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Tubular epithelial cells in renal clear cell carcinoma
express high RIPK1/3 and show increased
susceptibility to TNF receptor 1-induced necroptosis

RS Al-Lamki*,1, W Lu1, P Manalo1, J Wang1, AY Warren2, AM Tolkovsky3, JS Pober4 and JR Bradley1

We previously reported that renal clear cell carcinoma cells (RCC) express both tumor necrosis factor receptor (TNFR)-1 and -2, but

that, in organ culture, a TNF mutein that only engages TNFR1, but not TNFR2, causes extensive cell death. Some RCC died by

apoptosis based on detection of cleaved caspase 3 in a minority TUNEL-positive cells but the mechanism of death in the remaining

cells was unexplained. Here, we underpin the mechanism of TNFR1-induced cell death in the majority of TUNEL-positive RCC cells,

and show that they die by necroptosis. Malignant cells in high-grade tumors displayed threefold to four fold higher expression of

both receptor-interacting protein kinase (RIPK)1 and RIPK3 compared with non-tumor kidney tubular epithelium and low-grade

tumors, but expression of both enzymes was induced in lower grade tumors in organ culture in response to TNFR1 stimulation.

Furthermore, TNFR1 activation induced significant MLKLSer358 and Drp1Ser616 phosphorylation, physical interactions in RCC

between RIPK1-RIPK3 and RIPK3-phospho-MLKLSer358, and coincidence of phospho-MLKLser358 and phospho-Drp1Ser616 at

mitochondria in TUNEL-positive RCC. A caspase inhibitor only partially reduced the extent of cell death following TNFR1

engagement in RCC cells, whereas three inhibitors, each targeting a different step in the necroptotic pathway, were much more

protective. Combined inhibition of caspases and necroptosis provided additive protection, implying that different subsets of cells

respond differently to TNF-α, the majority dying by necroptosis. We conclude that most high-grade RCC cells express increased

amounts of RIPK1 and RIPK3 and are poised to undergo necroptosis in response to TNFR1 signaling.
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Renal clear cell carcinoma (RCC) is resistant to chemotherapy

and 5-year survival rates of metastatic disease are only

5–15%.1 Many anticancer agents act via induction of

apoptosis, and apoptotic deficiency may be a cause of

chemoresistance. However, recent studies have identified a

caspase-independent form of programmed cell death, termed

necroptosis,2 that may provide an alternative pathway for

tumor killing.3,4 Tumor necrosis factor-α (TNF), acting through

TNF receptor 1 (TNFR1), induces apoptosis of many different

types of malignant cells through caspase 8 activation,

which is mediated through the assembly of a signaling

complex involving TNFR-associated protein with a death

domain (TRADD), receptor-interacting protein kinase 1

(RIPK1), TNFR-associated factor 2 (TRAF2) and Fas-

associated protein with a death domain (FADD).5Alternatively,

TNF can induce necroptosis, also via TNFR1, through a

pathway involving TRADD, RIPK1 and RIPK3.2,6–10 Signaling

through TNFR2, which is also expressed on RCC cells, does

not generally induce cell death, but can potentiate TNFR1-

mediated programmed necrosis via TNFR1.11 Activation of

caspase 8 generally inhibits death by necroptosis so that

necroptosis is more evident when caspase activation is

inhibited or in cells lacking FADD or caspase 8.12,13 In

necroptosis, RIPK1 is recruited to TRADD via a death domain

(DD) located in its C terminus14,15 and RIPK1 then recruits

RIPK3, forming a necroptosis-inducing 'ripoptosome com-

plex'16 that phosphorylates pseudokinase mixed lineage

kinase domain-like (MLKL) at residues threonine 357 and

serine 358 in humans15,17–19 and serine 345 in mice.20 The

events that follow may be cell type-specific, but in some cells,

this promotes MLKL association with the mitochondrial

phosphatase PGAM5 and dyamin-related protein 1 (Drp1), a

cytosolic dynamin GTPase. Dephosphorylation of Drp1 at

serine 637 by PGAM5 results in Drp1 activation,15,21,22 which

leads to mitochondrial fragmentation and necroptosis.23 Loss

of Drp1 function has been shown to slow down necrosis in
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Caenorhabditis elegans24 and inhibition of its activity delays

cell death.25 Phosphorylation of serine 616 promotes Drp1

activity and tumor growth.26 This new understanding of the

signal transduction pathway leading to necroptosis offers the

opportunity to target this process therapeutically. We have

used organ culture to study the responses of RCC cells to TNF

signaling.5 The advantage of using organ culture is that it

preserves the relationship between the various cell types

within the cancer milieu and also preserves adjacent normal

tissue, which can be used as an endogenous control. We

previously reported that ligation of TNFR1 promotes cell death

in malignant tubular epithelial cells (mTECs) in RCC, which we

had attributed to apoptosis based on detection of cleaved

caspase 3 in some of the TUNEL-positive cells.27 These

initial studies antedated the elucidation of the necroptotic

process. In the present study, we show that both apoptosis

and necroptosis occur within the same tumor and that

necroptosis may be the dominant pathway of cell death in

TNF-treated RCC.

Results

RIPK1 and RIPK3 are highly expressed in RCC and are

upregulated by TNF. In an earlier report,27 we showed that

~ 10% of RCC cells in organ culture die by apoptosis in

response to TNF, via the TNFR1 receptor. However, we noted

that more cells died than those accounted for by apoptosis

alone. One possible explanation is that some of the cells were

dying by necroptosis. To study whether RCC cells die by

necroptosis, we analyzed RCC cells more thoroughly for

signs of necrosis. There was about 70–80% cell death in

RCC organ cultures treated with wtTNF or R1TNF compared

with the control group (UT) or R2TNF-treated cultures

(Figure 1A). A closer examination by electron microscopy

identified features of necrosis in mTECs such as numerous

large and small cytoplasmic vacuoles, condensation of the

chromatin into small, irregular, circumscribed patches,

increased translucent cytoplasm, swelling of organelles and

disruption of the plasma membrane28 (Figure 1B). Many of

the necrotic cells contained TUNEL+ nuclei, indicating DNA

fragmentation, a feature widely associated with apoptosis but

also well documented to occur in primary necrosis.29,30

Although TECs were the majority of cells displaying necrosis,

some vascular endothelial cells and infiltrating mononuclear

cells (MNCs) were also TUNEL+ (Supplementary Figure 1A,

quantified in Supplementary Figure 1B).

TNF is known to induce necroptosis via RIPK1/3.6,15,19,31-33

To determine whether the necrosis observed may be due to

necroptosis, we determined whether RIPK1 and RIPK3 are

expressed in clinical samples of RCC prior to organ culture,

using adjacent histologically normal non-neoplastic kidney

(NK) as controls. Sections of NK demonstrated normal intact

tubules and remarkable glomeruli. In contrast, sections

of RCC grades 1–4 demonstrated neoplastic morphology

with increasing necrotic features, RCC grade 4 displaying

extensive areas of necrosis, with nuclear material embedded

within necrotic zones (Supplementary Figure 2). Remarkably,

a strong homogenous expression of RIPK1 and RIPK3 in

460% of cells was observed in high-grade tumors (3/4),

mainly confined to mTECs, and a few infiltrating MNCs and

vascular endothelial cells (Figure 1C). In contrast, both

proteins were detected only in MNCs within glomerular and

interstitium in NK. Staining for RIPK1 was mainly cytoplasmic,

whereas RIPK3 was cytoplasmic and nuclear. Immunoblotting

of tissue lysates was concordant with IHC findings, showing a

threefold to fourfold increase in both RIPK1 and RIPK3

expression in grade 3–4 RCC (Figure 1D, quantified in

Figure 1E). No obvious difference in staining pattern was

observed with all the RIPK1 and RIPK3 antibodies.

To determine whether TNF regulates expression of RIPK1

and RIPK3, and which receptor is involved, we treated organ

cultures of NK and low-grade tumors (1/2), as these samples

showed low levels of RIPK1 andRIPK3, with wtTNF, R1TNFor

R2TNF. UT controls showed a rare signal for RIPK1 and

RIPK3 in o2% mTECs and infiltrating MNCs but a strong

expression of RIPK1 and RIPK3 in 460% of mTECs

after treatment with R1TNF (Figure 2a and Supplementary

Figure 3). RIPK3 showed a cytoplasmic and nuclear pattern of

staining, whereas RIPK1wasmainly cytoplasmic similar to the

endogenous pattern found in 3/4 grades RCC. Interestingly,

R1TNF-induced marked upregulation of RIPK1 (~5-fold) and

RIPK3 (~6-fold) in RCC compared with NK organ cultures

(~3-fold for RIPK1 and ~ 3-fold for RIPK3) (Figures 2b and c

and Supplementary Figures 4A and 4B). RIPK1 and RIPK3

mRNA were also induced by R1TNF mainly in mTECs

(Figure 2a). For both assays and study groups, wtTNF

treatment showed similar intensity and pattern of expression

as R1TNF while R2TNF induced a weak to moderate signal

(Supplementary Figure 3). No signal was detected in parallel

sections when the primary antibody was pre-adsorbed with a

blocking peptide prior to immunostaining or after gene

knockdown experiments using human HEK293 cells, as

described in the Methods section (Supplementary Figures

6A and 6B). In addition, no signal was detected on sections

hybridizedwith corresponding sense probes (data not shown).

Taken together, these data suggest that TNF upregulates

RIPK1 and RIPK3 expression in mTECs in RCC predomi-

nantly via TNFR1, and that this response is more pronounced

in RCC compared with adjacent NK. For assessment of

whether increased RIPK1 and RIPK3 expression was

dependent on NFκB activation, organ cultureswere pretreated

with pyrrolidine dithiocarbamate (PDTC),34 an inhibitor of

NFκB activation, before TNF treatment. TNF treatment

does activate NF-κB in tumor cells, as judged by increased

levels of the phosphorylated form of the p65 subunit

(NF-κBp65P-Ser276) and this was reduced by PDTC treatment.

PDTC did not affect TNF induction of RIPK1 and RIPK3

expression in TECs (Supplementary Figures 7A and 7B).

NFκB activation often protects cells from TNF-induced

apoptosis through the induction of c-FLIP, a protein that

competes with caspase 8 for binding to FADD, a key step for

autocatalytic caspase 8 activation.We observed TNF-induced

activation of caspase 8p18 primarily in infiltrating leukocytes

and only a weak infrequent signal in tumor cells. Interestingly,

c-FLIP was present at high levels in untreated tumor cells

and its expression levels are unaltered by TNF treatment

(Supplementary Figure 8). These findings suggest that

induction of RIPK1 and RIPK3 by TNF in TECs is independent

of NFκB and that constitutive overexpression of c-FLIP in the
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tumor cells35,36 may confer resistance against caspase

8-induced apoptosis in RCC resulting in dominance of

necroptotic cell death.

R1TNF activates signaling pathways associated with

necroptosis in RCC. To determine whether downstream

targets of RIPK3 are present and activated in organ cultures

of RCC and NK in response to TNF, we examined the

presence and phosphorylation of MLKL and Drp1. In UT

controls, both RCC (Supplementary Figure 9) and NK (data

not shown) showed strong expression of MLKL and Drp1 in

mTECs and normal TECs as well as in infiltrating MNCs and

some vascular endothelial cells. However, compared with UT

controls, R1TNF increased the expression of phosphorylated

MLKL at Ser358 (MLKLSer358) and phosphorylated Drp1 at

Ser616 (pDrp1Ser616) in RCC-mTECs by ~ 5–10-fold, and

Figure 1 (A) Histology of untreated cultures (UT) show (a) low-grade RCC with small round tumor cells and a clear cytoplasm surrounded by a distinct cell membrane and
round uniform nuclei with inconspicuous or absent nucleoli. (b) R1TNF- and (c) wtTNF-treated cultures show elevated level of death in mTECs compared with (d) R2TNF-treated
cultures. (B) Morphological features of necrosis are evident in R1TNF-treated cultures such as large/small cytoplasmic vacuoles (x), condensation of the chromatin into small,
irregular, circumscribed patches (white arrow), increasing translucent cytoplasm, swollen organelles (orange arrow) and disruption of the plasma membrane (black arrows).
(C) Expression of RIPK1 and RIPK3 in tissue biopsies comprising RCC and NK; NK show a rare signal for RIPK1 and RIPK3 in MNCs within glomeruli (arrows) and with
interstitium (small arrows). In contrast, RCC grade 3 shows marked signal in mTECs (arrows), MNCs (small arrows) and in some VECs (arrowheads). (D and E) Representative
immunoblot of samples from nine patients with similar results and bar graph of relative RIPK1 and RIPK3 protein levels in grades 3/4 RCC (G3/G4) and non-tumor kidney (NK).
Bars=mean+S.E.M.; *Po0.05 versus NK; paired Student’s t-test. Glom-glomeruli; MNCs-mononuclear cells; TECs-tubular epithelial cells

TNFR1-induced necroptosis in tubular cells in RCC
RS Al-Lamki et al

3

Cell Death and Disease



reduced pDrp1 at Ser637 (pDrp1Ser637) by ~ 2-fold (Figure 3a,

quantified in Figure 3b). Cultures of NK showed a reduced

response with about a ~ 2–3-fold rise in pMLKLser358 and

pDrp1ser616 and a similar reduction in pDrp1ser637 (quantified

in Figure 3b). pMLKLSer358 was mainly diffusely cytoplasmic

and nuclear, while pDrp1ser616 showed a cytoplasmic

granular pattern (Figure 3c), consistent with Drp1 binding to

mitochondria. Binding specificity for antibodies to MLKL,

Drp1, pMLKLSer358, pDrp1Ser637 and pDrp1Ser616 was con-

firmed by incubation with a corresponding blocking peptide

and by gene knockdown studies in human HEK293 cells

(Supplementary Figures 10A and 10B). Indeed, immunogold

Figure 2 Representative confocal images and light micrographs of the effect of R1TNF on protein and mRNA expression for RIPK1 and RIPK3 in organ cultures of RCC
grade 1 and adjacent non-tumor kidney (NK). (a and b) Untreated (UT) cultures from RCC show a rare signal for RIPK1 and RIPK3 protein and mRNA. In contrast, R1TNF-treated
cultures show a marked signal of both proteins mainly confined to mTECs (arrows), with RIPK3 also present in nuclei (white shaded arrow). Similarly, UT cultures of NK show a
rare signal for both proteins; increased expression of both protein and mRNA is detected in R1TNF-treated cultures mainly confined to normal TECs (white arrows), peritubular
capillaries (white arrowheads) and in infiltrating mononuclear cells (black arrowhead) but not in glomeruli (Glom). (c) Representative mean fluorescence intensity (MFI) for RIPK1
and RIPK3 expression in RCC and NK organ cultures. **Po0.01 versus UT, *Po0.05 versus UT, ±Po0.05 versus R1TNF; Bars=mean± S.E.M.; n= 3 independent
experiments from six separate organ culture experiments with similar results. Nuclei stained with Hoechst 33342. Confocal images: × 40 and × 63 original magnifications;
photomicrographs: × 400 magnification
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electron microscopy of R1TNF-treated cultures showed

pMLKLSer358 on the cell surface, within the cytoplasm and

in some mitochondria, while pDrp1ser616 was mainly localized

to mitochondria (Figure 3d). wtTNF induced comparable

levels of signal for both phosphorylated proteins while the

response with R2TNF in RCC was similar to that of UT

controls (Supplementary Figure 11).

To evaluate whether TNF mediates an interaction between

RIPK1 and RIPK3 and RIPK3 and pMLKLser358, we performed

a proximity ligation assay (PLA) in organ cultures of RCC and

NK (Figure 4a, quantified in Figures 4b and c). R1TNF

enhanced the RIPK1-RIPK3 interaction by about ~ 10-fold,

evidenced by numerous strong red fluorescent spots within

the cytoplasm of mTECs in RCC (~60 PLA spots/cell)

compared with UT controls (~6 PLA spots/cell), whereas the

interaction of RIPK1-RIPK3 induced by R1TNF in NKwas only

about 3-fold (quantified in Figure 4b). In addition, a fluorescent

signal indicating a RIPK3-pMLKLser358 interaction increased

Figure 3 Effect of R1TNF on pMLKLSer358, pDrp1Ser616 and pDrp1Ser637 expression in organ cultures of RCC grade 1 and adjacent non-tumor kidney (NK). (a) R1TNF
induced a marked expression of pMLKLS358 and pDrp1Ser616 but a reduced signal for pDrp1Ser637 compared with untreated controls (UT), with signal mainly confined to mTECs
(arrows). (b) Quantification of the phosphorylated proteins in normal and mTECs presented as mean fluorescent intensity (MFI) shows a statistical significant difference between
cultures. ***Po0.001 versus UT, *Po0.05 versus UT; ±Po0.05 versus R1TNF (NKoC); ┼Po0.001 versus R1TNF (NKoC); ns, not significant. (c) pMLKLSer358 is seen within
cytoplasm (arrowhead) and in some nuclei (arrow) (upper panel), while pDrp1Ser616 show cytoplasmic granular pattern (arrows) (lower panel). (d) Immunogold electron
microscopy revealed pMLKLSer358 (15 nm particles) on the cell surface (black arrows), within cytoplasm (white arrow) and in mitochondria (m), while pDrp1Ser616 (5 nm particles,
black arrow) was mainly confined to mitochondria (m) (open arrows). Bars=mean± S.E.M.; n= 3 independent experiments from six separate organ culture experiments with
similar results
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by ~5-fold in mTECs in R1TNF-treated RCC cultures (~16

PLA spots/cell) compared with UT (~3 PLA spots/cell),

whereas the increase in NK was about ~ 2.5-fold (quantified

in Figure 4c). Data from wtTNF gave similar results as R1TNF,

while R2TNF showed comparable data as UT controls

(Supplementary Figures 12A-C).

To demonstrate that cells with higher pMLKLSer358,

pDrp1Ser616 and lower pDrp1Ser637 are the cells that are prone
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to die, we subjected all cultures to TUNEL in combination with

IF for pMLKLSer358, pDrp1ser616 and pDrp1Ser637. We found a

significant 460% association between pMLKLser358 and
TUNEL+mTECs in R1TNF-treated cultures of RCC compared

with UT controls (o2%), which showed fewer numbers of
TUNEL+mTECs and no association with pMLKLSer358

(Figure 4d, quantified in Figure 4f). An association of 440%

between pDrp1Ser616 and TUNEL+mTECs was also detected in

R1TNF-treated RCC organ cultures (Figure 4e, quantified in

Figure 4g, Table 1). wtTNF showed similar findings to R1TNF.

Although R2TNF also increased pMLKLSer358 in some
TUNEL+mTECs, it was not significant compared with UT

controls (Supplementary Figure 13A, quantified in Supple-

mentary Figures 13B and 13C). To determine whether

pDrp1Ser616 co-localizes with pMLKLSer358 in mTECs, we co-

stained for pDrp1Ser616 and pMLKLSer358 in organ cultures of

RCC cells treated with R1TNF and demonstrated a moderate

association (420%) (Figure 4h) confirmed by immunogold

EM showing staining in mitochondria (Figure 4i). Similar, but

much reduced, effects of R1TNF on necrotic cell death and

associated signaling pathways were evident in TECs in NK

(quantified in Supplementary Figures 13B-C).

Inhibitors of apoptosis and necroptosis differentially

prevent TNF-mediated cell death in RCC organ cultures.

To further define the TNF-mediated cell death pathway in

RCC, we utilized specific inhibitors. Cultures were treated

with zVAD.fmk, a pan-caspase inhibitor,37 or necrostatin-1

(Nec-1), an inhibitor of RIPK1 kinase activity, and cell death

was quantified on TUNEL stained sections.8 zVAD.fmk

inhibited cell death by ~10%, whereas Nec-1 by about

~ 40–60% (Figure 5A, quantified in Figure 5B). The combina-

tion of Nec-1 and zVAD.fmk was additive, indicating that

apoptosis and necrosis occur in separate cells (Table 2).

R2TNF also induced death of mTECs but to a lesser extent

than R1TNF, with no significant inhibition by zVAD.fmk, and a

small but significant inhibition with Nec-1. Similar but less

marked effects were observed in NK (Table 2).

Next, we determined whether inhibition of cell death by

zVAD.fmk or Nec-1 or their combination correlates with

R1TNF-mediated phosphorylation of MLKLSer358 and

Drp1Ser616. In the presence of zVAD.fmk, there was no

obvious reduction in the expression of the phosphorylated

proteins although there was a mild decrease in the number of
TUNEL+mTECs associated with pMLKLSer358 and pDrp1Ser616

(~14%) (Figures 5C and D, quantified in Figure 5E). In

contrast, the reduction in TUNEL+mTECs by Nec-1 was

associated with a diminished level of both phosphorylated

proteins (~3-fold), comparable with that found in cultures

treated with a combination of zVAD.fmk and Nec-1. Thus, the

decrease in the level of MLKLSer358 and Drp1Ser616 are

strongly correlated with the decrease in TUNEL+mTECs only

after treatment of Nec-1 and not zVAD fmk, indicating that the

necrosis is not secondary to apoptosis.

To test whether pMLKLSer358 has a functional role in

TNF-mediated death of mTECs in RCC, we applied NSA,

which blocks programmed necrosis by specifically targeting

MLKL.15 The number of R1TNF-induced TUNEL+mTECs was

reduced by NSA treatment in a concentration-dependent

manner (Figure 6a, quantified in Figure 6b) (UT~5%,

R1TNF~75%; R1TNF+50 μM NSA~15%; R1TNF+20 μM

NSA~30%; R1TNF+10 μM NSA~35%; R1TNF+5 μM

NSA~70%). A similar but reduced effect of NSA was evident

in NKorgan cultures (data not shown). NSA inhibition of mTEC

death correlated with a concentration-dependent reduction of

pMLKLser358 expression (Figure 6c). wtTNF (without NSA)

Figure 4 PLA of organ culture of RCC grade 1. (a) In comparison with untreated controls (UT), R1TNF induced a strong interaction of RIPK1-RIPK3 and RIPK3-pMLKLSer358

appearing as strong red fluorescence spots mainly within the cytoplasm of mTECs. Each individual interacting protein pair observed as a red spot by confocal microscopy is
expressed as the number of signals/cell (PLA spots/cell). (b and c) Quantification of PLA spots in TECs in the two study groups; RCC (RCCoC) and normal kidney (NKoC) show a
statistically significant difference, more pronounced in RCCoC. **Po0.01 versus UT, *Po0.05 versus UT, ±Po0.05 versus R1TNF (NKoC). (d and e) Representative confocal
images of pMLKLSer358 or pDrp1Ser637 and TUNEL in organ cultures of RCC grade 1. Compared with UT cultures, R1TNF induced an increase in the level of TUNEL+mTECs
(green) associated with pMLKLSer358 and pDrp1Ser616 (red) expression (arrows). (f and g) Quantification of TUNEL+mTECs/pMLKLSer358+ and TUNEL+mTECs/pDrp1Ser616+ shows
statistical significant differences between cultures. ***Po0.0001 versus UT, **Po0.001 versus UT, *Po0.01 versus UT, ±Po0.05 versus R1TNF (NKoC). (h) Combined
immunofluorescence of R1TNF-treated cultures shows co-localization of pMLKLSer358 and pDrp1Ser616 in mTECs (arrow). (i) Immunogold electron microscopy demonstrate close
proximity of gold particles for pMLKLSer358 (5 nm) and pDrp1Ser616 (15 nm) in mitochondria (m) (inset zoomed × 2.5). Bars=mean± S.E.M.; images are representative of n= 3
independent experiments from six separate organ culture experiments with similar results

Table 1 Expression of necrosomal signaling components regulated by wtTNF, R1TNF and R2TNF in malignant tubular epithelial cells in human RCC grade 1 organ
cultures

UT wtTNF R1TNF R2TNF Subcellular localization Pattern of immunostaining

RIPK1 +/− ++++ ++++ +/− Cytoplasmic Diffuse
RIPK3 +/− ++++ ++++ + Cytoplasmic/nuclear Diffuse
Total MLKL ++++ ++++ ++++ + Cytoplasmic Diffuse
pMLKLSer358 +/− ++++ ++++ + Cytoplasmic/nuclear Diffuse/punctate
Total Drp1 ++++ +++ +++ + Cytoplasmic Diffuse
pDrp1Ser616 − +++ +++ + Cytoplasmic Punctate
pDrp1Ser637 ++ +/− +/− + Cytoplasmic Punctate

Abbreviations: pMLKLSer358, phosphorylated MLKL at Ser358; pDrp1Ser616, phosphorylated Drp1 at Ser616 and pDrp1Ser637 -phosphorylated at Ser637; RIPK1,
receptor-interacting protein kinase 1; RIPK3, receptor-interacting protein kinase 3; Scores: − no labeling; +/− occasional positive labeling (42%); + weak labeling
(45%); ++ intermediate labeling (410%); +++ strong labeling (440%); ++++ very strong labeling (460%).
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Figure 5 (A) Representative hematoxylin and eosin-stained sections demonstrate morphological features of necrosis in organ cultures of grade 1 ccRCC treated with or
without necrostatin-1 or/and zVAD.fmk followed by R1TNF. R1TNF induced increased cell death compared with untreated (UT) cultures (a and b). Treatment with zVAD.fmk (z) (c)
resulted in partial inhibition of cell death, further rescued by necrostatin-1 (n) (d), even more so by a combination of z and n (e). (B) Quantification of parallel sections stained with
TUNEL show the precentage of dead tubular epithelial cells (TECs) in 10 random high power fields at × 40 magnification. ***Po0.0001 versus UT; **Po0.001 versus R1TNF+n
(NKoC), ±Po0.01 versus R1TNF (NKoC), ¥Po0.05 versus R1TNF (RCCoC); ns, not significant. (C and D) R1TNF induced increased level of TUNEL+mTECs (green), also
expressing pMLKLSer358 or pDrp1Ser616 (arrows) (red). Treatment with zVAD.fmk (z) partially reduced the number of TUNEL+mTECs (arrows) but did not have any effect on
pMLKLSer358 or pDrp1Ser616 expression. In contrast, treatment with necrostatin-1 (n) resulted in a significant reduction in the number of TUNEL+mTECs, associated with a
diminished level of pMLKLSer358 or pDrp1Ser616 comparable with cultures treated with a combination of zVAD.fmk and necrostatin-1 (z+n) (arrows). (E) Quantification of the
percentage of TUNEL+mTECs in combination with pMLKLSer358 or pDrp1Ser616 in 10 random high power fields at × 40 magnification; ***Po0.001 versus UT; +Po0.05 versus
R1TNF; ns, not significant. Bars=mean± S.E.M. Images are representative of n= 3 independent experiments from six separate organ culture experiments with similar results
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induced comparable levels of death in mTECs as R1TNF with

similar inhibitory effects of NSA (data not shown). R2TNF

induced an insignificant increase in mTEC death as compared

with UT controls.

To investigate the importance of pDrp1 in TNF-mediated

death of mTECs in RCC, we used mdivi-1, a small molecule

inhibitor of Drp1.38–40 Treatment of organ cultures with mdivi-1

inhibited wtTNF- and R1TNF-mediated alterations in the

phosphorylation status of Drp1, and reduced increases in
TUNEL+mTECs, which was further reduced by treatment with a

combination of mdivi-1 and Nec-1 (Figure 6d, quantified

in Figure 6e) (UT~5%; R1TNF~72%; R1TNF+m~48%;

R1TNF+m+n~22%; R1TNF+m+z~45%; R1TNF+m+n

+z~ 21%). mdivi-1 inhibition of mTEC death correlated with

a significant reduction of pDry1Ser616 and pDrp1Ser637

(Figures 6f and 6g). Similar effects of wtTNF and

R1TNF-induced TUNEL+mTECs were observed in NK organ

cultures but to a lesser extent than in RCCorgan cultures (data

not shown).

Discussion

TNF was initially described as a factor present in the blood

of Bacillus Calmette–Guerin-infected mice treated with

endotoxin41,42where it was shown to be an important mediator

of the priming phase of a Shwartzman-like reaction involving

neutrophil activation and intravascular coagulation.43 Vascu-

larized tumors showed evidence of hemorrhagic necrosis,

hence the name TNF. Various in vitro studies later reported

that in most cultured tumor cells, TNF caused apoptotic

cell death,44,45 although there were some exceptions that

appeared to show death with features of necrosis (e.g., L929

cells).46 The relationship between tumor cell apoptosis in vitro

and necrosis in vivo was not clear. However, in the last few

years, it has been appreciated that features of necrosis can

also be induced in individual cells in culture6,7,18,23,47 and

TNF-induced necrosis, like apoptosis, is thought to be

predominantly mediated by TNFR1 signaling.2 Which form of

programmed death predominates in situ is open to debate.

Our study is unique in that it is based on an organ culture

system so that cells are studied in situ but death cannot be

attributed to Shwartzman-type phenomena. Thus, necroptosis

and indirectly caused necrosis can be separated and this may

be the first example in which this approach has been used.

In vitro studies have utilized antibodies to localize distinct

proteins that participate in TNF-induced necroptosis and

changes in their phosphorylation status.23,48 We have taken

advantage of the pharmacological inhibitors of these proteins

to monitor cell death combined with immunohistochemistry at

the light and electron microscopic level to determine the effect

(s) of TNF in RCC and NK. Consistent with our earlier report,27

we show morphological evidence of death in mTECs of RCC

cultures treated with wtTNF and R1TNF, and to a minor extent

TNFR2. This was associated with upregulation of RIPK1 and

RIPK3 mRNA and protein expression, kinases involved in

TNF-mediated necroptosis.2,6,10,33,49–53 We further show a

significantly elevated RIPK1 and RIPK3 protein expression in

mTECs of high grade (3/4) as compared with low-grade

tumors (1/2). Upregulation of RIPK1 has been reported in lung

cancer and glioblastoma tissues,54,55 but not in colon

cancer,52 suggesting that distinct mechanisms of cell killing

may exist in different tumor types. Inhibition of NFκB by PDTC

did not abolish TNF-induced RIPK1 and RIPK3 in our organ

cultures suggesting that activation of these kinases occurs

independent of NFκB, in line with O’Donnell et al.,56 who

reported that K63-linked ubiquitination of RIPK1 occurs early

after TNFR1 stimulation and does not require NFκB transcrip-

tion. In RCC, it is possible that the higher expression of

RIPK1/3 renders them more prone to TNF-mediated necrop-

tosis, suggesting that differential treatments may be devised to

augment chemotherapeutic death in RCC while sparing

normal surrounding tissue. Our observation of the small

amount of TNFR2-mediated death of mTECs is consistent

with a proposal by Chan et al.11 that TNFR2 signaling does

not directly engage the cell death machinery, but rather

enhances TNF-induced necroptosis indirectly via TNFR1 by

recruitment of RIPK1.11 If TNFR1 is activated by TNFR2 in

RCC independently of TNFR1 occupancy, it is a very minor

response.

In the next steps, we underpinned the necroptotic pathway

by demonstrating a direct interaction between RIPK1 and

RIPK3, between RIPK3 and MLKL, and the participation of

MLKL and Drp1 in the necrotic process, as outlined in the

scheme shown in Figure 6h. Previous work has shown that

RIPK3 is recruited to RIPK1 through their RHIM domains upon

execution of necrosis.7,11,15,52 The pharmacological inhibition

of RIPK1 abolishes the recruitment of RIPK3 and thereby

inhibits RIPK3 activation, suggesting that RIPK1 is upstream

Table 2 Percentage of TNF-mediated cell death of tubular epithelial cells in human RCC grade 1 and adjacent non-tumor kidney (NK) organ cultures subjected to
TUNEL

RCCoC NKoC

Treatment wtTNF R1TNF R2TNF wtTNF R1TNF R2TNF

UT 4.60± 0.13 5.1± 0.10 4.5±0.3 2.7± 0.3 2.2±01 2.1±0.16
alone 72.0± 0.11*** 70.2± 0.12*** 7.0±0.2* 61.0± 0.6*** 59.1±0.1*** 5.0±0.12*
+n 39.1± 0.31+ 42.8± 0.21+ 5.2±0.3┼ 41.1± 0.3+ 28.1±0.34+ 3.2±0.15┼

+z 62.0± 0.40+ 60.7± 0.07+ 6.5±0.3 52.3± 0.70¥ 47.4±0.1¥ 4.1±0.47
+n+z 28.1± 0.17** 35.7± 0.32** 5.0±0.2 36.1± 0.17# 21.3±0.21# 3.0±0.23

Abbreviations: n, necrostatin-1 (10 μM); NKoC, normal kidney organ culture; RCCoC, RCC organ culture; z, zVAD.fmk (20μM); n+z (necrostatin-1 + zVAD.fmk); UT,
Untreated. wtTNF (10 ng/ml), R1TNFand R2TNF (1 μg/ml) were used. Percentage represents mean±S.E.M. (n= 6); ***Po0.0001, *Po0.001 versusUT; +Po0.001,
+Po0.01 versus wtTNF and R1TNF, ┼Po0.05 versus R2TNF; ¥Po0.05 versus wtTNF or R1TNF (NKoC); **Po0.05 versus wtTNF+N (RCCoC); #Po0.05 versus
wtTNF or R1TNF (NKoC).
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of RIPK3.7 However, a recent report has suggested that

RIPK3 oligomerization is sufficient to induce necroptosis,

independent of the RHIM domain.57 Nevertheless, RIPK3 is

now known to be the molecular switch for necroptosis,58–61

and its expression renders cells permissive to necroptosis

upon TNF treatment7,10 via MLKL31,62 and Drp1 recruitment

and phosphorylation. Using the PLA assay,63 we show that

stimulation of RCC organ cultures with wtTNF or R1TNF

Figure 6 (a) Effect of necrosulfonamide (NSA) and mdivi-1 (m) in grade 1 RCC organ cultures treated with R1TNF. R1TNF alone without NSA (no NSA) induced increased
levels of TUNEL+mTECs, which were significantly reduced with 50 μMNSA, and to a lesser extent, with 10 μM or 20 μMNSA (arrows). Cultures pretreated with 5 μMNSA showed
comparable levels of TUNEL+mTECs as untreated cultures (UT). (b) The percentage of TUNEL+mTECs and (c) pMLKLSer358 expression presented as mean fluorescent intensity
(MFI) in similar cultures. ***Po0.0001 versus UT,**Po0.001 versus R1TNF; *Po0.05 versus R1TNF; ¥Po0.05 versus R1TNF (+20 or 10μM); ±Po0.001 versus R1TNF (+20
or 10 μM); ns, not significant. (d) In comparison with UT, which show a rare TUNEL+mTECs, R1TNF alone (without m) induced increased levels of TUNEL+mTECs, significantly
reduced by m (10 μM) with no effect by zVAD.fmk (m+z) but a marked reduction by nec-1 (m+n) comparable with cultures pretreated with a combination of zVAD.fmk and nec-1 (m
+n+z). (e) The percentage of TUNEL+mTECs and (f and g) the mean fluorescence intensity (MFI) for pDrp1Ser616 and pDrp1Ser637 in similar cultures. ***Po0.0001 versus UT (e),
**Po0.01 versus UT (f), *Po0.05 versus R1TNF, ± Po0.05 versus R1TNF+m. (g) *Po0.05 versus UT, ±Po0.5 versus R1TNF, ¥Po0.05 versus R1TNF+m; ns, not
significant. Bars=mean± S.E.M.; n= 3 independent experiments from six separate organ culture experiments with similar results. (h) Schematic diagram of the consequences
of R1TNF-mediated necroptosis in mTEC in RCC; ligation of TNFR1 results in the recruitment of RIPK1, facilitating its interaction with RIPK3, which in turn recruits and
phosphorylates MLKL at Ser358 and Drp1 at Ser616 thus causing their co-localization with the mitochondria. A separate process causes a reduction in pDrp1 at ser637. Nec-1
inhibits RIPK1, and NSA inhibits MLKL and mdivi-1 inhibits Drp1 inhibiting cell death
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induced RIPK1-RIPK3 interaction in mTECs, consistent with

previous reports.6,7,10 Furthermore, we found that R1TNF

induced an association between RIPK3 and pMLKLSer358 and

that R1TNF increased pMLKLSer358 and pDrp1Ser616 and

reduced Drp1ser637 in mTECs.

The increase in pMLKSer358 and pDrp1Ser616 in TECs was

associated with TUNEL+mTECs, further supporting a role for

these phosphorylated proteins in necroptosis. Interestingly,

immunogold electron microscopy analysis of R1TNF-treated

cultures of RCC demonstrated the presence of pMLKLSer358 in

some mitochondria and on the plasma membrane of mTECs.

This result is consistent with that of Cai et al.,64 who reported

translocation of RIPK3-dependent phosphorylated MLKL

homotrimers to the cell plasma membrane, a process which

leads to cell rupture. This finding is also supportive of a recent

report by Rodriguez et al.20 Our immunofluorescence studies

of wtTNF and R1TNF-treated cultures of RCC also demon-

strated induction of pDrp1Ser616 and its co-localization with

pMLKLSer358 in mTECs, and immunogold EM analysis further

confirmed association of pMLKLSer358 and pDRP1Ser616 in the

mitochondria of mTECs, implying that mitochondria may be a

point of aggregation for execution of necrosis by these death-

inducing components.65

Drp1 is regulated by posttranslational modifications such as

phosphorylation.66,67 Drp1 phosphorylation at Ser616 has

been linked to cancer invasion and growth and its increased

expression has been reported in human lung cancer.68,69

In our hands, increased pDrp1Ser616 was associated with cell

death; perhaps, its effects are context-dependent, so it

couples to necroptosis when associated and co-localized with

pMLKLSer358 but not in other environments. Differing extents of

Drp1 and mitochondrial involvement in regulation of necrop-

tosis have been reported, which most likely depend on the

model studied. In the human organ culture model used here,

there is a heterogeneous cell population, so factors that exert a

spectrum of bioactivities may influence cell death regulation

differently to experiments in a pure cell line. Our observation of

rescued cell death mediated by TNF using mdivi-1, a selective

inhibitor of Drp1, its correlation with phosphorylation of Drp1 at

Ser616 and its co-localization with mitochondria strongly

implicate them as likely targets in TNF-mediated necroptosis

in RCC, though we have not proven this conclusively.

In contrast to pDrp1Ser616, wtTNF and R1TNF reduced

pDrp1ser637 expression in mTECs. Loss of this site is linked

to Drp1 activation, a process thought to be regulated by

mitochondrial protein phosphatase PGAM5.15,23However, the

requirement for PGAM5 in necroptosis induction has been

challenged by others.70 Interestingly, necroptosis pathway

inhibitors did not reverse the reduction in pDrp1Ser637 induced

by R1TNF, so its relationship to the necroptosis pathway is

unclear. Further work will be required to elucidate its role in

TNF signaling and whether PGAM5 is important for mediating

TNF-induced necroptosis in RCC. Collectively, our data

strongly suggest that TNF-induced necroptosis in mTECs in

RCC occurs via altered phosphorylation of MLKL/Drp1 and

that this process may involve mitochondrial localization and

possibly the plasma membrane. However, further studies will

be needed to clarify the causal connections.48

Finally, we analyzed how these components contribute to

cell death using small molecule inhibitors. It is well established

that secondary necrosis can occur downstream of apoptosis,

which is different from necroptosis.29,30 To test whether this

explains the necrosis in our cultures, we used zVAD.fmk,

a pan-caspase inhibitor.10,32,50,58 We show that treatment

with zVAD.fmk resulted in only a minor inhibition of

TNFR1-mediated cell death in mTECs consistent with our

previous report that R1TNF induces expression of cleaved

active caspase 3p175 in some mTECs.34 However, Nec-1, an

allosteric RIPK1 inhibitor was highly effective at preventing cell

death consistent with previous reports,50,51 and the combined

addition of zVAD.fmk and Nec-1 appeared to have an additive

effect. These data imply dominance of a caspase-independent

mode of cell death in mTECs, consistent with other studies.71

To further characterize the specific roles of MLKL and Drp1

in TNF-induced necroptosis in organ cultures of RCC and NK,

we utilized the inhibitors NSA (inhibitor of MLKL) and mdivi-1

(a selective inhibitor of Drp1). We found that NSA reduced

the number of TUNEL+mTECs back to untreated levels, while

mdivi-1 was less effective at the concentration used. NSA- and

mdivi-1-mediated death inhibition was associated with a

significant reduction in expression of the relevant phosphory-

lated proteins; pMLKLSer358 by NSA and pDrp1Ser616 by

mdivi-1. NSA also attenuated phosphorylation of Drp1Ser616

(data not shown), consistent with a previous report.23 mdivi-1

is a quinazolinone derivative, attenuating Drp1 self-assembly,

thereby causing the inhibition of mitochondrial fission. Owing

to its potential in preventing mitochondrial fragmentation,

mdivi-1 has shown protective efficacy in a number of disease

models, including acute kidney injury, heart ischemia/reperfu-

sion injury and Parkinson’s disease.72 Our findings are

consistent with earlier reports that demonstrate a protective

effect of mdivi-1 by attenuating R1TNF-induced necroptotic

death.72,73 The pathway we uncovered of R1TNF-mediated

necroptosis in mTECs in RCC is schematized in Figure 6h.

In summary, our data provide new evidence demonstrating

that TNF is an inducer of necroptosis in mTECs in organ

culture via TNFR1, that necroptosis is the predominant form of

cell death and that TNF-regulated necrosis occurs through a

RIPK1/RIPK3/MLKL/Drp1 axis. Given that our system is

closer to the situation in vivo, our findings support the

development of a therapeutic strategy targeting non-

apoptotic cell death pathways in RCC especially if they are

resistant to pro-apoptotic treatment.

Materials and Methods
Reagents/antibodies. The antibodies used were as follows: anti-RIPK1
(cat ~ NBP1-77077) (Novus Biologicals, Oxford, UK), anti-RIPK1 (cat ~ 3493S)
(New England Biolabs, Hitchin, UK), anti-RIPK1 (cat ~ ab56815), anti-RIPK3
(cat ~ ab16090), anti-RIPK3 (cat ~ ab56164) (Abcam, Cambridge, UK). Anti-RIPK3
(cat ~ GTX107574, GenTex, Irvine, CA, USA), anti-RIPK3 (cs-13526S), anti-MLKL
and anti-phosphorylated MLKLSer358 (phospho-Ser358) (cat ~ 17-10400) and anti-
mitochondria (MAB1273, Millipore, Watford, UK); anti-phosphorylated MLKLSer358

(cat ~ ab187091), anti-c-FLIP (cat ~ ab6144) and anti-Caspase-8p18 (cat ~ ab25901)
are from Abcam, anti-NFκBp65p-ser276 (cat ~ 3037S), anti-pDrp1Ser616 (cat ~
cs-3455S), anti-pDrp1Ser637 (cat ~ cs-4867S) are from New England Biolabs. Rabbit
anti-cytokeratin (CK) (cat ~ sc15367) is from Insight Biotechnology Ltd, Wembley,
UK, and mouse anti-CK (cat ~ VP-C420) is from Vector Laboratories, Peterborough,
UK. Blocking peptides for RIPK1 (cat ~ NBP1-77077PEP) are from Novus
Biologicals and for RIPK3 (~ ab178834) and pMLKLSer358 (ab206929) are from
Abcam. zVAD.fmk (pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoro-
methylketone; cat ~ G7231) is from Promega, Madison, WI, USA; PDTC,
3,3′-diaminobenzidine substrate (DAB), Necrostatin-1 (Nec-1, cat ~ N9037) and
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mdivi-1 (3-(2, 4-dichloro-5-methoxyphenyl)-2-sulfanyl-4(3H)-quinazolinone) are
from Sigma-Aldrich (Gillingham, UK). TUNEL-In Situ Cell Death Detection Kit
(cat ~11767291910) is from Roche Diagnostics, West Sussex, UK. Five nanometer
and 15 nm-conjugated gold particles are from British Biocell (Cardiff, UK); Hoechst
33342 is from Thermo Fisher Scientific (Paisley, UK); wild-type TNF (wtTNF)
(cat ~ 210-TA-020; R&D systems, Oxford, UK) and TNFR-specific muteins (R1TNF
and R2TNF) were a generous gift from Professor Peter Vandenabeele (Gwent,
Belgium).

RCC and NK organ cultures. All experiments using human tissue were
performed with the written informed consent of patients and the approval of the local
Ethical Committee and Addenbrooke’s Hospital Tissue Bank. RCC tissue grade
1 and adjacent non-tumor kidney tissue (NK) (n= 6) from radical nephrectomies
were randomly dissected and processed for organ culture as previously reported.74

Briefly, duplicateo1 mm3 fragments were placed in M199 medium in 96-well plates
and either left in medium alone (untreated; UT) or pretreated with wtTNF (10 ng/ml)
or R1TNF or R2TNF (1 μg/ml) for 3 h at 37 °C. Parallel cultures were pretreated
with zVAD.fmk (20 μM)50,51,58,75 or Nec-1 (30 μM)51,76,77 or with a mixture of zVAD.
fmk and Nec-1 for 1h prior to wtTNF or R1TNF or R2TNF. In addition, some cultures
were pretreated for 1h with different dose of necrosulfoximide (NSA; inhibitor of
pMLKL) (5, 10, 20, 50 μM) or mdivi-1 (10 μM; mitochondrial division inhibitor-1
targets pDrp1) before TNF or R1TNF or R2TNF with Nec-1 and/or zVAD.fmk.
Additional, duplicate samples were either treated with 50 μg/ml (or 300 μM)
PDTC34 or left untreated for 30 min before TNF treatment. All cultures were fixed in
4% paraformaldehyde and wax sections stained with hematoxylin and eosin for
morphological studies, immunofluorescence, immunohistochemistry, TUNEL and
in situ hybridization. Images of hematoxylin and eosin sections were captured using
a Leitz Laborlux 12 Microscope with Infinity 2 camera (Lumenera Corporation,
Ontario, Canada).

Immunohistochemical and immunofluorescence analyses
(IHC and IF). RCC, NK and corresponding organ cultures were subjected to
IHC and IF as previously described.74 Briefly, some sections were incubated with
anti-RIPK1, -RIPK3, -pMLKLSer358, -pDrp1Ser616, pDrp1Ser637 and pan-cytokeratin
and some sections immunostained for pMLKLSer358 and -pDrp1Ser616 or pDrp1Ser637

using Zenon Fab reagents,78 followed by incubation with flourochrome-conjugated
secondary antibody (Northern Light498 or 557) (R&D Systems) plus Hoechst 333342.
For IHC, sections were pretreated with 30% H2O2 before incubation with primary
antibodies, followed by a peroxidase-conjugated secondary antibody and DAB as
chromogen and counterstained with hematoxylin. Parallel cultures treated with or
without PDTC were also examined for expression of NFκBp65p-ser276, c-FLIP and
active Caspase 8p18. Negative controls included pre-adsorption of primary
antibodies with blocking peptides overnight at 4 °C prior to immunostaining and
also replacement of the primary antibody with an isotype-specific sera. To further
confirm specificity of the antibodies to RIPK1, RIPK3, MLKL and DRP1 used in this
study, we carried out gene knockdown experiments on human HEK293 cells using
siRNA against each target protein (as these cells show high transfection efficiency).
For this, cells were reverse-transfected with 100 nM of the appropriate siRNA
(GE Healthcare UK Ltd, Buckinghampshire, UK) in 8-well slide chambers using
the TurboFect transfection reagent (Thermo Fisher Scientific), according to the
manufacturer’s protocol. After 48 h of transfection, the cells were treated with zVAD.
fmk (25 μM) and the Smac-mimetic LCL-61 (100 μM) (Selleckchem, Houston, TX,
USA) for 30 min prior to treatment with TNF (10 ng/ml) for 4h and then subjected to
IF. siRNAs used include Accell Human Control siRNA non-targeting pool
Cat ~ D-001910-10-20; Accell Human RIPK1 siRNA SMARTpool Cat ~ E-004445-
00-000, Accell Human RIPK3 siRNA SMARTpool Cat ~ E-003534-00-0005, Accell
Human MLKL siRNA SMARTpool Cat ~ E-005326-00-0005, Accell Human DRP1
siRNA SMRTpool Cat ~ E-012092-00-0005 (GE Healthcare Ltd).
Photomicrographs were captured using a on a SPE-confocal laser scanning

microscopy (Leica Microsystems Ltd, Milton Keynes, UK) and IF images were
captured on a confocal laser scanning microscopy. The mean fluorescence intensity
was quantified in Image J. All data were transferred to GraphPad Prism 5.0 for
statistical analysis.

In situ PLA. The principle of the in situ PLA was reported previously.63 Briefly,
when two proteins are closer than 40 nm, signals can be detected. In situ PLA
assay was performed using the Duolink In Situ Detection Regents Red
(Cat ~ DUO92008; Sigma-Aldrich) according to the manufacturer’s instructions.
For details, refer to Supplementary Methods. The number of in situ fluorescent PLA

signals (red spots) was counted in mTECs in 10 random fields of view at × 40
magnification. The number of signals per cell in the negative controls incubated with
only one of the primary antibodies (RIPK1 and RIPK3) was also counted and the
increase in signal calculated as the ratio of the number of signals per cell in the
sample divided by the sum of the signals in the negative controls, as previously
reported.79 Images were acquired on a confocal laser scanning microscopy and
prepared using Photoshop CS6 software.

In situ hybridization (ISH). As previously described,74 paraffin sections of
RCC and NK organ cultures were hybridized overnight at 37 °C with single-stranded
anti-sense DNA oligonucleotide probes 5′-end labeled with digoxigenin specific for
human RIPK1 (NM_003804) or human RIPK3 (NM_006871) (Eurofins Genomics,
Ebersberg, Germany) followed by anti-digoxigenin-11-dUTP-conjugated-alkaline
phosphatase (AP) (Roche). Gene expression was visualized as described in
Supplementary Methods.

Terminal deoxynucleotidyl transferase (TdT)-mediated-digoxi-
genin-11-dUTP nick end labeling (TUNEL). TUNEL was used to detect
DNA fragmentation in RCC and NK organ cultures treated with wtTNF, R1TNF and
R2TNF as previously described.74 The number of TUNEL+ dead TECs per total
number of viable cells were counted in 10 high power fields of view at × 40
magnification and scored by two observers blinded to the treatments and the data
presented as percentage of dead TECs. For details of TUNEL assay, see
Supplementary Methods.

Immunoblotting. RCC and NK tissue were processed for immunoblotting as
previously described.27 Following lysis, 50 μg of each sample was separated by
SDS-PAGE, and transferred to a nitrocellulose membrane then probed for RIPK1
and RIPK3 (1:1000) and signals detected by enhanced chemiluminescence
according to the manufacturer’s instructions. Relative protein levels were normalized
to β-actin and, calculated using Image J and Microsoft Excel.

Ultrastructure and immunogold electron microscopy. As previously
described,80 after fixation in glutaraldehyde/paraformaldehyde (2.5%/1%), RCC and
NK organ cultures were subjected to 1% osmium ferrocyanide for 1h, dehydrated in
an ascending series of ethanol solutions, and embedded in Spurr’s resin. Fifty
nanometer sections were stained with uranyl acetate and lead citrate. For
immunogold staining, as previously described, sections were stained for
pMLKLSer358 or pDrp1Ser616 and mitochondria (1:5) overnight and further incubated
with 5 and 15 nm gold particles (British Biocell) (1:100), stained with uranyl acetate
and lead citrate before viewing in a Hitachi Capital (UK) PLC, Leeds West Yorkshire
at an accelerating voltage of 80 kV.

Statistical analyses. All data represent mean± S.E.M. of n= 3 independent
experiments from at least six different patient organ cultures unless otherwise
stated. Differences between two groups were analyzed by Student's t-test, and
between 42 groups by one-way ANOVA followed by Bonferroni’s post hoc t-test in
GraphPad Prism version 5.02 (La Jolla, CA, USA). Po0.05 was regarded
significant.
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