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Abstract: Breast cancer is a major research area in the medical image analysis field; it is a dangerous
disease and a major cause of death among women. Early and accurate diagnosis of breast cancer based
on digital mammograms can enhance disease detection accuracy. Medical imagery must be detected,
segmented, and classified for computer-aided diagnosis (CAD) systems to help the radiologists for
accurate diagnosis of breast lesions. Therefore, an accurate breast cancer detection and classification
approach is proposed for screening of mammograms. In this paper, we present a deep learning system
that can identify breast cancer in mammogram screening images using an “end-to-end” training
strategy that efficiently uses mammography images for computer-aided breast cancer recognition
in the early stages. First, the proposed approach implements the modified contrast enhancement
method in order to refine the detail of edges from the source mammogram images. Next, the
transferable texture convolutional neural network (TTCNN) is presented to enhance the performance
of classification and the energy layer is integrated in this work to extract the texture features from
the convolutional layer. The proposed approach consists of only three layers of convolution and
one energy layer, rather than the pooling layer. In the third stage, we analyzed the performance
of TTCNN based on deep features of convolutional neural network models (InceptionResNet-V2,
Inception-V3, VGG-16, VGG-19, GoogLeNet, ResNet-18, ResNet-50, and ResNet-101). The deep
features are extracted by determining the best layers which enhance the classification accuracy. In
the fourth stage, by using the convolutional sparse image decomposition approach, all the extracted
feature vectors are fused and, finally, the best features are selected by using the entropy controlled
firefly method. The proposed approach employed on DDSM, INbreast, and MIAS datasets and
attained the average accuracy of 97.49%. Our proposed transferable texture CNN-based method for
classifying screening mammograms has outperformed prior methods. These findings demonstrate
that automatic deep learning algorithms can be easily trained to achieve high accuracy in diverse
mammography images, and can offer great potential to improve clinical tools to minimize false
positive and false negative screening mammography results.

Keywords: biomedical image processing; computer aided diagnosis; breast cancer detection; digital
mammograms; deep learning

1. Introduction

Cancer is considered to be the gradual expansion and growth of abnormal cells in
the human body. Breast cancer has been among the major cause of death among women
worldwide [1,2]. Breast cancer has a higher death rate than any other disease, i.e., malaria or
tuberculosis. The World Health Organization (WHO) cancer research institute (International
agency for research on Cancer (IARC) and the American Cancer Society) reported that in
2018, there were 17.1 million cancer cases globally and it is expected to double by 2025 [3].
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Although extensive research has been done by medical professionals and researchers,
they cannot provide the best method of treating breast cancer to obtain the long-awaited
treatment and guarantee the potential for reliable evidence for its prevention [4]. In addition,
some important parts of cancerous tissue related to breast cancer are aggressive and pose
the greatest threat to the lives of patients, because they are more likely to cause infections
in other vital organs of the human body [5,6]. The enormous growth of the area of the
mammary cells can cause tumors in women. Depending on the area, size, and location,
these large tumor cells divide into cancer cells and non-cancer cells based on breast cancer
reporting and data system (BI-RAD) scores [7,8]. Non-cancerous tumors are known as
benign which is signified to the primary tumor area and the cancerous tumors are known
as malignant and secondary tumor area. Benign tumors are treatable and their expansion
can be restrained by taking the proper medications and will not endanger the lives of
women [9,10]. Secondary tumors can spread to distant metastases or adjacent tissues.
When cancer cells penetrate the lymphatic system or blood, malignant tumors can escalate
to different parts of the body. The tumor stems from uncontrolled cell proliferation in the
breast [11,12]. A malignant tumor can be treated only if the patient acquires appropriate
treatment with surgery or radiation [13,14].

In the breast, cancer cells can increase to the lymph nodes and affect other body
parts, i.e., lungs. Breast cancer usually begins with ductal dysfunction (invasive ductal
carcinoma). Although, it can also originate in glandular tissues and other cells called
lobules and breast tissue [15]. The researchers also found that changes in hormones,
lifestyle, and the environment also increase the risk of breast cancer [16,17]. Low dose X-ray
examination of the breast is utilized to envisage the internal structure of the breast. This
process is medically called mammography. This is evaluated as the best suitable approach
for the detection of breast cancer. Compared to previously used equipment, mammography
shows the breast to a much lower radiation dose [18]. It is one of the most reliable screening
tools and has been shown to be a significant approach for early breast cancer detection
in recent times [19]. A mammogram of each breast was recorded in two different views,
namely the medial-lateral oblique (MLO) view and the cranio-caudal (CC) view as shown
in Figure 1. Estimated new cases recorded in 2021 were 281,550 and the percentage of all
the new cancer cases was 14.8% in the U.S. The estimated deaths in 2021 was around 43,600
having a percentage of 7.2%. The 5-year relative survival rate of breast cancer from 2014 to
2019 was 92.16% in the U.S [20].

(a) (b)

Figure 1. Cont.
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(c) (d)

Figure 1. The breast mammogram of a patient [21]. (a,b) Right and left medial-lateral oblique (MLO)
view, (c,d) Right and left cranio-caudal (CC) view.

Many researchers focus on biomedical imaging to assist specialist radiologists. Early
detection of tumors has a significant role in the diagnosis and analysis of breast cancer.
Detection of breast cancer malignancies in early stages is important. Various biomedical
imaging methods have been utilized to determine breast cancer, i.e., magnetic resonance
imaging (MRI), ultrasound, and mammography [22]. Owing to the huge number of images,
radiologists face many problems identifying suspicious areas or cancer. Therefore, to reduce
the load, an efficient automated method is required to help radiologists significantly.
A computer-aided diagnostic (CAD) model is used to assist radiologists detect malignant
breast cancer tumors [23,24].

Recently, some research based on deep learning methods has addressed the concept of
medical imaging on automated CAD systems [8,25–30]. In fact, deep learning approaches
are the best option for medical image recognition and classification. A CAD system
based on deep learning requires three successive phases: the pre-processing, parameters
initialization, extraction of deep features and diagnosis [8,25]. Deep learning methods can
be utilized to directly derive the large low–high levels deep hierarchical feature maps from
the identical source breast image (mammogram) [8]. This shows that deep learning is the
most efficient and dependable medical imaging method [8,25,31]. Recently, several CAD
systems based on deep learning have been introduced to detect the breast lesions and are
superior to traditional systems [32,33]. Automated detection of the breast lesions is the
main task for the automatic evolution of CAD approaches to improve the diagnosis of
breast cancer [8]. Accurate diagnosis of skeptical breast lesions plays an important part in
obtaining a high true positive rate and enhancing the breast cancer final diagnosis [8,26].
Detecting breast lesions is a difficult task because these lesions are so diverse in shape,
texture, size, and position. The use of image processing and deep learning methods to
detect the breast lesions using traditional methods are proposed in [11,26]. Traditional
technology relies on low-level manual functions and does not yet have the ability to
perform identification tasks automatically [25]. Low contrast of mammogram images
and detecting asymptomatic breast cancer through mammography is a difficult image
classification task from the view of machine learning (ML) because the tumor itself only
makes up a small part of the complete breast image. Recently, numerous new approaches
based on deep learning recognition have been introduced to solve the problem of poor
diagnosis performance of CAD approaches [8,31]. Classification of breast lesions is the
last phase in the CAD model. The aim of this stage is to identify breast lesions that are
considered benign or malignant [25,34]. The importance of the method of classification of
breast lesions leans on the validity of the hypothetical characteristics which indicate the
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leading characteristics [8]. Deep features must have an appropriate feature distribution in
order to identify the malignant and benign breast lesions [8,9].

The existing breast cancer detection system is time consuming, expensive, and requires
additional work to operate the equipment for radiologists. From an image processing
perspective, accurate and automatic detection of breast cancer is not easy. Hence, it
is deemed a requisite to diagnose breast cancer at an early stage and treated properly.
However, breast cancer detection requires proper screening system and automation because
of the following reasons [5]:

1. False diagnosis and prediction.
2. The tumor appears in an area with significantly lower contrast.
3. Lack of reliability of human experience in diagnosis.
4. Overload of the radiologists.
5. High complexity of memory.
6. Degree of human inaccuracy in diagnosis.
7. Current deep learning algorithms need large amounts of training data to overcome

the problems of overfitting.
8. Existing breast cancer detection methods are computationally complex and require

more treatment time to identify accurate tumors.

In addition, manual breast cancer diagnosis can take months and the localized stage
of cancer infection can progress to a critical stage where survival cannot be achieved.
Therefore, an accurate automated breast cancer detection method is required to diagnose
cancer [35]. Today, deep learning approaches have been introduced for breast lesion
detection and classification to enhance their accuracy, and have become an important
element of CAD systems. The CAD techniques based on image processing are becoming
more popular to accelerate the work of doctors for breast cancer diagnosis and reduce
diagnosis time [8,36]. The proposed TTCNN system is effectual for early detection of breast
cancer, however, the proposed system is effective for all stages of cancer. Detecting the
small tumor in a whole breast is a more difficult task as compared to detecting the large
area of tumor at a later stage. To this end, we propose a new approach of early breast cancer
detection, which has the following contributions.

1. As a pre-processing step, a modified contrast-limited adaptive histogram equalization
(CLAHE) algorithm is utilized to refine the edge details of the source image.

2. We propose a new transferable texture convolutional neural network (TTCNN) for
the classification of breast cancer.

3. We use the energy layer (EL) in the proposed TTCNN framework. This allows us to
preserve texture information, limit the size of the output vector, and refine the model’s
overall learning ability.

4. We perform the detailed functions of the most advanced CNN model for breast cancer
classification i.e., InceptionResNet-V2, Inception-V3, VGG-16, VGG-19, GoogLeNet,
ResNet-18, ResNet-50, and ResNet-101.

5. A convolutional sparse image decomposition approach is implemented for the fea-
ture fusion and entropy controlled firefly approach is employed to optimize the
feature selection.

6. Aiming to check the stability of the proposed system, a comprehensive statistical
analysis and comparison with the latest algorithms is performed.

7. The proposed approach minimizes the time required for radiologists to diagnose
cancer while assuring reliable accuracy of detection. The proposed approach takes
less processing time and provides accurate results.

The rest of the article is structured as follows: Section 2 briefly expresses the literature
review involved in the detection and classification of breast cancer. The detailed method-
ology of the proposed system is presented in Section 3. Section 4 analyzes the proposed
approach performance in comparison with other modern approaches. Finally, we conclude
this work with the direction of future research in Section 5.
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2. Related Work

Modern medical procedures actively use mammography images for breast cancer di-
agnosis [37]. This section systematically reviews the esteem achievement and performance
on breast cancer detection and classification.

Over the past few years, deep learning methods in the field of image recognition,
segmentation, detection, and computer vision have received much attention and inter-
est [8,28,38]. In fact, deep learning has been utilized to address the inadequacies of tra-
ditional CAD approaches [8]. This is because conventional CAD approaches are based
on manually developed functions and have limited diagnostic accuracy [35]. The simi-
larity between benign and malignant lesions and their enormous changes in size, shape,
color, and texture have challenged traditional methods [19,25]. CAD approaches have
demonstrated the ability to use deep learning to discover complex hierarchical deep fea-
tures automatically to improve diagnostic operation [8,32,35]. Many CAD approaches use
conventional image processing and deep learning methods, but the use of deep learning
detection and classification in breast imaging is inadequate for breast lesion diagnosis.

In recent years, AlexNet [39], ResNet [40], VGG16 [41], Inception [42], GoogleNet [43],
DenseNet [44] deep learning models provide improve performance of classification as
compared to the shallower ones. The overall classification accuracy of VGG16, ResNet50,
and Inception-V3 reached 95%, 92.5%, and 95.5% respectively. The performance of clas-
sification of these deep learning methods is much better than that of the shallow model,
but manually detection and memory complexity during training still remain challenges.

Several scholars have worked on the automatic detection and classification of breast
cancer aiming to enhance the accuracy. For example, Al-antari et al. [4] evaluated the use
of the YOLO detector to perceive breast injury from mammograms. Three deep learning
classifiers, i.e., Inception ResNet-V2, ResNet-50, and feedforward CNN are used to assess
classification of breast lesions using a digital database for screening mammography (DDSM)
and the INbreast database. With these classifiers, the method acquired an accuracy rate
of 95.32%. Al-antari et al. [8] used a CAD model (four-fold cross-validation) to estimate
a full resolution convolutional network (FrCN) with X-ray mammograms using INbreast
dataset. This approach achieved an accuracy of 95.96%, F1 score of 99.24%, and matthews
correlation coefficient of 98.96%.

Chouhan et al. [19] proposed a diverse features (DFeBCD) method for breast cancer
detection to classify mammograms as normal or abnormal. The IRMA mammography
dataset uses two classifiers, a support vector machine (SVM) and an emotion learning-
inspired integrated classifier (ELiEC). The ELiE classifier performance is superior to SVM
and the accuracy rate reaches 80.30%. Muduli et al. [45] used the lifting wavelet transform
(LWT) to obtain the region of interest features from the breast images. The size of the
feature vectors diminish using a fusion of principal component analysis (PCA) and linear
discriminant analysis (LDA) approaches. The extreme learning machine (ELM) and moth
flame optimization approach is used for the classification using the DDSM and mammo-
graphic image analysis society (MIAS) databases. This approach attained an accuracy of
98.76% and 95.80% for DDSM and MIAS databases respectively. Junior et al. [46] presented
a breast cancer method based on diversity analysis, geostatistics and alpha form using the
SVM classifier on DDSM and MIAS datasets and achieved the detection accuracy of 96.30%.
Ghosh et al. [47] presented an algorithm for segmentation utilizing intuitionistic fuzzy
soft set and multigranulation rough set. The intuitionistic fuzzy soft set takes information
from input images through various fuzzy membership operations. This approach deals
with ambiguity between damaged and undamaged pixels when forming the membership
function. This reduces the distant pixels that are not in the region of interest, the diseased
tissue in the mammogram is separated by a rough approximation of the fuzzy concept
of the multiregional granulation space. Zheng et al. [48] developed an efficient adaboost
deep learning method for the recognition of breast cancer. This work focused on the com-
bination of various deep learning approaches with feature extraction and selection using
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classification and segmentation methods to evaluate the result and focus on finding the
most suitable method and obtained an accuracy of 97.2%.

Harefa et al. [49] utilized the gray level co-occurrence matrix (GLCM) and SVM
classifier to detect breast cancer abnormalities on the MIAS database and achieved an
accuracy of 93.88% and outperformed k-Nearest Neighbour (kNN). Samala et al. [50]
presented a use of the deep neural network for multilevel transfer learning for digital breast
tomosynthesis. ImageNet knowledge first records mammogram information and then
optimizes it during multi-step transmission of digital breast tomosynthesis information.
Then the freezing of most of the convolution neural network (CNN) framework was
compared to two transmission systems with the first convolution layer. Qi et al. [51]
proposed a deep active learning approach for the classification of breast cancer with the aim
of maximizing the precision of learning with very limited labels. This approach manually
annotates the most valuable unlabeled samples and integrates them into the training set.
Then update the system repeatedly as the training set grows. Two deep active learning
framework selection strategies are proposed i.e., confidence boosting strategy and an
entropy based strategy on the breast cancer histopathological (BreakHis) database. This
approach reduced the cost of annotation by up to 66.67%, which is more accurate than the
standard query strategy. Agarwal et al. [52] developed a patch-based CNN algorithm for
the identification of lesions in breast in the full-field digital mammograms (FFDM) using a
pre-trained CNN models (VGG16, ResNet50, and InceptionV3) for the extraction of features
and attained the results of detection with a true positive rate (TPR) of 98%.

Irfan et al. [53] developed an algorithm based on dilated semantic segmentation
network (DICNN) with morphological operation. A DenseNet201 is used for the feature
extraction. The feature vectors acquired from DenseNet201 and 24 layer CNN employing
parallel fusion were fused to categorize the nodules. These feature vectors are merged with
the SVM classification and attained an accuracy of 98.9%. Rajinikanth et al. [54] developed
a breast cancer detection method using breast thermal images. The two image features
GLCM and local binary pattern (LBP) with heterogeneous weights are used to classify the
breast thermal images into healthy and DCIS class by using the SVM and decision tree
(DT) classifier. This algorithm had an accuracy of 92%. Kadry et al. [55] presented a joint
thresholding (slime mould method and Shannon’s entropy) and watershed segmentation
method to improve and obtain the breast tumor from 2D MRI slices. The extracted breast
tumor and ground truth image is executed and the essential image performance values
(IPV) are calculated. Some of the existing works with dataset information and results are
illustrated in Table 1.

Table 1. Detailed summary of recent related works on breast cancer detection and classification.

References Approach and Methods Used Modality Dataset Results

Al-antari et al. [4] YOLO detector, Inception ResNet-V2,
ResNet-50, and feedforward CNN

Mammography DDSM, INbreast Accuracy = 95.32%

Al-antari et al. [8] Full Resolution Convolutional Network
(FrCN)

Mammography INbreast Accuracy = 95.96%

Chouhan et al. [19] Diverse Features (DFeBCD), SVM,
and ELiEC

Mammography IRMA Accuracy = 80.30%

Muduli et al. [45] Lifting Wavelet Transform (LWT) Mammography DDSM, MIAS Accuracy = 98.76% and
95.80%

Junior et al. [46] Diversity Analysis, Geostatistics, and Al-
pha Form

Mammography DDSM, MIAS Accuracy = 96.30%

Ghosh et al. [47] Intuitionistic fuzzy soft and Multigranu-
lation rough set

Mammography MIAS, MedPix Accuracy = 87.22%

Zheng et al. [48] Efficient Adaboost Mammography ACRIN Accuracy = 97.2%
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Table 1. Cont.

References Approach and Methods Used Modality Dataset Results

Harefa et al. [49] GLCM and SVM Mammography MIAS Accuracy = 93.88%

Samala et al. [50] Multi-stage transfer learning Mammography DDSM AUC = 0.92

Qi et al. [51] Deep active learning Histopathology BreaKHis -

Agarwal et al. [52] Patch-based CNN Mammography DDSM, INbreast TPR = 0.93

Rajinikanth et al. [54] GLCM and LBP Thermography DITI-India Accuracy = 92%

From literature research, previous breast cancer detection and classification approaches
have led to better information extraction. However, there are still numerous problems that
require serious attention, i.e., (i) the tumor appears in a location with significantly lower
contrast, (ii) memory complexity is high, (iii) existing approaches are computationally
complex and require more treatment time to identify the accurate tumor, (iv) current deep
learning approaches require a large amount of training data to overcome the problems of
overfitting and high computational cost, and (v) practical implementation.

To resolve the above mentioned problems, we have proposed a new breast cancer de-
tection and classification approach. This will be discussed in more detail in the next section.

3. The Proposed Transferable Texture Convolutional Neural Network
(TTCNN) Method

In this paper, a deep learning based Transferable Texture Convolutional Neural Net-
work (TTCNN) method is proposed for breast cancer diagnosis and classification using
digital X-ray mammograms. Firstly, a pre-processing approach is executed for contrast
enhancement on the source image to improve the contrast. After that, the proposed TTCNN
is applied on the pre-processed images for breast cancer malignant and benign classification.
The proposed TTCNN classification then perform on the latest deep features from the deep
convolutional neural network (DCNN) models, i.e., InceptionResNet-V2, Inception-V3,
GoogLeNet, VGG-16, VGG-19, ResNet-18, ResNet-50, and ResNet-101 for the feature ex-
traction and executes transfer learning to redeem the selected databases. The proposed
method contains six phases that include the materials and methods, contrast enhancement,
proposed TTCNN architecture, transfer learning based deep feature extraction, feature
fusion and the feature selection. These steps are elaborated in the following subsections.
A schematic diagram of the proposed approach is presented in Figure 2.

Figure 2. Framework of the proposed approach for the breast cancer detection and classification.
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3.1. Materials and Methods
3.1.1. Dataset

This work used three digital breast X-ray databases to assess the proposed CAD
approach. The datasets are DDSM [56], INbreast [57] and MIAS [58].

DDSM

The DDSM database was compiled by a team of experts from the University of South
Florida [56]. The DDSM dataset consists of digitized images in joint photographic experts
group (jpeg) format compressed scanned mammography film. In this work, we have used
CBIS-DDSM (Curated Breast Imaging Subset of DDSM) which is a modernized version
of DDSM decompressed in DICOM format. The DDSM database includes 2620 breast
cases divided into 43 different volumes. In each case, each breast uses two different slide
views (MLO and CC) to collect four mammograms [7]. The average size of a DDSM
database is 3000 × 4800 pixels [4]. This contains the cancer type (benign or malignant)
and the location of the wound [56]. Mammograms in the DDSM dataset are categorized
in three sets i.e., normal, benign, and malignant by experts based on the BI-RAD score [7].
The CBIS-DDSM database consists of pixel-by-pixel annotations for regions of interest
(ROI), i.e., tumor, calcification and disease pathology (benign or malignant). Additionally,
each ROI is marked as calcification or mass. Most mammograms consist of only one ROI.
The motive of this work is to anticipate the benign and malignant state of each image.

INbreast

The INbreast database consists of digital mammograms and was obtained from the
Portuguese University Hospital (Centro Hospitalar de S. Joao [CHSJ], Breast Centre, Porto)
with the consent of the National Data Protection Commission of Portugal and Hospital’s
Ethics Committee [57]. The average size of an INbreast database is 3328 × 4084 pixels.
A total of 115 cases or patients were taken from INbreast dataset using both breast views
(MLO and CC). In the 90 affected cases of both breasts (i.e., 360 mammograms), each person
had 4 mammograms, but in the other 25 mastectomy patients (i.e., 50 mammograms) in
only two mammograms were performed [57]. Therefore, a total of 410 mammograms were
generated with MLO and CC images from 115 patients. This includes normal, benign
and malignant cases [57]. All mammograms with breast lesions (107 cases in a total) were
used for evaluation from both the MLO and the CC perspectives. Multiple mammograms
showed various lesions and the BI-RAD score was used to classify a total of 112 breast
lesions. Therefore, by using the BI-RAD 36 mammograms were collected to indicate benign
cases and 76 mammograms were collected to explain malignant cases using BI-RAD. This
dataset consists of pixel-level batch annotations and histological information on cancer
types. The dataset also contains some mammograms with multiple qualities.

MIAS

The MIAS dataset consists of 326 mammograms images and has three categories of
tissue types (fatty, fatty-glandular, and dense-glandular). Among the 326 images, normal
are 207, abnormal are 119, 68 were benign, and 51 were malignant. The size of all the
images used in this dataset is 1024 × 1024 pixels and are physically formatted in portable
gray map (pgm) format.

After the cessation of this subsection, the proposed approach commences the second
phase, which is explained in the next subsection.

3.2. Contrast Enhancement

Improving the contrast is an important preliminary step in the diagnostic process [59].
Due to the lack of illumination, the contrast of the source mammogram image is low.
The histogram equalization method appears to be a more efficacious way of enhancing the
low contrast images. The modified CLAHE [59] is implemented to adjust the contrast and
maintain the standard brightness of the input image. This contrast enhancement method
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affects small parts of the image (mosaics). The histogram in the output part harmonizes the
identified histogram because the contrast of each mosaic is emphasized, rather than the
absolute mammogram image. After leveling, use linear interpolation to connect adjacent
tiles and remove artificial boundaries. CLAHE uses a custom clipping threshold to limit
the enhancement of histogram clipping. The clipping level diminishes the noise level and
sets the contrast level to enhance the histogram. We use 0 to 0.01 for this activity.

Firstly, we divide the input image into correlated areas that do not overlap. The total
number of image tiles is R × S. The histogram of the non-overlapping correlation area
is calculated as the level of gray present in the image matrix. Equation (1) calculated the
contrast limit histogram of the relevant area that does not overlap according to the clipping
limit as follows.

Inavg =
Sp × Sq

Sgray
, (1)

where Inavg is the average number of pixels, Sgray is the number of related gray levels that
do not overlap, Sp and Sq is the number of pixels in dimensions that do not overlap p and
q. The clipping limit is given in Equation (2) as:

InLC = Sclipping × Iav, (2)

where InLC is the clipping limit, Sclipping is the normalized clipping limit in the range of [0,
1]. If the number of pixels is greater than InLC, the pixels will be clipped. The remaining
average pixels are allocated in each gray level as follows:

Inav,gry =
Spcw

Sgry
, (3)

where Spcw denotes the integer number of pixels after truncation. Move the remaining
pixels till all the pixels are connected. The pixel redistribution is given in Equation (4) as:

Inpace =
Sgry

Stp
, (4)

where Stp is the number of remaining clipped pixels. Also, using the Rayleigh transforma-
tion in each part, the intensity values are rectified in Equation (5) as:

Inq = Inmi +

√
2ζ2ln

(
1

1− Cin

)
Ipace, (5)

where Cin represents the cumulative probability which develops the transfer function, Inmi
is the lower limit of the pixel value, and ζ is the scale parameter. The value of each intensity,
the output probability density is given by Equation (6) as:

In$ =
(Inq − Inmi)

ζ2 .exp

(
−
(Inq − Inmi)

2

2ζ2

)
f or Inq ≥ Inmi. (6)

Increasing the value of ζ will significantly improve the contrast of the image, but will
increase the saturation value and the noise level. Linear contrast stretching can be used
to rearrange the output of the resulting transfer function to reduce the effects of sudden
changes. The expansion of the linear contrast can be demonstrated in Equation (7) as:

Inx =
I$ − wmi

wma − wmi
, (7)

where I$ is the transfer function obtained, wmi and wma are the minimal and maximum
transfer functions value respectively. Inx is used to extract the source image to acquire an
image with enhanced contrast. Contrast enhancement refined the edges of the input image.



Appl. Sci. 2022, 12, 3273 10 of 27

Figure 3 shows the contrast enhancement of the input image. In Figure 3a, the source
mammogram image having a tumor is not visible as the tumor in the breast image has
no sharp edges. Whereas in Figure 3b image shows that after using the modified con-
trast enhancement approach, the image gradient has been significantly improved and the
disease part is prominently highlighted in the breast mammogram image. Upon closing
of this phase, the proposed approach moves to the third phase, which is detailed in the
next subsection.

(a) (b)

Figure 3. The mammogram image for contrast enhancement. (a) source image, (b) contrast enhanced
image using modified CLAHE.

3.3. Network Architecture

The TTCNN architecture is presented for breast cancer classification. The proposed
deep CNN considers the three important features of the image: Firstly, the size of some
description patterns is much smaller than the source image, but if their size is equal to
the convolution filter mask size, the convolution filter can find the pattern. Secondly,
certain shapes or patterns can be used in different parts of the mammogram image. These
models can also be defined by convolving the entire source mammogram image. Thirdly,
downsampled pixels are very important for the max-pooling layer and do not change the
shape of the source mammogram image. The proposed TTCNN framework for the breast
cancer classification is illustrated in Figure 4.

Figure 4. Framework of the proposed TTCNN for breast cancer classification.

The proposed TTCNN contains two convolution layers, followed by the pooling layers
and the third convolution layer directs the EL. Then, a softmax layer is used with the fully
connected (FC) layer. EL summarizes the feature maps of the last convolutional layer
by averaging the rectified activation output. This returns a value for each feature map,
equivalent to the energy response to a filter bank. In addition to reducing the number
of layers, this architecture offers excellent performance in learning texture functions and
requires less computation time and memory. EL enables this trade-off between performance
and computation time. This layer is implemented to conserve the data flow of the original
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layer. The flattened output of EL is redirected to the concatenation layer immediately
after the last pooling layer. This connection creates a new flattened vector that contains
information about the shape and texture of the image and spreads it to the fully connected
layer. The complete description of the proposed network with both the input and output
dimensions is given in Table 2. The output size of the convolution layer is mathematically
computed in Equation (8) as:

Output =
Ia − Ib + 2S

$ + 1
, (8)

where Ia and Ib represents the input and filter size respectively, S denotes the padding,
and $ is the stride value.

Table 2. Proposed texture CNN architecture layers.

Layers Types Input Size Kernel Size to Form Each Feature Map Stride Padding Output Size

1 Convolutional Layer 1 64 × 64 × 1 5 × 5 [1 1] [1 1 1 1] 62 × 62 × 16

2 Max Pooling Layer 1 62 × 62 × 16 2 × 2 [2 2] [1 1 1 1] 32 × 32 × 16

3 Convolutional Layer 2 32 × 32 × 16 5 × 5 [1 1] [1 1 1 1] 30 × 30 × 32

4 ReLU

5 Max Pooling Layer 2 30 × 30 × 32 2 × 2 [2 2] [1 1 1 1] 16 × 16 × 32

6 Convolutional Layer 3 16 × 16 × 32 3 × 3 [1 1] [1 1 1 1] 16 × 16 × 64

7 ReLU

8 EL 16 × 16 × 64 - - - 128 × 1

9 Dropout 128 × 1 - - - 128 × 1

10 FC1 128 × 1 - - - 1024 × 1

11 Dropout 1024 × 1 - - - 1024 × 1

12 FC2 1024 × 1 - - - 2 × 1

13 Softmax Layer - - -

14 Classification Layer - - -

Afterwards, the three convolution layers are utilized with kernel size of 5 × 5 for the
first two layers and the output of these channels are 16 and 32, respectively. The third
convolution layer is examined as an intermediate layer for extracting texture properties
with kernel size of 3 × 3 having the output channels 64. Only 31,744 parameters can be
learned from the convolution layer and these parameters are calculated using the following
formulas in Equations (9) and (10) as:

ξv = ζV × (Ik × $ + 1), (9)

ξv = ζV + Xk × $× ζV , (10)

where ξv denotes the CNN layer learnable parameters, Ik represents the kernel size, and ζV
denotes the channel number.

Each convolution layer computes the output of the neuron connected to the input.
The calculation is the dot product between its weight and the smallest input field attached to
it. The first convolution layer constructs a 16-kernel 32 × 32 × 16 size output. Equation (11)
gives the output of the neurons in the first convolution layer as:

Sϑ = ∑
ϑ

Cϑ × Tϑ + Pϑ, (11)
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where Sϑ represents the output feature maps, Cϑ represents the input feature maps, and T
denotes the weighted map. Afterwards, an energy descriptor is utilized for the output of
the final convolution layer. Energy layers are combined after the third convolution layer,
taking into account the requirements of the energy descriptor. Its functionality is similar to
a dense, messy texture descriptor. The connection is given in Equation (12) as:

EL(ξ, ϑ) = ρ

[
j

∑
i=1

Tω
i ϑi + P

]
, (12)

where EL(ξ, ϑ) represents the EL output layer, j represents the input connections, and T
represents the EL weighted vector. Compared to the last conventional convolution layer in-
terconnection, the interconnection between the EL and FC layers is much smaller and leads
to a reduction in learnable parameters. In addition, EL retains energy information from the
preceding layer and learns during forward and backward propagation. Furthermore, to
reduce the vector size of the next FC layer, EL also improves the overall learning ability of
the network and diminish the complication of the proposed system. Use Equation (13) to
calculate the learnable parameters of EL as:

ξEL = ηm × ηm−1, (13)

where ξEL is the EL learnable parameters, ηm is the current FC layer neuron, and ηm−1 is
the previous FC layer neuron.

To speed up the training process the batch normalization and activation function is
used between the convolution layer and rectified linear unit (ReLU) layer. Batch normaliza-
tion is used to remove the internal covariate shift [50]. This can be done by normalizing
the mean and standard deviation. The bulk normalization calculation uses the following
Equations (14) and (15) to calculate mean and variance.

τQ =
1
n

n

∑
i

ιi, (14)

υQ =
1
n
×

n

∑
i
(ιi − τQ)

2, (15)

where τQ and υQ represents the mean and variance respectively, n is the mini batch size of ιi
element of features. In our work the value of n is 64. The batch normalization is calculated
in Equation (16) as:

λi =
ϑi − τ√
υ2 + φ

α + A, (16)

where α and A are initial learnable parameter values of each output layer. ReLU is used
as an activation function which is computed in Equation (17) and the output of the ReLU
layer is calculated in Equation (18) as:

λi,j,k = max0, ϑi,j,k, (17)

λReLU = ReLU(Bnorm(Conv(w, x))), (18)

where λi,j,k denotes the output element features and ϑi,j,k denotes the feature of the in-
put element. Afterwards, the pooling layer reduces the size of feature maps, weights,
and computations which shows overfitting of the control network. The max pooling layer
is mathematically computed in Equation (19) as:

Mpool = max

(
0, ∑

Q
ϑk−1Tϑ

)
, (19)
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where Mpool represents the output feature maps, ϑ indicates the input feature maps, Q
denotes the pooling size, and T represents the max pooling layer for kernel vector. In this
work, two max pooling layers are used with each layer kernel size 2 × 2.

The dropout layer is used to remove a subset of random parameters repeatedly through
the weighted update process to avoid overfitting training data. Drop editing is used to
remove a subset of random parameters repeatedly during the weighted update process
to avoid overfitting training data. FC layers have the most parameters across the network
and are therefore subject to over-compatibility of training data. Hence, the dropout layer
is determined after the FC layer. The softmax layer is utilized as a classifier which uses
the loss function. The range of probability values for softmax is [0, 1]. The mathematical
expression of loss function is given in Equation (20) as:

κl = δj + log ∑
i

exp(δi), (20)

where κl denotes the total loss and δi having the class δ which is i-th vector element.
The purpose of the classifier is to reduce the probability difference between the real label
and the estimated label which is calculated using the softmax function in Equation (21) as:

λi =
expδj

∑i exp(δi)
. (21)

Upon completion of this stage, TTCNN proceeds to the fourth phase, which is ex-
plained in the following subsection.

3.4. Deep Feature Extraction Using Transfer Learning

Transfer learning is a deep learning (and machine learning) method that transfers
expertise from one model to another. Transfer learning allows us to solve all or part of a
specific task by using an already pre-trained model to complete another task. Machines
use what they have learned from previous tasks to improve predictions for new tasks in
transfer learning. Transfer learning has many benefits, but the most significant is that it
reduces training time, enhances the performance of neural networks, and does not make
large amounts of data available. Below is a concise description of the state-of-the-art CNN
deep feature extraction model which is selected in our work.

3.4.1. VGGNet

VGGNet is a CNN architecture presented by Andrew Zisserman and Karen Simonyan
from the Oxford University in 2014 [41]. It is formulated by intensifying the depth of
the accessible CNN architecture to 16 or 19 called VGG-16 and VGG-19, respectively as
illustrated in Figure 5.

The VGG-16 architecture contains 138 million parameters and the VGG-19 contains
144 million parameters. The VGG-16 model has 13 convolutional layers, five max pooling
layers, and three fully connected layers. VGG has a small filter (3 × 3) instead of a larger
filter. It has the same effectual receptive field as having only one 7 × 7 convolutional layer.
The VGG-19 model has 16 convolutional layers, five max pooling layers, and three fully
connected layers. In the two variants of VGGNet, there are two fully connected layers, each
with 4096 channels, and then another fully connected layer with 1000 channels to anticipate
1000 labels.
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Figure 5. Framework of VGG-16 and VGG-19 architectures.

3.4.2. ResNet

ResNet was founded in 2015 by Kaiming He and the idea behind that is each layer
of the framework is determined from the residuary function by referring to its own input
layer. This network won the ILSVRC 2015 competition with a lower error rate of 3.57%.
In this degree, the ResNet model is certainly optimized and the precision can be greatly
improved [40]. For this task, we have used three pre-trained ResNet-18, ResNet-50 and
ResNet-101 networks. Table 3 illustrated the basic architecture of all these networks.

The input size of the network is 224 × 224. In the three architectures described,
the first convolutional layer and the final three layers, i.e., pooling, FC and the softmax
are affixed. If the internal convolution layers number is increased, the depth of the deep
network changes.

Table 3. The RestNet-18, RestNet-50 and RestNet-101 architectures.

Layer Name Size of Output ResNet-18 ResNet-50 ResNet-101

Conv1 112 × 112
7× 7, 64 Stride 2

3 × 3 maxpool, Stride 2
7× 7, 64 Stride 2

3× 3 maxpool, Stride 2
7× 7, 64 Stride 2

3× 3 maxpool, Stride 2

Conv2_x 56 × 56
[

3× 3, 64
3× 3, 64

]
× 2

 1× 1, 64
3× 3, 64
1× 1, 256

 × 3

 1× 1, 64
3× 3, 64
1× 1, 256

 × 3

Conv3_x 28 × 28
[

3× 3, 128
3× 3, 128

]
× 2

 1× 1, 128
3× 3, 128
1× 1, 512

 × 4

 1× 1, 128
3× 3, 128
1× 1, 512

 × 4

Conv4_x 14 × 14
[

3× 3, 256
3× 3, 256

]
× 2

 1× 1, 256
3× 3, 256
1× 1, 1024

 × 6

 1× 1, 256
3× 3, 256
1× 1, 1024

 × 23

Conv5_x 7 × 7
[

3× 3, 512
3× 3, 512

]
× 2

 1× 1, 512
3× 3, 512
1× 1, 2048

 × 3

 1× 1, 512
3× 3, 512
1× 1, 2048

 × 3

Pooling 1 × 1 × 512 Average pooling

FC 512 × 10 Fully connected

Softmax 1000 Softmax

3.4.3. GoogLeNet

GoogLeNet [43] is a CNN based on the Inception architecture. GoogLeNet (Inception
V1) won the ILSVRC 2014 challenge. It reached an error rate of 6.67% which is very
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near to the human-level performance that challenge organizers must currently assess.
The architecture of the Inception block is displayed in Figure 6. It uses the Inception
module, which allows the network to choose between several convolution filter sizes for
each block. The Inception network occasionally stacks these modules together and uses the
maximum max-pooling layer with stride 2 to bisect the resolution of the grid.

Figure 6. Architecture of inception block.

The architecture of GoogLeNet consists of 22 deep CNN layers, but the parameters
number is diminished to 4 million from 60 million (AlexNet). It consists of four simultane-
ous boughs. Convolution layers with kernel sizes of 1 × 1, 3 × 3, and 5 × 5 are used in the
first three boughs. The intricacy of the frame can be diminished by convolving two inter-
mediate branches in the input channel with a window size of 1 × 1. Appropriate padding
is employed for all four boughs so that the height and width of the inputs and outputs are
the same. The final inception block is created after linking the output of each bough. It
contains almost 6.8 million parameters. GoogLeNet architecture has nine inception blocks
containing 6 convolutional layers, 3 convolutional layers of 1 × 1 (for dimensionality reduc-
tion), 3 × 3, and 7 × 7, 4 layers of max-pooling, two layers of normalization layers, average
pooling, and FC layer. The ReLU activation function is utilized by all the convolution layers
and drop regularization is applied to the FC layer. The softmax function is used in the
output layer. The block of GoogleNet is shown in Figure 7.

Figure 7. Architecture of GoogLeNet.

3.4.4. Inception-ResNet-v2

This network is a form of Inception-v3 [43] which combines a certain design from
the ResNet [40]. Inception-ResNet-v2 only uses batch normalization at the traditional
layers. To increase the depth of the networks and the number of inception blocks the
residual modules are used. The Inception-ResNet-v2 architecture contains one stem block
(six convolutional blocks and one max pooling layer) and three different sets of inception
blocks. The first block has five inception modules, each with seven convolution blocks.
The first block has 10 inception modules, each with five convolution blocks, and the third
and last block has five inception modules, each with four blocks of convolution, also contain
two depletion blocks with different convolutional layers, average pooling, and FC layers.
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At the output layer softmax activation function is utilized. Figure 8 illustrates the model
of Inception-ResNet-v2.

Figure 8. Architecture of Inception-ResNet-v2.

3.4.5. Inception-v3

This network is also the CNN architecture of the Inception series, including label
smoothing, 7 × 7 factoring convolution, and the use of auxiliary classifiers to further
propagate label information over the network (batch use), and have been made some
improvements, standardization for the sidehead layer. Inception-v3 used 1 million training
images from thousands classes of ImageNet datasets for training. Inception v3 showed
more than 78.1% accuracy rate on the ImageNet dataset. Over the years, this architecture is
the climax of many ideas established by various researchers. The architecture comprises
symmetric and asymmetric building blocks, such as convolutional layer, average pooling,
max pooling layers, concatenation layer, dropout layer, and FC layer. Batchnorm is widely
used throughout the architecture and is suitable for activation input. The loss is calculated
using Softmax. This model truncates the number of parameters that can be learned and
also truncates the complication of the network. The general framework of the Inception-v3
model is illustrated in Figure 9.

Figure 9. Framework of Inception-v3.

Upon completion of this stage, TTCNN moves to the fifth stage, which is elaborated
in the following subsection.

3.5. Feature Fusion

This is the most highlighted field in the pattern recognition [60]. Feature fusion
combines the features from different layers or branches. Feature fusion performed from
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different operations i.e., concatenation and summation. In this regard, the convolutional
sparse image decomposition (CSID) fusion approach [28] is employed to interconnect
the selected feature vectors in the matrix to obtain feature vectors. The feature fusion is
evaluated in Equation (22) as:

χo,p = minξo,p

1
2

∥∥∥∥∥Oι −
Qt

∑
p=1

ht,p ∗ ξt,p −
Mo

∑
m=1

lo,p ∗ ξo,p

∥∥∥∥∥
2

2

+ �o

Qt

∑
p=1
||ξt,o||1. (22)

This operation continues till all pairs are compared. χo,p is the final fused vector.
Upon termination of this stage, TTCNN approach move to the sixth and last phase, which
is discussed in the next subsection.

3.6. Feature Selection

In the last few years, feature selection methods have successfully enhanced the system
efficiency and exhibit a prominent improvement in medical imaging [61]. Feature selection
is employed to enhance the classification accuracy, annihilate the redundancy among
the features, and use only robust features for perfect classification. This allows us to
truncate prediction numbers and complete the testing process rapidly. In this regard,
an entropy controlled firefly approach (ECfA) for optimal feature selection is used. First,
the firefly approach selects the function, then proposes an entropy based activation function,
and passes the function to the final selection stage. Yang et al. [62] proposed a firefly
approach which is a modern and extensive metaheuristic optimization method caused
by the glowing behavior of fireflies. Compared to the particle swarm optimization (PSO)
and genetic approach (GA) [63], the firefly approach uses the flicker behavior of fireflies to
optimize multimodal problems for robust performance.

The glow of a firefly with original brightness γ is expressed in Equation (23) as:

γ(u) = γ�e−$u, (23)

where γ� represents the original brightness, u represents the distance between two fireflies,
and $ represents the optical coefficient that causes the brightness and the number of
individuals. As we all know, brightness is directly proportional to attractiveness. Therefore,
the attractive force β is expressed in Equation (24) as:

β(u) = β�e−$u, (24)

when u = 0, the attraction is β�. The firefly attraction s and t is shown in Equation (25) as:

Hi+1
s = β�e−$u2

st(Hi
t − Hi

s) + η(Rand− 1
2
), (25)

where η denotes the randomness of the parameters, i is the number of iterations, and Rand
initiates random numbers from 0 to 1. The distance between sth and tth fireflies is repre-
sented by ςst and is calculated in Equation (26) as:

ςst = ‖Ht − Hs‖ =

√√√√ J

∑
j=1

(Hsj − Htj)2. (26)

The minimum distance characteristic is evaluated. The next iteration is executed
based on the error rate. We have chosen a total number of iterations n = 100 in our work.
After each iteration, the feature vectors ϕ

j1
N and ϕ

j2
N are obtained for the optimal vectors of

N × 1746 and N × 1822 dimensions, respectively. The activation function based on entropy



Appl. Sci. 2022, 12, 3273 18 of 27

is employed for all the features. At this phase, we use an entropy based activation function
to further enhance the function. The activation function is determined as:

B(ϕ) = −
j

∑
i=1

H(ϕj)log2H(ϕj), (27)

ϕ̂
j1
N = {∀ϕ

j1
N ≥ B(ϕ)}, (28)

ϕ̂
j2
N = {∀ϕ

j2
N ≥ B(ϕ)}, (29)

where j∈(j1,j2), ϕ̂
j1
N and ϕ̂

j2
N is an optimal feature for ϕ

j1
N and ϕ

j2
N respectively. In our work,

the optimal length of the feature vector after applying the activation function is N × 1346
and N × 1322 respectively.

The ECfA based feature selection approach is also detailed in Algorithm 1.

Algorithm 1 Feature Optimization based on Entropy Controlled Firefly

Input: Results from CSID fusion approach.
Output: Optimal features selection.
Step 1. Fitness function p(x), x = (x1,x2,x3,...,xm)
Step 2. Generate initial firefly populations Hs, where s = 1, 2, 3, ..., n
Step 3. Calculate brightness γ�e−$u

Step 4. Absorption coefficient $
while (r ≤Maximum Generation) do

for s = 1:t do
for t = 1:s do

if (γs > γt) then
◦ Attraction depends on distance ς, e$u

◦ Move the firefly s in the direction of t using Hi+1
s =

β�e−$u2
st(Hi

t − Hi
s) + η(Rand− 1

2 )
◦ Estimate new solutions and upgrade brightness

end if
end for s

end for t
Step 5. Find the best fireflies
Step 6. The activation function based on entropy is employed B(ϕ)

Step 7. Best optimal feature vector are selected ϕ̂
j
N

end while
Step 8. Processing and visualization of results

end

4. Performance Evaluation

This section examines the experiment and validation of the proposed TTCNN ap-
proach for mammogram imaging. Descriptions of benchmark datasets, evaluation metrics
and comparison with other state-of-the-art approaches have also been discussed.

4.1. Simulation Setup

The experiments are implemented in MATLAB R2021a (MathWorks Inc., Natick, MA,
USA) on a laptop for simulation results. The hardware platform comprises the Intel(R)
Core(TM) i7 9750H CPU 2.59 GHz processor (Intel Corporation, San Francisco, CA, USA)
with 12 GB RAM and GPU of NVIDIA GeForce GTX 1650 (NVidia Corporation, Santa
Clara, CA, USA) in Microsoft Windows 11 (Microsoft, WA, USA).
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4.2. Image Acquisition

In this study, the digitized mammogram images from DDSM [56], INbreast [57] and
MIAS [58] datasets are used to evaluate the performance of the proposed method. In fact, all
the databases are utilized to show the reliability and effectiveness of the proposed method
in diagnosing breast cancer. The DDSM database consists of 1500 mammogram images
having 519 normal images and 981 abnormal images. The INbreast database contains
336 mammogram images having 69 normal images and 269 abnormal images, whereas
the MIAS database consists of 326 total mammogram images having 207 normal images
and 119 abnormal images. In this work, a total of 1369 breast mammogram images were
utilized for abnormal, in which the DDSM dataset have 479 benign and 502 malignant out
of 981 mammogram images, the INbreast dataset contain 269 mammogram images having
220 benign and 49 malignant, and the MIAS dataset contain 119 mammogram images
having 68 benign and 51 malignant [56]. To evaluate the supremacy and effectiveness
of the proposed method. Experts collect ground truth labels and diagnose these cases
(via labels) using a variety of tests including experimental screening and mammography.
Tables 4 and 5 illustrated the mammography images distribution from the used databases.
During the assessment, the images in each database are divided into two sets, a training set
and a testing set.

Table 4. Database specifications (normal and abnormal).

Database Total Number of Images Training Testing
Normal Abnormal Normal Abnormal Normal Abnormal

DDSM 519 981 311 589 208 392
INbreast 67 269 40 162 27 107
MIAS 207 119 125 71 82 48

Table 5. Database specifications (benign and malignant).

Database Total Number of Images Training Testing
Benign Malignant Benign Malignant Benign Malignant

DDSM 479 502 287 302 192 200
INbreast 220 49 132 29 88 20
MIAS 68 51 40 31 28 20

4.3. Performance Evaluation Criteria

The cross-validation approach is developed to enhance the efficiency, validity of
performance and to verify the outcome of each database. To analyze the classification
efficiency of our proposed approach several metrics are used i.e., accuracy (Acc), sensitivity
(Sen), specificity (Spe), error rate (Er), matthews correlation coefficient (Mcc), Jaccard
(Jac), positive predicted value (PPV), F1 score (F1), and area under receiver operating
characteristic (ROC) curve also called the area under curve (AUC). These parameters
are utilized as measurable elements to compare the proposed method performance with
state-of-the-art algorithms. These measured values are defined as follows:

Accuracy(Acc) =
(TP + TN)

(TP + FP + TN + FN)
× 100%, (30)

Sensitivity(Sen) =
TP

(TP + FN)
× 100%, (31)

Speci f icity(Spe) =
TN

(TN + FP)
× 100%, (32)

ErrorRate(Er) =
FP + FN

(TN + FP + FN + TN)
× 100%, (33)
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Mcc =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
× 100%, (34)

Jaccard(Jac) =
TP

(TP + FP + FN)
× 100%, (35)

PPV =
TP

(TP + FP)
× 100%, (36)

F1score(F1) = 2× Precision× Recall
Precision + Recall

, (37)

where TP represents true positive values which correctly recognized the disease cases, TN
stand for true negative values which correctly identified the healthy cases, FP stand for
false positive values which incorrectly identified the disease cases, and FN stand for false
negative values which incorrectly identified the healthy cases.

4.4. Breast Cancer Classification Using Extracted Deep Features with TTCNN

The proposed TTCNN classification approach extracts deep CNN features. The results
are acquired by the feature extraction from the optimal layers of every deep CNN model.
We selected the best features for all deep CNN frameworks by determining the best feature
extraction layer that can deliver the finest performance on TTCNN. To do this, we extract
features from different layers, assess the performance of each deep CNN and identify the
best layer. Table 6 illustrates the best performance results for deep feature extraction from
the optimal layers.

Table 6. Best performance from optimal layers.

Model Layer Optimal Layer

InceptionResNet-V2 813 ‘activation_203’

Inception-V3 313 ‘predictions’

VGG-16 33 ‘fc6’

VGG-19 39 ‘fc6’

GoogLeNet 140 ‘pool5-7x7_s1’

ResNet-18 64 ‘res5b_branch2b’

ResNet-50 169 ‘activation_48_relu’

ResNet-101 342 ‘res5c’

The TTCNN classifier from optimal layers features are also analyzed using the evalua-
tion metrics. Table 7 illustrates the classification result with features from the optimal layers.

Table 7. Best performance from optimal layers. Best values are emphasized in bold.

Model Sensitivity (%) PPV (%) Accuracy (%) Error rate (%)

InceptionResNet-V2 82.69 85.53 81.74 18.26

Inception-V3 85.43 87.69 84.03 15.97

VGG-16 76.98 77.09 81.41 18.59

VGG-19 77.83 81.51 84.38 15.62

GoogLeNet 82.37 90.04 88.54 11.46

ResNet-18 87.25 83.02 87.68 12.32

ResNet-50 83.38 87.31 82.87 18.58

ResNet-101 89.51 87.64 88.12 11.88
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From the above Table 7, it can be perceived that the GoogLeNet provides the best
performance than the other deep CNN models with an accuracy rate of 88.54% and an error
rate of 11.46%. Although ResNet-101 is also very close to GoogLeNet with an accuracy rate
of 88.12% and an error rate of 11.88%. ResNet-18 also provides very decent performance
with an accuracy rate of 87.68% and an error rate of 12.32%. Among all the models, VGG-16
comes last with an accuracy rate of 81.41% and an error rate of 18.59%.

4.5. Classification Results

The proposed TTCNN method classifies mammogram images of breast tumors as
benign or malignant. The experiments are performed on DDSM, INbreast, and MIAS
databases. The classification accuracy of the proposed TTCNN approach using three
different databases is illustrated in Table 8. The total training samples of 287 benign and
302 malignant are selected and the total testing samples of 192 benign and 200 malignant
are selected for the DDSM dataset and obtained an accuracy of 99.08%. Similarly, the total
training samples selected for INbreast are 132 benign and 29 malignant while testing
samples are 88 benign and 20 malignant and achieved an accuracy of 96.82%. The total
training samples of 40 benign and 31 malignant are selected and the total testing samples
of 28 benign and 20 malignant are selected for the MIAS dataset and achieved an accuracy
of 96.57%.

Table 8. Summary of breast cancer detection.

Database Total Number of Images Correctly Detected Accuracy (%)Benign Malignant Benign Malignant

DDSM 479 502 474 498 99.08
INbreast 220 49 215 47 96.82
MIAS 68 51 66 49 96.57

The quantitative comparison of the proposed TTCNN method is also compared with
other existing state-of-the-art algorithms for each database. The proposed approach appears
to outperform other state-of-the-art approaches with high values of accuracy, specificity,
sensitivity, and F1 score as illustrated in Tables 9–11. The best value is highlighted in
bold text.

Table 9. Performance comparison with respect to DDSM database. Best values are emphasized in
bold. N.A—the data is not provided.

Authors Method Accuracy (%) Specificity (%) Sensitivity (%)

Sadad et al. [22] Ensemble 93.1 88 95

Muduli et al. [45] MFO-ELM 98.8 97.22 96.2

Mohanty et al. [64] ANN 98.18 N.A. N.A.

Xie et al. [65] ELM 95.73 97.16 94.88

Mohanty et al. [66] WC-SSA 98.63 97.37 98.77

Zhang et al. [67] AdaBoost 90.91 97.38 82.96

Our Proposed Method TTCNN 99.08 98.96 99.19
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Table 10. Performance comparison with respect to INbreasrt database. Best values are emphasized in
bold. N.A.—data not provided.

Authors Method Accuracy (%) Specificity (%) Sensitivity (%)

Al-antari et al. [4] CNN 95.32 N.A. N.A.

Dhungel et al. [7] AlexNet 91.0 N.A. N.A.

Al-antari et al. [8] AlexNet 95.64 N.A. N.A.

Carneiro et al. [34] AlexNet 86 N.A. N.A.

Zhang et al. [67] AdaBoost 87.93 97.73 57.20

Our Proposed Method TTCNN 96.82 97.68 95.99

Table 11. Performance comparison with respect to MIAS database. Best values are emphasized in
bold. N.A.—data not provided.

Authors Method Accuracy (%) Specificity (%) Sensitivity (%)

Mohanty et al. [64] SVM 95.5 96.65 95.81

Xie et al. [65] ELM 96.02 94.32 95.29

Pezeshki et al. [68] ANN 61 77 95.03

Tatikonda et al. [69] MLP 93.37 92.43 94.18

Pashoutan et al. [70] ANN 94 96.67 90

Our Proposed Method TTCNN 96.57 97.03 96.11

Table 9 illustrates the quantitative comparison of our proposed approach with existing
state-of-the-art algorithms for the DDSM database. The proposed method results yielded
superior performance for the DDSM dataset and achieved an accuracy of 99.08%, specificity
of 98.96%, and sensitivity of 99.19%. Mohanty et al. [66] also exhibit better performance
than the remaining methods as it has the accuracy of 98.63%. However, our approach
has better accuracy, specificity, and sensitivity when compared with other algorithms as
indicated by the bold text. Table 10 illustrates the comparison for the INbreast database
where the proposed approach showed enriched performance and attained an accuracy of
96.82%, specificity of 97.68%, and sensitivity of 95.99%. and outperformed other methods
quantitatively. The accuracy result obtained by Al-antari et al. [8] is slightly better than the
other approaches which is 95.64%. But still the proposed approach exhibits best perfor-
mance for the INbreast database when compared with other approaches. Table 11 displays
the comparison for the MIAS database where the proposed approach still reveals superior
performance and surpasses all the existing state-of-the-art approaches and achieved an
accuracy of 96.57%, specificity of 97.03%, and sensitivity of 96.11%. The proposed ap-
proach improves breast cancer detection and classification performance in comparison.
The proposed approach can be utilized for real-time assessment and assist radiologists for
automated analysis of mammogram images.

There may be performance differences when performing the same method on different
datasets for specific reasons, i.e., background noise of a source image, illumination, occlu-
sion, model overfitting, unrepresentative data samples, or the probability of the method.
Inadequate evaluation of the model can lead to poor performing methods being pushed
into production or suppressed under the assumption that the model is overfitted.

The performance of the proposed approach is also determined utilizing the ROC curves
and Confusion Matrix. The confusion matrix of DDSM, INbreast, and MIAS datasets
is illustrated in Figure 10. AUC is an important quantitative metric in the ROC curve.
The ROC curves were drawn for false positive (1-specificity) and true positive (sensitivity)
rates controlling the thresholds of the obtained probability maps. The AUC computations
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values are estimated for the DDSM, INbreast, and MIAS databsets. The ROC curve graph
is illustrated in Figure 11.

Figure 10. Confusion matrices for classification on DDSM, INbreast, and MIAS databases.

Figure 11. Receiver operating characteristic (ROC) plot for DDSM, INbreast, and MIAS datasets.

The results of breast cancer detection grading (with 95% confidence intervals) are
presented in Table 12 that exhibits the data from aforesaid datasets (DDSM, INbreast,
and MIAS). The proposed approach gives the PPV, F1, Jac, Mcc, Er, and AUC of 98.96%,
99.06%, 98.19%, 98.16%, 0.92%, and 99.08% on DDSM, 98.96%, 99.06%, 98.19%, 98.16%,
3.17%, and 99.08% on INbreast, and 97.06%, 96.58%, 93.39%, 93.14%, 3.43%, and 96.57% on
MIAS datasets, respectively.

Table 12. Results of breast cancer detection and classification with 95% confidence interval (CI).

Database Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV
(%)

F1 score
(%)

Jaccard
(%)

Mcc
(%)

AUC
(%)

DDSM
99.08
(99.05–99.11)

99.19
(99.16–99.21)

98.96
(98.94–98.99)

98.96
(98.94–98.98)

99.06
(99.03–99.09)

98.19
(98.17–98.21)

98.16
(98.12–98.19)

99.08
(99.07–99.09)

INbreast
96.82
(96.79–96.86)

95.99
(95.96–96.12)

97.68
(97.66–97.70)

97.73
(97.70–97.76)

96.85
(96.83–96.87)

93.89
(93.86–93.92)

93.66
(93.64–93.68)

96.84
(96.80–96.88)

MIAS
96.57
(96.55–96.59)

96.11
(96.10–96.13)

97.03
(97.01–97.05)

97.06
(97.03–97.09)

96.58
(96.53–96.63)

93.39
(93.35–93.43)

93.14
(93.10–93.17)

96.57
(96.54–96.61)

Over the past decade, non-invasive applications such as breast cancer detection and
classification have become very prevalent among medical professionals, making the di-
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agnostic process simpler and more accurate [71,72]. TTCNN aims to improve clinical
diagnosis by improving breast cancer detection and classification. Based on the accuracy
produced by a certain algorithm, we obtained the opinion of two medical experts (one
radiologists and one physician). These experts praised the improved results of TTCNN
compared to other state-of-the-art approaches.

4.6. Computational Efficiency of Deep Learning Classification

Table 13 shows the time execution (in seconds) of the training and testing for each
dataset image. In the training set, the number of mammogram images directly alter the
time it takes to finish the learning process. Using the TTCNN approach the DDSM dataset
takes longer time to train than the INbreast and MIAS datasets. It takes approximately 3.2,
1.4 and 1.1 h to complete the 120 epoch training process on the DDSM, INbreast and MIAS
datasets, respectively. For the testing process, the proposed approach took only 1.2 (s) for
DDSM, 1.7 (s) for INbreast, and 0.4 (s) for MIAS to classify a single mammogram image.
The runtime minimization will be further enhanced in future work, as our main goal is to
enhance the detection and classification accuracy.

In general, the proposed approach improves the performance in comparison. The pro-
posed approach can be employed for real-time assessment and assist the radiologists in
automated evaluation of mammogram images.

Table 13. Computational time for breast cancer classification.

Database Time of Training/Epoch (s) Time of Testing/Image (s)

DDSM 102 1.2

INbreast 31 1.7

MIAS 27 0.4

5. Conclusions

In the last few years, diagnostic computer systems based on image processing have
been extensively used. This can help radiologists, and minimize the time of diagnosis.
Several breast cancer detection and classification algorithms have been presented to enhance
medical image analysis. These algorithms have various deficiency, i.e., false diagnosis and
prediction; the tumor appears in a area with significantly lower contrast, high complexity
of memory, computationally complex approach and require more treatment time to identify
the accurate tumor, and current deep learning algorithm need extensive training data to
overcome the problems of overfitting and high computational cost.

This article intended to resolve the aforementioned issues by the proposed TTCNN-
based classification approach for breast cancer detection and classification. Firstly, the source
mammogram images are pre-processed by employing the modification to the legacy
CLAHE approach. Then, by using TTCNN architecture, the breast cancer regions that are
malignant and benign are classified from the mammogram images and the EL examines
the texture features and extracts the general information of shape, limit the size of the
output vector, and refines the model’s overall learning ability. Deep features are extracted
from eight state-of-the-art DCNN models and optimal layers for feature extraction are
determined by monitoring fluctuations in classification performance using a succession of
experiments to select the best deep features. Afterwards, the features are fused using the
CSID fusion algorithm, and for the robust feature selection an ECfA approach is used.

The proposed approach was applied to DDSM, INbreast, and MIAS datasets, and ob-
tained an accuracy of 99.08%, 96.82%, and 96.57%, respectively. In addition, the proposed
approach is visually gratifying, provides better results, and is more capable in the detection
and classification of breast mammograms and outperforms other systems. Breast images
are accurately detected and classified in less computation time and give pleasant results.
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In the future, this work will be explored for other application areas of biomedical imaging
such as brain tumor detection.
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