) = gE;;, Vg € G;(r) and a basis E;j,4,j = 1...r of g;(r).
In this notation we have
df(X) =) ayEyjof=) ay[Ey;and df(Y Z by Eyjo f = Z bij FEij.
i i
with functions a;; and b;; on M and further
Ax = fHdf(X) =) a; By and Ay = fdf (Y Z bi; Eij.
ij
With this information we compute
(fV)vdf(X) = (f*V)y > ayEjof
ij

= Y Y(ay) Ejof+) ay(f'V)yEjof
= Z Y (a;;) EijOf—i—Z aij Var(y) Eijof

— ZY@U fEl]+Zazg ab VE )Of
%/—/

" L f 1B i)
g (Y(AX) + 5lAv, AX]) .
Therefore the epluriharmonicity is equivalent to the equation
Y(Ax) + %[Ay, Ax| —eJY(Ajex) — e%[AJey, Ajx]|=0

for eholomorphic vector fields X, Y. O
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2.4.2 A remark on the space of Riemannian metrics

In the complex case pluriharmonic maps into locally Riemannian symmetric spaces of
non-compact type have a nice property.

Suppose that N is a locally Riemannian symmetric space with universal cover G/K with a
non-compact semi-simple Lie group GG, a maximal compact subgroup K and an associated
Cartan decomposition g = h @ p. In each point one identifies the tangent space of N with
p. This is unique up to right action of K and left action of the fundamental group. All
relevant structures are preserved by these actions. Therefore, given a map f : M — N,
we can regard df,(T2°M), x € M as a subspace of p&. For the ‘complexified’ sectional-
curvature of N holds using the Killing-form b

b(R(X,Y)Y,X)=—b([X,Y],[Y, X]) <0. (2.4.10)

It is a well-known result of Sampson [Sam], that a harmonic map of a compact complex
manifold to a locally symmetric space of non-compact type is pluriharmonic and that its
differential sends T'°M to an Abelian subspace of p©. The second claim, that the image
of TY9M under the differential of a pluriharmonic map is Abelian is true on non-compact
manifolds, too. We are going to prove, that the pluriharmonicity implies this property.

First we state a definition in a more general context, i.e. for ecomplex manifolds and
locally pseudo-Riemannian symmetric spaces:

Definition 2.9 Let (M, J¢) be an ecomplex manifold and N a locally pseudo-Riemannian
symmetric space with universal cover G /K and associated Cartan decomposition g = pDE.
A map f: (M,J°) — N is said to be admissible, if for all x € M the ecomplex linear
extension of its differential maps TY°M (equivalenty TP M ) to an Abelian subspace of

pee.

Theorem 2.3  (compare [Sam]) Let (M, J) be a complex manifold and N be a locally
Riemannian symmetric space with universal cover G/K and associated Cartan decompo-
sition g =p P L.

Then a pluriharmonic map f : M — N is admissible.

The differential of a pluriharmonic map f : M — N obeys the equation

[dfo(X), dfe(Y)] = [dfe(JX), dfe(JY)]
with X, Y € T,M,x € M.

Proof: The strategy is to show the vanishing of the curvature.
Let X,Y,Z, W € I'(T*°*M) be holomorphic

RY(f.X, fY)f.Z = RIVN(X\Y)f.Z
= (FV(VIWYEZ = (Y)Y (FVRLEZ = (FVY)ixnfZ
We remark now, that the pluriharmonic equation for holomorphic vector fields does not

depend on the adapted connection chosen on the manifold M. Hence it reduces to the
equation (f*VN)x f.Y =0, which implies R™(f, X, f.Y) f.Z = 0. From equation (2.4.10)
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we get b([f. X, f.Y],[f.Z, f.W]) = 0 and in the end [f. X, f.Y] =0 for all X,Y.

Let Z,W € T(T"°M) be of the form Z = X —iJX and W =Y —iJY with X, Y € T'(T' M)
and compute [£.Z, f.W] = [f.X, Y]~ [foTX, foV]~i([f.X, [JY| [T X, [.Y]). Hence
we conclude [df (X),df(Y)] = [df (JX),df (JY)]. O

Corollary 2.3 Let (M,J) be a complex manifold, f : M — Sym! (R") C Gi(r) a
plurtharmonic map induced by a pluriharmonic map to G;(r)/K;(r) and A defined as

in proposition 2.8. If f is a plurtharmonic map, then the operators A satisfy for all
X,Y € T, M, with x € M, the equation [Ax, Ay| = [Asx, Asy].

Proof- First, we apply theorem 2.3 to A = —2df with a map f : M — G1/K;. This
yields the corollary for G; = SL(r,R).

For S°(r,0) = S(r,0) we have the de Rham decomposition S(r,0) = R x S(r,0), where
R corresponds to the connected central subgroup R>? = {AId|\ > 0} C Gy = GL(r,R).
Hence we have the decomposition of gly(r) = R @ slg(r), where the R-factor is central.
Therefore we are in the situation to apply the result for G;. O

Remark 2.4  Since the trace-form on SL(r,R) is a multiple of the Killing-form and
on GL(r,R) it corresponds to the metric on the decomposition S(r,0) =R x St(r,0), we
can choose the trace-form as metric and obtain the same result as in theorem 2.3 and
corollary 2.3.

2.4.3 The space of hermitian metrics

This subsection is published in [Sch4].

Let Herm, ,(C") be the complex hermitian r x r matrices with hermitian signature (p,q)
and [ = I,, = diag(1,,—1,).

Claim: GL(r,C) operates on Herm, ,(C") via

GL(r,C) x Herm,, ,(C") — Herm,, ,(C"),
(9.B) g B:=(g")"Bg™",

where g is the hermitian conjugate of g.
The stabilizer of I is

GL(r,C); ={g € GL(r,C)|g- I = (g )"Ig™' =1} =U(p,q)

and the action is transitive due to Sylvester’s theorem. This yields, by identifying orbits
and rest classes, a diffeomorphism

v : GL(r,C)/U(p,q) =>Herm, ,(C") C GL(r,C),
gUp.q) = g-1=(g)"Ig™".
Proposition 2.10  The map ¥ : GL(r,C)/U(p,q) = Herm, ,(C") is totally geodesic,

where the target-space is carrying the (pseudo-)metric induced by the Ad-invariant trace-
form (i.e. A, B+ tr (AB)) on gl(r,C).
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Let (M, J) be a complex manifold. Then a map ¢ : M — H(p,q) == GL(r,C)/U(p,q) is
pluriharmonic if and only if

v=Vo¢: M— GL(r,C)/U(p,q)=Herm, ,(C") C GL(r,C)

18 pluriharmonic.

Proof: Like in the last section the idea is to relate ¥ to the totally geodesic Cartan
immersion. Therefore we define

o : GL(r,C) - GL(r,C),
g (g7

Here ¢ denotes the adjoint of g with respect to the hermitian scalar product defined by
< o >=< 1,4, >cr, where < -, - >¢r is the hermitian standard scalar product on C"
and I = I, ,. Explicitly it is g = Ig"1.

o is a homomorphism and an involution satisfying GL(r,C)? = U(p, q).

Hence the Cartan immersion can be written as

i+ GL(,C)/U(p,q) — GL(r,C),
g golg") =gg" = glg"I = Ry o Vo A(g),

where Ry, is the right-multiplication with h € GL(r,C) and A the map induced on
GL(r,C)/U(p,q) by A : GL(r,C) — GL(r,C), g — (g')¥. Both maps are isometries of
the invariant metrics and therefore V¥ is totally geodesic. Corollary 2.1 finishes the proof.
O

To be complete we mention the related symmetric decomposition:

b={hegl(C)|hl = —h} =u(p,q)

and
p=1{hegl(C)|h’ =h}=:herm, ,(C"). (2.4.11)

Later in this work we need the relation between (pluriharmonic) maps coming from
hermitian metrics and these coming from their real part. We are going to study their
relation now:

In the rest of this subsection we identify C" with R” @ iR"™ = R?". In this model the

multiplication with ¢ coincides with the automorphism j = 0L ) and GL(r,C)

-1, 0
(respectively gl.(C)) consists of the elements in GL(2r,R) (respectively gl,,.(R)), which
commute with j.

An endomorphism C' € End(C") decomposes in its real part A and its imaginary part B,
ie. C = A+ 1B with A, B € End(R"). In the above model C' is identified with a real
2r x 2r-matrix. This identification we denote by ¢, i.e.

40):(2 ‘AB).
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The complex conjugated of C'is identified with

o=(5 5

the transpose C' = A + i B! yields

=5 a0 )

and consequently the hermitian conjugated is identified with

t t

L<Ct) = ( _ABt it ) .
We observe, that (C*) = (C)T where -T is the transpose in End(R?").
The hermitian matrices Herm,, ,(C") of signature (p, q) are identified with the subset of
symmetric matrices H € Sym,, ,,(R*"), which commute with j, i.e. [H,j] = 0. Likewise,
Ty, ,Herm, ,(C") coincides with the symmetric matrices h € sym(R*"), which commute
with j, i.e. the hermitian matrices in gl,,(R) which we denote by herm,, ,(C").
A hermitian scalar product h of signature (p, q) corresponds to a hermitian matrix H €
Herm,, ,(C") of hermitian signature (p,q) defined by h(-,-) = (H-,-)cr. The condition
C* = O, i.e. C hermitian, means in our model, that C' has the form

A —-B
(C) = ( B A )
with A = A? and B = —B*.

Finally we find the explicit representation of the map R, which corresponds to taking the
real part of a hermitian metric h, i.e. Reh = (R(H)-, - )ger:

R : Herm,,(C") — Sym2p72q(R2”),
H s oG (H + HY) = S((H) + o(H)T) = 1 H).

This map has maximal rank and is equivariant with respect to GL(r, C).
Further we claim, that it is totally geodesic: The decomposition

9[27“ (R) = Sym2p72q<R2T) @ 0(2p7 2Q)

is a symmetric decomposition of the symmetric space GL(2r,R)/O(2p,2q) and hence

[[Sym2p2q (RQT) ) Sym2p,2q (R2T)] ) Sym2p,2q (RQT)] C Sym2p,2q (RQT) :

From [A,j] = [B,j] = [C,j] = 0, we conclude with the Jacobi identity [[A, B],j] = 0
and [[[A, B],C], j] = 0. Consequently T;, GL(r,C)/U(p,q) = herm,,(C") is a Lie-triple-

system' in T4, , Symy, 5, (R*") = sym,, , (R*"), i.e.

[[herm, ,(C"), herm,, ,(C")], herm,, ,(C")] C herm,, ,(C").

1We refer to [Hel] Ch. IV.7, [KN] vol. 2, ch. XI.4 and [Lo] ch. III for more information on Lie-triple-
systems and totally geodesic subspaces of symmetric spaces and [KN] vol. 2, ch. XI.2 for the (canonical)
symmetric decomposition of a symmetric space.
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Therefore GL(r,C)/U(p,q) is totally geodesic in GL(2r,R)/O(2p,2q) and we have the
commutative diagram:

GL(r,C) [4] GL(2r,R)
U(p,q) O(2p,29) (24.12)
/
M T o

N

Herm, ,(C") R Sym2p,2q(]R2T),

where [i] is induced by the inclusion i : GL(r,C) — GL(2r,R). Since all other maps in
the square of this diagram are totally geodesic, the map R : Herm,, o(C") — Sym,, ,, (R*")
is a totally geodesic map. This gives the proposition:

Proposition 2.11 A map h : M — Herm, ,(C") is pluriharmonic, if and only if
g = Reh: M — Symy,,, (R*) is pluriharmonic.

A map h: M — H(p,q) is pluriharmonic, if and only if § = [i] o h : M — S(2p,2q) is
pluritharmonic.

Proof: As discussed above the map R : Herm,o(C") — Symy, . (R*") is totally geodesic
and an immersion. This means that we are in the situation of corollary 2.1.

The second claim follows from the square commutative diagram (2.4.12) and the state-
ments of proposition 2.10 and proposition 2.6, that the composition of a map f from M to
Herm,, ,(C") (respectively Symy,, o, (R*")) with U~ (respectively (W?)~') is pluriharmonic,
if and only if f is pluriharmonic. O

2.4.4 The space of para-hermitian metrics

In the following subsection we identify C" with R” @ eR" = R?". The multiplication with

1? Ig ) and GL(r,C) (respectively gl.(C)) consists
of the elements in GL(2r,R) (respectively gl,,(R)) commuting with E.
First, we introduce the notion of para-hermitian sesquilinear scalar products on para-

complex vector spaces

e equals the automorphism £ =

Definition 2.10
1. A para-hermitian sesquilinear scalar product is a non-degenerate sesquilinear form

h:C"xC"—C), ie.

(i) h is non-degenerate: Given w € C" such that for all v € C" h(v,w) = 0, then
it follows w = 0,

(i) h(v,w) = h(w,v), Yv,w e C",
(iii) h(Av,w) = Ah(v,w), VA € C; v,w e C".
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2. Let z=(z',...,2") and w = (w,...,w") be two elements of C", then one defines
the standard C-bilinear scalar product on C" by

.
Z-w = E Zfwt
i=1

and the standard para-hermitian sesquilinear scalar product by

(z,w)cr == z - W.

3. Given a matriz C of End(C") = Endc(C"), we define the para-hermitian conjugation
by C +— C" = C'. We call C para-hermitian if and only if C* = C. We denote by
herm(C™) the set of para-hermitian endomorphisms and by Herm(C") = herm(C")N
GL(r,C).

Remark 2.5 We remark, that there is no notion of para-hermitian signature, since from
h(v,v) = —1 for a v € C" we obtain h(ev,ev) = 1.

Proposition 2.12
(a) Given an element C of End(CT) then it holds (Cz,w)cr = (z,CMw)cr, Vz,w € C.
(b) The set herm(C") is a real vector space.

(¢) There is a bijective correspondence between Herm(C") and para-hermitian sesquilin-
ear scalar products h on C" given by

H— h(-,-) = (H-,)cr.

An endomorphism C' € End(C") decomposes in its real part A and its imaginary part
B,ie. C' = A+eB where A, B € End(R"). In the above identification the endomorphism
C' is identified via a map, which we denote by ¢, with the matrix

A B

(C) = ( B A ) .
The para-complex conjugation of C, i.e. C = A — eB, corresponds to

= A -B

wo-(4% 1)
the transposition C* = At + eB! yields
At B!
ich = G )=uer

and the adjoint with respect to (-, -)¢r is C* = C* which corresponds to

At =B\
L(Ch) = < _Bt At ) = Loy L(C)T L,
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where -1 is the transposition? in End(R?"). The equality in (x) is due to the calculation:

At —B At B
L(Ch)ﬂrﬂ“ - ( _Bt At ) ]17“,7‘ = ( _Bt —At ) (2413)
t t
- 1, ( gt o ) =1, 1(C)" =1, 1(C")

L, 0
(0.

A para-hermitian sesquilinear scalar product h corresponds to a para-hermitian matrix
H € Herm(C") (compare with proposition 2.12) defined by h(-,-) = (H-,-)cr. The
condition C* = C, i.e. C para-hermitian, means in our model that C' is of the form

A B
(C) = ( B A >
with A = A* and B = —B".

Using this information we find the explicit representation of the map which corresponds
to taking the real part Reh of h. This is the map R satisfying

with

Reh = (R(H)-, -)ger,
where (-, -)ge is the Euclidean standard scalar product on R*".

With z,w € C" we have

B(z,w) :=Re(z,w)er = = (2 -0+ Z-w)

and
Reh(z,w) = Re(Hz,w)cr
= 1[(H’z)-u_)—i-(ltl_z)-w}

2
= [B(Hz,w).

Further we remark that 8(-,-) = Re(-,")cr = (-, *)grr, where (-, )grr = (1,7, )ger is the
(pseudo-)Euclidean standard scalar product of signature (r,7) on R*".
This yields

Reh(z,w) = (Hz,w)grr = (1,,Hz, w)ger

and for H = A+ eB with A, B € End(R")

w(in) = Lty =1 (5 4 )= (5 B )

Since H is para-hermitian, we obtain R(H)T = R(H). The symmetric signature of the

2To rest in the same notation as in the last section we use two symbols for the transposition, even if
it here seems to be overkill.
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symmetric matrix R(H) is (r,7), as it is the real part of a para-hermitian sesquilinear
scalar product.
Summarizing we have

R : Herm(C") — Symm(R%),
Hw— R(H) =1,,.(H).

The map R has maximal rank.
Claim: GL(r,C) operates on Herm(C") via

GL(r,C) x Herm(C") — Herm(C"),
(9,B) =g B:=(g7)"Bg",

g - B is para-hermitian, since one has g - B = (g - B)".
We now show that R is equivariant with respect to this GL(r, C)-action on Herm(C") and
the GL(2r,R)-action on Sym,. .(R*") given by

(97, 8) =g -S=g"5g
with g € GL(2r,R) and S € Sym, (R*"). In fact,
R(g™-H) = R(¢"Hg) =1,,(¢"Hyg)

= 1, u(g") o(H) o(g) PEY ()TJIML(H)L(Q)
= u(g)" R(H) 1(g) = e(9)™" - R(H).

Our aim is to show, that this map is totally geodesic:
The decomposition

—~
=)
~—

gl (R) = sym,..(R*) @ o(r,7),

where symw(R”) are the symmetric matrices with respect to (-,)grr, is a symmetric
decomposition associated to the symmetric space GL(2r,R)/O(r,r) and hence

sy, . (B?"), sym, , (R*")] sym, , (R*")] C sym,, (B”).

Let A, B,C € herm(C"). From [A, E] = [B, E] = [C, E] = 0, we conclude with the Jacobi
identity [[A, B], E] = 0 and [[[A, B], C], E] = 0. Hence

Ty, GL(r,C)/UT(C") = herm(C")
is a Lie-triple-system in Ty, Sym, .(R*") = sym, .(R*"), i.e
[[herm(C™), herm(C")], herm(C")] C herm(C")

and consequently GL(r, C') /U™ (C") is a totally geodesic submanifold of GL(2r,R)/O(r,r).

The stabilizer of 1, under the GL(r, C')-action on Herm(C") is

GL(r,C)y, ={9g € GL(r,C)|g-1, = (gfl)h]ngf1 =1,} =U"(C").
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If the operation - is transitive we obtain, by the orbit stabilizer theorem, a diffeomorphism
v : GL(r,C)/U™(C") SHerm(C") C GL(r,C), (2.4.14)

gUw(Cr) — g - ]]-7” — (g_l)hllrg_l — (g—l)hg—l‘
The transitivity is due to the following argument: Any para-hermitian sesquilinear scalar

product is uniquely determined by its real part, which lies in Symm(RQT). On this space
GL(2r,R) acts transitively.

We claim: /&' = g - h with some para-hermitian sesquilinear scalar product h and
an element g € GL(2r,R) is a para-hermitian sesquilinear scalar product if and only if
g€ GL(r,C).

Proof: This claim follows from a short calulation: Let v,w € C" and A € C':
On the one hand it holds

K (v, w) = AW (v,w) = Mg - h)(v,w) = h(Ag™"v, g™ 'w)
and on the other hand
R (Av,w) = (g-h)(A\v,w) = h(g ' v, g~ w).
Subtracting these two equations yields
h((g7'A = Ag v, g7 'w) = 0.
Setting w = gw’ with arbitrary w’ € C" we obtain
h((g7'A = Ag v, w') = 0.

Since g is invertible and h is non-degenerate we conclude ¢~ 'Av = Ag~'v, which implies
the C-linearity of g. O

We are now going to analyze para-pluriharmonic maps into these spaces
Proposition 2.13  Let (M, 1) be a para-complex manifold and endow GL(r,C)/U™(C")
with the (pseudo-)metric induced by the trace-form on GL(r,C). Then the map ¥ :

GL(r,C)/UT(C")=Herm(C") defined in equation (2.4.14) is totally geodesic and a map
¢ M — GL(r,C)/U™(C") is para-pluriharmonic if and only if

v=Vo¢p: M— GL(r,C)/U (C")=Herm(C") C GL(r,C)

18 para-pluriharmonic.

Proof: To prove this we define
o : GL(r,C)— GL(r,C),
g (g

o is a homomorphism and an involution satisfying GL(r,C)? = U™ (C").
Hence the Cartan immersion can be written as

i+ GL(r,C)/U™(C") — GL(r,C),
g go(g™) =gg" = gg" = Vo Ayg),
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where A is the map induced on GL(r, C)/U™(C") by A : GL(r,C) — GL(r,C), g — (g~ )"
which is an isometry of the invariant metric, since g — ¢" = 1,,971,, and g — g~ ! are
isometries of the invariant metric. Therefore W is totally geodesic, since ¢ is totally

geodesic. Corollary 2.1 finishes the proof. O

To be complete we mention the related symmetric decomposition:
h={Aegl(C)|A"=-A} =u™(C")
and
p={Acgl(C)]A" = A} = herm(C").

Summarizing our knowledge, we have the commutative diagram:

GL(r,C) (1] GL(2rR)
Uﬂ'(cr) O(T‘,?") (2415)
/
M T o
h
Herm(C") —2— Sym,.,.(R*"),

where [7] is induced by the inclusion i : GL(r,C') — GL(2r,R). Since all other maps in
the square of this diagram are totally geodesic, the map

R : Herm(C") — Sym, .(R*), H + 1,,.(H)

is a totally geodesic map.
Using the commutative diagram gives the proposition:

Proposition 2.14 A map h : M — Herm(C") is para-pluritharmonic, if and only if
g = Reh: M — Sym, .(R*) is para-pluriharmonic.

A map h - M — H(r) = GL(r,C)/U™(C") is para-pluriharmonic, if and only if §j =
[i]oh: M — S(r,r) is para-pluriharmonic.

Proof: As discussed above in this section the map R : Herm(C") — Sym,..(R*") is totally
geodesic and an immersion. This means that we are in the situation of corollary 2.1.

The second claim follows from the square of the commutative diagram (2.4.15) and from
the statements of proposition 2.13 and proposition 2.6, that the composition of a map f
from M to Herm(C") (respectively Sym, . (R*")) with U~ (respectively (¥°)~1!) is para-
pluriharmonic, if and only if f is para-pluriharmonic. O

Notation: In the following work we use the notation H(r) = GL(r,C)/U™(C") and

H(p,q), for e =—1,
He(p,q) = 2.4.16
(p.q) { H(r), fore=1. ( )

Further we introduce the notation for the eunitary groups

U(p,q), for e = —1,
Ue(o. q) — 2.4.17
(#:9) { UT(Cr), fore=1. ( )
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2.5 The Lagrangian Grassmanians

2.5.1 Definition and homogeneous model

Complex version

Like in section 1.5.1 we consider the complex vector space V = T*C" = C?" with canonical
coordinates (z',..., 2" wy,...,w,) endowed with the standard complex symplectic form
Q =>" d2" Adw; and the standard real structure kK =~ : V. — V with fixed points
V* = T*R™ and the induced hermitian form v :=iQ(-, k).

Definition 2.11  The subset of the Grassmannian of Lagrangian subspaces L of the
symplectic vector space (V,), such that v restricted to L defines a hermitian metric of
hermitian signature (k,l), with n = k +1 is called the hermitian Lagrangian Grassmannian
of signature (k,1) and is denoted by Gri'(C>).

We remark that Grg ’Z(C%) is an open subset of the Grassmannian of Lagrangian subspaces
of (V,Q) and hence a complex submanifold of it.

Proposition 2.15  The real symplectic group Sp(R*") acts transitively on GTS’I(CQ”)
and we have the following identification:

Gret(C*) = Sp(R*™)/U(k, 1) . (2.5.1)
Here U(k,1) C Sp(R?") is defined as the stabilizer of

9 0 +.8 0 .0 0 .0
8w17 7(92,’,€

V. (25.2)

i —4 oo — —1
ow, 0zFt1 w020 Ow,

0
Wo = Span{ﬁ +1

The Grassmannian Grg’l(C%) s a pseudo-hermitian symmetric space and, in particular,
a homogeneous pseudo-Kdahler manifold.

Proof: Let L,L" € Gri'(C¥).
Since 7% = V¢ defines a hermitian sesquilinear form, we obtain from the definition of -y
that

LNk ={0}.

This means

V=0LaLl

defines an orthogonal decomposition with respect to ~.

The same applies to L.

Choosing a y-hermitian base (f;)"; (respectively (f/),) of L (respectively L) and ex-
tending it to a base of V by (v—1f)%, (respectively (v/—1f/)7,) we construct two
symplectic bases (f;, v/—1f), and (f!/,v/—1f)), of V and consider the base-change (3
from (f/,v/=1f)%, to (fi, vV—1fi),. B respects 2 and the real structure . This means
it is an element of Sp(R?"). Hence the action of Sp(R*") on Gri'(C?") is transitive.
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If one considers the base point W, one finds by a short calculation (see in the proof of

theorem 5.5)
I, O
(V\Wo)ij = ( 0 -1, ) :

Para-complex version

In the para-complex setting (compare section 1.5.2) we denote by V' the para-holomorphic
vector space T*C"™ = (C?", endowed with its standard para-complex structure 7y, its
symplectic form €2, the para-complex conjugation k =~ :V — V, v +— v with fixed point
set T*R™ = R?" and with the para-hermitian sesquilinear scalar product on V defined by
(v, w) := eQ(v,w). On this space we take a system of para-holomorphic linear coordinates
(2%, w;) which are real valued on T*R™.

Definition 2.12  The subset of the Grassmannian of Lagrangian subspaces L of the sym-
plectic vector space (V,2), such that ~ restricted to L defines a para-hermitian sesquilin-
ear scalar product is called the para-hermitian Lagrangian Grassmannian and is denoted by

Gra(C*).

Proposition 2.16  The real symplectic group Sp(R*") acts transitively on Gry(C?") and
we have the following identification:

Gry(C*") = Sp(R™) /U™ (C™),
where U™(C™) is the stabilizer of

0 0 0 0
Wo: SPCLHC{ﬁ—Fea—U)l,...,ﬁ—Feaw } (253)

Proof: Let L,L" € Gry(C®").
Since v~ = V¢ defines a para-hermitian sesquilinear scalar product, we obtain from the
definition of ~

LNk ={0}.

This means _
V=Ll (2.5.4)

defines an orthogonal decomposition with respect to ~.

The same applies to L.

The decomposition (2.5.4) and the fact that £ is Lagrangian implies (v, v) = eQ(v, v) # 0
for all 0 # v € L. This allows us to choose a para-hermitian base (f;)"; (respectively
(fHm,) of L (respectively L'). We extend this base to a base of V by (ef;)7, (respec-
tively (ef!)_,) and obtain in this way two symplectic bases (f;, ef;)7_, and (f!,ef/)", of
V. Further we consider the base-change 3 from (f/, ef])", to (fi,ef;)",. 3 respects Q and
the real structure . This means it is an element of Sp(R*"). Hence the action of Sp(R*")
on Grf(C*") is transitive.
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If one considers elements 3 which leave the base point W, invariant, one finds [, 7¢n] = 0
and 3*gcon = gon with gen = Reyw, . O

Notation: To unify the notation we introduce

ks m~on _
Grit(cny = J OT0 (€7 fore = 1,
Gry(C*) for e = 1.
2.5.2 Holomorphic coordinates on the complex Lagrangian Grass-
mannian

In this section (cf. [CS1]) we shall introduce a local model for the Grassmannian Grg' (C2)
and determine the corresponding local expression for the dual Gaul map. This model is
a pseudo-Riemannian analog of the Siegel upper half-space

Sym™(C") := {A € Mat(n,C)|A* = A and ImA is positive definite} . (2.5.5)
Our aim is to construct holomorphic coordinates for the complex manifold Grg’l (C*)
in a Zariski-open neighborhood of a point W of the Grassmannian represented by a
Lagrangian subspace Wy C V of signature (k,l). Using a transformation from Sp(R*")

we can assume that Wy = W,, see equation (2.5.2). Let Uy C Gri'(C?") be the open
subset consisting of W € Grh'(C?") such that the projection

Ty :V=TC"=C"q® (C") —C" (2.5.6)
onto the first summand (z-space) induces an isomorphism
Tylw W = C". (2.5.7)

Notice that Uy C Grg’l((CQ”) is an open neighborhood of the base point W,. For elements
W € Uy we can express w; as a function of z = (z1,...,2"). In fact,

w; = Z Ciij 5 (258)

where
(Cj;) € Sym,(C") = {A € Mat(n,C)|A" = Aand Im A has hermitian signature (k,)}.
(2.5.9)
Proposition 2.17 The map
C: Uy — Symy,(C"), W= C(W):=(Cy) (2.5.10)

is a local holomorphic chart for the Grassmannian Gri'(C2").

Remark 2.6 The open subset Sym,;(C") C Sym(C") = {A € Mat(n,C)|A" = A} is a
generalization of the famous Siegel upper half-space Sym,, o(C") = Sym™(C"), which is
a Siegel domain of type I. In the latter case, we have Uy = Sp(R*")/U(n) and a global
coordinate chart

C': Grg*(C*™) = Sp(R™)/U(n) = Sym,, ,(C"). (2.5.11)
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2.5.3 Para-holomorphic coordinates on the para-complex La-
grangian Grassmannian

In this section (cf. [Sch3]) we introduce a local model of the Grassmannian Gry(C?") of
para-complex Lagrangian subspaces W C V of signature (n,n), i.e. such that g = Re~y
restricted to W has signature (n,n).

This model is a para-complex pseudo-Riemannian analog of the Siegel upper half-space

Sym™(C") := {4 € Mat(n,C)|[A" = A and ImA is positive definite} .  (2.5.12)

Given a point W € Gry(C?") we claim, that V = T*C™ decomposes into the direct

sum
V=WaoeW=WaeW" (2.5.13)

Let W = yw, w" = (wy)w and ¢" = (gv)w. Then the non-degeneracity of v, g%
and w" are equivalent. One sees from the definition of 4" that it is non-degenerate if
and only if W N W = {0}. Further it is dimg(W) = dimg(W) = dim+m, where the last
equation follows since W is Lagrangian. This proves the claim.
One computes easily v(9,w) = —y(w,v), Yo,w € W. Hence ¢ has signature (n,n),
since ¢g" has signature (n,n). Since v = e€)(-,~) and W is Lagrangian, it follows that the
decomposition (2.5.13) is y-orthogonal. Using the isomorphism induced by the symplectic
form Q on V = W @ W yields an isomorphism of W+ = W = W* where -+ is the
orthogonal complement taken with respect to 7.

We now construct para-holomorphic coordinates for the para-complex Grassmannian
Grj (C*) in an open neighborhood of a point W, of the Grassmannian represented by a
Lagrangian subspace Wy C V of signature (n,n). Using the transitive action of the group
Sp(R?) on Gry(C?") we may assume Wy = W, see equation (2.5.3). Let Uy C Gr(C?")
be the open subset consisting of W € Gr{(C*") such that the projection

Ty V=TC"=C"® (C")" = C" (2.5.14)

onto the first summand (z-space) induces an isomorphism

Tyw = W=C™. (2.5.15)

Observe, that Uy C Gry(C?") is an open neighborhood of the base point W,. For elements
W € Uy we can express w; as a function of z = (2!,...,2"). In fact,

wy =Y Cy2 (2.5.16)

where

Cij € Sym,,,(C™) = {A € Mat(n, C)|A" = A and Im(A) has sym. signature (n,n)}.

Proposition 2.18 The map
C:Uy— Sym,,,(C"), W= C(W):=(Cy) (2.5.18)

is a local para-holomorphic chart for the Grassmannian Gry(C*").
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2.6 The space of compatible ecomplex structures

In this section (cf. [Sch7, Sch8]) we study the differential geometry of the spaces of
ecomplex structures, which are compatible with a given metric or a given symplectic
form. First we recall the definition of these spaces:

Definition 2.13

(i) Let (V,w) be a real (finite dimensional) symplectic vector space. An ecomplex struc-
ture J¢ is called compatible if and only if it satisfies

JPw = —ew. (2.6.1)
The set of such ecomplez structures is denoted by J¢(V,w).

(ii) Let (V,(-,-)) be a real (finite dimensional) pseudo-Euclidean vector space. An ecomplex
structure J¢ is called compatible if and only if it satisfies

T = el ). (2.6.2)

The set of such ecomplez structures is denoted by J<(V, (-, -)).

We use with g = (-, -) the following notations
dV,w), for e = —1,
5V, w) = (V,w)
P(V,w), fore=1

and
AV, g), for e = —1,

FVg) = {fP( ,g), fore=1.

One easily shows the next proposition.

Proposition 2.19  Let wye := g(J*,-) and gje = ew(J, ). Then it holds:
(a) Given J¢ € J9(V,w) then it is J* € J(V, gse).
(b) Given J¢ € J¢(V,g) then it is J¢ € J°(V,wye).

2.6.1 Differential geometry of the sets of compatible complex
structures

The metric case

One can consider J(V, (-,-)) = IV, (-,-)), where V = C" = (R?", j,) is endowed with its
standard complex structure jo and its standard scalar product (-, -) of hermitian signature
(p,q), as a subset in the vector space 50(2p, 2q) = so(V) C Mat(R?") characterized by the
equations

f(4) = —1an, (2.6.3)
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where f : Mat(R?*") — Mat(R?*") is given by f : A — A2 The differential of this map
is dfa(H) = {A,H} for A, H € Mat(R?"). In addition, df has constant rank in points j
satisfying equation (2.6.3), since one sees

kerdf, = {A€so(V)|{j,A} =0},
imdf; = {A€so(V)|[j, Al =0} = u(p,q).

Applying the regular value theorem J(V, (-, -)) is shown to be a submanifold of so(V"). Its
tangent space at j € J(V, (-,-)) is

T, (V. (-.-)) = ker df; = {A € so(V) | {j, A} = 0}. (2.6.4)

Moreover, J(V,{(-,-)) can be identified with the pseudo-Riemannian symmetric space
SOy (2p,2q)/U(p, q), where SOqy(2p,2q) is the identity component of the special pseudo-
orthogonal group SO(2p,2q) and U(p, q) is the unitary group of signature (p, q), by the
map

& SO0(2p,29)/U(p,q) — AV, (")),
gK'_)g.jog_la

which maps the canonical base point o = eK to jj.
Any 7 € J(V, (-, -)) defines a symmetric decomposition of so(V') by

p(j) = {Aeso(V)[{j,A} =0},
ty) = {Aeso(V)[[j, Al =0} =u(p,q)
In particular €(jo) = u(p, ¢). Moreover, one observes T; J(V, (-,-)) = p(j).

Let j € SOy(2p,2¢)/U(p,q) and j = ®(j), then T5500(2p,2q)/U(p, q) is canonically
identified with p(j). We determine now the differential of the above identification:

Proposition 2.20 Let W = &' : J(V,(-,-)) — SOy(2p,2q)/U(p,q). Then it holds at
JjedV.(,-) X
dV :T; 3V, () 2 X —éj_lX € p(4). (2.6.5)

The symplectic case

Now we discuss the differential geometry of J(V,wy) = 971 (V,wy), where wy is the stan-
dard symplectic form on V = C" = (R*", j,).

First, we consider J(V,wy) as a subset of the vector space sp(R?**) C Mat(R*") character-
ized by the set of equations

f(7) = —1ay, (2.6.6)
where f : Mat(R?") — Mat(R?") is given as above. Again, df has constant rank in points

Jj satisfying equation (2.6.6), since one sees
kerdf; = {A€sp(R*™)[{j, A} =0},
imdf; = {A€sp(R™)|[j,A] =0} =u(p,q).
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Applying the regular value theorem we obtain that J(V,wy) is a submanifold of sp(R*").
Its tangent space at j € J(V,wp) is

T, 3(V,wo) = kerdf; = {A € sp(R”") | {j, A} = 0}. (2.6.7)

In addition the manifold J(V, wp) can be identified with the pseudo-Riemannian symmetric
space Sp(R**)/U(p,q), where (p,q) is the hermitian signature of the hermitian metric
g<'7 ) - W(J', ')7 by the map
o SP(RQn)/U(pa Q> - H(V) w0>7
9K — gjog ",
which maps the canonical base point o = eK to jj.
Any j € J(V,wy) defines a symmetric decomposition of sp(R*") by

p(j) = {Aesp(®™)[{j, A} =0},
¢j) = {Aesp®R™)[[j,A] =0} = u(p,q).
In particular €(jo) = u(p, ¢). Moreover, one observes T; J(V, wy) = p(J).

Let j € Sp(R*")/U(p,q) and j = ®(j), then T5Sp(R*") /U (p, q) is canonically identified
with p(j) and for the differential of the identification one obtains:

Proposition 2.21  Let ¥ = &~ : J(V,wy) — Sp(R*")/U(p,q). Then it holds at j €
d(V,wo) .
dV : T; J(V,wp) > X — —§j_1X € p(j). (2.6.8)

2.6.2 Differential geometry of the sets of compatible para-complex
structures

The metric case

One can consider P(V, (-,-)) = YV, (-,-)), where V = C" = R" @ eR" = (R?",jo) is
endowed with its standard para-complex structure j, and its standard scalar product
(-,+), as a subset in the vector space so(n,n) = so(V) C Mat(R?*") characterized by the
equations

f(7) = 1o, (2.6.9)

where f : Mat(R?*") — Mat(R*") is given in the last subsection. We remark, that elements
satisfying equation (2.6.9) define automatically para-complex structures, since they are
trace-free and hence their eigenspaces to the eigenvalues +1 have the same dimension. As
before df has constant rank in points j satisfying equation (2.6.9), since one sees

kerdf, = {A€so(V)|{j.A} =0},
imdf, = {Aeso(V)|[j,Al=0}=uT(C).

Applying the regular value theorem P(V/ (-, -)) is shown to be a submanifold of so(V). Its
tangent space at j € P(V, (-,-)) is

T, P(V, () = kerdf; = {A € so(V) | {j, A} = 0}. (2.6.10)
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Moreover, P(V,(-,-)) can be identified with the pseudo-Riemannian symmetric space
SOg(n,n)/UT(C™), where SOg(n,n) is the identity component of the special pseudo-
orthogonal group SO(n,n) and U™(C™) is the para-unitary group, by the map

d : SOy(n,n)/UT(C™) — PV, (-,-)),
gK = gjO gila

which maps the canonical base point o = eK to jj.
Any j € P(V,(-,-)) defines a symmetric decomposition of so(V') by

p() = {Aeso(V)[{j,A} =0},
tJ) = {Aeso(V)|[j, Al =0} =u™(C").

In particular €(jy) = u™(C"). Moreover, one observes T; P(V, (-,-)) = p(j).

Let j € SOy(n,n)/U™(C™) and j = ®(j), then T5500(n,n)/UT(C™) is canonically identi-
fied with p(j). We determine now the differential of the above identification:

Proposition 2.22  Let ¥ = &' : P(V (-,-)) — SOy(n,n)/U™(C™). Then it holds at
j S iP(V7 <” >)

AU T, PV, () 5 X —%le € p(j). (2.6.11)

The symplectic case

Now we discuss the differential geometry of P(V,wy) = d*(V, wp), where wy is the standard
symplectic form on V = C™ = (R*", j;).

First, we consider P(V,wp) as a subset of the vector space sp(R?*") C Mat(R?") charac-
terized by the set of equations

f(J) = Lan, (2.6.12)

where f : Mat(R?") — Mat(R?") is given as above. Again, df has constant rank in points
Jj satisfying equation (2.6.12), since one sees

kerdf, = {A€sp(R™)|{j,A} =0},
imdf; = {Aesp(R™)|[j,A] =0} = u™(C"),

Applying the regular value theorem we obtain that P(V,wp) is a submanifold of sp(R?").
Its tangent space at j € P(V,wy) is

T; P(V,wy) = ker df; = {A € sp(R*) | {j, A} = 0}. (2.6.13)

In addition the manifold P(V, wp) can be identified with the pseudo-Riemannian symmetric
space Sp(R?*")/U™(C™) by the map

® : Sp(R*™)/U™(C™) — P(V,wp),
QK = gjogilu
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which maps the canonical base point 0 = eK to jj.
Any j € P(V,wy) defines a symmetric decomposition of sp(R?") by

p() = {Aesp®R™)[{j, A} =0},
t(j) = {Ae€sp®R™)|[j, Al =0} =u™(C").

In particular €(jy) = u™(C"). Moreover, one observes T; P(V,wp) = p(j).

Let j € Sp(R*")/U™(C™) and j = ®(j), then T;Sp(R*")/U™(C") is canonically identified
with p(7) and for the differential of the identification one obtains:

Proposition 2.23  Let ¥ = &~ : P(V,wy) — Sp(R*")/U™(C™). Then it holds at j €
iP(V, UJO)
1
dV : T; P(V,wp) 2 X —éj‘lX € p(j). (2.6.14)

2.6.3 Lagrangian Grassmannians and ecomplex structures

We are now going to identify the spaces of compatible ecomplex structures J¢(V,w) on
V =C" = (R*", j§) with the above discussed Lagrangian Grassmannians.

Given an element J¢ € J°(V,w) we define g(-,-) = ew(J, ).

The data (g,w) defines on V' an ehermitian sesquilinear scalar product by

h=g+iw. (2.6.15)

In the complex case, i.e. for e = —1, the hermitian signature (k,1) of which is determined
by the symmetric signature (2k,2!) of g.

Proposition 2.24  (¢f. Woodhouse [W] ch. &5 for ¢ = —1) Let V& = V @ C, be
the ecomplexifaction of V.. Then there is a bijective correspondence between Lagrangian
subspaces L € Gry' (C**) and compatible ecomplex structures in J<(V,w).

Proof: First, let a compatible ecomplex structure J¢ be given.
The map
r . v-ve
1 .
X — §(X + e JX)

identifies the ecomplex vector space (V, J¢) with the Lagrangian subspace
Lr={X+alJX|XeV}cV,

i.e. the maximal subspace W satisfying J¢w = ¢, in such a way, that h coincides with
the product

(2,7 = —21w(Z, 7).
Conversely, we start with a Lagrangian subspace £ C VC¢ such that h)¢ is non degenerate.
This is equivalent to the condition £ N L = {0}.
Claim: L defines a unique J€ such that L = L j..

From LNL = {0} we get VC = L @ L. Therefore J°X is uniquely given by expressing
X as X = Z + Z with Z € L and defining J(X) = (Z — Z). a
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2.7 Period domains of variations of cHodge struc-
tures

We recall some information about period domains of variations of eHodge structures
and have a closer look at the description of these either as homogeneous spaces or as flag
manifolds, since this is crucial to understand our later results. A reference for the complex
case is the book [CMP]. Again the complex case is classical and the para-complex case is
new.

We introduce the period domain parameterizing the set of polarized eHodge structures
on a fixed real vector space H having a fixed weight w and fixed eHodge numbers hP9.
Such an eHodge structure is determined by specifying a flag F* ¢ Fv=! c ... C FY of
fixed type satisfying the two bilinear relations. The set of such flags satisfying the first
bilinear relation is usually called D and can be described in a homogeneous model G¢, /B
where G, is the group of automorphisms of H® fixing the polarization b and B is the
stabilizer of some given reference structure F;.

Proposition 2.25 The set D classifying e Hodge decompositions of weight w with fized
eHodge numbers hP? which obey the first bilinear relation is a flag manifold of type
(fws---s fo), fp=dimFP v = [WTH} , such that

(i) in the case of even weight w = 2v each FP| for p = w,..., v+ 1, is isotropic with
respect to the bilinear form b.

(i) in the case of odd weight w = 2v — 1 each FP, for p = w,..., v, is isotropic with
respect to the bilinear form b.

It can also be identified with the homogeneous manifold G,/ B.
Proof:

(i) In the case of even weight we recover the spaces F?, forp=0,..., (w—v+1) = v+1,
from FP, for p=w,...,v, by using the decomposition

HS = pp gy, Fo il

where 1 is taken with respect to the non-degenerate ehermitian sesquilinear form
b(+,7). The condition on F?, for p=w,...,v+1, to be isotropic is the first Rieman-
nian bilinear relation.

(ii) In fact, for odd weight, one can recover the whole flag from F? for p = w, ..., v, by
using the decomposition
HC = pr g, Fooi,

where 1 is taken with respect to the non-degenerate ehermitian sesquilinear form
b(-,7). The condition on F?, for p = w,...,v, to be isotropic is in the case of odd
weight w inherited from the first Riemannian bilinear relation. O
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In the complex case B is a parabolic subgroup. There seems to be no equivalent para-
complex notion in the literature.
The subset of D classifying eHodge structures which also satisfy the second bilinear rela-
tion is called D. As a non-degeneracy or a positivity condition the second bilinear relation
defines an open subset of D.

Proposition 2.26  The period domain D classifying eHodge filtrations F* of fized di-
mension fP = dim FP satisfying both bilinear relations is an open subset of D and it is a
homogeneous manifold

D=G/V,
where G is the group of linear automorphisms of H preserving b and V = G N B.

We consider the case of Hodge structures which are strongly polarized. Given the
space G/V, we call G/K where K is the maximal compact subgroup of G the ‘associated
symmetric space’ and denote the canonical map by

m:G/V - G/K.

The case of odd weight

We now have a glance at the groups G,V and K and the associated flag manifolds for
Hodge structures of odd weight. Using this we describe for strongly polarized variations of
Hodge structures the map 7 at the level of flag manifolds. This description is needed later
to relate the (classical) period map to the epluriharmonic maps appearing in ett*-geometry.

In the case of odd weight w = 2] 4+ 1 for [ = v — 1 the form b is anti-symmetric due
to the first Riemannian bilinear relation. In particular the real dimension of H is even.
Hence the group G is the symplectic group Sp(H,b) = Sp(R") with r = dimg H € 2N.
The maximal compact subgroup of Sp(R") is K = U(r).

We define the b-isotropic ecomplex vector space

[
L= EB HY—pp — o=l _ g
p=0

One sees by equation (1.6.4) B
H =L L. (2.7.1)

Since they have the same dimension, £ and £ are, by the first bilinear relation, Lagrangian
subspaces.

We further fix a reference structure F.

Taking successively eunitary bases?

iy dim(L
{Fiyime)

3This means a basis with h(f;, ;) = £6;;.




Harmonic and epluriharmonic maps 73

and

{fiym) (2.7.2)

with respect to the ehermitian sesquilinear scalar product
h<'7 ) = (_1)w(w71)/2€pfqb<"7)

of the flags
HYY c H"Y g H M c...cL

and
H c H" @ H" M c...CcL,

and extending these with {3825 and {fi}m(%) 4 symplectic bases of L and L, one

sees that Sp(IR") acts transitively by change of the basis from { fi}{(%) o { piydim(&e),

(i) First we discuss the complex case.
If we have a strongly polarized variation of Hodge structures, then the stabilizer of
F? is the group V = Hé:o U(h*~PP). The map 7 : G/V — G/K is at this level
nothing else than the forgetful map from the flag H*® c H* '@ Hv M c...c L
to the subspace L. We remark, that the stabilizer of L, is contained in the group
U(r), if we assume the variation of Hodge structures to be strongly polarized.
If we consider a weakly polarized variation of Hodge structures, then the stabilizer
of F? is the group V = Hé:o U(ky,l,), where (k,,l,), with h?? = k, + [, is the
hermitian signature of h restricted to H* PP with ¢ = w — p.
The stabilizer of L, is in this case an element of the group U (k, 1), where r = 2(k+1)
and (k,[) is the hermitian signature of h on L,, i.e. k=) k, and [ = _1,.
Given a variation of Hodge structures of odd weight over the complex base manifold
(M, J) we denote by L the (holomorphic) map

L:M — SpR")/UKk,I), 7.
x — L, (2.7.4)

The Grassmannian of Lagrangian subspaces, on which h has signature (k,[) will
be denoted by Grp!(C") and on which & is positive definite will be denoted by
Gro(C") = Grp°(CN).

(ii) In the para-complex case the stabilizer of L, is the group U™(C™), with r = 2n,
compare definition 1.7. As before given a variation of para-Hodge structures of odd
weight w over the para-complex base manifold (M, 7) we denote by L the (para-
holomorphic) map

L:M — Sp@R")/UT(C"),

z — L.

The associated Grassmannian of Lagrangian subspaces will be denoted by Grg(C?")
with r = 2n.
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Chapter 3

tt*-geometry and some of its
solutions

In the first part of this chapter we introduce ett*-bundles and characterize these in terms
of explicit geometric data and equations on this data. In the second section we study
ett*-bundles on the tangent bundle TM of a given almost ecomplex manifold (M, J¢). In
particular special ecomplex, special eKahler and Levi-Civita flat nearly eKahler manifolds
are solutions of tt*-geometry on the tangent bundle T'M. These three classes of solutions
are discussed separately. The last two sections of this chapter deal with variations of
eHodge structures and eharmonic bundles as solutions of tt*-geometry.

3.1 tt*-bundles

In this section we introduce the real differential geometric definition of an et¢*-bundle. For
integrable ecomplex structures the complex geometric version was given in [CS1, Sch6]
and the para-complex geometric version was introduced in [Sch4]. The non-integrable
case and the symplectic version were first considered in complex geometry in [Sch7] and
in para-complex geometry in [Sch§].

Definition 3.1 An ett*-bundle (E, D, S) over an almost ecomplex manifold (M, J¢) is
a real vector bundle E — M endowed with a connection D and a section S € I'(T*M &
End E) satisfying the ett*-equation

R=0 foral 6cR, (3.1.1)
where R? is the curvature tensor of the connection DY defined by
D% := Dx + cos(0)Sx +sin (0)Syx forall X €TM. (3.1.2)

A metric ett*-bundle (E, D, S, g) is an ett*-bundle (E, D, S) endowed with a possibly in-
definite D-parallel fiber metric g such that S is g-symmetric, i.e. for all p € M

9(SxY.Z) =g(Y,SxZ) foral XY, ZeT,M. (3.1.3)

75
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A unimodular metric ett*-bundle (E, D, S, g) is a metric ett*-bundle (E, D, S, g) such that
trSxy =0 forall X € TM.

An oriented unimodular metric ett*-bundle (F, D, S, g,or) is a unimodular metric ett*-
bundle endowed with an orientation or of the bundle E.

A symplectic ett*-bundle (E, D, S,w) is an ett*-bundle (E, D, S) endowed with the struc-
ture of a symplectic vector bundle* (E,w), such that w is D-parallel and S is w-symmetric,
t.e. forallpe M

wSxY,Z)=w(Y,SxZ) foradl  X,Y,ZeT,M. (3.1.4)

In the case of moduli spaces of topological quantum field theories [CV, D] and the
moduli spaces of singularities [Her|, the complexified tt*-bundle E€ (This means we con-
sider ¢ = —1.) is identified with T'YM and the metric g is positive definite. The case
E = TM, and hence E® = T"OM 4 T%' M includes special complex and special Kihler
manifolds, as we have proven in [CS1] and follows from [Her| in the complex situation.
This was shown in [Sch4] in the para-complex framework. We discuss this later in more
details.

Remark 3.1
1) If (E, D, S) is an ett*-bundle then (E, D, S%) is an ett*-bundle for all § € R, where

S% .= D — D = cos.(0)S + sin.(0)S. . (3.1.5)

The same remark applies to metric and symplectic ett*-bundles.
2) Notice that an oriented unimodular metric ett*-bundle (E, D, S, g, or) carries a canon-
ical metric volume element v € T'(AN"E*), r = vk E, determined by g and or, which is
D?-parallel for all § € R.
Further, a symplectic ett*-bundle (E, D, S,w) of rank 2r carries a D-parallel volume given
bywA ... Nw.

—

T times

The following proposition characterizes ett*-bundles (£, D, S) in form of explicit equa-
tions for D and S. These equations are important in the later calculations.

Proposition 3.1  Let E be a real vector bundle over an (almost) ecomplex manifold
(M, J¢) endowed with a connection D and a section S € I'(T*M ® End E).
Then (E, D, S) is an ett*-bundle if and only if D and S satisfy the following equations:

RP+8SAS=0,

S NS is of type (1,1),

[Dx, Sy] — [Dy, Sx] — Sxy; =0, VX,Y € T(TM),
[Dx,Syey] — [Dy, Syex] — Syexy) =0, VX, Y e (TM).

Fizing a torsion-free connection on (M, J¢) the last two equations are equivalent to

d”S =0 and d°S; =0. (3.1.10)

!see D. Mc Duff and D. Salamon [McDS]
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Proof: As the attentive reader observes, it is easier to show this proposition after ecomplexi-
fying T'M. But since one idea of this work was to formulate these results in terms of real
differential geometry, we give a real version of the proof.

To prove the proposition, we have to compute the curvature tensor of D?.

Let X,Y € I'(T'M) be arbitrary:

0
Ry y

Ry
[Dx, cos.(0)Sy + sin.(0)Sjey]
[cos.(0)Sx + sin(0)Sjex, Dy]
[cose(60)Sx + sing(0)Sjex, cosc(0)Sy + sin (6)S jey]
— c05¢(0)S1x,y] — sine(0)Sserx,v]
Ry
sin 2 (0)[Syex, Syey]
cos2(9)[Sx, Sy]
(0)sine(0) ([Sx, Ssey| + [Ssex, Sy])
cos(6) ([DX7 Sy] + [Sx, Dy] — S[X,y})
sing(6) ([SJeX, Dy + [Dx, Syey] — SJG[X,y}) )

+ o+ +

COS,

+ o+ + + +

We recall the theorems of addition
cos(0)sin.(0) = %sin€(20), (3.1.11)
cos2(0) = %(1 + cosc(26)) and
sin2(0) — %6(6086(29) .y
to find

1
Riy = BXy+5 (9% Sv] = e[Sex, Srev])

cos ( ) ([DX ] + [SX: DY] - S[X:Y])
sin () ([Ssex, Dy] + [Dx, Syey] = Syepxvy)

1
5(3086(29) ([Sx, Sy] + G[SJeX, Ssz])

=
><
+ o+ o+

+

%sing(%’) ([Sx, Syey] + [Srex, Sy]) -

Taking "Fourier-coefficients’ yields

RQY +5 ([SX,SY] — €[Syex, Syev]) =0,
Sx,Sy] + G[SJeX,SJe ] =0,

Sx,Syey] + [Srex,Sy] =0,

Dy, Sy] + [Sx, Dy| — Six,y] = 0,

[
[
[
[SJGX, Dy] + [Dx, Syey] = Syepxyy = 0.
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The first three equations give
RYy 4 [Sx,Sy] =0, SAS(X,Y) = [Sx, Sy] = —€[Syex, Syey].
Choosing a torsion-free connection on M the last two equations yield

d?S =0 and d”S;. = 0.

3.2 Solutions on the tangent bundle of an almost
ecomplex manifold

The following sections are contained in [Sch7, Sch§].

3.2.1 Solutions without metrics

Given an almost ecomplex manifold (M, J¢) with a flat connection V it is natural to
consider the one-parameter family of connections V?, which is defined by

V&Y = exp(0J9)V x(exp(—0J°)Y) for X, Y € T'(TM), (3.2.1)

where exp(6J¢) = cos(0)Id + sin.(0)J.
Recall, that the flatness of V implies the flatness of the family of connections V? (compare
remark 1.3).

Let us recall a definition

Definition 3.2  Two one-parameter families of connections V? and D% on some vector
bundle E with @ € R are called (linearly) equivalent with factor a € R if they satisfy the
equation V% = D,

We are now going to analyze the form of ett*-bundles (T'M, D, S) on the tangent
bundle TM of M for which the family of connections DY defined in equation (3.1.2) is
linearly equivalent to the family of connections V? defined in equation (3.2.1).

Proposition 3.2  Given an almost ecomplex manifold (M, J¢) with a flat connection V
and a decomposition of V.= D+S in a connection D and a section S in T*M@End (T'M).
Then (TM, D, S) defines an ett*-bundle, such that the family of connections DY is linearly
equivalent to the family of connections V° with factor o = 2 if and only if S and D
satisfy

SJeX - :EJGSXY

and
—(DxJ)Y = JSxY + SxJY ={Sx, J}Y

for all X, Y € I'(TM).



tt*-geometry and some of its solutions 79

Proof: First one has to analyze the family of connections V? for X,Y € I'(T M)

VY = exp(0J°)(Dx + Sx)[(cos.(0)Id — sin.(0)J)Y]
= DxY —exp(0J)sin(0)(DxJ)Y
(cose(0)Id + sin(0)J)Sx (cosc(0)Id — sin.(0)J)Y
DxY — (cos.(0)sin(0) + sin2(0)J)(Dx J)Y + cos2(0)SxY
sin 2(0)JSx JY — cos(#)sin(0)[Sx, JIY,

_|_

which yields with the theorems of addition (see equation (3.1.11)), the identity
V&Y = DxY — %sine(%)(DXJE)Y - %6(6086(29) —1)JY(DxJ)Y
b1 cos(20)SxY %6(6086(29) LISy Y — %sine(QG)[SX, Iy
= DyxY + % [Sx +eJSxJ +eJ DxJV|Y
4 %sine(%)) 17, Sx] — DxJ] Y

1
+ 50086(29) [SX — €J€ij6 — €J€DX<]€] Y

!

= DxY +cos.(V)TxY + sin.(9)TjexY with 0 = £20,

where we have to determine 7' € I'(T*M ® End (T'M)).
Comparing coefficients of 1, cos(nd), sine(nvd) with n = 1,2 yields

—eJ(DxJ)Y = SxY +eJSxJY, or equivalently (3.2.2)
—(DxJ)Y = JOxY +SxJY ={Sx, JYVY,
1 2.
IxY = S(SxY — e SxJY —eJ(DxJ)Y) G225y, (3.2.3)
1
TJEXY - ié([JE,Sx]Y— (ij6>Y)
(3.2.2)

2. 1
= :|:§<J€SXY—ijEY+JESXY+ij€Y)
= +J¢SxY. (3.2.4)

The last two equations yield the constraint on S
SJEX - Zi:Je;SXY

and the first equation the one on D and S. O

Now we suppose the connection D to be ecomplex. Such a connection exists on every
almost ecomplex manifold, as we have shown in theorem 1.1.

Corollary 3.1 Given an almost ecomplex manifold (M, J¢) with a flat connection V and
a decomposition of V.= D + S in a connection D and a section S in T*M & End (T'M),
such that J¢ is D-parallel, i.e. DJ* = 0. Then (TM,D,S) defines an ett*-bundle, such
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that the family of connections DY is linearly equivalent to the family of connections V°
with factor a = £2 if and only if S satisfies

SJeX = Il:JESX and {SX, Je} = 0.

Proof: The second constraint in proposition 3.2 is for D.J¢ = 0 the condition {Sx, J} = 0.

The first constraint of proposition 3.2 is exactly Sjex = £JSx {5, L73=0 FSxJC. O

We are going to show some uniqueness result. Therefore we prove the

Lemma 3.1 Let (M, J) be an almost ecomplex manifold. Given a connection ¥V on M

which decomposes as V = D + S, where D is a connection on M and S is a section in
T*M ® End (TM), such that J¢ is D-parallel, i.e. DJ* =0 and S anti-commutes with
J¢ e, {Sx,J} =0 forall X e T(T'M). Then S and D are uniquely given by

1
SxY = —5eJ (VxJ)Y and DxY =VxY = SxY for XY €T(TM).  (3.2.5)

Otherwise, given a connection V and define D and S by equation (3.2.5), then D and S
satisfy DJ¢ =0 and {Sx,J} = 0.

Proof: First we observe V = D + S and
1 | R
SxJY = —§6J6(VXJE)J6Y = 56(]6 (VxJ)Y = —JSyY,
where the second equality follows from deriving J* = eld. Further it is

{8x,J}=0

(DxJ)Y = (VxJOVY — [Sy, JIY (VxJ)Y +2JSxY = 0.

Now we prove the uniqueness: Suppose there exist D' and S’ with the same properties.
Thus we get

0= (DYJV)Y = (VxJ)Y =[S, J|Y = (VxJ)Y +2J5Y
and consequently
1
SLYY = —éeJG(VXJG)Y = SxY and D}yY =VxY — S4Y =VxY — SxY = DxY.

a

Summarizing corollary 3.1 and lemma 3.1 we find the following uniqueness result:

Theorem 3.1  Given an almost ecomplex manifold (M, J¢) with a flat connection V and
a decomposition of V.= D + S in a connection D and a section S in T*M & End (T'M),
such that J¢ is D-parallel, i.e. DJ = 0. If (I'M,D,S) defines an ett*-bundle, such that
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the family of connections D is linearly equivalent to the family of connections V9 with
factor a = £2, then D and S are uniquely determined by the equations

S— —%ef(vr) (3.2.6)

and

D=V-S§. (3.2.7)

Moreover, (TM,D,S) as given by equation (3.2.6) and (3.2.7) defines an ett*-bundle,
such that the family of connections D is linearly equivalent to the family of connections
VY with factor o = £2, if and only if J¢ satisfies (V jexJ¢) = £J(VxJ¢) and D and S
are given by S = —1eJ(VJ) and D=V - S.

In the following propositions we are going to give some classes of examples which satisfy
the condition Sjex = £JSx.

Proposition 3.3  Given an almost ecomplex manifold (M, J¢) with a connection V and
let S be the section in T*M @ End (T'M) defined by

1
S = —5ed (V). (3.2.8)
If the pair (V, J¢) satisfies one of the following conditions

(1) (V,J) is special, i.e. (VxJ)Y = (VyJ)X foral XY € I(TM),

(ii) (V,J) satisfies the nearly eKahler condition, i.e. (VxJ)Y = —(VyJ)X for all
X,Y € (TM),

then it holds SjxY = —JSxY.

Proof: 1If the condition (i) or (ii) holds, we obtain the identity

(VyexJVY = £(VyJ)JX = £ [eVyX — JVy (JX)]
FJ(Vy (JX) = JVyX] = FI(Vy J)X = —J(VxJ)Y.

The following calculation finishes the proof

1 1
SyxY = =5eJ (Vyx JVY = ZeJ?(VxJ)Y = —JSxY.

Proposition 3.4  Given an ecomplex manifold (M, J¢) with a connection V and let S
be the section in T*M @ End (T'M) defined by

1
§ = —5el(VJ). (3.2.9)

If V is (anti-)adapted, i.e. VyexY = £JVxY for all eholomorphic vector fields XY,
then it holds SjexY = £J<SxY.
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Proof: Since V is (anti-)adapted, we obtain for all eholomorphic vector fields X, Y
(Vyex J)Y = £J(VxJ)Y.

The following computation gives the proof

1 1
SrexY = —éeje(vJeXJE)Y = ¢§EJ€2(VXJ6)Y = 4+J°SxY.

Remark 3.2

One sees easily that condition (i) of proposition 3.3 is the symmetry of SxY and condition
(1) is its anti-symmetry. We recall that if the connection V is torsion-free, flat and special
then (M, J¢, V) is a special ecomplex manifold, see subsection 1.4. ett*-bundles coming
from special ecomplex manifolds and special € Kihler manifolds were studied in [CS1, Sch3]
and are discussed later in subsection 3.2.4.

Further we want to remark that the second condition arises in nearly e Kahlerian geometry
and therefore is quite natural. These geometries as solutions of tt*-geometry are discussed
in subsection 3.2.3.

Finally, the notion of adapted connections appeared in the study of decompositions on
(eholomorphic) vector bundles over ecomplex manifolds, compare the paper of Abe and
Kurosu [AK] for the complex and a common paper with M.-A. Lawn-Paillusseau [LS] for
the para-complex case.

3.2.2 Solutions on almost echermitian manifolds

In this section we consider almost ecomplex manifolds (M, J¢) endowed with a flat con-
nection V such that (V, J¢) is special or satisfies the nearly eKéhler condition and analyze
under which assumptions these define symplectic or metric ett*-bundles.

First, we recall a lemma from tensor-algebra:

Lemma 3.2 Let V be a vector space o € T3*(V*) an element in the third tensorial power
of V*, the dual space of V. Suppose that a(X,Y, Z) is symmetric (resp. anti-symmetric)
in X,Y andY,Z and o(X,Y, Z) is anti-symmetric (resp. symmetric) in X, Z then oo = 0.

Proof: 1t is
a(X,)Y, Z)=0a(Y,X,Z) =0ca(X,Z,Y)
with ¢ € {£1} which implies
a(X,Y,Z) =0a(Y, X, Z) = *alY, Z,X) = c*a(Z,Y, X).

But further it holds
a(X,)Y,Z) = —oa(Z,Y, X)

and consequently
—a(Z,Y,X) =c*a(Z,Y,X) = a(Z,Y, X).
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This shows a = 0. O

The subsequent proposition shows that the condition to be special is not compatible with
symplectic ett*-bundles:

Proposition 3.5 Given an almost ehermitian manifold (M, J¢, g) with a flat connection
V., such that (V,J¢) is special. Define S, a section in T*M & End (TM), by

1
S =~ el (V). (3.2.10)

then (T'M,D =V — S, S) defines an ett*-bundle. Suppose, that (TM,D,S,w = g(J,"))
s a symplectic ett*-bundle, then it is trivial, i.e. S = 0.

Proof: In fact we know from theorem 3.1 and proposition 3.3, that (T'M, D, S) is an
ett*-bundle.

Suppose, that (T'M, D, S,w = g(J,-)) is a symplectic ett*-bundle. To finish the proof,
we define the tensor

a(X,Y,Z) = w(SxY, Z) = g(JSxY, Z), with X, Y, Z € T,M.

a(X,Y, Z) is symmetric in XY, since V.J€ is special, i.e. is symmetric in X, Y.
Further it holds

a(X,Y,Z) = w(SxY.Z)=—-w(Z,5xY)
= —w(Z,5%X)=—-w(S5Z,X)=-w(SzY,X)=—a(Z,Y, X),
which is the anti-symmetry of a(X,Y, Z) in X, Z. Finally
a(X,Y,Z) = w(SxY,Z)=w(Y,SxZ)
w<Y7 SZX) = _w<SZX7 Y) = —Oé(Z, X, Y) = _a<X7 Z, Y>7

i.e. the anti-symmetry of a(X,Y,Z) in Y, Z.
Hence « vanishes and consequently S. O

Otherwise, the nearly eKéahler condition is not compatible with metric et¢*-bundles:

Proposition 3.6 Given an almost ehermitian manifold (M, J¢, g) with a flat connection
V, such that (V, J¢) satisfies the nearly e Kihler condition. Define S, a section in T*M ®
End (TM), by

1
S = —§€J€(VJ€), (3.2.11)
then (TM,D =YV — S, S) defines an ett*-bundle. Suppose, that (TM, D, S, g) is a metric

ett*-bundle, then it is trivial, i.e. S = 0.

Proof: In fact we know from theorem 3.1 and proposition 3.3, that (7'M, D,S) is an
ett*-bundle.
Suppose, that it is a metric ett*-bundle. To finish the proof, we define the tensor

a(X,Y,Z) = g(SxY, Z), with X,Y,Z € T,M.
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a(X,Y, Z) is anti-symmetric in X, Y, since V.J¢ is anti-symmetric in X,Y by the nearly
eKahler condition.
Further it holds

a(X, Y, Z) = g(SxY,Z)=g(Z,SxY)
= —9(Z,5vX)=—9g(SvZ,X)=g(SzY,X) =a(Z,Y, X)

which is the symmetry of o(X,Y, Z) in X, Z. Finally

O((X,Y,Z) = g(SXY7Z)29<Y75XZ>
= —g(Y,582X)=—9(5zX,)Y)=—a(Z,X,Y) =a(X,Z,Y),

i.e. the symmetry of a(X,Y,Z) inY, Z.
Hence « vanishes by the above lemma and so does S. O

The following theorem gives solutions of symplectic ett*-bundles on the tangent bundle,
which are more general then the later discussed nearly eKahler manifolds in the sense,
that we admit the connection V to have torsion, but more special in the sense, that our
connection V has to be flat.

Theorem 3.2  Given an almost ehermitian manifold (M, J¢, g) with a flat metric con-
nection V, such that (V, J) satisfies the nearly e Kihler condition. Define S, a section in
T*M ® End (TM), by

1
S == el (V). (3.2.12)

then (TM,D =V — S, S,w = g(J,)) defines a symplectic ett*-bundle. In addition,
it is DJ¢ = 0. Moreover, the torsion TP of D and the torsion TV of V are related by
TP =TV —28.

Proof: In fact we know from theorem 3.1 and proposition 3.3, that (T'M, D, S) is an
ett*-bundle.

It remains to check Dw = 0 and that S is w-symmetric.

First we remark, that, since ¢ is ehermitian and Vg = 0, VxJ¢ is skew-symmetric with
respect to g. Using this we show by the following calculation, that S is skew-symmetric
with respect to g:

—2e9(SxY,Z) = g(J(VxJ)Y,Z) = —g((VxJ)Y,JZ)
= (Y, (VxJ)IZ) = —g(Y, J(VxJ)Z) = 2eq(Y, Sx 7).

The definition of w = ¢g(J¢,-) and {Sx, J} = 0 yield the w-symmetry of Sx.
Further it holds D =V + %EJ ¢V J¢, which implies

1
DJ = VJ 4 S JVI,J] = 0.

Hence we see, that Dw = 0 if and only if Dg = 0. But Vg = 0 and S is skew-symmetric
with respect to g, so g is parallel for D =V — S.
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This shows, that (T'M, D =V — S, S,w) is a symplectic ett*-bundle.
Calculating the torsion we find TP7(X,Y) = TV(X,Y) - SxY +Sy X = TV(X,Y)—-2SxY.
O

The next theorem gives solutions of metric ett*-bundles on the tangent bundle, which
are more general then special eKahler manifolds in the sense, that we admit connections
V with torsion.

Theorem 3.3  Given an almost ehermitian manifold (M, J¢, g) with a flat connection
V, such that (V,J¢) is special and the fundamental two-form w = g(J¢,-) is V-parallel.
Define S, a section in T*M @ End (T M), by

1
S = —§€JE(VJE), (3.2.13)

then (IT'M,D =YV — S,S,g) defines a metric ett*-bundle. In addition, it is DJ =0 and
the torsion TP of D equals the torsion TV of V.

Suppose that V is torsion-free, then D is the Levi-Civita connection of g, (M, J¢, g) is an
eKdhler manifold and (M, J¢, g, V) is a special e Kihler manifold.

Proof: In fact we know from theorem 3.1 and proposition 3.3, that (T'M, D, S) is an
ett*-bundle.

It remains to check Dg = 0 and that S is g-symmetric.

First we remark that w(JX,Y) = —w(X,JY) as ¢ is ehermitian. This yields using
Vw = 0 the w-skew-symmetry of VxJ¢, which implies that Sx = —3€J(VJ¢) is w-skew-
symmetric, since J¢(VxJ¢) = —(VxJ¢)J. Finally {Sx, J°} = 0 shows the g-symmetry
of S)(.

Further it is

1
DJ = VI + 5 JVI, ] =0

and consequently Dg = 0 is equivalent to Dw = 0.

From Vw = 0 and the w-skew-symmetry of S it follows Dw = (V — S)w = 0.

The symmetry of VJ¢ ie. (VxJ)Y = (VyJ9)X forall X, Y € TM implies SxY = Sy X.
This shows using D = V — S that TP =TV.

Suppose now that V is torsion-free, then D is torsion-free and consequently the Levi-
Civita connection of g. Therefore DJ¢ = 0 implies the vanishing of the Nijenhuis tensor.
Further the equation Vw = 0 implies dw = 0 since V is torsion-free. Hence (M, J¢, g) is
eKéhler. In addition (M, J¢, V) is special ecomplex by the conditions on V and J¢. As it
holds Vw = 0, (M, J¢,V, g) is special eKahler. O

In [CS1, Sch3] we studied special eKéhler solutions of ett*-geometry in more details. The
results are discussed in subsection 3.2.4.

3.2.3 Nearly cKahler manifolds

In this section we want to apply the above results to nearly eKahler manifolds and we use
the notation of subsection 1.3.
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Corollary 3.2  Given a nearly eKdhler manifold (M, J¢, g) such that its Levi-Civita
connection V = V9 is flat and let S be the section in T*M @ End (T'M) defined by

1
S = el (V). (3.2.14)

then (TM,V,S) defines an ett*-bundle. Suppose, that (TM,V,S,g) is a metric ett*-
bundle, then it is trivial, i.e. S =0 and consequently (M, J¢, g) is eKdhler.

Proof: By setting D = V we are in the situation of proposition 3.6. O

Theorem 3.4  Given a nearly eKdhler manifold (M, J¢, g) such that its Levi-Civita
connection V is flat. Let S be the section in T*M @ End (T'M) defined by

S .= —%eje(VJﬁ), (3.2.15)

then (TM,V,S,w = g(J,-)) is a symplectic ett*-bundle. Further it holds

B(X,Y,Z) = —2¢(SxY, Z) and VJ = 0. (3.2.16)

Proof: By setting D = V we are in the situation of theorem 3.2. In addition it holds

29(SxY,Z) = —eg(J(VxJ)Y,Z) = eg((VxJ)Y, ' Z) = —B(X,Y, 2).

Remark 3.3

Nearly Kdhler manifolds (M, J,g) such that their Levi-Civita connection V9 is flat were
characterized in common work with V. Cortés [CS2]. More precisely, a constructive classi-
fication of nearly Kdhler manifolds with flat Levi- Civita connection was given. We further
recall that a Levi-Clivita flat nearly Kdhler cannot be strict. This means that the more in-
teresting examples appear for non definite signature.

3.2.4 Special eccomplex and special eKahler manifolds

In this subsection we consider another time ett*-bundles on the tangent-bundle T'M of
an ecomplex manifold (M, J¢) and discuss the results which were published in [CS1] for
e = —1 and [Sch3] for ¢ = 1. More precisely, we analyze solutions coming from special
ecomplex and special eKahler manifolds. In this context it is natural to restrict to ett*-
bundles, such that the family of connections D? is torsion-free.

Definition 3.3 An ett*-bundle (T M, D, S) over an ecomplex manifold (M, J¢) is called
special if D is torsion-free and special, i.e. D°J¢ is symmetric, for all 6 € R.

Proposition 3.7  An ett*-bundle (T M, D, S) is special if and only if D is torsion-free
and DJ¢, S and Sy are symmetric.



tt*-geometry and some of its solutions 87

Proof: The torsion T? of DY equals
TY(X,Y)=T(X,Y) + cos.(0)(SxY — Sy X) +sin(0)(SyxY — Syey X)  (3.2.17)

where T is the torsion-tensor of D. This implies, that 7% = 0 for all # € R if and only if
T =0and S and Sy are symmetric.
The equation

(DS J)Y = (Dx J)Y + cosc(0)[Sx, JTY +sin(0)[Ssex, JTY (3.2.18)
B LI=0 (D JYY — 2c08.(0) J¢ SxY — 2sing(8) J¢ SyexY

shows that DYJ¢ is symmetric if and only if DJ¢, S and S are symmetric.

Conversely, let T = 0 and D?J¢ be symmetric: Then the first part of the proof yields,
that S and S are symmetric and 7' = 0. Equation (3.2.18) implies finally the symmetry
of DJe. O

Theorem 3.5

(i) Let (M, J¢, V) be a special ecomplex manifold. Put S := —3eJV.J and D :=V — 5.
Then (T'M, D, S) is a special ett*-bundle with the following additional properties:

a) SxJ¢=—JSx forall X € TM and
b) DJ< = 0.

This defines a map P from special ecomplexr manifolds to special ett*-bundles.

(ii) Let (TM,D,S) be a special ett*-bundle over an ecomplex manifold (M, J). Then
(M, J,V := D+1S8) is a special ecomplex manifold. This defines a map ¥ from spe-
cial ett*-bundles to special ecomplex manifolds such that Vo® = Id. If (TM, D, S) is
a special ett*-bundle satisfying the conditions a) and b) of (i), then ®(¥(TM, D, S)) =
(TM,D,S).

(iii) Let (M, J¢ g,V) be a special eKdhler manifold with S and D as in (i). Then
(TM,D,S,g) defines a special metric ett*-bundle satisfying a) and b) of (i). This
defines a map, also called ®, from special e Kdhler manifolds to special metric ett*-
bundles.

() Let (TM,D,S,qg) be a special metric ett*-bundle over an ehermitian manifold
(M, J¢, g) satisfying the conditions a) and b) in (i). Then (M, J¢, g,V := D +5)
15 a special e Kahler manifold. In particular, we have a map ¥ from special metric
ett*-bundles over ehermitian manifolds (M, J¢, g) satisfying the conditions a) and b)
in (i) to special e Kihler manifolds. Moreover W is a bijection and V! = .

(v) Let (TM,D,S,q) be a metric ett*-bundle over an ehermitian manifold (M, J¢, g)
satisfying the conditions a) and b) in (i) and such that D is torsion-free. Then it is
special if and only if (M, J¢, g,V := D + S) is a special e Kiahler manifold.
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Proof:

(i) From theorem 3.1 and proposition 3.3 we know, that ("M, D, S) is an ett*-bundle. This
ett*-bundle is special, since the family of connections D and the family of connections
VY are linearly equivalent and since by proposition 1.4 (M, J¢,V?) is a special eKihler
manifold. The additional properties hold, as (M, J¢, V) is a special ecomplex manifold
(compare proposition 1.6 and 1.8).

(ii) In order to prove the second statement, let (T'M, D, S) be a special ett*-bundle, i.e.
DY is flat, torsion-free and special. In particular, V = D+ S = D is flat, torsion-free and
special. Hence (M, J¢, V) is a special ecomplex manifold. Obviously we have ¥ o ® = Id.
Conversely, let (T'M, D, S) be a special ett*-bundle satisfying DJ¢ = 0 and SxJ¢ = —JSx
for all X € T,M. Then we use lemma 3.1 to recover D and S uniquely from V = D 4 S
by the formulas S = —%EJEVJE and D =V — S.

(iii) Let (M, J¢, g, V) be a special eKahler manifold with D and S defined as in (i). Then
(TM,D,S) is a special ett*-bundle satisfying a) and b), due to (i). Proposition 1.7 im-
plies, that Dg = 0 and proposition 1.8 implies, that S is g-symmetric and hence that
(TM,D,S,g) is a special metric ett*-bundle.

(iv) Let (TM, D, S, g) be a special metric ett*-bundle over an ehermitian manifold (M, J¢, g)
satisfying a) and b) in (i). By (ii), we know already, that (M, J¢,V := D +.5) is a special
ecomplex manifold. Therefore it remains to prove Vw = 0. This implies dw = 0, as
V is torsion-free. We have Dg = 0 and DJ¢ = 0 (property b) in (i)) and consequently
Dw = 0. As Dw = 0, Vw = 0 is equivalent to the w-skew-symmetry of S and finally to
the g-symmetry of S, since {J¢, Sx} = 0. But by the definition of a metric ett*-bundle S
is g-symmetric. Therefore (M, J¢,V,g) is a special eKéhler manifold. The rest of part
(iv) follows from part (ii).

(v) It remains to show the direction which does not follow from (iv). Let (T'M, D, S, g)
be a metric ett*-bundle over an ehermitian manifold (M, J¢, g), such that (M, J¢, g,V =
D+8S)=Y(TM,D,S,g) is a special eKahler manifold. If D is torsion-free, then it is the
Levi-Civita connection of g, and therefore D =V + %€J€VJ ¢, see proposition 1.7. This
shows, that ®(M,J¢, g,V) = (TM, D, S, g) and that (TM,D,S,g) is a special metric
ett*-bundle. O

Corollary 3.3 A special metric ett*-bundle (TM, D, S, g) over an ehermitian manifold
(M, J¢, g) which satisfies a) and b) in theorem 3.5 is oriented and unimodular.

Proof: By theorem 3.5, (M, J¢, g,V = D + S) is a special eKé&hler manifold. Hence we
can orient it by w A ... Aw, where w is its eKahler-form. Its eKéhler-form is parallel with
respect to the connections D and V and therefore invariant under Sy = Vx — Dyx. This
shows tr Sx = 0. O

3.3 Variations of eHodge structures

In this section we recall the result of Hertling [Her| that variations of Hodge structures
give solutions of metric t¢*-bundles and generalize it to para-complex geometry and sym-
plectic ett*-bundles. Our presentation differs form that of [Her|, since we give this result
in the language of real differential geometry. Again, the para-complex version seems to
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be new.

Let (E,V, F?) be a (real) variation of eHodge structures of weight w. The ecomplexified
connection of V on E® = E ® C, will be denoted by V¢. Criffiths transversality and the
eholomorphicity of the subbundles F? gives

Ve T(FP) — AN (FPH) 4 A%H(FP) (3.3.1)
and ecomplex conjugation yields

Ve T(F) — APY(F) + AY(FD). (3.3.2)
Summarizing one obtains with H»*~? = FP N F" ¥

vc . F<Hp,w—p) N AI,O(Hp,w—p) +A0,1<Hp,w—p)+A1,O(Hp—1,w+l—p) +A0,1(Hp+1,w—1—p)'

D S

(3.3.3)
Using the decomposition induced by the eHodge structure and by the bi-degree of dif-
ferential forms, one can find, that the curvature of V¢ vanishes if and only if (E¢, D, .S)
defines an ett*-bundle. In addition the ecomplex conjugation k =~ respects the eHodge
decomposition and it is V°, = 0. Again the decomposition induced by the eHodge struc-
ture and by the bi-degree of differential forms implies that Dk = 0, i.e. D leaves E
invariant and that Sk = k.S, i.e. S leaves F invariant, too.
If b is a polarization of the above variation of eHodge structures (E,V, F?), then Vb =0
and V°k = 0 yield after decomposing with respect to eHodge structure the equations
Dg =0 and g(S-,-) = g(-,S-) with ¢ = Re h. Concluding we obtain the proposition

Proposition 3.8 Let (E,V, FP?) be a (real) variation of e Hodge structures of weight w
with a polarization b, then (E, D, S, g = Reh) with D and S as defined in equation (3.3.3)
18 a metric ett*-bundle.

The above consideration holds for {2 = Imh, too. This implies D2 = 0 and Q(S-,-) =
Q(-,S-). Hence we have proven

Proposition 3.9  Let (E,V, FP) be a (real) variation of eHodge structures of weight

w with a polarization b, then (E,D,S,Q = Imh) with D and S as defined in equation
(3.3.3) is a symplectic ett*-bundle.

3.4 Harmonic bundles

In this section (cf. [Sch4] for the complex case, i.e. ¢ = —1) we introduce the notion
of an eharmonic bundle and show that every such bundle gives two solutions of the ett*-
equations. The first is a metric and the second is a symplectic ett*-bundle.

To introduce the notion of an eharmonic bundle we need a definition:
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Definition 3.4  An ehermitian sesquilinear metric h on an ecomplex vector bundle E
over an ecomplex manifold (M, J¢) is a smooth fiberwise ehermitian sesquilinear product.

Definition 3.5  An charmonic bundle (E — M, D,C,C,h) consists of the following
data:

An ecomplez vector bundle E over an ecomplex manifold (M, J¢), an ehermitian sesquilin-
ear metric h on E, a metric connection D with respect to h and two C*°-linear maps

C:T(E) -»TAYT*M®E) and C : T(E) — T'(A®'T*M ® E), such that the connection
DY =D+ XC+A'C

is flat for all A\ € S! and h(Cyza,b) = h(a, Czb) for all a,b € T(E) and Z € T(T*°M).

Remark 3.4

In the case € = —1 and positive definite metric h, this definition is equivalent to the
definition of a harmonic bundle given in Simpson’s paper [Sim]. Equivalent structures
with metrics of arbitrary signature have been also considered in [Her].

Theorem 3.6 Let (E — M,D,C,C,h) be an eharmonic bundle over the ecomplex
manifold (M, J¢), then (E,D,S,g = Reh [w = Imh]) with Sx = Cz + Cz for X =
Z+Z€eTM and Z € T"°M is a metric [symplectic] ett*-bundle.

Proof: For \ = cos.(a) + isinc(a) € S! we have a look at DV :

DY) = Dy + ACy+ Ay = Dx + cos.(a)(Cy + Cy) + sine () (iCy — iC)
= Dx + cose(a)Sx + sin(a)(Cyez + Cjez)
= Dx + cos¢(a)Sx + sin(a)Sjex = D%.
Hence we have
D* = DW (3.4.1)
and D is flat if and only if D™ is flat. B
Further we claim, that S is g-symmetric [w-symmetric]. With X = Z + Z for Z € T*'M
one finds
h<SX'7 ) - h(CZ + CZ', ) - h(7 C'Z + CZ) - h’(7 SX)
and consequently the symmetry of S with respect to
g=Reh
and
w = Imh.
Finally we show Dg =0 and Dw =0
X(h(e, f)£h(f.e)) = (Z+Z)(h(e, [) £ h(f.e))
h(Dze, f) + h(e, Dz f) + h(Dze, f) + h(e, Dz f)

+ [M(Dzf,e)+ h(f,Dze) + h(Dzf,e) + h(f, Dze)]
= W(Dz+ Dze, f) + h(e,(Dz + Dz)f)
+ [h((DZ+DZ)fa6)+h(f7 (DZ+DZ)6)]

h(DXe, f) + h(@, Dxf) + h(Dxf, 6) + h(f, DXe).
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Summarizing we obtain
Xg(ev f) = g(DX67 f) +g(67DXf)

and
Xw(e, f) = w(Dxe, f) +w(e, Dx f).

This proves, that (F, D, S,g = Reh [w =Imh]) is a metric [symplectic| ett*-bundle.
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Chapter 4

ett*-geometry and epluriharmonic
maps

In this section we are going to state and prove the central results which give the corre-
spondence between epluriharmonic maps and ett*-bundles. In the first section we consider
ett*-bundles over simply connected manifolds. The case of non trivial fundamental group
is dicussed in the second section. These results are part of [Sch6, Sch3].The third section
deals with a kind of rigidity result for ¢t*-bundles over compact Kahler manifolds with
finite fundamental group. Applying this rigidity result to simply connected compact spe-
cial Kéhler manifolds in the fourth section we obtain a special case of Lu’s theorem for
simply connected compact special Kédhler manifolds.

4.1 The simply connected case

Let (M, J) be an ecomplex manifold and let f be a map f: M — G;(r). Like in section
2.4.1 one regards the mapping A = f~df = —2df as a flat connection A : TM — g;(r)
on the bundle £/ = M x R".

Theorem 4.1 (c¢f. [Sch6, Sch3]) Let (M, J¢) be a simply connected ecomplex manifold.
Let (E, D, S, g[,or]) be a metric [an oriented unimodular metric/ ett*-bundle where E has
rank r and M dimension n.

Then the matriz representing the metric g in a D°-flat frame of E f : M — Sym;q(R’”)
induces an admissible epluriharmonic map f : M EN Symzi)’q(RT) = S%p, q), where S'(p, q)
carries the metric induced by the bi-inariant pseudo-Riemannian trace-form on g;(r).

Let s' be another D°-flat frame. Then s' = s-U for a constant matriz and the epluriharmonic
map associated to S" is f' = U fU.

Remark 4.1 (¢f. [CS1, Sch6, Sch3)) .
Before proving the theorem we make some remarks on the condition that the map f is
admissible. Let v € M and f(z) = uo. If df (T} M) consist of commuting matrices, then
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dL;ldf(Txl’OM) is commutative, too. This follows from the fact, that
dLy, : T,5'(p,q) = TuoS' (0, q) = Ty S' (0, @)

equals ' ' . o
Ad, : sym'(p,q) = sym'(IL,,) — sym'(u - I, ,) = sym'(f(z)),

which preserves the Lie-bracket.

Proof: Using remark 3.1.1) it suffices to prove the case § = 7 for e = —1 or § = 0 for
e=1.

We first consider a metric ett*-bundle (E, D, S, g).

Let s := (s1,...,s,) be a D?-flat frame of E (i.e. Ds = —eSs), f the matrix g(sg, s;) and
further S® the matrix-valued one-form representing S in the frame s. For X € I'(T'M) we
get:

X(f) = Xg(s,5) = g(Dxs,5) + (s, Dxs) (4-L1.1)
= —€(g9(Sxs,s)+g(s,Sxs))
= —2eg(Sxs,s) = —2ef - S5(X) = —2¢f - S5.

Consequently Ay = —2¢S%. We now prove the epluriharmonicity using

d”S(X,Y) = Dx(Sy)— Dy(Sx)— Sixy; =0, .
dPS;(X,Y) = Dx(Sjey) — Dy(Syex) — Syepxy) = 0. (4.1.3)

The equation (4.1.3) implies

0= dDSJe<J€X, Y) = DJeX(SJey) — EDy(SX) _SJE[JGX,Y]
————

(4.1.2)
="e(Dx(Sy)—S[x,v])

= DJEX(SJ&Y) — €DX(Sy) + ES[X,y} — SJG[JEXJ/].

In local eholomorphic coordinate fields X, Y on M we get in the frame s
JX(STey) — eX(5) + [Sk, SV] — €[ Shex, Shey] = 0.

Now A = —2¢S* gives equation (2.4.9) and proves the epluriharmonicity of f.

Using Ax = —2eS% = —Qdf(X), we find the property of the differential, as S A S is of
type (1,1) by the eft*-equations, see proposition 3.1.

The last statement is obvious.

In the case of an oriented unimodular metric ett*-bundle (E, D, S, g,or) we can take the
frame s to be oriented and of volume 1, with respect to the canonical D’-parallel-metric
volume v. Therefore the map f takes values in Sym,, ,(R") and the above arguments show
the rest. O

Theorem 4.2  (c¢f. [Sch6, Sch3]) Let (M, J¢) be a simply connected ecomplex manifold
and put E = M x R".
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Then an epluriharmonic map f : M — S%(p,q) gives rise to an epluriharmonic map
f 7 ~ 7 r

f M= S (]37 Q)Hsymp,q(R ) C Gl(r>

If the map f is admissible, then the map f induces a metric ett*-bundle [an oriented

unimodular metric ett*-bundle | (E,D = 0 — €S, S5 = edf,g = (f-,)rr [,0r]) on M where
0 is the canonical flat connection on E and or is the canonical orientation on E.

Remark 4.2  We observe, that for e Riemannian surfaces M = Y the condition on the
differential holds, since T'°Y is one-dimensional.

Proof:

Let f: M — S (p,q) be an epluriharmonic map. Then by proposition 2.6 we know, that
[+ M=Sym! (R) C Gi(r) is epluriharmonic.

Since E = M x R", we can regard sections of E as r-tuples of C°(M, R)-functions.

In the spirit of section 2.4.1 we regard the one-form A = —2df = f~df = —2¢S with
values in g;(r) as a connection on E. We remind, that the curvature of this connection
vanishes (proposition 2.8).

a) First, we check the conditions on the metric:

Lemma 4.1 The connection D is compatible with the metric g and S is sym-
metric with respect to g.

Proof:  This is a direct computation with X € I'(TM) and v,w € I'(E) using
the relations (x) S = —Lleftdf, (xx) dfy : ToM — Ty, Sym ,(R") = Sym'(R")
(compare remark 2.3) and g = (f-, )gr = (-, f*)rr Wthh follows from f: M —

Sym;q(R”):
X(glosw) = X(Ufoude) = (X(F)o,whar +(f(@xv), whse + (Fo, Oxwhse
L X w5 (o X+ (F@x0), whse + (o, dxwe

LU X (o f X

+<faXU7w>RT + <fU, an>]RT
= g(Xwv—eSxv,w)+ g(v,X.w— eSxw)
= g(DXv>w) +g(v7DXw>'

For x € M df, takes by remark 2.3 values in sym’(f(z)). This shows that S = edf
is symmetric with respect to g = (f-, ‘)grr. O

To finish the proof, we have to check the ett*-equations. The second ett*-equation
—G[SX, SY] == [SJ€X7 Sjey] (414)

for S follows from the assumption that the image of T I’OM under (d f )C< is Abelian.
In fact, this is equivalent to [df(J°X),df(JY)] = —eldf(X),df(Y)] VX,Y € TM.

d°S(X,Y) = [Dx,Sy]—[Dy,Sx]— Sixy]
= aX(Sy) — ay<SX> — 2€[Sx,Sy] — S[X’y] = 0
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is equivalent to the vanishing of the curvature of A = —2¢S interpreted as a con-
nection on E (see proposition 2.8).
Finally one has for eholomorphic coordinate fields X,Y € I'(T'M)

dDSJE(Jer Y) = [Djex, Syey] — €[Dy, Sx]|
= [Ojex — €Syex, Syey| — €[0y — €Sy, Sx]|
= aieX(SJEY) - EaY(SX) - €[SJ€Xa SJGY] - [SX> SY]

1. 1
(4é4) —56 (8Jex(AJEY) - an(AX))

4. 1
(QiS) —56 (aJEX(AJ€Y) — 68X(AY) - E[AX7AY])
(4.1.4) 1

1 1
—56 <8J€X(AJ6Y) — Gax(Ay) - 56[14)(,14}/] + 5[AJ€X7AJEY]>

L
This shows the vanishing of the tensor d”.Se.

It remains to show the curvature equation for D. We observe, that D + ¢S =
0 — €S + ¢S = 0 and that the connection 0 is flat, to find

0=RYLS = RR, +ed”S(X,Y)+[Sx, 5] “2° RY, + [Sx, Sy].

b) With the same proof as in part a) we get a metric ett*-bundle. The orientation is
given by the orientation of £ = M x R".
It remains to check the condition on the trace of S. This property is clear, since in
this case df, takes values in sym*(f(z)) for all z € M. a

We want to emphasize the last result in case of metric t¢*-bundles with positive definite
metric over a complex manifold (M, J).

Theorem 4.3 Let (M, J) be a simply connected complex manifold and put E'= M xR".
Then a pluriharmonic map f : M — S%(r,0) is admissible. Moreover, it induces a second
pluriharmonic map f : M EN S*(r,0)=Sym. o(R") C Gy(r) and a metric ett*-bundle [an
oriented unimodular metric ett*-bundle] (E,D = d + S, S = —df,g = (f-, ) [, 0r]) on
M where 9 is the canonical flat connection on E and or is the canonical orientation of

E.

Proof: In the case of signature (r,0) corollary 2.3 implies that any pluriharmonic map
f: M — S%r,0) is admissible as required in theorem 4.2. O

In the situation of theorem 4.2 the two constructions are inverse in the following sense:
Proposition 4.1
1. Let (E,D,S,gl,or]) be a metric [an oriented unimodular metric] ett*-bundle on

an ecomplex manifold (M, J¢) and let f be the associated epluriharmonic map con-
structed to a DP-flat frame s in theorem 4.1. Then f is admissible and the metric
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[oriented unimodular metric] ett*-bundle (M x R", D=0—-¢€58,5,§,[or]) associated
to f in theorem 4.2 is the representation of (E, D, S, g|[,or]) in the frame s.

2. Given an epluriharmonic map ffrom an ecomplex manifold (M, J¢) to S'(p, q), then
one obtains via theorem 4.2 a metric [an oriented unimodular metric] ett*-bundle
(M xR",D,S,g][,or]). The epluriharmonic map associated to this metric ett*-bundle
15 conjugated to the map f by a constant matriz in G;(r).

Proof: Using again remark 3.1.1) we can set § = 7 for e = —1 or § = 0 for € = 1.

1. The maps f, f and the metric § = (f-,)rr express the metric g in the frame s.
In the computations of theorem 4.1 and with theorem 4.2 one finds 25 = —eA =
—efldf = 25%. From 0 = D%s = Ds + eSs we obtain that the connection D in the
frame s isjust@—eSszﬁ—l—%:a—eS:D.

2. To find the eplurtharmonic map associated to (M x R", D, S, g [,or]) we have to
express the metric g in a D-flat frame s. But DY = 9 — €S + €S = 0. Hence we can
take s as the standard-basis of R" and we get f. Every other basis gives a conjugated
result. O

4.2 The general case

In this section we are going to transfer the results in the simply connected case to manifolds
with non-trivial fundamental group.

Definition 4.1 Letp : M — M be the universal cover of an ecomplex manifold (M, J¢)
with the pulled back ecomplex structure.

Let (E, D, S) be an ett*-bundle, then we define the pulled back ett*-bundle of (E, D, S) to
be given by (p*E,p*D,p*S).

Let (E, D, S, g) be a metric ett*-bundle, then we define the pulled back metric ett*-bundle
of (E,D,S,qg) to be given by (p*E,p*D, p*S, p*g).

Finally, let (E,D,S,g,or) be an oriented unimodular metric ett*-bundle, then we de-
fine the pulled back oriented unimodular metric ett*-bundle of (E, D, S, g,or) to be given

by (p*E,p*D,p*S,p*g,por).

Remark 4.3 The pulled back ett*-bundles, metric ett*-bundles and oriented unimodular
metric ett*-bundles are ett*-bundles, metric ett*-bundles and oriented unimodular metric
ett*-bundles respectively, as one checks easily. This motivates the above definition.

Theorem 4.4 Let (M, J) be an ecomplex manifold.

Let (E,D,S,gl,or]) be a [an oriented unimodular] metric ett*-bundle where E has rank
r and M dimension n and (p*E,p*D,p*S,p*g [, p*or]) the corresponding pulled-back [ori-
ented unimodular| metric ett*-bundle on the universal cover M of M.

Denote by f*: M — Si(p,q) the epluritharmonic map obtained from theorem 4.1 in the
p*D’-flat frame p*s, where s is a D°-flat frame and f : M — S%(p,q) the map obtained
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from the representation of g in the frame s. Then f* is a m (M )-equivariant map (Here
equivariant means by the left-action on M and via the holonomy on S*(p,q).) and the lift
p*f of f. In other words f is a twisted epluriharmonic map.

Proof: The equivariance follows, since we have pulled back all structures. If s is D?-flat,
p*s is p* D’-flat, too.
The map f* at £ € M with p(Z) = z is given by
JH(E) = p"g(p*s, p"s)(x) = gp(a) (s © p(Z), 5 0 p(T)) = f(x) = fop(Z) = p"f(2).
O

Theorem 4.5 Let (M, J¢) be an ecomplex manifold, p : M — M its universal covering
with the pulled back ecomplex structure, also called J¢. Set E = M x R".

Let f* M — Si(p,q) be an admissible epluriharmonic map, which is equivariant with
respect to a representation p : m (M) — Gy(r) and f*: M — Symy, (R") the correspond-
ing map. Then f* induces by theorem 4.2 a [an unimodular oriented] metric ett*-bundle
(E,D=0—¢€S,5 = edf*, g =< f*,- >grr) 0N M where @ is the canonical flat connection
on E. This [oriented unimodular] metric ett*-bundle induces a [an oriented unimodular]
metric ett*-bundle (F, D = 0— €T, T, h) on M, such that the [unimodular oriented] metric
ett*-bundle (E,D = 0 — €S, S = edf*,g =< f*, - >gr) is its pull back.

Proof:
a) We want to regard the action of (M) on E, given by
(v,m,v) € m(M) x E— (y.m,p(y)v) =:7v.(m,v) € E (4.2.1)
which induces the action
(v,m, A) € 1 (M) x End(E) — (v.m, p(7)Ap(7) ") =: 7.(m, A) € End(E) (4.2.2)
of m (M) on End(FE). The quotient of E by the action of 7, (E) gives a vector bundle

F — M over M. o )
The equivariance of the map f*: M — S(p, q) means for m € M :
fr(ym) = p(y) f*(m)p(y) 7", (4.2.3)
which implies for X € T,,M, m € M
df: (drX) = p(V)dfr(X)p(y) " (4.2.4)

Equation (4.2.3) is the equivariance of g and equation (4.2.4) is the equivariance
of S. Hence they descend to a metric h on F' and an endomorphism field 7" on F,
which is h-symmetric. Since 0 is m (M )-invariant, it defines connection on F' and
since S is equivariant D = 0 — €T’ defines connection on F' which preserves h. With
the same argument the family D? = D + cos ()T + sin.(0)Te defines a family of
connections on F' which is flat. Hence (F, D = 0 — €T, T, h) is a metric ett*-bundle
on F' over M.

b) One gets the data (F,D = 0 — €T, T,h) as in part a). The orientation is given by
the orientation of £ = M x R”, since p takes values in SL(r). O
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4.3 A rigidity result

In [Schb] we showed a rigidity result, which will be used later to obtain a new proof of
Lu’s theorem [Lu] in the case of simply connected compact special Kéhler manifolds.

Theorem 4.6 Let M be a compact Kahler manifold of dimension n with finite fun-
damental group m (M) (i.e., the universal cover of M is compact). Let (E,D,S,g) be a
metric tt*-bundle, where E has rank r, with positive definite metric g. Then (E, D, S, g)
is trivial, i.e. S =0, D is flat and g D?-parallel.

Proof: Pulling back all structures to the universal cover of M we suppose that M is
simply connected. S = 0 if and only if the same holds for its pull back. Let s be a D™-flat
frame of E. The associated pluriharmonic map f : M — GL(r,R)/O(r) obtained from
theorem 4.1 is constant by corollary 2.2. Hence, the representing matrix G® of g in the
frame s is constant. We recall the relation between the representation S® of S in the
frame s with G* which we found in equation (4.1.1):

X(G%) = 2G*-S%.

This shows S* = 0 and consequently S = 0 and DY = D for all § € R. Hence D is flat
and D% = 0. O

4.4 A special case of Lu’s theorem

As a corollary of our rigidity result, theorem 4.6, we obtain Lu’s theorem [Lu] for simply
connected compact manifolds. Another proof of Lu’s theorem was given in [BC1]. The
authors immersed any simply connected special Kahler manifold M"™ as a parabolic affine
hypersphere into R"*! and obtained Lu’s theorem from a result of Calabi and Pogorelov.

Theorem 4.7 Let (M, J,g,V) be a simply connected compact special Kdhler manifold
of dimension n. Then M is a point.

Proof: Using theorem 3.5 the data (IT'M,D =V — 5,5 = %JVJ, g) defines a metric
tt*-bundle. Then theorem 4.6 yields S = 0 and hence D = V. From Dg = 0 and the
torsion-freeness of V it follows that D is the Levi-Civita connection. Therefore M is
Levi-Civita flat, compact and simply connected, i.e. M is a point. O
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Chapter 5

The epluriharmonic maps associated
to the above examples of ett*-bundles

In this chapter we analyze and apply the correspondence between ett*-bundles and eplu-
riharmonic maps for the classes of solutions which were discussed in chapter 3. In addi-
tion we associate generalized epluriharmonic maps to the geometries with non integrable
ecomplex structures.

5.1 Solutions on the tangent bundle

This subsection is also subject of [Sch7, Sch8].

5.1.1 The classifying map of a flat nearly eKahler manifold

In this section we consider simply connected almost ehermitian manifolds (M, J€, g) en-
dowed with a flat metric connection V such that (V,.J¢) satisfies the nearly eKéhler
condition.

In particular, simply connected flat nearly eKahler manifolds (M?", J¢ g), i.e. nearly
eKéahler manifolds (M, J¢, g) with flat Levi-Civita connection V9 are of this type.

Since (M, g, V) is simply connected and flat, we may identify by fixing a V-parallel frame
so its tangent bundle TM with (M x V, {(-,-)), where V = C" = (R?", j¢) is endowed with
the standard scalar product (-,-) of the same hermitian signature (p,¢) as the hermitian
metric g for € = —1 and of symmetric signature (n,n) for e = 1.

The compatible ecomplex structure J¢ defines via this identification a map

JOM — 3V, (),

where J¢(V, (-,-)) is the set of ecomplex structures on V' which are compatible with (-, -)
and the orientation of V' = R?". The differential geometry of this set was discussed in
section 2.5.

Theorem 5.1 Let (M, J¢, g) be a simply connected almost ehermitian manifold endowed
with a flat metric connection V such that (V, J¢) satisfies the nearly e Kdhler condition,

101
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then (TM,D =V — 5,8 = —1eJ(VJ),w = g(J*,")) defines a symplectic ett*-bundle
and the matriz of J¢ in a D’-flat frame s’ = (s¢) defines an Sl-pluriharmonic map
=0

J M — 3V, (-,-)) = SOo(2p,2q)/U(p, q).

In particular, given a nice connection D on M the map

~ 0
Je 1 (M, J¢, D) — SOy(2p,2q)/U(p, q)

18 epluriharmonic.

Proof: We observe Dg = 0 since Vg = 0, D' = V and S% := cos.(0)Sx + sin (0)S ex
is skew-symmetric with respect to g. Therefore we can choose for each § € R the Df-flat
frame s’ orthonormal, such that s=% = sy. This yields using DJ¢ = 0 (compare theorem
3.1 and lemma 3.1)

Xg(J's{, s7) = g(D&(J°s]), 57) = g((D%J)s7, 55) = g([Sk, Js], ) = —29(J ST, 57).
Let 5% and J< be the representation of S and J¢ in the frame s, then
(J) X (") = —25
or
dje’ = ()10 8% 0 s,

% is seen as a map s’ : M x V — T M. This shows for X € T'(TM)

where the frame s

dJ(X) = (s) o8 o (s") = (s) " o S, 0 (s”)
= ((s")7's") 0 dJ(ReX) 0 ((s°)"s")
= Ady! 0 dJ(ReX) = D, 0 dJ(ReX),
where oy = (39) 159 is the frame change from s° to s? and @, = Ad,, which is parallel

with respect to the Levi-Civita connection on SO (2p, 2q)/U¢(p, q). This shows, that e’

~ 0
is S!-pluriharmonic. Given a nice connection D on M theorem 2.2 shows that J¢ is
epluriharmonic. O

We emphasize the nearly eKahler setting:

Corollary 5.1  Let (M, J¢, g) be a flat nearly eKihler manifold and (TM,V = VI —
5,8 = —1eJ(VJ9),w(-,-) = g(J%,) the associated symplectic ett*-bundle, then the

=0
matriz of J¢ in a D?-flat frame s° = (s¥) defines an S}-pluriharmonic map Jo : M —

For nearly eKahler manifolds we have more precise informations about the map .J 69:

Theorem 5.2  Let (M, J¢, g) be a flat nearly eKdhler manifold and (TM,V = VI —
S,8 = —2eJ(VJ),w(-,-) = g(J,-)) the associated symplectic ett*-bundle. Then the
connection V is nice and the matriz of J¢ in a D°-flat frame s° = (s?) defines an
epluriharmonic map g . (M, JE, V) — J(V, {-,)) — SOu(2p,2q)/U(p,q). Moreover,

=0
the map J¢ s harmonic.
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Proof: First we show, that V is nice. Therefore we rewrite the Nijenhuis tensor

Ny(X,Y) = (VyexJVY — (Vyy J)X — J(VxJOVY + J(VyJ)X
— —4J(VxJIYY,

where the second equality follows from the nearly eKahler condition and by
(VyexJ)Y = =(VyJ)JX = J(VyJ)X = =J(VxJ)Y.
But the torsion of V is by equation (1.3.3)
TY(X,Y) = eJ(VxJ)Y.

This shows that V is nice. _y o
By corollary 5.1 the map J¢ is S!-pluriharmonic. Since V is nice, theorem 2.2 implies

=0 . . . " .
that J¢ is epluriharmonic. From the skew-symmetry of S and proposition 2.5 we obtain
=0
that J¢ is harmonic. O

5.2 The dual Gaufl map of a special eKahler manifold
with torsion

In this subsection we consider a simply connected almost ehermitian manifold (M, J¢, g)
with a flat connection V, such that (V, J) is special and the two-form w = g(J*,-) is
V-parallel.

Using the flat connection V we identify by fixing a V-parallel symplectic frame sq the
tangent space (T'M,w) with (M X V,wp) where V' = R*" and wy is its standard symplectic
form.

The compatible ecomplex structure J¢ is seen as a map

J M — §9(V,w),

where J¢(V,wp) is the set of ecomplex structures on V' which are compatible with wy.
The differential geometry of this set was discussed in section 2.5.

Recall, that under the above assumptions (TM,D =V — S, S = —%EJE(VJG),Q) defines
a metric ett*-bundle. Analogous to the last section we obtain:

Theorem 5.3  Let (M, J¢ g) be a simply connected almost ehermitian manifold with
a flat connection V, such that (V,J) is special and the two-form w = g(J,-) is V-
parallel and let (TM,D = V — 5,5 = —1eJ(VJ),g) be the associated metric ett*-
bundle. Then the matriz of J¢ in a D°-flat frame s° = (sY) defines an S!-pluriharmonic

~ 9
map J¢ : M — 3<(V,wp) — Sp(R*")/U(p, q). )
In particular, given a nice connection D on (M, J) then the map J¢ : (M,J, D) —
Sp(R?*™) /U<(p, q) is epluriharmonic.
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Proof: Since D°w = Vw = (D + S)w = 0 and S% := cos.(0)Sx + sin (0)Sjex is skew-
symmetric with respect to w, we obtain Dw = 0 and D%w = 0. Therefore we can choose
for each 6 € R the D% parallel frame s’ as a symplectic frame, such that s7=° = s,. This
yields using DJ¢ = 0 (compare theorem 3.1 and lemma 3.1)

Xw(Js], 87) = w(D%(Js7), 87) = w((D&J)s], 57) = w([Sk, JTs7 57) = —2w( TSk, 57).

Z’j

Let S and J< be the representation of S and J¢ in the frame s, then
(Jese)—lX(Jese) _ _2339

or Y
dJe = (s%)"oS%0 s
where the frame 5% is seen as a map s’ : M x V' — T M. This shows for X € I'(T'M)

dJ(X) = (") o 5% o (") = ()" o Syx o (o)
= ((8")75%) 0 dJe(ReX) o ((s°)'s")
= Ady} o dJ(ReX) = @, 0 dJ(ReX),

where ay = (s%)71s% is the frame change from s° to s’ and ®y = Ad,, which is parallel
with respect to the Levi-Civita connection on Sp(R**)/U¢(p,q). In other words we have
found an associated family. Given a nice connection D on (M, J¢) theorem 2.2 shows that

~ 6. . .
J¢ is epluriharmonic. a

If the above ett*-bundle comes from a special eKahler manifold we have the

Theorem 5.4 Let (M, J¢, g, V) be a special e Kdhler manifold and (TM,D =V —S,S =
—%a]eVJE,g) the associated metric ett*-bundle, then the matriz of J¢ in a D?-flat frame

s = (s?) defines an epluriharmonic map g (M, J¢, D) — Sp(R*")/U(p, q). Moreover,

~0 . .
J€ is harmonic.

=0 . . . . .
Proof: By theorem 5.3 the map J¢ is S!-pluriharmonic. In the special eKéhler case we
know that D is the Levi-Civita connection and hence torsion-free. The ecomplex structure

J€ is integrable and so N e = 0. This means, that D is nice and theorem 2.2 shows that .J &

. . . . . " =0 . .
is epluriharmonic. Since S is trace-free we get from proposition 2.5 that J¢ is harmonic.
O

=0
We remark, that the last result can also be obtained by observing, that the map J¢ is
epluriharmonic and that the manifold M is eKahler, as epluriharmonic maps from eKéahler
manifolds are harmonic.

5.3 The epluriharmonic map in the case of a special
cKahler manifold

The results of this subsection were published in [CS1] for ¢ = —1 and in [Sch3] for € = 1.
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5.3.1 The Gaufl maps of a special Kahler manifold

Let (M, J,g,V) be a special Kéhler manifold of complex dimension n = k + [ and of
hermitian signature (k,1), i.e. g has symmetric signature (2k,21). Let (M, J, g, V) be its
universal covering with the pullback special Kahler structure, which is again denoted by
(J,9,V). According to Theorem 1.2, there exists a (holomorphic) Kéhlerian Lagrangian
immersion ¢ : M — V = T*C" = C?*, which is unique up to a complex affine transfor-
mation of V with linear part in Sp(R?*"). We consider the dual Gauff map of ¢

L:M — Grg'(C™), prs L(p) = TypmM = do,T,M CV (5.3.1)

into the Grassmannian of complex Lagrangian subspaces W C V' of signature (k,l), i.e.
such that the restriction of v to W is a hermitian form of signature (k,7). The map
L: M — Gri'(C?) is in fact the dual of the Gauf map

L™ M — Grg"(C™), p— L(p)" = L(p) = L(p)". (5.3.2)

Here L(p)* stands for the y-orthogonal complement of L(p) and the isomorphism L(p)
L(p)* is induced by the symplectic form ©Q on V' = L(p) & L(p).

~

Proposition 5.1
(i) The dual Gaup map L : M — Gr'(C**) is holomorphic.

(ii) The Gaup map L' : M — Gri*(C2") is anti-holomorphic.

Proof: The holomorphicity of L follows from that of ¢. Part (i) follows from (i), since
L+ =L:p~ L(p). a

The Gaul maps L and L+ induce Gaufl maps

Ly @ M —T\Gri(c™) (5.3.3)
Ly, @ M —T\Gri" (™) (5.3.4)

into the quotient of the Grassmannian by the holonomy group I' = Hol(V) C Sp(R?*") of
the flat symplectic connection V.

Corollary 5.2
(i) The dual Gaup map Ly : M — T\ Gre''(C") of M is holomorphic.

(ii) The Gaup map Li, : M — T'\ Gri*(C?") is anti-holomorphic.

If I C Sp(R?") acts properly discontinuously on Gri'(C?") then I' \ Gri'(C2") is a
locally symmetric space of pseudo-hermitian type.
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5.3.2 The local expression of the dual Gaufl map

We shall now describe the dual Gaul map L in local holomorphic coordinates in neigh-
borhoods of py € M and L(py) € Gri'(C2"). Applying a transformation from Sp(R?"), if
necessary, we can assume that L(pg) € Uy, where Uy was defined in section 2.5.2. We put
U := L' (Up). The open subset U C M is a neighborhood of py.

Let ¢ : M — T*C™ be the Kéhlerian Lagrangian immersion. It defines a system of
local (special) holomorphic coordinates

pi=modly:USU CC", pr (2(6p) 2" (6(p))) (5.3.5)

with 7(;) as defined in section 2.5.2.
This yields the following commutative diagram

v Lou,

el 1 C (5.3.6)
U’ 2, Symk,l(cn) )

where the vertical arrows are holomorphic diffeomorphisms and Ly at z = (z1,...2") is
given by

L) = (B = (G ) (57

Here F' = F(z) is a holomorphic function on U’ C C", called the prepotential, determined,
up to a constant, by the equations

OF

w;i(p(p)) = 9

(5.3.8)

2(¢(p))

Summarizing, we obtain the following proposition:

Proposition 5.2  The dual Gauf$ map L has the following coordinate expression
Ly=CoLoy ! =(Fy), (5.3.9)

where ¢ : U — C" is the (special) holomorphic chart of M associated to the Kihlerian
Lagrangian immersion ¢, see equation (5.3.5), and C' : Uy — Sym(C") is the holomorphic
chart of Gri'(C2") constructed in equation (2.5.10).

5.3.3 The special Kahler metric in affine coordinates

As before, let (M, J,g,V) be a special Kahler manifold of hermitian signature (k,),
k41 =n = dimec M, and (M, J,g,V) its universal covering. As in chapter 4, we shall
now consider the metric g in a V-parallel frame. Such a frame is provided by the Kahlerian
Lagrangian immersion ¢ : M — V. In fact, any pomt p € M has a neighborhood in which
the functions ' := Re z' o ¢, ; := Rew; 0 ¢, i = 1,...,n, form a system of local V-affine
coordinates. We recall that the V-parallel Kéihler form is given by w = 2> dz' A dy;.
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This implies that the globally defined one-forms v/2d#*, v/2dj; constitute a V-parallel
unimodular frame

(€Vamt...on = (€', ..., €®) := (V2dZ', ..., V2dZ" v 2dijy, . ..,/ 2dijy) (5.3.10)

-----

of T*M with respect to the metric volume form v = (—=1)"Hes = 2ndz' A ... Ad,. The

dual frame (e,) of TM is also V-parallel and unimodular. The metric defines a smooth
map

G: M — Symy, 5, (R*") = {A € Mat(2n,R)|A" = A, det A = 1 has signature (2k, 21)}

(5.3.11)
by
p— G(p) = (9a(p)) = (9p(€a,ep)) - (5.3.12)
We will call G = (gap) the fundamental matriz of ¢. As before, we identify
Symy,, 5, (R*") = SL(2n, R)/SO(2k, 21) . (5.3.13)

This is a pseudo-Riemannian symmetric space. For conventional reasons, in this section,
SO(2k,2l) C SL(2n,R) is defined as the stabilizer of the symmetric matrix

EF = diag(1y, —1;, 1y, —1;) . (5.3.14)

The fundamental matrix induces a map
G+ M — T\ Symy, o, (R*) (5.3.15)

into the quotient of Symj, ,,(R?") by the action of the holonomy group I' = Hol(V) C
Sp(R*") C SL(2n,R). The target I'\ Symy, ,,(R?") is a pseudo-Riemannian locally sym-
metric space, provided that I" acts properly discontinuously.

Theorem 5.5 The fundamental matriz
G : M — Symy, ,(R*™) = SL(2n,R) /SO(2k, 21) (5.3.16)
takes values in the totally geodesic submanifold
i+ Gri'(C™) = Sp(R*™) /U(k, 1) — SL(2n,R)/SO(2k, 21) (5.3.17)
and coincides with the dual Gauff map L : M — Grg’l((CQ”) in the sense that

G=1io0lL.

Proof: The proof will follow from a geometric description of the inclusion i. To any
Lagrangian subspace W € G’r’g’l(CQ”) we can associate the scalar product

¢V :=Re vw

of signature (2k,2l) on W C V. The projection onto the real points

1
Re: V=T*C" - T*R"=R*, v+ Rev= E(v +7) (5.3.18)
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induces an isomorphism of real vector spaces W — R?" the inverse of which we denote

by ¢ = Yw.
We claim that
i(W) = g" = (g%) = GV (5.3.19)

To check this, it is sufficient to prove that the map
Gry'(C*) > W — GV € Symy, ,(R™) (5.3.20)

is Sp(R?")-equivariant and maps the base point W, with stabilizer U(k,1), see (2.5.2),
to the base point E® with stabilizer SO(2k, 2l), see (5.3.14). Let us verify that indeed
GWe = EML

Using the definition of v, one finds that in the basis of V' given by

0 0

+ .

)= =— Lti— 5.3.21
)= (55 + 10 ) (5321)
the only non-vanishing components of ~ are v(eji,eji) = 42. This shows that ¢V =

Re |y, is represented by the matrix 2E%! with respect to the basis

Jr + — — -+ -+ - -
(€1, . sel el . e e, ... iel ey, ... e ). (5.3.22)

In order to calculate G"o = (g17°) = (g(1eq,Pep)), we need to pass from the real basis
(5.3.22) of W, to the real basis (1e,).

Recall that the real structure x is complex conjugation with respect to the coordinates
(2, w;). This implies that

_ 9 s 0 ,
w 1(6;_) = % = \/56]', ZZJ 1(7,6;_) = —@ = —\/§en+j, ] = 1, ey ]{3,(5323)
J
1y - 9 1. 9 :
w 1(€j ) = % = \/56]' 5 ZZJ 1(Z€j ) = @ = \/§€n+j , ] = 1, c ,l (5324)
J

and shows that G"> = EM!,

It remains to check the equivariance of W +— G" = ¢j;,g. Using the definition of the
map 1 = Yy : R*™ — W, one easily checks that, under the action of A € Sp(R*"), v
transforms as

baw = Aoy o A7 |gen . (5.3.25)

From this we deduce the transformation law of G':
GM =iy g™ = (AT Y AN = (AT g = (AT G =A-GY L (5.3.20)
The above claim (5.3.19), together with the fact that

gL(p) g gp and GL(p) = G(p) (5327)

for all p € M, implies that
i(L(p)) = G*® = G(p). (5.3.28)
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Corollary 5.3  The fundamental matrix
G : M — Symj, 5 (R*) (5.3.29)

18 pluriharmonic.

Proof: The map G = ioL is the composition of the holomorphic map L : M — Gr’g’l(CQ”)
with the totally geodesic inclusion Gri'(C2*) c Symy, 5,(R?"). The composition of a
holomorphic map with a totally geodesic map is pluriharmonic. O

5.3.4 The Gaufl maps of a special para-Kahler manifold

Now we are going to introduce the Gaufl maps of a special para-Kahler manifold, which
are the para-complex analogue of the Gaufl maps introduced in section 5.3.2 and were
introduced in [Sch3)].

Let (M, T,g,V) be a special para-Kéhler manifold of para-complex dimension n. Conse-
quently the metric ¢ has signature (n,n). Let (M, 7, g, V) be the universal cover of M with
the pull-back special para-Kéhler structure, which we denote again by (7, g, V). Accord-
ing to Theorem 1.3, there exists a (para-holomorphic) Kéhlerian Lagrangian immersion
®: M — V = (C? = T*C", which is unique up to an affine transformation of V with
linear part in Aut(V,,~) = Sp(R?").

We consider the dual GauB map of ¢, i.e.

L:M — Gr(C™), p— L(p) = T¢(p)M = de,T,M CV

into the Grassmannian Gry(C?") of para-complex Lagrangian subspaces W C V of sig-
nature (n,n), i.e. gy = Re~ restricted to W has signature (n,n). The map L : M —
Gry(C?") is in fact the dual of the GauB map

Lt M — C(C™), pw— L(p)* = L(p) = L(p)*.
With L(p)* we mean the 7-orthogonal complement of L(p) and the isomorphism L(p)* =
L(p)* is induced by the symplectic form 2 on V = L(p) @ L(p). The structure of a para-
complex manifold on Gry(C?") was introduced in section 2.5.3.

Proposition 5.3
(i) The dual Gaup map L : M — Gri(C?") is para-holomorphic.
(ii) The Gauf map L* : M — Gl (C*™) is anti-para-holomorphic.

Proof: The para-holomorphicity of L follows from that of ¢ and part (ii) follows from
Lt=1L:pw— L(p). O

The GauB maps L and L' induce Gaul maps
L:M —T\Gri(C™),
Lt M — T\ Grg(C®)

into the quotient of the Grassmannian by the holonomy group I' C Hol(V) C Sp(R*") of
the flat symplectic connection V. This yields the
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Corollary 5.4
(i) The dual Gauf map Ly : M — T\ Gry(C*") is para-holomorphic.

(ii) The Gaup map Ly, : M — T\ Grij(C?") is anti-para-holomorphic.

If T' C Sp(R?") acts properly discontinuously on Gry(C?") then T'\ Gry(C?") is a locally
symmetric space and a para-Kéahler manifold.

5.3.5 The local expression of the dual Gaufl map

We now describe the dual Gau8 map L in local para-holomorphic coordinates of py € M
and L(pg) € Gry(C?"). Utilizing a transformation of Sp(R?*"), if necessary, we can assume
L(po) € Uy. For the definition of Uy we refer to section 2.5.3. We put U := L~ (Uj). The
set U C M is an open neighborhood of py.

Let ¢ : M — T*C™ be the para-Kéhlerian Lagrangian immersion. It defines a system of
local (special) para-holomorphic coordinates

p:=mmoy : USU CC" p— (2 (o(p),....2"(0(p)), (5.3.30)

where 7(;) was introduced in section 2.5.3.
This means that we have the following commutative diagram

U - U
¢l ¢ (5.3.31)
Uy, Sym,, ,(C"),
where the vertical arrows are para-holomorphic diffeomorphisms and Ly at z = (2%, ..., 2")
is given by
0?F(z)
L = (Fj; = — ] . .3.32
o) = () = (s ) (5:3.32)

Here F(z) is a para-holomorphic function on U’ C C™, called prepotential (see [CMMS)),
which is up to a constant determined by the equations

w;((¢(p)) = % : (5.3.33)

z(6(p))

Summarizing, we obtain the proposition:

Proposition 5.4 The dual Gauf$ map L has the following coordinate expression
Ly=CoLoy ' =(Fy), (5.3.34)

where ¢ : U — C™ is the (special) para-holomorphic chart of M associated to the para-
Kdbhlerian Lagrangian immersion ¢, see equation (5.3.30), and C : Uy — Sym,, ,(C™) is
the para-holomorphic chart of Grly(C*") constructed in equation (2.5.18).
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5.3.6 The special para-Kahler metric in an affine frame

In this section we show that the para-pluriharmonic map associated to a para-Kahler
manifold coincides with the dual Gaufl map.

As above, let (M, 1, g, V) be a special para-Kahler manifold of dimension n = dim¢M and
(M ,T,g, V) be its universal covering. Like in chapter 4 we now consider the metric g in a
V-parallel frame. Such a frame is provided by the para-Kahlerian Lagrangian immersion
¢ : M — V. In fact, an arbitrary point p € M has a neighborhood in which the functions
7' :=Rez'o¢ and ; := Rew,;00, i = 1,...,n form a system of local V-affine coordinates.
We recall that the V-parallel Kahler form is given by w = 23 dZ’ A dg;. Therefore the
globally defined one-forms v/2di* and v/2dj; constitute a V-parallel unimodular frame

(€V)amt....on := (V2dZ, ... NV2d7" v 2dijy, . .., 2di) (5.3.35)

-----

of T*M with respect to the metric volume form v = (=1)""'w"/n! = 2"dz' A ... A djjy.
The dual frame e, of T'M is also V-parallel and unimodular. The metric g defines a
smooth map

G:M— Sym, ,(R*") = {A € Mat(2n,R)|A" = A, det(A) = (—1)" of signature (n,n)}

by
p = G(p) = (gar(p)) = (9p(€a; €n))- (5.3.36)

We call G = (gy) the fundamental matrix of ¢. As before, we have the identification
Syml,, (R™) = SL(2n,R)/SO(n, )

of Symivn(RZ”) with a pseudo-Riemannian symmetric space.
The group SO(n,n) C SL(2n,R) is in this section considered as the stabilizer of the

symmetric matrix
Ey = diag(—1,, 1,). (5.3.37)

The fundamental matrix induces a map
Gy : M — T\ Sym, ,(R*")

into the quotient of Sym,, ,(R*") by the action of the holonomy group I' = Hol(V) C
Sp(R*") C SL(2n,R). The target I'\ Sym,, ,(R*") is a pseudo-Riemannian locally sym-
metric space, provided that I" acts properly discontinuously.

Theorem 5.6 The fundamental matriz
G:M— Symy, ,(R*") = SL(2n,R)/SO(n,n) (5.3.38)
takes values in the totally geodesic submanifold
i Grp(C*™") = Sp(R*™) /U™ (C™) — SL(2n,R)/SO(n,n)
and coincides with the dual Gauf map L : M — Gr}(C?") in the sense that

G=io0ol.
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Proof: The proof follows from a geometric interpretation of the inclusion ¢. To any La-
grangian subspace W € Gr{}(C*") we associate the scalar product

gV = Reyw
of signature (n,n) on W C V. The projection onto the real points
1
Re:V =T*C" — T*R" = R*", v — Rev = 5(1} + ) (5.3.39)

induces an isomorphism of real vector spaces W-—=R?" with inverse ¥ = 1y .
We claim that
i(W) =iyg =: (gh) = G". (5.3.40)

To check the claim, we have to show the Sp(R?*")-equivariance of the map
Gry(C*") > W — GV € Sym,, ,(R*)

and that it maps the base point W,, see equation (2.5.3), to E (equation (5.3.37)).
By the definition of v we find for the basis

0 0
+
e = —Fte— (5.3.41)
J 077 (9wj
of V' that the only non-vanishing components of + are ’y(eji, eji) = F2. This shows that
g"> is represented by the matrix 2E} with respect to the real basis
(ef,....efeef,... eel). (5.3.42)

In order to calculate G"o = (g'y*) = (g(veq,ep)), we need to pass from the real basis
(5.3.42) to the real basis (ye,) of W,.

Recall that the real structure is the para-complex conjugation with respect to the coor-
dinates (z°,w;). This implies that

0 d
Y (et) = 57 = V2ej, WM eel) = i V2, i=1,...,n, (5.3.43)

J
_ 2 _ 0

v ey) = 5l V2e;,  ¢7l(e e;) = oy V245, =1,...,n.(5.3.44)

This shows that G"> = EJ.
It remains to show the equivariance of W +— G" = 1};,g. Using the definition of the
map ¢ = YW : R?" — W, one easily checks that, under the action of A € Sp(R®"), v
transforms as

Yaw = Ao Uy o ALt (5.3.45)

|]R2n .

This implies the transformation law for G":
G = i g™ = (A i A g™ = (A g = (AY)GY =A-GY. (5.3.46)
The above claim (5.3.40) and the fact
g"P = g, and GF?) = G(p) (5.3.47)

for all p € M imply
i(L(p)) = G*® = G(p). (5.3.48)

a
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Corollary 5.5 The fundamental matriz G : M — Sym;m(RQ”) 18 para-pluriharmonic.

Proof: In fact, G = ioL is the composition of a para-holomorphic map L : M — Gry(C?™)
with the totally geodesic inclusion Grg(C?") C Sym,, ,(R?"). The composition of a para-
holomorphic map with a totally geodesic one is para-pluriharmonic. O

5.4 Variations of eHodge structures

5.4.1 The period map of a variation of eHodge structures

Like period domains describe eHodge structures, eholomorphic maps into period domains
describe variations of eHodge structures, in the sense of the following proposition which
is in the complex case due to Griffiths. We only consider the simply connected case:

Proposition 5.5  Let (M, J¢) be a simply connected ecomplex manifold and GV the
period domain classifying polarized e Hodge structures of given weight and e Hodge numbers,
then giving a variation of eHodge structures is equivalent to giving an eholomorphic map
from M to GV which satisfies the Griffiths transversality condition. Such maps are called
period maps.

The following result is known for strongly polarized complex variations of Hodge struc-
tures and will be generalized for variations of eHodge structures of odd weight later in
this work.

Theorem 5.7 (c¢f. [CMP] Theorem 14.4.1) Let f : M — G/V be a period mapping and
7w : GV — G/K, as defined in section 2.7, the canonical map to the associated locally
symmetric space. The wo f is pluriharmonic.

5.4.2 The period map of a variation of cHodge structures from
the viewpoint of ctt*-geometry

Let (E,V, FP) be a variation of eHodge structures of odd weight w over the ecomplex
base manifold (M, J¢) endowed with a polarization b where E has rank r and where f, =
dim F},. Denote by (E, D, S, g) the corresponding ett*-bundle constructed in proposition
3.8. We suppose, that M is simply connected.

Like in chapter 4 we examine the metric g in a D° = V-parallel frame s of E. The
metric g defines a smooth map

G : M — Sym, (R") = {A € Mat(R") | A = A’ and A has signature (p,q)}. (5.4.1)

In the complex case (p,q) = (2k,2l) is the symmetric signature of g. We remark that
for a variation of para-Hodge structures the metric ¢ is forced to have split signature
(p,q) = (n,n) with n = 3 dimg H.
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The map G will be called the fundamental matrix of the variation of eHodge structures
(E,V,F?) and as above Sym,, .(R") is identified with the pseudo-Riemannian symmetric
space GL(r,R)/O(p, q).

We recall that for odd weight each fibre of E has the structure of a symplectic vector
space and consequentely it holds rkgy F = r = 2n € 2N.

Theorem 5.8 Let (E,V, F?) be a polarized variation of e Hodge structures of odd weight
w with polarization b over the ecomplex base manifold (M, J¢). Let r = 2n be the real rank
of E.

Then the fundamental matriz G takes values in the totally geodesic submanifold

i GENCP) = Sp(R*™) /U (K, 1) — GL(r,R)/O(2k,2l), fore=—1, (5.4.2)
i o Gr(C*) = Sp(R*™)/U™(C™) — GL(r,R)/O(n,n), fore=1 (5.4.3)

and coincides with the map L, i.e. G =10 L: M — GL(r,R)/O(p, q).

Proof: Given a point x € M we put V = HS and VR = H, = R". To any polarized
eHodge structure FP of odd weight w with polarization b the map L associated a La-
grangian subspace L € Grg’l(V) in the complex and a Lagrangian subspace L € Grg(V)

in the para-complex case (see section 2.7). We define a scalar product g© = Reh|g on
L C V. The projection onto the real points

Re : V — VE (5.4.4)

induces an isomorphism £ = VR, Its inverse we call ® = &, : V& — L.

We are going to prove
i(L) = ®f g~ =: G~ (5.4.5)

We first show the Sp(R") equivariance of the map
L— G*. (5.4.6)
From the definition of &5 we obtain with A € Sp(R") :
rp=AoPgoAg, (5.4.7)
and from this the transformation law of G*
GM = @} g™ = (A OpA g™ = (A1) Drg™ = (A)*G* = A -G~ (5.4.8)

Let F? be the reference flag of V. = HS with dim F? = f,. We calculate G*° in the
basis { fi}%) constructed in equation (2.7.2)

(G™(Ref;, Ref;)) = 1,,, after permutation. (5.4.9)

This yields
q)*LOgLO =1,

The proof is finished, since G(r) = GF®) = i(L(x)

. (5.4.10)
. O

~_ R
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Corollary 5.6 Let (E,V, FP) be a polarized variation of e Hodge structures of odd weight

w with polarization b over the ecomplex base manifold (M, J¢). Then the map L : M —
GrEH(Cry = Sp(R") JU(k, 1) is epluriharmonic.

Proof: This follows from the epluriharmonicity of the fundamental matrix G : M —
GL(r,R)/O(p, q), since G = i o L, where i is a totally geodesic immersion and conse-
quentely, by corollary 2.1, the epluriharmonicity of L is equivalent to that of G. O

The last theorem and the last corollary can be specialized for variations of Hodge
structures (This means ¢ = —1.), which are strongly polarized:

Theorem 5.9 Let (E,V, FP) be a strongly polarized variation of Hodge structures of odd
weight w with polarization b over the complex base manifold (M, J). Then the fundamental
matriz G takes values in the totally geodesic submanifold

i : Gro(C") = Gr*(C") = Sp(R") /U (r) — GL(r,R)/O(r) (5.4.11)

and coincides with the map L=mwo® : M — G/K, i.e. G=1i0oL: M — GL(r,R)/O(r).
With the same argument as before, we obtain the

Corollary 5.7  Let (E,V, F?) be a strongly polarized variation of Hodge structures of
odd weight w with polarization b over the complex base manifold (M, J). Then the map
L: M — Gro(C") = Gr°(Cr) = Sp(R") /U () is pluriharmonic.

5.5 eHarmonic bundles

The complex version of this chapter was published in [Sch4].
Collecting our knowledge from the previous chapters we obtain the corollary:

Corollary 5.8 Let (E — M,D,C,C,h) be an eharmonic bundle of ecomplex rank r
over the simply connected ecomplex manifold (M, J¢), then the representation of g = Reh
in a DX -flat frame defines an epluriharmonic map O, M — S(2p,2q) where we define

S(2p7 2Q) fOT €= _17

5(2p,24) = {S(r, r) for e =1,

where (p,q) with r = p + q is the hermitian signature of h for e = —1.

Proof: By theorem 3.6 the eharmonic bundle (E — M, D, C, C, h) induces a metric ett*-
bundle (E, D, S,g = Reh) with Sx :== Cz + Cy for X = Z+Z € TM and Z € T*°M.
The identity (3.4.1), i.e. Dg?) = D% for X\ = cos(a) +isin () € S! and theorem 4.1 prove
the corollary. O
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With our considerations about epluriharmonic maps we are going to show the next theo-
rem. First we introduce a notion:

H Cr), fi =-1
Herm;, (C7) := ermy,(C7), for e ’
’ Herm(C"), fore=1.
Theorem 5.10 Let (E — M, D,C,C,h) be an charmonic bundle over the simply con-
nected ecomplex manifold (M, J¢). Then the representation of h in a D™ -flat frame de-
fines an epluriharmonic map ¢, : M — Hermy (CT), which itself induces an admissible

epluriharmonic map ¢ : M — H¢(p,q) (The space H(p,q) was defined in equation
(2.4.16).).

Proof: The epluriharmonicity of the map ¢, follows from corollary 5.8 and propositions
2.11 and 2.14. For the second part we observe, that the differential of R : g[.(C.) — gl,,.(R)
is a homomorphism of Lie-algebras and therefore preserves the vanishing of the Lie-
bracket. 0

The following theorem gives the converse statement:

Theorem 5.11  Let (M, J¢) be a simply connected ecomplex manifold and E = M x CI.
An admissible epluriharmonic map ¢p : M — H<(p, q) induces an admissible epluriharmonic
map ¢, = [i] o ¢y : M — S¢(2p,2q) and an eharmonic bundle (E,D = — e(C + C),C =
e(dqgh)lvo,h = (¢n",*)cr), where O is the ecomplex linear extension on TM® of the flat
connection on = M x CI.

If M =% is an eRiemannian surface, then every epluriharmonic map ggh 15 admaissible.

If (M, J) is a complex manifold and the signature is (r,0) or (0,7), then every pluri-
harmonic map gz~5h 18 admassible.

Proof: Due to proposition 2.11 and 2.14 the map ¢~Sg is epluriharmonic. Hence one obtains
from theorem 4.2 an ett*-bundle (E = M x R* D =09 —¢S,S = edég, g =< g, >ger),
since the condition on dg%g|x is obtained as in theorem 5.10. We are now going to use the
additional information, we have from the fact, that the map ¢, comes from ¢y, to show
that (E,D =0 — e(C + C),C = e(dgp)"°, h = (¢p-, -)cr) is an eharmonic bundle.

The ehermitian sesquilinear metric h is given by

h=g+iw

with w = g(j¢, ). This is the standard relation between ehermitian metrics on ecomplex
vector spaces and the ehermitian metrics on the underlying real vector spaces.

We observe Dj¢ = [0 — €S, j] = —€[Sx, 7] = 0, because S is is the derivation of a map
from M to GL(r,C,.) and hence commutes with j¢. Therefore Dw = 0 follows from Dg = 0
and Dh =0 from Dw = 0 and Dg = 0.

From the definition of S and S in theorem 3.6, i.e.

Sx =Cz+Cjy,

SJEX - CJGZ + CJeZ
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for X =7+ Z and Z € TY°M we obtain the definition of
2CZ = SX -+ EjESJeX,

202 = SX - €j€SJeX.

In addition we have the identity Dgg\) — D% for A = cos () + isinc(a) € S! which again
gives the equivalence between the flatness of D™ and De.
It remains to show

h(Cz,-) = h(-,Cz).
We recall the relations j*g = —eg and (x) g(j¢-,-) = —g(+,j¢), which implies the anti-
symmetry of w = ¢(j¢,-) and (¥)w(j, ) = —w(-,j%). Further we use the identities
(xx) [S, 7] = [Sye, j] = 0 and that (x % %) S, Sje are g-symmetric. Due to (#%) and (s * %)
we get (* x *%) .S, S e w-symmetric. These identities imply

2h(Cy-,-) g(Sx + €S x-,-) +iw(Sx + €S sex-, )

(4, () (xx0) g(+,Sx —€j°Syex-) + %W<SX + €jSyexy)
(x )’(*2(****) g(7 SX _ GjESJSX') + %w(-’ SX — EjESJEX‘)
2h(7 Z')'

Using S = edp, = ed([i] o o) = edgy, we find extending S on TM® to S® for Z € T"OM
the equations C; = S5° = eddy(Z) and Cy = edpy(2). a

In [Sim] section 1 Simpson studied Higgs-bundles with harmonic positive definite met-

rics, i.e. harmonic bundles, over a compact Kahler-manifold M"™ and related these to
harmonic maps from M in GL(n,C)/U(n). From his results one can find, that a given
flat bundle with a harmonic metric induces a harmonic map from M in GL(n,C)/U(n).
Conversely, a harmonic map from M in GL(n,C)/U(n) and a flat bundle give rise to a
harmonic bundle. From Sampson’s theorem [Sam| one obtains, that in the above case the
notion of harmonic and pluriharmonic coincide.
Simpson’s result follows from the theorems 5.10 and 5.11, since the condition on the
differential of ¢, is satisfied in the case of signature (r, 0) and (0,7). We remark, that
the theorems 5.10 and 5.11 are in fact more general, since the compactness of M and
the Kahler condition are not needed. Simpson uses Kéhler-identities for vector bundles
over compact Kahler manifolds in his proof. Further he needs the compactness, since
he uses arguments from harmonic map theory, which are developped from Sius Bochner
formula for harmonic maps to obtain the vanishing of the object which he calls pseudo-
curvature and which is the integrability constraint for a flat bundle to define a Higgs
bundle. Dubrovin’s work [D] and this thesis deal with pluriharmonic maps. The results
are proven by direct calculations using the pluriharmonic and the tt*-equations, respec-
tively. In the case of signature (r,0) and (0,7) we needed only the second statement of
Sampson’s theorem [Sam| and therefore compactness is not needed.

The next theorem gives a rigidity result for harmonic bundles:
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Theorem 5.12  Let (M,J) be a compact Kdhler manifold of dimension n with fi-
nite fundamental group m (M) (i.e., the universal cover of M is compact). Let (E —
M, D,C,C,h) be a harmonic bundle over (M,.J) with positive definite hermitian metric
h. Then (E — M,D,C,C,h) is trivial, i.e. C =C =0, DN =D for all \ € S*, D is
flat and h is D™ -parallel.

Proof: Pulling back all structures to the universal cover of M we suppose that M is
simply connected. C' = C' = 0 if and only if the same holds for its pull back.

Let s be a D(W-flat frame of E. The associated pluriharmonic map f : M — GL(r,C)/U(r)
obtained from theorem 5.10 is constant by corollary 2.2. We consider again the represen-
tation H® of h in the frame s to compute the representations C* and C* of C' and C in
the frame s for Z € T(T°M) :

Z(H®) = h(Dgs,s)+ h(s,Djzs)
—h(Cys,s) — h(s,Cyzs)

= —2h(Cyzs,s) = —2H°-C,
Z(H®) = h(Dzs,s)+ h(s, Dys)

= —h(Czs,8) — h(s,Cys)

= —2h(Cyzs,s)=—2H*-C}.

This yields C* = C* = 0. It follows C = C' = 0 and D™ = D. O



Bibliography

[ACD]

[AHS]

[AK]

[BC1]

[BR]

[CE]

[CLS]

[CMMS]

[CMP]

[CS1]

D. V. Alekseevsky, C. Devchand and V. Cortés, Special complex manifolds, J.
Geom. Phys. 42 (2002), 85-105.

M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in four-dimensional
Riemannian geometry, Proc. Roy. Soc. Lond. A. 362 (1978), 425-461.

N. Abe and S. Kurosu, A decomposition of a holomorphic vector-bundle with
connection and its applications to complex affine immersions, Result. Math. 44
(2003), 3-24.

O. Baues and V. Cortés, Realisation of special Kahler manifolds as parabolic
spheres, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2403-2407.

F. E. Burstall and J. H. Rawnsley, Twistor theory for Riemannian symmetric
spaces, Lecture notes in mathematics 1424, Springer 1990.

J. Cheeger, D.G. Ebin, Comparison theorems in Riemannian Geometry, North-
Holland 1975.

V. Cortés, M.-A. Lawn and L. Schéfer, Affine hyperspheres associated to special
para-Kahler manifolds, to appear in Int. J. Geom. Meth. in Mod. Phys..

V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special Geometry
of FEuclidean Supersymmetry I: Vector Multiplets, J. High Energy Phys.
JHEP03(2004)028, hep-th/0312001.

J. Carlson, S. Miiller-Stach and C. Peters, Period Mappings and Period Domains,
Cambridge University Press 2003.

V. Cortés and L. Schafer, Topological-antitopological fusion equations, pluri-
harmonic maps and special Kdhler manifolds, Progress in Mathematics 234,
Birkhauser 2005.

V. Cortés and L. Schéfer, Flat Nearly Kdhler and flat nearly para-Kdhler man-
ifolds, in preparation.

S. Cecotti and C. Vafa, Topological-antitopological fusion, Nuclear Physics B
367 (1991), 359-461.

B. Dubrovin, Geometry and integrability of topological-antitopological fusion,
Commun. Math. Phys 152 (1993), 539-564.

119



120

[GHL]

Bibliography
S. Erdem, Paraholomorphic structures and the connections of vector bundles over

paracomplex manifolds, New Zealand J. of Math., Vol. 30 (2001), no.1, 41-50.

J.-H. Eschenburg and R. Tibuzy, Associated families of pluriharmonic maps and
isotropy, Manuscr. Math. 95 (1998), no. 3, 295-310.

D.S. Freed, Special Kihler manifolds, Commun. Math. Phys. 203 (1999), no. 1,
31-52.

Th. Friedrich and S. Ivanov, Parallel spinors and connections with skew-
symmetric torsion in string theory, Asian J. Math. 6 (2002), no. 2, 303-335.

S. Gallot, D. Hulin and J. Lafontaine, Riemannian geometry, Springer, 1990.

W. B. Gordon, Convez functions and harmonic maps, Proc. Amer. Math. Soc.
33 (1972), 433-437.

A. Gray, Almost complex submanifolds of the sixz sphere, Proc. Amer. Math.
Soc. 20 (1969), 277-279.

A. Gray, Nearly Kihler manifolds, J. Diff. Geom. 4 (1970), 283-309.

A. Gray, Riemannian manifolds with geodesic symmetries of order 3, J. Diff.

Geom. 7 (1972), 343-369.
S. Helgason, Differential geometry and symmetric spaces, Academic Press 1962.

C. Hertling, tt*-geometry, Frobenius manifolds, their connections, and the con-
struction for singularities, J. Reine Angew. Math. 555 (2003), 77-161.

S. Ivanov, S. Zamkovoy, Para-Hermitian and Para-Quaternionic manifolds, Diff.
Geom. Appl. 23 (2005), 205-234.

S. Kobayashi, Differential Geometry of Complex Vector Bundles, Princeton Uni-
versity Press, 1987.

S. Kobayashi and K. Nomizu, Foundations of differential geometry volume 1/11,
Interscience publishers (1963/1969).

M.-A. Lawn and L. Schéfer, Decompositions of para-complex vector-bundles and
affine para-complex immersions, to appear in Res. in Math..

H. B. Lawson, M.-L. Michelson Spin geometry, Princeton University Press, 1989.
O. Loos, Symmetric spaces, W.A. Benjamin, Inc. 1969.
Z. Lu, A note on special Kdhler manifolds, Math. Ann. 313 (1999), 711-713.

D. Mc Duft, D. Salamon, Introduction to symplectic topology, Oxford University
Press, 1995.

P.-A. Nagy, On nearly-Kdihler geometry, Ann. Global Anal. Geom.22 (2002), no.
2, 167178,



[Sch2]

[Sch3]

[Sch4]

[Sch5|
[Sché]

[Sch7]

[Sch8]

[Sch9]

[Sim)]

121

P.-A. Nagy, Nearly Kahler geometry and Riemannian foliations, Asian J. Math.
6 (2002), no. 3, 481-504.

B. O’Neill, Semi-Riemmannian geometry, Academic Press, 1983.

J. H. Sampson, Applications of harmonic maps to Kahler geometry, Contempo-
rary Mathematics Volume 49, (1986), 125-134.

L. Schéfer, tt*-Geometrie und pluriharmonische Abbildungen, Diplomarbeit an
der Universitat, Bonn Dez. 2002.

L. Schafer, Higgs-Biindel, nicht-lineare Sigma-Modelle und topologische anti-
topologische Fusion, Diplomarbeit in Physik an der Universitat Bonn, July 2004.

L. Schéfer, tt*-bundles in para-complex geometry, special para-Kdhler manifolds
and para-pluriharmonic maps, Diff. Geom. Appl. 24 (2006), 60-89.

L. Schafer, Harmonic bundles, topological-antitoplological fusion and the related
puriharmonic maps, J. Geom. Phys. 56 (2006), no. 5, 830-842.

L. Schéfer, A note on tt*-bundles over compact Kihler manifolds, to appear.

L. Schéfer, tt*-geometry and pluriharmonic maps, Ann. Global Anal. Geom. 28,
no. 3 (2005), 285-300.

L. Schéfer, tt*-geometry on the tangent bundle of an almost complex manifold,
to appear.

L. Schéfer, tt*-geometry on the tangent bundle of an almost para-complex man-
ifold, in preparation.

L. Schéifer, Harmonic bundle solutions of topological-antitoplological fusion in
para-complexr geometry, in preparation.

C. T. Simpson, Higgs bundles and local systems, Inst. Hautes Etudes Sci. Publ.
Math. No. 75 (1992), 5-95.

N. M. J. Woodhouse, Geometric quantization, Oxford University Press, 1992.



In this work we introduce the real differential geometric notion of a tt*-bundle (E, D, S), a metric
tt*-bundle (E, D, S, g) and a symplectic tt*-bundle (F, D, S,w) on an abstract vector bundle E
over an almost complex manifold (M, .J). With this notion we construct, generalizing Dubrovin
[D], a correspondence between metric tt*-bundles over complex manifolds (M, J) and admissible
pluriharmonic maps from (M, J) into the pseudo-Riemannian symmetric space GL(r,R)/O(p, q)
where (p, ¢) is the signature of the metric g. Moreover, we show a rigidity result for ¢t*-bundles
over compact Kéahler manifolds and we obtain as application a special case of Lu’s theorem.

In addition we study solutions of ¢t*-bundles (T'M, D, S) on the tangent bundle TM of (M, J)
and characterize an interesting class of these solutions which contains special complex manifolds
and flat nearly Kéhler manifolds. We analyze which elements of this class admit metric or sym-
plectic tt*-bundles. Further we consider solutions coming from varitations of Hodge structures
(VHS) and harmonic bundles.

Applying our correspondence to harmonic bundles we generalize a correspondence given by
Simpson. Analyzing the associated pluriharmonic maps we obtain roughly speaking for special
Kahler manifolds the dual Gaufli map and for VHS of odd weight the period map. In the case
of non-integrable complex structures, we need to generalize the notions of pluriharmonic maps
and some results.

Apart from the rigidity result we generalize all above results to para-complex geometry.

Dans cette these nous introduisons la notion de fibré tt* (E, D, S), de fibré ¢tt* métrique (E, D, S, g)
et de fibré tt* symplectique (F, D, S,w) sur un fibré vectoriel E au-dessus d’une variété com-
plexe, dans le langage de la géométrie différentielle réelle. Grace a cette notion on obtient une
correspondance entre des fibrés ¢t* métriques et des applications pluriharmoniques admissibles
de (M, J) dans I'espace symétrique pseudo-Riemannien GL(r,R)/O(p, q), avec (p, q) la signature
de la métrique g. En utilisant ce résultat on obtient dans le cas ot M est compact Kéhlérienne,
un résultat de rigidité, puis un cas particulier du théoreme de Lu.

De plus nous étudions des fibrés tt* sur le fibré tangent T'M et caractérisons une classe spéciale
qui contient les variétés spéciales complexes et les variétés nearly Kahlériennes plates, et la sous-
classe qui admet un fibré ¢t* métrique ou symplectique. En outre on analyse les fibrés ¢t* qui
proviennent de variations de structures de Hodge (VHS) et de fibrés harmoniques. Pour les fibrés
harmoniques, la correspondance permet de généraliser un résultat de Simpson. L’application
pluriharmonique associée a une variété spécialement Ké&hlérienne est reliée a ’application de
Gaufl duale, et celle associée a une VHS de poids impair est I’application de périodes. Si la
structure complexe n’est pas intégrable, on doit généraliser la notion de pluriharmonicité.

Hors la rigidité ces résultats sont généralisés au cas para-complexe.
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