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Abstract

Knowledge graphs are structured representa-

tions of real world facts. However, they typ-

ically contain only a small subset of all pos-

sible facts. Link prediction is a task of infer-

ring missing facts based on existing ones. We

propose TuckER, a relatively straightforward

but powerful linear model based on Tucker

decomposition of the binary tensor represen-

tation of knowledge graph triples. TuckER

outperforms previous state-of-the-art models

across standard link prediction datasets, act-

ing as a strong baseline for more elaborate

models. We show that TuckER is a fully ex-

pressive model, derive sufficient bounds on its

embedding dimensionalities and demonstrate

that several previously introduced linear mod-

els can be viewed as special cases of TuckER.

1 Introduction

Vast amounts of information available in the world

can be represented succinctly as entities and rela-

tions between them. Knowledge graphs are large,

graph-structured databases which store facts in

triple form (es, r, eo), with es and eo representing

subject and object entities and r a relation. How-

ever, far from all available information is currently

stored in existing knowledge graphs and manually

adding new information is costly, which creates

the need for algorithms that are able to automat-

ically infer missing facts.

Knowledge graphs can be represented as a

third-order binary tensor, where each element cor-

responds to a triple, 1 indicating a true fact and 0

indicating the unknown (either a false or a miss-

ing fact). The task of link prediction is to predict

whether two entities are related, based on known

facts already present in a knowledge graph, i.e. to

infer which of the 0 entries in the tensor are indeed

false, and which are missing but actually true.

A large number of approaches to link prediction

so far have been linear, based on various meth-

ods of factorizing the third-order binary tensor

(Nickel et al., 2011; Yang et al., 2015; Trouillon

et al., 2016; Kazemi and Poole, 2018). Recently,

state-of-the-art results have been achieved using

non-linear convolutional models (Dettmers et al.,

2018; Balažević et al., 2019). Despite achieving

very good performance, the fundamental problem

with deep, non-linear models is that they are non-

transparent and poorly understood, as opposed to

more mathematically principled and widely stud-

ied tensor decomposition models.

In this paper, we introduce TuckER (E stands

for entities, R for relations), a straightforward

linear model for link prediction on knowledge

graphs, based on Tucker decomposition (Tucker,

1966) of the binary tensor of triples, acting as a

strong baseline for more elaborate models. Tucker

decomposition, used widely in machine learning

(Schein et al., 2016; Ben-Younes et al., 2017; Yang

and Hospedales, 2017), factorizes a tensor into

a core tensor multiplied by a matrix along each

mode. It can be thought of as a form of higher-

order SVD in the special case where matrices are

orthogonal and the core tensor is “all-orthogonal”

(Kroonenberg and De Leeuw, 1980). In our case,

rows of the matrices contain entity and relation

embeddings, while entries of the core tensor deter-

mine the level of interaction between them. Sub-

ject and object entity embedding matrices are as-

sumed equivalent, i.e. we make no distinction be-

tween the embeddings of an entity depending on

whether it appears as a subject or as an object in a

particular triple. Due to the low rank of the core

tensor, TuckER benefits from multi-task learning

by parameter sharing across relations.

A link prediction model should have enough ex-

pressive power to represent all relation types (e.g.

symmetric, asymmetric, transitive). We thus show
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that TuckER is fully expressive, i.e. given any

ground truth over the triples, there exists an as-

signment of values to the entity and relation em-

beddings that accurately separates the true triples

from false ones. We also derive a dimensionality

bound which guarantees full expressiveness.

Finally, we show that several previous state-

of-the-art linear models, RESCAL (Nickel et al.,

2011), DistMult (Yang et al., 2015), ComplEx

(Trouillon et al., 2016) and SimplE (Kazemi and

Poole, 2018), are special cases of TuckER.

In summary, key contributions of this paper are:

• proposing TuckER, a new linear model for

link prediction on knowledge graphs, that is

simple, expressive and achieves state-of-the-

art results across all standard datasets;

• proving that TuckER is fully expressive and

deriving a bound on the embedding dimen-

sionality for full expressiveness; and

• showing how TuckER subsumes several pre-

viously proposed tensor factorization ap-

proaches to link prediction.

2 Related Work

Several linear models for link prediction have pre-

viously been proposed:

RESCAL (Nickel et al., 2011) optimizes a scor-

ing function containing a bilinear product between

subject and object entity vectors and a full rank

relation matrix. Although a very expressive and

powerful model, RESCAL is prone to overfitting

due to its large number of parameters, which in-

creases quadratically in the embedding dimension

with the number of relations in a knowledge graph.

DistMult (Yang et al., 2015) is a special case

of RESCAL with a diagonal matrix per relation,

which reduces overfitting. However, the linear

transformation performed on entity embedding

vectors in DistMult is limited to a stretch. The

binary tensor learned by DistMult is symmetric in

the subject and object entity mode and thus Dist-

Mult cannot model asymmetric relations.

ComplEx (Trouillon et al., 2016) extends Dist-

Mult to the complex domain. Subject and object

entity embeddings for the same entity are complex

conjugates, which introduces asymmetry into the

tensor decomposition and thus enables ComplEx

to model asymmetric relations.

SimplE (Kazemi and Poole, 2018) is based on

Canonical Polyadic (CP) decomposition (Hitch-

cock, 1927), in which subject and object entity

embeddings for the same entity are independent

(note that DistMult is a special case of CP). Sim-

plE’s scoring function alters CP to make subject

and object entity embedding vectors dependent on

each other by computing the average of two terms,

first of which is a bilinear product of the subject

entity head embedding, relation embedding and

object entity tail embedding and the second is a

bilinear product of the object entity head embed-

ding, inverse relation embedding and subject en-

tity tail embedding.

Recently, state-of-the-art results have been

achieved with non-linear models:

ConvE (Dettmers et al., 2018) performs a global

2D convolution operation on the subject entity

and relation embedding vectors, after they are re-

shaped to matrices and concatenated. The ob-

tained feature maps are flattened, transformed

through a linear layer, and the inner product is

taken with all object entity vectors to generate a

score for each triple. Whilst results achieved by

ConvE are impressive, its reshaping and concate-

nating of vectors as well as using 2D convolution

on word embeddings is unintuitive.

HypER (Balažević et al., 2019) is a simplified

convolutional model, that uses a hypernetwork to

generate 1D convolutional filters for each relation,

extracting relation-specific features from subject

entity embeddings. The authors show that convo-

lution is a way of introducing sparsity and param-

eter tying and that HypER can be understood in

terms of tensor factorization up to a non-linearity,

thus placing HypER closer to the well established

family of factorization models. The drawback of

HypER is that it sets most elements of the core

weight tensor to 0, which amounts to hard regular-

ization, rather than letting the model learn which

parameters to use via soft regularization.

Scoring functions of all models described above

and TuckER are summarized in Table 1.

3 Background

Let E denote the set of all entities and R the set of

all relations present in a knowledge graph. A triple

is represented as (es, r, eo), with es, eo ∈ E de-

noting subject and object entities respectively and

r ∈ R the relation between them.

3.1 Link Prediction

In link prediction, we are given a subset of all true

triples and the aim is to learn a scoring function φ
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Model Scoring Function Relation Parameters Space Complexity

RESCAL (Nickel et al., 2011) e⊤s Wreo Wr ∈ R
de

2

O(nede + nrd
2
r)

DistMult (Yang et al., 2015) 〈es,wr, eo〉 wr ∈ R
de O(nede + nrde)

ComplEx (Trouillon et al., 2016) Re(〈es,wr, eo〉) wr ∈ C
de O(nede + nrde)

ConvE (Dettmers et al., 2018) f(vec(f([es;wr] ∗ w))W)eo wr ∈ R
dr O(nede + nrdr)

SimplE (Kazemi and Poole, 2018) 1
2(〈hes ,wr, teo〉+ 〈heo ,wr−1 , tes〉) wr ∈ R

de O(nede + nrde)
HypER (Balažević et al., 2019) f(vec(es ∗ vec−1(wrH))W)eo wr ∈ R

dr O(nede + nrdr)
TuckER (ours) W ×1 es ×2 wr ×3 eo wr ∈ R

dr O(nede + nrdr)

Table 1: Scoring functions of state-of-the-art link prediction models, the dimensionality of their relation param-

eters, and significant terms of their space complexity. de and dr are the dimensionalities of entity and relation

embeddings, while ne and nr denote the number of entities and relations respectively. eo ∈ C
de is the complex

conjugate of eo, e
s
,w

r
∈ R

dw×dh denote a 2D reshaping of es and wr respectively, hes
, tes ∈ R

de are the head

and tail entity embedding of entity es, and wr−1 ∈ R
dr is the embedding of relation r−1 (which is the inverse of

relation r). ∗ is the convolution operator, 〈·〉 denotes the dot product and ×n denotes the tensor product along the

n-th mode, f is a non-linear function, and W ∈ R
de×de×dr is the core tensor of a Tucker decomposition.

that assigns a score s = φ(es, r, eo) ∈ R which

indicates whether a triple is true, with the ultimate

goal of being able to correctly score all missing

triples. The scoring function is either a specific

form of tensor factorization in the case of linear

models or a more complex (deep) neural network

architecture for non-linear models. Typically, a

positive score for a particular triple indicates a true

fact predicted by the model, while a negative score

indicates a false one. With most recent models, a

non-linearity such as the logistic sigmoid function

is typically applied to the score to give a corre-

sponding probability prediction p = σ(s) ∈ [0, 1]
as to whether a certain fact is true.

3.2 Tucker Decomposition

Tucker decomposition, named after Ledyard R.

Tucker (Tucker, 1964), decomposes a tensor into

a set of matrices and a smaller core tensor. In a

three-mode case, given the original tensor X ∈
R
I×J×K , Tucker decomposition outputs a tensor

Z ∈ R
P×Q×R and three matrices A ∈ R

I×P ,

B ∈ R
J×Q, C ∈ R

K×R:

X ≈ Z ×1 A×2 B×3 C, (1)

with ×n indicating the tensor product along the n-

th mode. Factor matrices A, B and C, when or-

thogonal, can be thought of as the principal com-

ponents in each mode. Elements of the core tensor

Z show the level of interaction between the differ-

ent components. Typically, P , Q, R are smaller

than I , J , K respectively, so Z can be thought of

as a compressed version of X . Tucker decomposi-

tion is not unique, i.e. we can transform Z without

affecting the fit if we apply the inverse transforma-

tion to A, B and C (Kolda and Bader, 2009).

4 Tucker Decomposition for Link

Prediction

We propose a model that uses Tucker decomposi-

tion for link prediction on the binary tensor rep-

resentation of a knowledge graph, with entity em-

bedding matrix E that is equivalent for subject and

object entities, i.e. E = A = C ∈ R
ne×de and

relation embedding matrix R = B ∈ R
nr×dr ,

where ne and nr represent the number of entities

and relations and de and dr the dimensionality of

entity and relation embedding vectors.

W

de

de

dr

es

eo

wr

Figure 1: Visualization of the TuckER architecture.

We define the scoring function for TuckER as:

φ(es, r, eo) = W ×1 es ×2 wr ×3 eo, (2)

where es, eo ∈ R
de are the rows of E representing

the subject and object entity embedding vectors,

wr ∈ R
dr the rows of R representing the relation

embedding vector and W ∈ R
de×dr×de is the core

tensor. We apply logistic sigmoid to each score

φ(es, r, eo) to obtain the predicted probability p of

a triple being true. Visualization of the TuckER

architecture can be seen in Figure 1. As proven in

Section 5.1, TuckER is fully expressive. Further,

its number of parameters increases linearly with
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respect to entity and relation embedding dimen-

sionality de and dr, as the number of entities and

relations increases, since the number of parame-

ters of W depends only on the entity and relation

embedding dimensionality and not on the number

of entities or relations. By having the core tensor

W , unlike simpler models such as DistMult, Com-

plEx and SimplE, TuckER does not encode all the

learned knowledge into the embeddings; some is

stored in the core tensor and shared between all

entities and relations through multi-task learning.

Rather than learning distinct relation-specific ma-

trices, the core tensor of TuckER can be viewed as

containing a shared pool of “prototype” relation

matrices, which are linearly combined according

to the parameters in each relation embedding.

4.1 Training

Since the logistic sigmoid is applied to the scor-

ing function to approximate the true binary ten-

sor, the implicit underlying tensor is comprised of

−∞ and ∞. Given this prevents an explicit ana-

lytical factorization, we use numerical methods to

train TuckER. We use the standard data augmenta-

tion technique, first used by Dettmers et al. (2018)

and formally described by Lacroix et al. (2018),

of adding reciprocal relations for every triple in

the dataset, i.e. we add (eo, r
−1, es) for every

(es, r, eo). Following the training procedure intro-

duced by Dettmers et al. (2018) to speed up train-

ing, we use 1-N scoring, i.e. we simultaneously

score entity-relation pairs (es, r) and (eo, r
−1)

with all entities eo ∈ E and es ∈ E respec-

tively, in contrast to 1-1 scoring, where individual

triples (es, r, eo) and (eo, r
−1, es) are trained one

at a time. The model is trained to minimize the

Bernoulli negative log-likelihood loss function. A

component of the loss for one entity-relation pair

with all others entities is defined as:

L = − 1
ne

ne∑

i=1
(y(i)log(p(i)) + (1− y(i))log(1− p(i))),

(3)

where p ∈ R
ne is the vector of predicted proba-

bilities and y ∈ R
ne is the binary label vector.

5 Theoretical Analysis

5.1 Full Expressiveness and Embedding

Dimensionality

A tensor factorization model is fully expressive

if for any ground truth over all entities and rela-

tions, there exist entity and relation embeddings

that accurately separate true triples from the false.

As shown in (Trouillon et al., 2017), ComplEx is

fully expressive with the embedding dimensional-

ity bound de = dr = ne · nr. Similarly to Com-

plEx, Kazemi and Poole (2018) show that SimplE

is fully expressive with entity and relation embed-

dings of size de = dr = min(ne ·nr, γ+1), where

γ represents the number of true facts. They fur-

ther prove other models are not fully expressive:

DistMult, because it cannot model asymmetric re-

lations; and transitive models such as TransE (Bor-

des et al., 2013) and its variants FTransE (Feng

et al., 2016) and STransE (Nguyen et al., 2016),

because of certain contradictions that they impose

between different relation types. By Theorem 1,

we establish the bound on entity and relation em-

bedding dimensionality (i.e. decomposition rank)

that guarantees full expressiveness of TuckER.

Theorem 1. Given any ground truth over a set of

entities E and relations R, there exists a TuckER

model with entity embeddings of dimensionality

de = ne and relation embeddings of dimension-

ality dr = nr, where ne = |E| is the number of

entities and nr = |R| the number of relations, that

accurately represents that ground truth.

Proof. Let es and eo be the ne-dimensional one-

hot binary vector representations of subject and

object entities es and eo respectively and wr the

nr-dimensional one-hot binary vector representa-

tion of relation r. For each subject entity e
(i)
s , rela-

tion r(j) and object entity e
(k)
o , we let the i-th, j-th

and k-th element respectively of the corresponding

vectors es, wr and eo be 1 and all other elements

0. Further, we set the ijk element of the tensor

W ∈ R
ne×nr×ne to 1 if the fact (es, r, eo) holds

and -1 otherwise. Thus the product of the entity

embeddings and the relation embedding with the

core tensor, after applying the logistic sigmoid, ac-

curately represents the original tensor.

The purpose of Theorem 1 is to prove that

TuckER is capable of potentially capturing all in-

formation (and noise) in the data. In practice

however, we expect the embedding dimensional-

ities needed for full reconstruction of the under-

lying binary tensor to be much smaller than the

bound stated above, since the assignment of val-

ues to the tensor is not random but follows a cer-

tain structure, otherwise nothing unknown could

be predicted. Even more so, low decomposition

rank is actually a desired property of any bilin-



5189

1
1
1
1
1
1
1
1
1
1
1
1

(a) DistMult

1
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1

−1
−1
−1
−1
−1
−1

(b) ComplEx

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

(c) SimplE

Figure 2: Constraints imposed on the values of core tensor Z ∈ R
de×de×de for DistMult and Z ∈ R

2de×2de×2de

for ComplEx and SimplE. Elements that are set to 0 are represented in white.

ear link prediction model, forcing it to learn that

structure and generalize to new data, rather than

simply memorizing the input. In general, we ex-

pect TuckER to perform better than ComplEx and

SimplE with embeddings of lower dimensionality

due to parameter sharing in the core tensor (shown

empirically in Section 6.4), which could be of im-

portance for efficiency in downstream tasks.

5.2 Relation to Previous Linear Models

Several previous tensor factorization models can

be viewed as a special case of TuckER:

RESCAL (Nickel et al., 2011) Following the

notation introduced in Section 3.2, the RESCAL

scoring function (see Table 1) has the form:

X ≈ Z ×1 A×3 C. (4)

This corresponds to Equation 1 with I = K = ne,

P = R = de, Q = J = nr and B = IJ the J × J

identity matrix. This is also known as Tucker2 de-

composition (Kolda and Bader, 2009). As is the

case with TuckER, the entity embedding matrix of

RESCAL is shared between subject and object en-

tities, i.e. E = A = C ∈ R
ne×de and the rela-

tion matrices Wr ∈ R
de×de are the de × de slices

of the core tensor Z . As mentioned in Section 2,

the drawback of RESCAL compared to TuckER is

that its number of parameters grows quadratically

in the entity embedding dimension de as the num-

ber of relations increases.

DistMult (Yang et al., 2015) The scoring func-

tion of DistMult (see Table 1) can be viewed as

equivalent to that of TuckER (see Equation 1) with

a core tensor Z ∈ R
P×Q×R, P = Q = R = de,

which is superdiagonal with 1s on the superdiag-

onal, i.e. all elements zpqr with p = q = r are

1 and all the other elements are 0 (as shown in

Figure 2a). Rows of E = A = C ∈ R
ne×de

contain subject and object entity embedding vec-

tors es, eo ∈ R
de and rows of R = B ∈ R

nr×de

contain relation embedding vectors wr ∈ R
de . It

is interesting to note that the TuckER interpreta-

tion of the DistMult scoring function, given that

matrices A and C are identical, can alternatively

be interpreted as a special case of CP decomposi-

tion (Hitchcock, 1927), since Tucker decomposi-

tion with a superdiagonal core tensor is equivalent

to CP decomposition. Due to enforced symmetry

in subject and object entity mode, DistMult cannot

learn to represent asymmetric relations.

ComplEx (Trouillon et al., 2016) Bilinear

models represent subject and object entity embed-

dings as vectors es, eo ∈ R
de , relation as a matrix

Wr ∈ R
de×de and the scoring function as a bi-

linear product φ(es, r, eo) = esWreo. It is trivial

to show that both RESCAL and DistMult belong

to the family of bilinear models. As explained by

Kazemi and Poole (2018), ComplEx can be con-

sidered a bilinear model with the real and imagi-

nary part of an embedding for each entity concate-

nated in a single vector, [Re(es); Im(es)] ∈ R
2de

for subject, [Re(eo); Im(eo)] ∈ R
2de for object,

and a relation matrix Wr ∈ R
2de×2de , constrained

so that its leading diagonal contains duplicated

elements of Re(wr), its de-diagonal elements of

Im(wr) and its -de-diagonal elements of -Im(wr),
with all other elements set to 0, where de and -de
represent offsets from the leading diagonal.

Similarly to DistMult, we can regard the scoring

function of ComplEx (see Table 1) as equivalent

to the scoring function of TuckER (see Equation

1), with core tensor Z ∈ R
P×Q×R, P = Q =

R = 2de, where 3de elements on different tensor

diagonals are set to 1, de elements on one tensor

diagonal are set to -1 and all other elements are set

to 0 (see Figure 2b). This shows that the scoring

function of ComplEx, which computes a bilinear

product with complex entity and relation embed-

dings and disregards the imaginary part of the ob-

tained result, is equivalent to a hard regularization

of the core tensor of TuckER in the real domain.
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SimplE (Kazemi and Poole, 2018) The authors

show that SimplE belongs to the family of bilinear

models by concatenating embeddings for head and

tail entities for both subject and object into vec-

tors [hes ; tes ] ∈ R
2de and [heo ; teo ] ∈ R

2de and

constraining the relation matrix Wr ∈ R
2de×2de

so that it contains the relation embedding vector
1
2wr on its de-diagonal and the inverse relation

embedding vector 1
2wr−1 on its -de-diagonal and

0s elsewhere. The SimplE scoring function (see

Table 1) is therefore equivalent to that of TuckER

(see Equation 1), with core tensor Z ∈ R
P×Q×R,

P = Q = R = 2de, where 2de elements on two

tensor diagonals are set to 1
2 and all other elements

are set to 0 (see Figure 2c).

5.3 Representing Asymmetric Relations

Each relation in a knowledge graph can be charac-

terized by a certain set of properties, such as sym-

metry, reflexivity, transitivity. So far, there have

been two possible ways in which linear link pre-

diction models introduce asymmetry into factor-

ization of the binary tensor of triples:

• distinct (although possibly related) embed-

dings for subject and object entities and a di-

agonal matrix (or equivalently a vector) for

each relation, as is the case with models such

as ComplEx and SimplE; or

• equivalent subject and object entity embed-

dings and each relation represented by a full

rank matrix, which is the case with RESCAL.

The latter approach appears more intuitive, since

asymmetry is a property of the relation, rather

than the entities. However, the drawback of the

latter approach is quadratic growth of parameter

number with the number of relations, which of-

ten leads to overfitting, especially for relations

with a small number of training triples. TuckER

overcomes this by representing relations as vec-

tors wr, which makes the parameter number grow

linearly with the number of relations, while still

keeping the desirable property of allowing rela-

tions to be asymmetric by having an asymmetric

relation-agnostic core tensor W , rather than en-

coding the relation-specific information in the en-

tity embeddings. Multiplying W ∈ R
de×dr×de

with wr ∈ R
dr along the second mode, we obtain

a full rank relation-specific matrix Wr ∈ R
de×de ,

which can perform all possible linear transforma-

tions on the entity embeddings, i.e. rotation, re-

flection or stretch, and is thus also capable of

modeling asymmetry. Regardless of what kind of

transformation is needed for modeling a particu-

lar relation, TuckER can learn it from the data.

To demonstrate this, we show sample heatmaps of

learned relation matrices Wr for a WordNet sym-

metric relation “derivationally related form” and

an asymmetric relation “hypernym” in Figure 3,

where one can see that TuckER learns to model

the symmetric relation with the relation matrix that

is approximately symmetric about the main diago-

nal, whereas the matrix belonging to the asymmet-

ric relation exhibits no obvious structure.

(a) Wderivationally related form (b) Whypernym

Figure 3: Learned relation matrices for a symmetric

(derivationally related form) and an asymmetric (hy-

pernym) WN18RR relation. Wderivationally related form is

approximately symmetric about the leading diagonal.

6 Experiments and Results

6.1 Datasets

We evaluate TuckER using four standard link pre-

diction datasets (see Table 2):

FB15k (Bordes et al., 2013) is a subset of Free-

base, a large database of real world facts.

FB15k-237 (Toutanova et al., 2015) was created

from FB15k by removing the inverse of many re-

lations that are present in the training set from val-

idation and test sets, making it more difficult for

simple models to do well.

WN18 (Bordes et al., 2013) is a subset of Word-

Net, a hierarchical database containing lexical re-

lations between words.

WN18RR (Dettmers et al., 2018) is a subset of

WN18, created by removing the inverse relations

from validation and test sets.

6.2 Implementation and Experiments

We implement TuckER in PyTorch (Paszke et al.,

2017) and make our code available on GitHub.1

We choose all hyper-parameters by random

search based on validation set performance. For

1https://github.com/ibalazevic/TuckER
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FB15k and FB15k-237, we set entity and relation

embedding dimensionality to de = dr = 200. For

WN18 and WN18RR, which both contain a sig-

nificantly smaller number of relations relative to

the number of entities as well as a small num-

ber of relations compared to FB15k and FB15k-

237, we set de = 200 and dr = 30. We use

batch normalization (Ioffe and Szegedy, 2015) and

dropout (Srivastava et al., 2014) to speed up train-

ing. We find that lower dropout values (0.1, 0.2)
are required for datasets with a higher number

of training triples per relation and thus less risk

of overfitting (WN18 and WN18RR), whereas

higher dropout values (0.3, 0.4, 0.5) are required

for FB15k and FB15k-237. We choose the learn-

ing rate from {0.01, 0.005, 0.003, 0.001, 0.0005}
and learning rate decay from {1, 0.995, 0.99}. We

find the following combinations of learning rate

and learning rate decay to give the best results:

(0.003, 0.99) for FB15k, (0.0005, 1.0) for FB15k-

237, (0.005, 0.995) for WN18 and (0.01, 1.0) for

WN18RR (see Table 5 in the Appendix A for a

complete list of hyper-parameter values on each

dataset). We train the model using Adam (Kingma

and Ba, 2015) with the batch size 128.

At evaluation time, for each test triple we gen-

erate ne candidate triples by combining the test

entity-relation pair with all possible entities E ,

ranking the scores obtained. We use the filtered

setting (Bordes et al., 2013), i.e. all known true

triples are removed from the candidate set ex-

cept for the current test triple. We use evaluation

metrics standard across the link prediction liter-

ature: mean reciprocal rank (MRR) and hits@k,

k ∈ {1, 3, 10}. Mean reciprocal rank is the aver-

age of the inverse of the mean rank assigned to the

true triple over all candidate triples. Hits@k mea-

sures the percentage of times a true triple is ranked

within the top k candidate triples.

Dataset # Entities (ne) # Relations (nr)

FB15k 14,951 1,345

FB15k-237 14,541 237

WN18 40,943 18

WN18RR 40,943 11

Table 2: Dataset statistics.

6.3 Link Prediction Results

Link prediction results on all datasets are shown in

Tables 3 and 4. Overall, TuckER outperforms pre-

vious state-of-the-art models on all metrics across

all datasets (apart from hits@10 on WN18 where

a non-linear model, R-GCN, does better). Re-

sults achieved by TuckER are not only better than

those of other linear models, such as DistMult,

ComplEx and SimplE, but also better than the re-

sults of many more complex deep neural network

and reinforcement learning architectures, e.g. R-

GCN, MINERVA, ConvE and HypER, demon-

strating the expressive power of linear models and

supporting our claim that simple linear models

should serve as a baseline before moving onto

more elaborate models.

Even with fewer parameters than ComplEx and

SimplE at de = 200 and dr = 30 on WN18RR

(∼9.4 vs ∼16.4 million), TuckER consistently ob-

tains better results than any of those models. We

believe this is because TuckER exploits knowl-

edge sharing between relations through the core

tensor, i.e. multi-task learning. This is supported

by the fact that the margin by which TuckER out-

performs other linear models is notably increased

on datasets with a large number of relations. For

example, improvement on FB15k is +14% over

ComplEx and +8% over SimplE on the tough-

est hits@1 metric. To our knowledge, ComplEx-

N3 (Lacroix et al., 2018) is the only other lin-

ear link prediction model that benefits from multi-

task learning. There, rank regularization of the

embedding matrices is used to encourage a low-

rank factorization, thus forcing parameter sharing

between relations. We do not include their pub-

lished results in Tables 3 and 4, since they use the

highly non-standard de = dr = 2000 and thus a

far larger parameter number (18x more parameters

than TuckER on WN18RR; 5.5x on FB15k-237),

making their results incomparable to those typi-

cally reported, including our own. However, run-

ning their model with equivalent parameter num-

ber to TuckER shows comparable performance,

supporting our belief that the two models both at-

tain the benefits of multi-task learning, although

by different means.

6.4 Influence of Parameter Sharing

The ability of knowledge sharing through the

core tensor suggests that TuckER should need a

lower number of parameters for obtaining good

results than ComplEx or SimplE. To test this,

we re-implement ComplEx and SimplE with re-

ciprocal relations, 1-N scoring, batch normaliza-

tion and dropout for fair comparison, perform

random search to choose best hyper-parameters
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WN18RR FB15k-237

Linear MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult (Yang et al., 2015) yes .430 .490 .440 .390 .241 .419 .263 .155
ComplEx (Trouillon et al., 2016) yes .440 .510 .460 .410 .247 .428 .275 .158
Neural LP (Yang et al., 2017) no − − − − .250 .408 − −
R-GCN (Schlichtkrull et al., 2018) no − − − − .248 .417 .264 .151
MINERVA (Das et al., 2018) no − − − − − .456 − −
ConvE (Dettmers et al., 2018) no .430 .520 .440 .400 .325 .501 .356 .237
HypER (Balažević et al., 2019) no .465 .522 .477 .436 .341 .520 .376 .252
M-Walk (Shen et al., 2018) no .437 − .445 .414 − − − −
RotatE (Sun et al., 2019) no − − − − .297 .480 .328 .205

TuckER (ours) yes .470 .526 .482 .443 .358 .544 .394 .266

Table 3: Link prediction results on WN18RR and FB15k-237. The RotatE (Sun et al., 2019) results are reported

without their self-adversarial negative sampling (see Appendix H in the original paper) for fair comparison.

WN18 FB15k

Linear MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

TransE (Bordes et al., 2013) no − .892 − − − .471 − −
DistMult (Yang et al., 2015) yes .822 .936 .914 .728 .654 .824 .733 .546
ComplEx (Trouillon et al., 2016) yes .941 .947 .936 .936 .692 .840 .759 .599
ANALOGY (Liu et al., 2017) yes .942 .947 .944 .939 .725 .854 .785 .646
Neural LP (Yang et al., 2017) no .940 .945 − − .760 .837 − −
R-GCN (Schlichtkrull et al., 2018) no .819 .964 .929 .697 .696 .842 .760 .601
TorusE (Ebisu and Ichise, 2018) no .947 .954 .950 .943 .733 .832 .771 .674
ConvE (Dettmers et al., 2018) no .943 .956 .946 .935 .657 .831 .723 .558
HypER (Balažević et al., 2019) no .951 958 .955 .947 .790 .885 .829 .734
SimplE (Kazemi and Poole, 2018) yes .942 .947 .944 .939 .727 .838 .773 .660

TuckER (ours) yes .953 .958 .955 .949 .795 .892 .833 .741

Table 4: Link prediction results on WN18 and FB15k.

(see Table 6 in the Appendix A for exact hyper-

parameter values used) and train all three models

on FB15k-237 with embedding sizes de = dr ∈
{20, 50, 100, 200}. Figure 4 shows the obtained

MRR on the test set for each model. It is important

to note that at embedding dimensionalities 20, 50

and 100, TuckER has fewer parameters than Com-

plEx and SimplE (e.g. ComplEx and SimplE have

∼3 million and TuckER has ∼2.5 million param-

eters for embedding dimensionality 100).

0 50 100 150 200
Embedding Dimensionality / Rank

0.15

0.20

0.25

0.30

0.35

0.40

M
R

R

ComplEx

SimplE

TuckER

Figure 4: MRR for ComplEx, SimplE and TuckER for

different embeddings sizes on FB15k-237.

We can see that the difference between the

MRRs of ComplEx, SimplE and TuckER is ap-

proximately constant for embedding sizes 100 and

200. However, for lower embedding sizes, the dif-

ference between MRRs increases by 0.7% for em-

bedding size 50 and by 4.2% for embedding size

20 for ComplEx and by 3% for embedding size

50 and by 9.9% for embedding size 20 for Sim-

plE. At embedding size 20 (∼300k parameters),

the performance of TuckER is almost as good as

the performance of ComplEx and SimplE at em-

bedding size 200 (∼6 million parameters), which

supports our initial assumption.

7 Conclusion

In this work, we introduce TuckER, a relatively

straightforward linear model for link prediction on

knowledge graphs, based on the Tucker decompo-

sition of a binary tensor of known facts. TuckER

achieves state-of-the-art results on standard link

prediction datasets, in part due to its ability to per-

form multi-task learning across relations. Whilst

being fully expressive, TuckER’s number of pa-

rameters grows linearly with respect to the number

of entities or relations in the knowledge graph. We

further show that previous linear state-of-the-art

models, RESCAL, DistMult, ComplEx and Sim-

plE, can be interpreted as special cases of our

model. Future work might include exploring how

to incorporate background knowledge on individ-

ual relation properties into the existing model.
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Ivana Balažević and Carl Allen were supported by

the Centre for Doctoral Training in Data Science,

funded by EPSRC (grant EP/L016427/1) and the

University of Edinburgh.

References
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