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Abstract

A canal surface is the envelope of a moving sphere with varying ra-
dius, defined by the trajectory C(t) (center curve) of its centers and a
radius function r(t) and canal surface is parametrized via Frenet frame
of the center curve C(t). If the radius function r(t) = r is a constant,
then the canal surface is called a tube or tubular surface. In this study,
for a center curve C(t) on arbitrary surface M we define tube with
Darboux frame instead of Frenet frame. Subsequently, we compute the
curvatures of tube with Darboux frame and obtain some characteriza-
tions for special curves on this tube.
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1 Introduction

Canal surface is one kind of the swept surfaces. The class of surfaces formed
by sweeping a sphere was first investigated by Monge in 1850. Alternatively, a
canal surface is the envelope of a family of one parameter spheres and is useful
to represent various objects e.g. pipe, hose, rope or intestine of a body. Again,
canal surface is an important instrument in surface modelling for CAD/CAM
such as tubular surfaces, torus and Dupin cyclides.



752 Fatih Doğan and Yusuf Yaylı

Canal surface around the center curve C(s) is parametrized as

K(s, θ) = C(s) − r(s)r
′

(s)t(s) ∓ r(s)
√

1 − r
′(s)2(cos θn(s) + sin θb(s)); 0 ≤ θ < 2π,

where s is arclenght parameter and t, n, b are Frenet vectors of C(s). If the
radius function r(s) = r is a constant, then the canal surface is called tube
(pipe) surface and it is parametrized as

Tube(s, θ) = C(s) + r(cos θn(s) + sin θb(s)).

Maekawa [3] et.al. researched necessary and sufficient conditions for the
regularity of tube (tubular) surfaces. Recently, Xu [4] et.al. studied these
conditions for canal surfaces and also examined principle geometric properties
of these surfaces like computing the area and Gaussian curvature.

This work is organized as follows. In section 2 we give some concepts
regarding curves and surfaces. Afterwards, we define tube with respect to
Darboux frame and compute Gaussian and mean curvatures. In section 3 we
obtain some characterizations for special curves lying on tube with Darboux
frame.

2 Preliminaries

In this section, we define tube with respect to Darboux frame. After that, we
compute the coefficients of first and second fundamental form, Gaussian and
mean curvatures for this tube, respectively.

Let M be a regular surface and α : I ⊂ R −→ M be a unit speed curve
on the surface. Then, Darboux frame {T, Y = N × T, N} is well-defined
along the curve α where T is the tangent of α and N is the unit normal of M .
Darboux equations for this frame are given by

T
′

= kgY + knN

Y
′

= −kgT + τ gN

N
′

= −knT − τ gY,

where kn is the normal curvature, kg is the geodesic curvature and τ g is the
geodesic torsion of α.

Let the center curve C(s) be on the surface M . Since the characteristic
circles of canal surface lie in the plane which is perpendicular to the tangent
of center curve C(s), we can write tube with Darboux frame as

D(s, β) = C(s) + r (cos βY (s) + sinβU(s)) ,
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where U is the unit normal of the surface M along the curve C(s). Then from
the derivative formulas of Darboux frame, we have

Ds = T + r
[

cosβY
′

(s) + sinβU
′

(s)
]

= [1 − r cosβkg − r sinβkn] T − r sinβτ gY + r cosβτ gU

Dβ = −r sinβY + r cos βU

Dss =
[

−r cosβk
′

g − r sin βk
′

n + r sinβkgτ g − r cosβknτ g

]

T (2.1)

+
[

kg − r sinβknkg − r cos βk2

g − r cosβτ 2

g − r sin βτ
′

g

]

Y

+
[

kn − r cosβknkg − r sinβk2

n − r sinβτ 2

g + r cosβτ
′

g

]

U

Dβs = [r sin βkg − r cosβkn]T − r cosβτ gY − r sinβτ gU

Dββ = −r cosβY − r sinβU

Ds × Dβ =
[

−r cos β + r2 sinβ cosβkn + r2 cos2 βkg

]

Y

+
[

−r sinβ + r2 sinβ cosβkg + r2 sin2 βkn

]

U

‖Ds × Dβ‖ = r (1 − r cosβkg − r sinβkn) .

Thus, the unit normal N , the coefficients of first and second fundamental form,
the Gaussian and mean curvature of D(s, β) are obtained as follows.

N =
Ds × Dβ

‖Ds × Dβ‖
= − cos βY − sin βU

E = Ds � Ds = (1 − r cosβkg − r sinβkn)2 + r2τ 2

g

F = Ds � Dβ = r2τ g (2.2)

G = Dβ � Dβ = r2

e = N � Dss = (kg cos β + kn sinβ) [r(kg cosβ + kn sin β) − 1] + rτ 2

g

f = N � Dβs = r cos2 βτ g + r sin2 βτ g = rτ g

g = N � Dββ = r cos2 β + r sin2 β = r

K =
eg − f 2

EG − F 2
=

kg cosβ + kn sinβ

r (1 − r cos βkg − r sin βkn)

H =
eG − 2fF + gE

2(EG − F 2)
=

2r (kg cosβ + kn sin β) − 1

2r (rkg cosβ + rkn sinβ − 1)
, (2.3)

where kg, kn and τ g are the geodesic curvature, normal curvature and geodesic
torsion of C(s), respectively.
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3 Some Characterizations of Special Curves

on D(s, β)

In this section, we investigate the relation between parameter curves and spe-
cial curves such as geodesics, asymptotic curves and lines of curvature on the
tube D(s, β).

Theorem 3.1. For the regular tube D(s, β),
(1) β− parameter curves are also geodesics.
(2) s− parameter curves are also geodesics ⇐⇒ kg, kn and τ g of C(s) satisfy
the equation system

sin βkg − cosβkn + r cos 2βknkg +
1

2
r sin 2β(k2

n − k2

g) − rτ
′

g = 0

cosβ(k
′

g + knτ g) + sinβ(k
′

n − kgτ g) = 0. (3.1)

Proof. For s− and β− parameter curves, we get

N × Dββ = r sin β cosβT − r sin β cosβT = 0

N × Dss = (sinβkg − cos βkn + r cos 2βknkg +
1

2
r sin 2β(k2

n − k2

g) − rτ
′

g)T

+r(sinβ cosβk
′

g + sin2 βk
′

n − sin2 βkgτ g + sinβ cosβknτ g)Y

−r(cos2 βk
′

g + sin β cosβk
′

n − sinβ cosβkgτ g + cos2 βknτ g)U.

(1) Since N × Dββ = 0, β− parameter curves are also geodesics.
(2) Because T, Y and U are linearly independent, N × Dss = 0 ⇐⇒

sinβkg − cosβkn + r cos 2βknkg +
1

2
r sin 2β(k2

n − k2

g) − rτ
′

g = 0

r(sinβ cosβk
′

g + sin2 βk
′

n − sin2 βkgτ g + sin β cosβknτ g) = 0

r(cos2 βk
′

g + sinβ cos βk
′

n − sinβ cosβkgτ g + cos2 βknτ g) = 0.

By the last two equations, we have

cosβ(k
′

g + knτ g) + sinβ(k
′

n − kgτ g) = 0.

Then kg, kn and τ g hold the equation system

sinβkg − cosβkn + r cos 2βknkg +
1

2
r sin 2β(k2

n − k2

g) − rτ
′

g = 0

cosβ(k
′

g + knτ g) + sin β(k
′

n − kgτ g) = 0.
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Corollary 3.2. Let C(s) be a geodesic on M . If s− parameter curves are
also geodesics on D(s, β), then the curvatures κ and τ of C(s) satisfy the
equation

r sin2 βκ2 − 2 sinβκ + rτ 2 = c,

where c is a constant.

Proof. Since the center curve C(s) is a geodesic, kg = 0. If we replace kg = 0
in Eq (3.1), we obtain

κ cosβ(1 − rκ sin β) + rτ
′

= 0

κ
′

sinβ + κτ cosβ = 0.

In the first equation above, if we leave alone κ cosβ and substitute this in the
second equation we get

κ
′

sin β − rκκ
′

sin2 β − rττ
′

= 0.

If we integrate the last equation, it follows that

r sin2 βκ2 − 2 sinβκ + rτ 2 = c.

Corollary 3.3. Let the center curve C(s) be an asymptotic curve on M . If
s− parameter curves are also asymptotic curves on D(s, β), then the curvatures
κ and τ of C(s) satisfy the equation

r cos2 βκ2 − 2 cosβκ + rτ 2 = c,

where c is a constant.

Proof. Since the center curve C(s) is an asymptotic curve, kn = 0. If we
replace kn = 0 in Eq (3.1), we obtain

κ sinβ(1 − rκ cosβ) − rτ
′

= 0

κ
′

cosβ − κτ sinβ = 0.

If we leave alone κ sinβ and substitute this in the second equation we get

κ
′

cos β − rκκ
′

cos2 β − rττ
′

= 0.

and then if we integrate the last equation, it concludes that

r cos2 βκ2 − 2 cosβκ + rτ 2 = c.
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Theorem 3.4. For the regular tube D(s, β),
(1) β− parameter curves cannot also be asymptotic curves.
(2) s− parameter curves are also asymptotic curves ⇐⇒ D(s, β) is generated
by a moving sphere with the radius function

r =
kg cosβ + kn sin β

(kg cosβ + kn sinβ)2 + τ 2
g

= c (3.2)

such that r is a constant.

Proof. (1) As N � Dββ = r cos2 β + r sin2 β = r 	= 0, β− parameter curves
cannot also be asymptotic curves.
(2) s− parameter curves are also asymptotic curves ⇐⇒

N � Dss = (kg cosβ + kn sinβ) [r(kg cos β + kn sinβ) − 1] + rτ 2

g = 0.

From this, we get the radius function

r =
kg cosβ + kn sin β

(kg cosβ + kn sinβ)2 + τ 2
g

= c

such that r is a constant.

Corollary 3.5. Let s− parameter curves be also asymptotic curves on D(s, β).
(1) If the center curve C(s) is a geodesic on M , then

r =
κ sin β

κ2 sin2 β + τ 2
= c.

(2) If the center curve C(s) is an asymptotic curve on M , then

r =
κ cosβ

κ2 cos2 β + τ 2
= c.

(3) If the center curve C(s) is a line of curvature on M , then

r =
1

kg cosβ + kn sinβ
= c.

Proof. Because s− parameter curves are also asymptotic curves, from Eq (3.2)

r =
kg cosβ + kn sinβ

(kg cosβ + kn sin β)2 + τ 2
g

= c.

(1) Since C(s) is a geodesic, kg = 0. So, kn = κ and τ g = τ . If we replace
these in Eq (3.2) we get

r =
κ sin β

κ2 sin2 β + τ 2
= c.
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Let us give an example. For β =
π

2
, it follows that r =

κ

κ2 + τ 2
is a constant

and so the center curve C(s) becomes a Mannheim curve. In that case, when

C(s) is a Mannheim curve, the s− parameter curve β =
π

2
; D(s,

π

2
) = C(s) +

rU(s) is an asymptotic curve on D(s, β).
(2) Since C(s) is a asymptotic curve, kn = 0. Hence, kg = κ and τ g = τ . If we
replace these in Eq (3.2) we get

r =
κ cosβ

κ2 cos2 β + τ 2
= c.

Again, for β = 0, it follows that r =
κ

κ2 + τ 2
is a constant and therefore C(s)

becomes a Mannheim curve. In this situation, while C(s) is a Mannheim curve
the s− parameter curve β = 0; D(s, 0) = C(s) + rY (s) is an asymptotic curve
on D(s, β).
(3) Since C(s) is a line of curvature τ g = 0. If we put this in Eq (3.2) we get

r =
1

kg cosβ + kn sinβ
= c.

Theorem 3.6. The parameter curves of D(s, β) are also lines of curvature
⇐⇒ The center curve C(s) is a line of curvature on M .

Proof. From Eq (2.2) we have

F = r2τ g

f = rτ g.

According to theorem of line of curvature, the parameter curves on a surface
are also lines of curvature if and only if F = f = 0. From F = f = 0, it
concludes that τ g = 0, i.e , C(s) is a line of curvature on M .

Theorem 3.7. For the regular tube D(s, β),
(1) If the center curve C(s) is a geodesic on M , then the Gaussian and mean
curvature of D(s, β) are as follows.

K =
κ sin β

r (1 − rκ sinβ)

H =
2rκ sin β − 1

2r (rκ sinβ − 1)
.

(2) If the center curve C(s) is an asymptotic curve on M , then the Gaussian
and mean curvature of D(s, β) are as follows.

K =
κ cosβ

r (1 − rκ cosβ)

H =
2rκ cosβ − 1

2r (rκ cos β − 1)
.
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Proof. By Eq (2.2) and Eq (2.3), the Gaussian and mean curvature for D(s, β)
are

K =
kg cosβ + kn sin β

r (1 − r cosβkg − r sinβkn)

H =
2r (kg cos β + kn sinβ) − 1

2r (rkg cos β + rkn sin β − 1)

respectively.
(1) Because C(s) is a geodesic, kg = 0, kn = κ and τ g = τ . If we substitute
these above, it gathers that

K =
κ sin β

r (1 − rκ sinβ)

H =
2rκ sin β − 1

2r (rκ sinβ − 1)
.

(2) Since C(s) is an asymptotic curve, kn = 0, kg = κ and τ g = τ . Then, it
gathers that

K =
κ cosβ

r (1 − rκ cosβ)

H =
2rκ cosβ − 1

2r (rκ cos β − 1)
.

Here, when C(s) is an asymptotic curve, the Gaussian and mean curvatures
of D(s, β) are equal with

Tube(s, θ) = C(s) + r(cos θn(s) + sin θb(s)).

(see [1]).
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