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TUCKER3 HIERARCHICAL CLASSES ANALYSIS 

EVA CEULEMANS,  IVEN VAN MECHELEN,  AND IWIN LEENEN 

KATHOLIEKE UNIVERSITEIT LEUVEN 

This paper presents a new" model for binary three-way three-mode data, called Tucker3 hierarchical 

classes model (Tucker3-HICLAS). This new' model generalizes Leenen, Van Mechelen, De Boeck, and 

Rosenberg's (1999) individual differences hierarchical classes mcxtel (INDCLAS). Like the INDCLAS 

model, the Tucker3-HICLAS model includes a hierarchical classification of the elements of each mode, 

and a linking structure among the three hierarchies. Unlike INDCLAS, Tucker3-HICLAS (a) does not 

restrict the hierarchical classifications of the three modes to have the same rank, and (b) allows for more 

complex linking structures among the thi'ee hierarchies. An algorithm to fit the Tucker3-HICLAS model 

is described and evaluated in an extensive simulation study. An application of the model to hostility data 

is discussed. 

Key words: three-way three-mode data, binary data, hierarchical classes, multiway data analysis, cluster- 

ing. 

1. Introduction 

Binary N-way N-mode data are data that define a N-ary relation among N different sets. 

Such data are often found in psychology. One can, for example, think of the "solves" relation 

between a set of children and a set of items, which implies binary two-way two-mode data. 

Another example is the "elicits" relation among a set of persons, a set of situations and a set of 

responses, which implies binary three-way three-mode data. 

The family of hierarchical classes models (De Boeck & Rosenberg, 1988; Van Mechelen, 

De Boeck, & Rosenberg, 1995; Leenen, Van Mechelen, De Boeck, & Rosenberg, 1999, Leenen, 

Van Mechelen, & De Boeck, 2001) is a collection of structural models for binary N-way N- 

mode data. Being related to the family of principal component models for real-valued N-way 

N-mode data (for an overview, see Kroonenberg, 1983), all hierarchical classes models reduce 

each mode to a number of binary variables, called bundles. All hierarchical classes models further 

include the following three basic features: (a) a classification of the elements of each mode, (b) a 

hierarchical organization of the classification per mode, in terms of if-then type relations, and (c) 

a linking structure among the hierarchical classifications, which accounts for the N-ary relation 

among the modes. 

In this paper we will focus on the case of binary three-way three-mode data. We will refer 

to the elements of the first mode as objects, to the elements of the second mode as attributes, 

and to the elements of the third mode as sources. Within the family of hierarchical classes mod- 

els, the individual differences hierarchical classes model (1NDCLAS; Leenen et al., 1999) has 

been developed for this type of data. As a hierarchical classes model, INDCLAS consists of a 

hierarchical classification of the elements of each of the three modes, the three hierarchies being 

connected by a linking structure. INDCLAS is a restrictive model, however: First, the three hier- 

archies are constrained to have the same number of base classes or rank, since the three modes are 

reduced to the same number of bundles; second, the linking structure among the three hierarchies 

is restricted to a one-to-one correspondence among the respective bundles. Obviously, the IND- 
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CLAS model constitutes the hierarchical classes counterpart of the PARAFAC/CANDECOMP 

model (Carroll & Chang, 1970; Harshman, 1970) for real-valued three-way three-mode data. 

In this paper, we present a new hierarchical classes model for binary three-way three-mode 

data, which generalizes INDCLAS in the same way the Tucker3 model (Tucker, 1966) gener- 

alizes PARAFAC/CANDECOMP; therefore, this new model is named Tucker3-HICLAS. Like 

INDCLAS, Tucker3-HICLAS consists of three linked hierarchies. Unlike INDCLAS, however, 

Tucker3-HICLAS allows the number of bundles to differ across the three modes; hence, the three 

resulting hierarchies are not restricted to have the same number of base classes. Furthermore, 

Tucker3-HICLAS allows for more complex linking structures among the three hierarchies. As a 

consequence, Tucker3-HICLAS can, in principle, yield simpler classifications for one or more 

of the modes. Note that, although we can distinguish between a disjunctive and a conjunctive 

variant of the INDCLAS and Tucker3-HICLAS models, for ease of explanation, we will only 

consider the disjunctive type in this paper. 

In section 2, starting from the INDCLAS model, we introduce the new Tucker3-HICLAS 

model. Section 3 describes the aim of and an algorithm for Tucker3-HICLAS data analysis. In 

section 4 the results of a simulation study to evaluate the algorithm's performance are reported. In 

section 5, the Tucker3-HICLAS model is illustrated with an application on hostility data. Section 

6 contains some concluding remarks. 

2. Model 

2.1. The INDCLAS Model 

An INDCLAS model approximates an I (objects) x J (attributes) x K (sources) binary data 

array D_ by an I x J x K binary model array M which can be decomposed into an I x R binary 

matrix A, a J x R binary matrix B and a K x R binary matrix C, where R denotes the rank of the 

model. The R columns of A, B and C define R (possibly overlapping) clusters, called bundles, 

of objects, attributes and sources, respectively; consequently, A, B and C are called an object, 

attribute and source bundle matrix. 

As any hierarchical classes model, an INDCLAS model represents three types of structural 

relations in M: equivalence, hierarchy and association. The hypothetical array M in Table 1 will 

be used as a guiding example to illustrate the three types of structural relations; Table 2 presents 

the bundle matrices of an INDCLAS model for M. 

Equivalence. Three equivalence relations are defined: one on each mode of M. In the case of 

the objects, object i is equivalent with object i I in M i f fmijk  = mi,jk for all j = 1..J, k = 1..K. 

The equivalence relations among the attributes and sources are defined similarly. Equivalent 

TABLE 1. 
Hypothetical INDCLAS model array 

Source A Source B Source C 

Attributes Attributes Attributes 

Objects a b c d e Objects a b c d e Objects a b c d e 

1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 

2 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 

3 0 0 1 1 1 3 1 0 1 1 1 3 1 0 1 1 1 

4 0 1 0 1 0 4 0 0 0 0 0 4 0 1 0 1 0 

5 0 0 1 1 1 5 1 0 1 1 1 5 1 0 1 1 1 

6 0 1 1 1 1 6 0 0 1 1 1 6 0 1 1 1 1 

7 0 0 0 0 0 7 1 0 0 1 0 7 1 0 0 1 0 
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Object  Bund les  Attr ibute Bund les  Source  Bund les  

Objects  O B  1 O B  2 O B  3 Attr ibutes A B  1 A B  2 A B  3 Sources S B  1 S B  2 S B  3 

1 0 1 0 a 1 0 0 A 

2 0 0 0 b 0 0 1 B 

3 1 1 0 c 0 1 0 C 

4 0 0 1 d 1 1 1 

5 1 1 0 e 0 1 0 

6 0 1 1 

7 1 0 0 

0 1 1 

1 1 0 

1 l 1 

objects (resp. attributes, sources) constitute an object (resp. attribute, source) class, with those 

classes implying a partition of the objects (resp. attributes, sources). An INDCLAS model for M__ 

represents those equivalence relations in that equivalent elements have identical bundle patterns 

(i.e., the set of bundles to which an element belongs). For example, in Table 1, Objects 3 and 5 

are equivalent; hence, Object 3 and 5 have identical bundle patterns in the INDCLAS model of 

Table 2. 

Hierarchy. Hierarchical relations are defined among the elements of each mode of M. With 

respect to the objects, object i is hierarchically below object i I in M iff mijk < miljk for all j = 

1..J, k = 1..K. The hierarchical relations among the attributes and sources are defined similarly. 

Note that the definition of hierarchical relations between the elements of a mode implies the 

definition of hierarchical relations between the classes of that mode. In the INDCLAS model 

for M, hierarchical relations are represented as follows: an element (class) x is hierarchically 

below an element (class) y iff the bundle pattern of x is a subset of the bundle pattern of y. 

For example, in Table 1, Object 4 is hierarchically below Object 6; consequently, in Table 2, 

the bundle pattern of Object 4 is a subset of the bundle pattern of Object 6. The relations of 

equivalence and hierarchy are called set-theoretical relations. 

Association. The association relation is the ternary relation among the objects, attributes 

and sources as defined by the 1-entries of  the array M. The INDCLAS model represents the 

association relation by the following association rule: 

R 

l~YliJk = 0 a irb jrCkr  

r = l  

(Vi = 1..I, 'v'j = 1..J, Vk = 1..K) (1) 

where @ denotes the Boolean sum. In other words, an entry mijk equals one iffthere is a bundle 

to which object i, attribute j and source k belong. For example, in Table 2, Object 1 is associated 

with Attribute c according to Source A, because all three elements belong to the second bundle, 

that is, OB2, AB2 and SB2. Note that (1) defines a linking structure among the hierarchical 

classifications of  the three modes that implies a one-to-one correspondence among the respective 

object, attribute and source bundles. 

Leenen et al. (1999) proposed an overall graphical representation of the INDCLAS model 

that accounts for the three types of structural relations in the model. Figure 1 shows an overall 

graphical representation of the INDCLAS model of Table 2. To obtain the graphical representa- 

tion, one first draws the hierarchical classification of objects and attributes in the upper and lower 

half of the representation, respectively. Equivalent elements are enclosed by boxes, which repre- 

sent the equivalence classes, and the hierarchical relations between the classes are represented by 

lines between the respective boxes. Note that the attribute hierarchy is represented upside down. 
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FIGURE 1. 

Overall graphical representation of the INDCLAS model in "I~ble 2. 

Subsequently, the object and attribute hierarchies are linked by drawing paths between the base 

classes (i.e., classes of elements that belong to one bundle only) of the corresponding object and 

attribute bundles; each path includes a hexagon that contains the (classes of) sources that belong 

to the corresponding source bundle. 

Whereas the set-theoretical relations between objects and attributes are immediately visible 

in the overall graphical representation the derivation of the set-theoretical relations among the 

sources is less straightforward. Therefore, one might prefer to draw a separate representation of 

the source hierarchy; Figure 2 represents the source hierarchy of the INDCI,AS model of Table 2. 

From the overall graphical representation, the association relation among objects, attributes and 

sources can be read as follows: An object i is associated with attribute j according to source k iff 

object i and attribute j are connected with each other by a downward path that goes via source k. 

For example, Object 7 is associated with Attribute d according to Sources B and C, since there 

S 1 ~ SB2 SB3 

FIGURE 2. 

Source hierm'chy of the INDCLAS model in Table 2, 
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FIGURE 3. 

Private structure of Source  A in the INDCLAS model  in Table 2. 

exists a path from 7 to d that includes B and C. For Source A, however, there exists no such path; 

hence, 7 is not associated with d according to A. 

A private structure can be derived for each source. The private structure of Source x is 

the HICLAS model (i.e., the original hierarchical classes model for binary two-way two-mode 

data, De Boeck & Rosenberg, 1988) that is obtained by only taking into account the object and 

attribute bundle(s) that correspond to the source bundle(s) Source x belongs to. For example, the 

private structure of Source A is graphically represented in Figure 3. 

From the definition and the graphical representation of the INDCLAS model, it follows 

that INDCLAS is quite restrictive. First, the hierarchical classifications of the three modes are 

constrained to have the same rank, in that the number of bundles must be equal for each mode. 

Second, the linking structure among the three hierarchies, as defined by (1), is restricted to a 

one-to-one correspondence among the respective object, attribute and source bundles. 

Finally, INDCLAS is closely related to the PARAFAC/CANDECOMP model for real- 

valued three-way three-mode data (Carroll & Chang, 1970; Harshman, 1970). More specifically, 

a PARAFAC/CANDECOMP model with binary components differs from INDCLAS in two 

respects only. First, INDCLAS involves a Boolean decomposition, whereas PARAFAC/CANDE- 

COMP is based on an algebraic decomposition: If  one replaces @ in (1) by a regular sum, 

one obtains the PARAFAC/CANDECOMP combination rule. Second, the INDCLAS model 

restricts the bundle matrices to represent the set-theoretical relations that exist in the model 

array. 

2.2. A Generalized Three-Way Three-Mode Hierarchical Classes Model: Tucker3-HICLAS 

A Tucker3-HICLAS model implies a decomposit ion of an I x J x K binary model  array 

M into an I x R binary object bundle matrix A, a J x S binary attribute bundle matrix B, a 

K x T binary source bundle matrix C and a R x S x T binary array _g, with (R, S, T) being the 

rank of the model. G defines a ternary association relation among the object, attribute and source 

bundles; this array will be called the core array. 
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TABLE 3. 
Hypothetical Tucker3-HICLAS model array 

Source A Source B Source C 

Attributes Attributes Attributes 

Objects a b c d e Objects a b c d e Objects a b c d e 

1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 

2 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 

3 0 0 0 0 0 3 1 0 0 1 1 3 1 0 0 1 1 

4 0 1 1 1 0 4 0 0 0 0 0 4 0 1 1 1 0 

5 1 0 0 1 1 5 1 1 1 1 1 5 1 1 1 1 1 

6 1 1 1 1 1 6 0 1 1 1 0 6 1 1 1 1 1 

7 0 0 0 0 0 7 1 0 0 1 1 7 1 0 0 1 1 

TABLE 4. 
Tucker3-HICLAS Model for M in Table 3 

Bundle matrices Core array 

Attribute Source Source 

Object Bundles Bundles Bundles Bundles 

Object Attribute 

Objects O B  1 0 B  2 0 B  3 Attributes A B  1 A B  2 Sources S B  1 S B  2 Bundles Bundles S B  1 S B  2 

1 0 1 0 a 1 0 A 0 1 O B  1 A B  1 1 0 

2 0 0 0 b 0 1 B 1 0 O B  1 A B  2 0 0 

3 1 0 0 c 0 1 C 1 1 O B  2 A B  1 0 1 

4 0 0 1 d 1 1 O B  2 A B  2 1 0 

5 1 1 0 e 1 0 O B  3 A B  1 0 0 

6 0 1 1 O B  3 A B  2 0 1 

7 1 0 0 

The hypothet ical  array M in Table 3 serves as the guiding example  in this subsection.  Table 4 

presents a Tucke r3 -HICLAS mode l  for M.  Since  the definit ion and representat ion of  the set- 

theoret ical  relat ions of  equiva lence  and hierarchy are identical  for the I N D C L A S  and Tucker3- 

H I C L A S  models ,  only the associat ion relation will  be  discussed here  in detail. 

In the Tucke r3 -HICLAS model ,  the a s s o c i a t i o n  relat ion (as defined in sec. 2.1) is repre- 

sented by the fo l lowing rule: 

R S T 

~l i jk  = @ @ @ a i r b j s C k t g r s t  

r= l  s=l  t=l  

(Vi  = 1 . . I ,  V j  = 1 . . J ,  Vk = 1. .K).  (2) 

This rule means  that m i j k  equals 1 iff  there exist  object,  attribute and source bundles to which 

object  i, attribute j and source k, respectively,  belong,  and that are associated in the core  array 

G. For  example,  f rom the mode l  in Table 4, it can be  der ived that Object  4 is associated with 

Attr ibute b according to Source  A, because  O B 3 ,  A B 2  and S B 2 ,  to which the three e lements  

be long respectively,  are associated in G. Note  that G defines the l inking structure among the hi- 

erarchical  classifications of  the three modes.  Since replacing @ in (2) by a regular sum yields the 

Tucker3 mode l  formula,  it is clear that Tucke r3 -HICLAS is the hierarchical  classes counterpart  

of  the Tucker3 mode l  (Tucker, 1966). 

The  Tucke r3 -HICLAS model  can be  given a graphical  representat ion that c losely  resembles  

the graphical  representat ion of  the I N D C L A S  model .  Figures  4 and 5 contain the overall  graph- 
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OB~ 

FIGURE 4. 

Overall graphical representation of lhe Tucker3-IIICLAS model in Table 4. 
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SB1 SB2 

FIGURE 5. 
Source hierarchy of the ~[hcker3-HICLAS model in Table 4. 

ical representation and the source hierarchy of  the 7hcker3-t tICLAS model of Table 4. The key 

difference between the graphical representation of  INDCLAS and Tucker3-HICLAS concerns 

the way the object and attribute hierarchies are linked: In the Tucker3-HICLAS model represen- 

tation, a path is drawn between each base class of  the object hierarchy and each base class of  the 

attribute hierarchy that are associated in _GG, which further includes a hexagon that contains the 

(classes of) sources that belong to the source bundle for which the respective association holds. 

For example, in G OB3 and AB2 are associated according to SB2; therefore, a path is drawn be- 

tween OB3 and AB2, which includes a hexagon containing all sources that belong to SB2 (i.e., 

sources A and C). Finally, a private structure can be derived for each source. The private struc- 

ture of  Source x is the HICLAS model that is obtained by taking into account only the object and 

attribute bundles that are associated according to the source bundle(s) Source x belongs to. The 

private structure of  Source A is graphically represented in Figure 6. 

The model definition and graphical representation of  Tucker3-IlICLAS clearly show that 

the latter model is less restrictive than INDCLAS. First, the number of  bundles is allowed to 

differ across the three modes. Second, the linking structure among the three hierarchies is no 

longer restricted to take the form of a one-to-one correspondence; more specifically, every linking 

structure that can be represented by the core array C, is allowed for. Consequently, Tucker3- 
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O B 2  

FIGURE 6. 

Private structure of Source  A in the Tucker3-HICLAS model  in Table 4. 

HICLAS can yield more parsimonious hierarchical classifications for one or more of the modes, 

by moving part of the complexity to the core array. In this respect, one may note that Tucker3- 

HICLAS reduces to INDCLAS iff R, S and T are equal and G is a "unit superdiagonal" array 

(i.e., R = S = T, grst = 1 iff r = s = t and grst = 0 otherwise; Kiers, 2000) and that every 

INDCLAS model can be rewritten as a Tucker3-HICLAS model by adding a R x R x R "unit 

superdiagonal" core array G. 

3. Data Analysis 

3.1. Aim 

The aim of a Tucker3-HICLAS analysis in rank (R, S, T) of a binary I x J x K data array 

D is to look for a binary I x J x K model array M which on the one hand has a minimal value 

on the loss function 

I J K 

i=1 j= l  k=l 

(3) 

and on the other hand can be represented by a Tucker3-HICLAS model of rank (R, S, T). As D 

and M are binary, (3) can be considered both a least squares and a least absolute deviations loss 

function. 

In practice, the true rank of the Tucker3-HICLAS model underlying a given data set is un- 

known. Therefore, one will usually fit models of increasing ranks to a data set. Concerning the 

latter, some solutions (R, S, T) can however be omitted, as we have proven (see Appendix) that 

if a Tucker3-HICLAS model of rank (R, S, T) exists with R > ST, then an equivalent Tucker3- 

HICLAS model of rank (R I, S, T) exists with R I = ST (a similar result exists for the Tucker3 

model, see Wansbeek & Verhees, 1989). Having obtained models of different ranks for a data 

set, a final solution may be picked out by means of rank selection heuristics. In section 4.4, we 

will propose and evaluate two such heuristics that are related to the DIFFIT-method proposed by 

Timmerman and Kiers (2000) to select the number of components in Tucker3 analysis (Tucker, 

1966). More specifically, both the proposed heuristics as well as the DIFFIT-method aim at find- 
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ing a model with a good balance between fit to the data on the one hand and total number of 

bundles/components involved on the other hand. Note that the final choice for a specific rank 

should also be based on the interpretability of the corresponding model. 

3.2. Algorithm 

Given an I x J x K data array D and a rank (R, S, T), the Tucker3-HICLAS algorithm 

consists of two main routines: In the first routine, the algorithm searches for bundle matrices A, 

B, C and a core array G that combine by (2) to an I x J x K model array M for which (3) 

is minimal. Since the first routine only restricts the bundle matrices to represent the association 

relation in M, the second routine transforms A, B and C so as to make them represent the set- 

theoretical relations correctly. 

The first routine starts from an initial configuration for the three bundle matrices. Two ini- 

tial configurations are obtained by performing (a) INDCLAS analyses on the I x J x K data 

array D in ranks R, S and T; and (b) HICLAS analyses (De Boeck & Rosenberg, 1988) on the 

matricized I x JK, J × IK and K x IJ  data array in ranks R, S and T, respectively (note that 

an initial configuration for both the HICLAS and INDCLAS algorithm are obtained via a built-in 

heuristic). Both the INDCLAS and the HICLAS analyses yield an object bundle matrix of  rank 

R, an attribute bundle matrix of rank S and a source bundle matrix of  rank T. 

The first routine proceeds with an alternating least-squares procedure. Assuming an initial 

configuration A (°), B (°), C (°) for the bundle matrices, the procedure calculates, conditionally 

upon A (°), B (°) and C (°), the optimal core array G (°) that minimizes (3). In the next steps, A (~) 

is re-estimated conditionally upon B ( ' ' -1),  C (w-l) and G(U'-l); B (~) conditionally upon A (~), 

C (~-1) and CJ(~-l); C ('') conditionally upon A (w), B (w) and G(~- I ) ;  and G (~) conditionally 

upon A (~), B (~) and C (~) (w = 1, 2 . . . .  ). This alternating procedure continues until no updating 

of a bundle matrix or core array further improves the loss function (3) and, hence, the estimation 

procedure has converged. Since the bundle matrices can be estimated in six different orders, 

the alternating estimation of the bundle matrices and core array is repeated six times. This way, 

six solutions are obtained using the HICLAS bundle matrices as initial configuration and six 

solutions using the INDCLAS bundle matrices. Finally, out of the 12 resulting solutions, the 

solution which minimizes (3) is retained. Note that we estimate 12 solutions to avoid retaining a 

local minimum. 

With respect to the estimation of a bundle matrix conditionally upon the two other bundle 

matrices and the core array, an analysis of the loss function (3) shows that it satisfies a separability 

property (Chaturvedi & Carroll, 1994). This property implies that the contribution of  the bundle 

pattern of  row i, ai., to the loss function (3) can be separated from the contribution of  the bundle 

patterns of  the other rows: 

I J 

i=1 j = l  

J K 

= Yl. F .  
j= l  k=l 

j = l  k=l  r = l  

x (  R S r )2 
&jk -- @ a~r @ @ bjsCktgrst 

k=l  r = l  s= l  t= l  

dljk--@alr@@bjsCktgrst 
r = l  s= l  t= l  

S T ) 2 .  

s= l  t= l  

(4) 

Consequently, an optimal estimate of A (conditional upon B, C and _G_G) can be found by succes- 

sively optimizing the bundle patterns ai. (i = 1..I) in each of the I terms of  (4). Note that this 

row-wise estimation of A is much faster than a matrix-wise estimation, since row-wise updating 
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implies I evaluations of 2 R possible bundle patterns, whereas matrix-wise updating implies the 

evaluation of 2 IR possible bundle matrices. While  the separability property also holds for the 

conditional estimations of B and C, a further analysis of the loss function shows that the core 

array G has to be updated array-wise. 

The conditionally optimal estimates of the bundle patterns and the core array are obtained 

by means of Boolean regression (Leenen & Van Mechelen, 1998). For example, to estimate the 

bundle pattern ai. in the i-th term of (4) the values of the criterion variable are the data-entries 

dijk (j = 1..J; k = 1..K) and the values of the r- th (r = 1..R) predictor variable are the sums 

s T 

~ ~ bjsCktgrst 
s = l  t = l  

( j  = 1..J;  k = 1..K). 

In the estimation of the core array G R S T  predictor variables are involved; the values of the 

criterion variable are the data-entries dijk ( i  = 1..I; j = 1 . . J ;  k = 1..K) and the values of the 

predictor variable (r, s, t) are the products airbjsekt (i = 1..I; j = 1.. J; k = 1..K). 

In the second routine, the set-theoretical relations are added to the bundle matrices obtained 

at the end of the first routine. This is accomplished by applying a closure operation (Barbut & 

Monjardet,  1970; Birkhoff, 1940) to A, B and C. For example, to make A correctly represent 

the set-theoretical relations among the objects, each zero-entry air is changed to one iff for all 

j = 1 . . .  J ,  k = 1 . . .  K holds that 

s T 

( ~  ( ~  bjscktgrst <_ mijk 
s = l  t = l  

(implying that the modification of A does not alter M). It may be noted that this closure operation 

is a sufficient, though not necessary condition for set-theoretical consistency. 

Observe that the described algorithm has been implemented in Delphi 5 and is freely avail- 

able from the first author. 

4. Simulation Study 

In this section we present a simulation study with a twofold aim: First, the Tucker3- 

HICLAS algorithm is evaluated with respect to sensitivity for local minima, speed of conver- 

gence, goodness-of-fit  and goodness of recovery. Second, two heuristics for rank selection are 

evaluated. 

In section 4.1, the design of the simulation study is outlined. Next, the results are presented 

in sections 4.2 (local minima, speed of convergence and goodness-of-fit), 4.3 (goodness of re- 

covery) and 4.4 (rank selection). 

4.1. Design and Procedure 

Three different types of binary I x J x K arrays must be distinguished in this simulation 

study: a true array _T_, which can be represented by a Tucker3-HICLAS model of rank r (r being a 

triplet of three positive integers); a data array D, which is T_ perturbed with error; and the model  

array M yielded by the algorithm, which can be represented by a Tucker3-HICLAS model of 

rank r I (H being a triplet of three positive integers). 

Three parameters were systematically varied in a complete trifactorial design: 

1. theSize, I x J x K, ofT__, D a n d M ,  at 3 levels: 15 x 15 x 15, 30 x 20 x 10, 30 x 20 x 60; 

2. the True rank, r, of the Tucker3-HICLAS model for T_, at 4 levels: (2,2,2), (2,3,3), (4,3,2), 

(4,4,4); 
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3. the Error level, e, which is the proportion of cells dijk differing from lijk, at 5 levels: .00, .05, 

.10, .20, .30. 

All parameters will be considered random effects. 

For each combination of Size I x J x K, True rank r, and Error level e, 20 true arrays 

T_ were constructed, subject to the constraint that T_ cannot be represented almost perfectly by a 

Tucker3-HICLAS model of lower rank; the latter constraint (which is similar to the procedure 

used by Timmerman and Kiers (2000) in their study on rank selection methods for Tucker3 

analysis) is included in view of the evaluation of rank selection heuristics. More in particular, 

each T_ was constructed as follows: Bundle matrices A, B and C were generated with entries that 

were independent realizations of a Bernoulli variable with a probability parameter chosen such 

that the expected proportion of ones in 3" equals 0.5. Like Timmerman and Kiers, we chose the 

core arrays such that a bundle in a particular mode is associated with few bundles for the other 

modes, in order to mimic simple underlying processes. More specifically, G(2,2,2 ) and G(4,3,2 ) 

were copied from Timmerman and Kiers's study: 

G(2,2,2) = ( ~ 01 

'1 0 

0 1 
'tJ(4'3'2) = 0 0 

0 0 

and __G(2,3,3 ) and ___G(4,4,4 ) were chosen as follows: 

G(2,3,3) = (~  0 O 1  0 O0 1 O 0  1 0 O 1  0 

'1 0 0 0 0 1 0 0 

~tJt~(4,4,4 ) = 0 0 1 0 0 0 0 1 
0 1 0 0 1 0 0 0 

0 0 0 1 0 0 1 0 

0 

1 

°°°i) 0 1 0 

1 0 1 ' 

0 0 0 

0 0 

1 0 

0 0 

0 1 

1 0 0 0 0 1"~ 

0 0 0 1 0 

0 1 0 0 1 " 

0 0 1 0 0 

Subsequently, the true array T_, which resulted from combining A, B, C and __G by the associ- 

ation rule (2), was selected if the Tucker3-HICLAS solution M of true rank contained at least 2% 

more correct entries than all solutions of lower rank. Next, a data array D was constructed from 

each true array T_ by randomly altering the value of a proportion e of the entries in T_. Finally, 

all data arrays D were analyzed with the Tucker3-HICLAS algorithm in ranks (1,1,1) through 

(5,5,5), yielding 74 model arrays M for each data array D (due to the result in the Appendix). As 

a result of this procedure, 20 x 3 (size) x 4 (true rank) x 5 (error level) x 74 (analysis rank) = 

88,800 different triplets (T__,D,M) were obtained. 

4.2. Local Minima, Speed of Convergence and Goodness-of-Fit 

In this section, the Tucker3-HICLAS algorithm is evaluated with respect to how well and 

how fast it succeeds in minimizing the loss function, that is, with respect to (i) goodness-of-fit 

and (ii) speed of convergence. 

i. For the study of goodness-of-fit, the following badness-of-fit (B OF) statistic was used: 

I J 
~ i=1  ~ L l ( d i j k  Ej=A -- mijk) 2 

BOF = (5) 
I x J x K  
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Since the Error level e constitutes an upper bound for the B O F of the global minimum in 

case of analyses in the True rank (i.e., r I = r), only the triplets (T_,D,M) with analyses in 

True rank will be considered. There are 1200 such analyses (5 Error levels x 240 analyses 

per Error level), each implying 12 runs of the algorithm. Of these 1200 analyses, 499 or 

41.6% ended in a solution with a B O F  value smaller than or equal to e. If  we split up the 

results according to the different Error levels, the percentages amount to 37.1, 60.8, 55.8, 

34.2 and 20.0 for e equal to .00, .05, .  10, .20, and .30, respectively. To investigate further the 

issue of local minima, we examined how many out of the 12 runs per analysis ended in the 

retained solution: On average, this was the case for 5.88 of the 12 runs per analysis. The latter 

results imply that it is not unusual for the algorithm to end in a local minimum; however, all 

subsequent simulation results will show that the obtained solutions are reasonably close to 

the underlying truth. 

An analysis of variance with B O F as the dependent variable yielded an intraclass correla- 

tion DI (Haggard, 1958; Kirk, 1982) of .99 for the main effect of Error level. In other words, 

almost all variance in B O F  is accounted for by Error level. Mean B OF-va lues  across the 

240 observations within each Error level are: .011, .054, .104, .211 and .312 for e equal to 

.00, .05, .10, .20, and .30, respectively. These results imply that the retained solutions are 

about as close to the data as the truth is. An analysis of variance with the difference be- 

tween B O F and e as the dependent variable reveals a main effect of Error level (fiI = .07): 

This main effect implies that the higher e, the harder it is for the algorithm to find a model  

that is as close to the data as the truth is (see Table 5). The main effect of Error level is 

further qualified by a True rank x Error level interaction @I = .20), indicating that the 

effect of Error level increases with higher True rank. Other effects are not discussed: In 

this and the following analyses of variance only effects accounting for at least 5% of the 

variance of the dependent variable will be considered (i.e., f i I  ~> . 0 5 ) .  Note the unexpect- 

edly high ( B  O F  - e)-value for errorfree data in Table 5. In the following sections, it will 

be shown that all simulation results are better for slightly error perturbed data than for er- 

rorfree data. This finding is in line with other hierarchical classes simulation studies (e.g., 

Leenen, Van Mechelen, De Boeck, & Rosenberg, 1999); so far, its cause has not been clari- 

fied. 

ii. With respect to the speed of convergence, no improvement in the loss function (3) was ob- 

served after, on average, 4.91 iterations. An analysis of variance with as dependent variable 

the number of iterations before convergence, shows main effects of Error level (fiI = .06) 

TABLE 5. 

Mean  differences be tween Badness  of Fit and e and mean number  of  iterations before convergence at Levels of  True 

rank  × Error  

Error Level 

True rank .00 .05 .10 .20 .30 Overall 

e - B O F  (2,2,2) .012 .005 .003 .002 .002 .005 

(2,3,3) .018 .004 .003 .011 .014 .010 

(4,3,2) .011 .004 .004 .012 .013 .009 

(4,4,4) .004 .002 .008 .019 .020 .011 

Overall .011 .004 .004 .011 .012 .009 

Nr. of iterations (2,2,2) 1.13 1.00 1.37 2.72 6.22 2.49 

(2,3,3) 1.95 1.12 1.80 6.22 12.72 4.76 

(4,3,2) 2.25 1.52 1.67 6.75 12.27 4.89 

(4,4,4) 2.03 1.55 3.55 12.98 17.42 7.51 

Overall 1.84 1.30 2.10 7.17 12.16 4.91 
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and True rank ( f i I  = .42): apart from errorfree data, the number of iterations increases with 

higher e and with higher True rank (see Table 5). Additionally,  the analysis of variance 

yielded an Error level x True rank interaction (fit = .10): the higher the True rank, the 

bigger the effect of Error level. 

4.3. Goodness of  Recovery 

Goodness of  recovery will be evaluated with respect to (i) the equivalence relations, (ii) 

the hierarchical relations, and (iii) the association relation. Again only the 1200 triplets (T,D,M) 

with analyses in True rank (i.e., r t = r )  are considered. 

i. With respect to the recovery of  the equivalence relations, the corrected Rand index (Hubert & 

Arabie,  1985) is used to compare the partition of the set of  objects (resp. attributes, sources) 

in the TUcker3-HICLAS model for T__ with the partition of  the set of  objects (resp. attributes, 

sources) in the Tucker3-HICLAS model for M. This index equals 1 if  the two partitions are 

identical and 0 if  the two partitions do not correspond more than expected by chance. The 

results being very similar for the objects, attributes and sources, a combined corrected Rand 

index (c-CRI) was calculated by taking the average corrected Rand index for the object, the 

attribute and the source equivalence relation, weighted by the number of  objects, attributes 

and sources, respectively. 

The mean c-CRI across the 1200 observations equals .837, implying a high correspon- 

dence between the true and reconstructed equivalence relations. An analysis of variance 

with c-CRI as the dependent variable yields a main effect of Error level (/)I = .33): except 

for errorfree data, it holds that the higher the Error level, the lower the c-CRI. The main 

effect of Error level is qualified by an Error level x True rank interaction @I = • 18), the 

latter resulting from the Error level effect being more important for higher True ranks (see 

Table 6). 

ii. To assess the recovery of the hierarchical relations, we first define the object hierarchy matrix 

(M) = 1 associated with M (resp. T_) as the I x I binary matrix U (M) (resp. u(T)),  with blii/ 

TABLE 6. 
Mean Combined Corrected Rand Index, Mean Badness of Hierarchy Recovery and Mean Badness of Recovery at 
Levels of True Rank x Error 

EiTor Level 

True rank .00 .05 .10 .20 .30 Overall 

c-CRI (2,2,2) .707 .793 .810 .835 .720 .773 

(2,3,3) .901 .970 .979 .891 .667 .882 

(4,3,2) .915 .962 .952 .821 .632 .856 

(4,4,4) .986 .995 .959 .821 .428 .838 

OverN1 .877 .930 .925 .842 .612 .837 

c-BOHR (2,2,2) .108 .077 .069 .062 .103 .084 

(2,3,3) .040 .012 .006 .034 .118 .042 

(4,3,2) .029 .013 .015 .061 .130 .050 

(4,4,4) .003 .003 .012 .056 .183 .051 

OverN1 .045 .026 .025 .053 .134 .057 

BOR (2, 2,2) .012 .006 .004 .004 .012 .008 

(2,3,3) .018 .005 .004 .020 .056 .021 

(4,3,2) .011 .004 .005 .024 .061 .021 

(4,4,4) .004 .002 .011 .041 .120 .036 

Overall .011 .004 .006 .022 .062 .021 
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(resp. • (T) 1' iff object i is hierarchically below object i I in M (resp. 3"). Subsequently, the t*ii/ = ) 

proportion of discrepancies between U (T) and U (M) was calculated yielding a badness-of- 

hierarchy-recovery (BOHR) statistic for the objects: 

B O H R  = 

I I ~ ( T )  . (M)s 2 
~i=1 ~ i / = l [ b l i i /  - -  u i i /  ) 

12 

111. 

Similarly, a BOHR statistic for the attributes and sources was defined. A weighted average 

of the three statistics (weighted by the number of elements in each mode), denoted c-BOHR, 

was calculated and used in the following analyses. 

The mean value on c-BOHR across the 1200 observations equals .057, implying that, on 

average, 94.3% of the true hierarchy is recovered. An analysis of variance with c-BOHR as 

the dependent variable shows a main effect of Error level ( / ) I  = .30): apart from errorfree 

data, the recovery deteriorates with increasing Error level (see Table 6). Additionally,  the 

Error level x True rank (PI = .13) interaction has to be considered: the higher the True 

rank, the bigger the effect of Error level. 

The badness of recovery (B OR)  of the association relation was assessed by the proportion 

of discrepancies between T_ and M: 

B O R  = 

I J 
~i=1 ~ j=l  EL1 ( t i j k  - -  m i j k )  2 

I x J x K  

The mean B OR across the 1200 observations equals .021, which means that the model  

yielded by the algorithm differs on average 2.1% from the underlying truth. An analysis of 

variance with B OR as the dependent variable yields a main effect of Error level (DI = .35): 

except for errorfree data, badness of recovery clearly increases with higher Error levels (see 

Table 6). Furthermore, the True rank x Error level interaction (fiI = .29) has to be taken in 

account, indicating that the effect of Error level increases with higher True rank. 

Goodness of recovery of the association relation was also measured by the relative- 

recovery-gain ( R R G )  statistic, defined as: 

e - B O R  
R R G  -- 

R R G  being undefined for e = 0. This statistic equals 1 in case of perfect recovery and 0 if 

the model is as far from the truth as the data are. The mean R R G  across the 960 observations 

for which ~ > 0 amounts to .883. The latter means that M contains, on average, 88.3% less 

erroneous entries than D. 

4.4. Rank Selection 

In this subsection two heuristics for rank selection are presented and evaluated in terms 

of the match between the selected model  and the true model. Both heuristics aim at finding 

a model with a good balance between fit to the data on the one hand and total number of 

bundles/components involved on the other hand. The procedure is as follows: First, Tucker3- 

HICLAS model arrays M in ranks (1,1,1) through (ri, r2, r3) are fitted to an I x J x K data 

array D_. For each model, the sum s of the number of object, attribute and source bundles, and the 

B O F-va lue  (5) is calculated. Next, per sum of bundles s only the best fitting model  is retained. 

Finally, a variant of the scree test (Cattell, 1966) is applied to the resulting models. In the follow- 

ing, we will present two such variants. Table 7, which displays the B O F values of the retained 

models for a particular D_ in our simulation study, serves as a guiding example; the associated 

B O F  by sum of bundles s plot is shown in Figure 7. 
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TABLE 7. 

Badness-of-fit values for a data set of "IYue rank (4,3,2), Size 30 × 20 × 10 

and Error level. 10 and statistics on which rank selection rules axe based as a 

function of the sum of bundles s 

s Rank B 0 Fs Rule A statistic Rule B statistic 

3 (1,1,1) .293 / / 

5 (2,2,1) .237 .019 .0142 

6 (2,2,2) .228 - . 0 6 1  .0073 

7 (3,2,2) .158 .056 .0264 

8 (4,2,2) .144 - . 0 3  .0234 

9 (4,3,2) .100 .044 .032 

10 (4,3,3) .100 0 .0274 

11 (4,3,4) .100 0 .0239 

12 (4,3,5) .100 --.001 .0211 

13 (5,4,4) .099 .001 .0194 

14 (5,4,5) .099 0 .0176 

15 (5,5,5) .099 ! / 

Rule A, which is the most similar to the scree test used in PCA, selects the model with sum 

of bundles s that maximizes 

B O Fsprev - -  B 0 Fs B 0 14~. - B 0 F'~,next 
S -- S prev S next -- S 

w i th  S prev and S next denoting the left and right neighbor of s in the B O F plot. For the example 

in Table 7, this rule yields s = 7. In order to decrease the impact of local fluctuations in the 

B O F  plot, one may also consider to compare the B O F  for a particular s with the B O F  for the 

smallest and biggest s obtained. Formally, Rule B selects the model with sum of bundles s which 

maximizes 

B O Fs~n - B O G  B O F's - B O Fs .... 

S -- S min S max -- S ' 

w i th  S min denoting the smallest sum of bundles and s max the biggest sum of bundles in the B O F  

plot. In the example in Table 7, this rule yields s = 9. Note that the result of Rule B is more 

B O F  

.3 

.2 

; ~ ; ; ~ ;  ~1'o1'1f~1;111'5 " 
Sum of Bundles s 

FIGURE 7. 

The B O F by s plot for the example used in ~Ihble 7. 
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Rule A 

Rule B 

TABLE 8. 

Percentage of correct estimation of the True rank 

Error 

True Rank .00 .05 .10 .20 .30 Overall 

(2,2,2) 86.7 95.0 98.3 95.0 86.7 92.3 

(2,3,3) 46.7 81.7 85.0 46.7 21.7 56.4 

(4,3,2) 60.0 70.0 73.3 40.0 26.7 54.0 

(4,4,4) 15.0 6.7 5.0 6.7 1.7 7.0 

Overall 52.1 63.3 65.4 47.1 34.2 52.4 

(2,2,2) 86.7 91.7 95.0 95.0 83.3 90.3 

(2,3,3) 40.0 80.0 86.7 41.7 18.3 53.3 

(4,3,2) 56.7 75.0 78.3 36.7 25.0 54.3 

(4,4,4) 50.0 56.7 30.0 15.0 1.7 30.7 

Overall 58.3 75.8 72.5 47.1 32.1 57.2 

influenced by the choice of  S ra in  and S m a x  than the result of Rule A; it is recommended to choose 

S rain a s  small as possible (i.e., S rain = 3) and s max > s exp q- 3, where s exp indicates the expected 

maximal value of  s. 

In the simulation study, each D was analyzed in ranks (1,1,1) through (5,5,5). Retaining 

only the best fitting solution per value of s therefore resulted in twelve solutions per data set 

(s = 3, 5, 6 . . .  15), on which Rule A and Rule B were applied. On average, Rule B is superior to 

Rule A with 57.2% and 52.4% correct estimations, respectively (see Table 8). Rule A and Rule B 

were also compared with respect to the goodness of recovery of the selected models: The models 

selected by Rule B generally have a considerably higher goodness of recovery than the models 

selected by Rule A. For example, the mean R R G  of the models selected by Rule A and Rule B 

equal .74 and .87, respectively. 

5. Illustrative Application 

In this section we present an illustrative application of the ~[~cker3-HICLAS model on 

data from a study in the personality domain. This study concerns individual differences in self- 

reported hostile behavior in frustrating situations (Vansteelandt & Van Mechelen, 1998). The 

data were situation by behavior by person data, which were originally analyzed by means of  the 

INDCLAS algorithm. More specifically, in the study 54 persons (sources) had to indicate with 

yes or no whether they displayed 15 hostile behaviors (attributes) in 23 frustrating situations (ob- 

jects). This resulted in a binary 23 x 15 x 54 data array D with dijk = 1 if person k displayed 

behavior j in situation i and 0 otherwise. 

Tucker3-HICLAS models in ranks (1,1,1) through (6,6,6) were fitted to D. Applying Rules 

A and B resulted in the selection of  the (2,4,4) and (3,5,5) models, respectively. However, as both 

these models consist of 9 behavior classes for 15 behaviors only and, hence, are rather difficult 

to interpret, we prefer to discuss a simpler model here. Since the (2,3,2) model has about the 

same B O F as the INDCLAS model of  rank 3 described by Vansteelandt and Van Mechelen, 

namely .27, and, therefore, allows for a fair comparison of  the INDCLAS and Tucker3-HICLAS 

models for D, we retain the (2,3,2) model. Figure 8 shows the overall graphical representation 

of  the (2,3,2) model and Figure 9 represents the person hierarchy, with the number of  persons in 

each class indicated between parentheses; note that the situations, responses and persons with a 

zero bundle pattern have not been included in the representation and that the situations have been 

indicated by the key words presented in Table 9. For clarity's sake, the overall graphical repre- 

sentation of Vansteelandt and Van Mechelen's (1998) INDCLAS model of rank 3 is provided in 

Figure 10. 
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FIGURE 8. 

Overall graphical representation of the Tucker3-HICLAS model for the hostili ty data. 

As was the case for the INDCLAS model (see Figure 10), the hierarchy of situation classes 

takes the form of a total order, which may be conceived as a quantitative dimension (Gati & 

Tversky, 1982). In line with Vansteelandt and Van Mechelen (1998), this dimension can be in- 

terpreted as a frustration dimension with class $1 containing mildly frustrating situations (e.g., 

someone pushes ahead of you in a ticket line) and class $2 strongly frustrating situations (e.g., 

incessant noise when you are studying). The latter interpretation of the situation hierarchy was 

further validated by calculating the Spearman rank correlation between the position of the $1 

and $2 situations on the quantitative dimension and external expert judgements on those situa- 

tions: The strongly frustrating situations are characterized by a longer duration of the frustration 

(r ---- .85, p < .0001), more severe consequences (r ---- .75, p < .0001), a more external causal 

locus (r = .78, p < .0001) and a more ego-threatening character (r = .45, p = .043) than the 

mildly frustrating situations. 

FIGURE 9. 

Person hierarchy of the Tucker3-HICLAS model for the hostili ty data. 



430 PSYCHOMETRIKA 

TABLE 9. 
Key words for the 21 frustrating situations in the graphical representations of the INDCLAS and Tucker3-HICLAS 
models for the hostility data 

Key word Full situation description 

instructor 

book 

lies 

tire 

appointment 

noise 

bus 

mail 

contradict 

error 

train 

typewriter 

no answer 

restaurant 

coffee 

groce12,' store 

mud 

mystery 

operator 

theater 

park bench 

Your instructor unfaMy accuses you of cheating on an examination 

Someone has lost an important book of yours 

You have just found out that someone has told lies about you 

You are &'lying to a party and suddenly your car has a flat tire 

You arrange to meet someone and he (she) doesn't show up 

You are trying to study and there is incessant noise 

You are waiting at the bus stop and the bus fails to stop :tk)r you 

Someone has opened your personal mail 

Someone persistently contradicts you when you know you are right 

Someone makes an error and blarnes it on you 

You miss your train because the clerk has given you faulty information 

You axe typing a term paper and your typewriter breaks 

You are talking to someone and he (she) does not answer you 

You are in a restaurant and have been waiting a long time to be served 

You are carrying a cup of coffee to the table and someone bumps into you 

The grocery store closes just as you axe about to enter 

Someone has splashed mud over your new" clothing 

You are reading a mystery and find that the last page of the book is missing 

You use your last 10 c to call a friend and the operator disconnects you 

Someone pushes ahead of you in a theater ticket line 

You accidently bang your shins against a park bench 

With the exception of response class B1, the Tucker3-HICLAS behavior hierarchy also con- 

stitutes a quantitative dimension. Since the INDCLAS behavior hierarchy consists of six classes 

(see Figure 10), the latter means that the Tucker3-HICLAS behavior hierarchy, although involv- 

ing the same number of bundles, is more parsimonious. The Spearman rank correlations between 

the position of the B2, B3 and B4 behaviors on the quantitative dimension and external expert 

judgements on those behaviors, indicate that this dimension can be interpreted as a physiological 

dimension (r = - . 62 ,  p = .03): Class B2 contains behaviors that are most physiologic in nature 

(e.g., perspire), class B3 behaviors that are moderately physiologic (e.g., become enrageA) and 

class B4 behaviors that are least physiologic (e.g., turn away). 

Making use of the INDCI,AS association relation, Vansteelandt and Van Mechelen (1998) 

interpreted the person structure by characterizing each person class in terms of a set of if (situa- 

tion class) then (behavior class) rules (Wright & Mischel, 1987). A similar interpretation can be 

given to the Tucker3-HICLAS person structure. For example, from Figure 8 it can be derived that 

person class P1 is characterized by the following set of if-then rules: (a) If  a person of this class 

finds himself in a strongly frustrating situation ($2) then he or she will grimace (B1), become 

enraged (B3) and turn away (B4); and (b) If  a person of this class is in a frustrating situation (S1 

or $2) then he or she will grimace (B1) and turn away (B4). Note that the full set of if (situation 

class) then (behavior class) rules that characterize a person class can be easily read from the 

private structure of the respective person class. For example, the above mentioned rules can be 

read from Figure 11, which represents the private structure of person class P1. Finally, observe 

that the Tucker3-HICLAS model yields only three person classes to be interpreted, whereas the 

INDCLAS model yields seven of them (see Figure 10). 

One may conclude that the Tucker3-HICLAS model gives an equally well fitting but more 

parsimonious description of Vansteelandt and Van Mechelen's (1998) data than the INDCLAS 

model and, hence, can be preferred. 
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FIGURE 10. 
Overall graphical representation of the INDCLAS model for the hostility data. 
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6. Concluding Remarks 

In this paper we proposed a novel hierarchical classes model for binary three-way three- 

mode data, the Tucker3-HICLAS model. The new model has been shown to be less restrictive 

than INDCLAS,  in that it does not restrict the hierarchical classifications of the three modes 

to have the same rank and allows for more complex linking structures than a one-to-one corre- 

spondence among the three hierarchies. As a consequence, Tucker3-HICLAS can result in more 

parsimonious hierarchical classifications for one or more of  the modes, since part of  the com- 

plexity can be moved to the linking structure. Moreover, the Tucker3-HICLAS relaxations of the 

INDCLAS restrictions also make sense from a substantive point of view. For example, in the 

personality psychology domain there is no a priori reason for the person, situation and behavior 

structure to have the same rank, let alone for a one-to-one correspondence between the respective 

person, situation and behavior bundles. 

The TUcker3-HICLAS model naturally follows from the relations within and between the 

family of hierarchical classes models on the one hand and the family of principal component 

models on the other hand. A further exploration of these relations may result in the development 

of  yet other interesting three-way three-mode hierarchical classes models. For example, one may 

consider a hierarchical classes version of the Tucker2 model (Kroonenberg, 1983; Kroonenberg 

& de Leeuw, 1980), which reduces only two of  the three modes of  a data set to a few components.  

Such a model would allow for the maximal modeling of the differences in the not-reduced mode 

(Ceulemans & Van Mechelen, in press). 

A. Appendix 

Theorem. If  a Tucker3-HICLAS decomposit ion of an I x J x K array M in rank (R, S, T) 

exists with R > ST,  then also a Tucker3-HICLAS decomposit ion in rank (R*, S, T) exists with 

R* = ST.  

Proof Assume arrays A (I  x R), B ( J  x S), C (K x T) and G (R x S x T) exist such that 

R S T 

mijk = @ @ @ a i r b j s C k t g r s t  
r = l  s = l  t = l  

(A6) 

holds for any i, j ,  k. We define an I x S T  matrix A with entries 

{ti((s-1)T+t) = @ airgrst 
r = l  

(s = 1..S; t = 1..T), 

and an S T  x S x T array (~ with entries gr*st = 1 i f  r* = (s - 1)T + t and a~r,st = 0 otherwise 

(r* = 1..ST; s = 1..S; t = 1..T). Then (6) can be rewritten as 

S T R S T S T ST 

t~Ylijk = @ @ b j s C k t  @ a i r g r s t  = @ @ b j s C k t a i ( ( s - 1 ) T + t )  =- @ @ b j s C k t  @ air*gr*st, 
s = l  t = l  r = l  s = l  t = l  s = l  t = l  r * = l  

which proves that a Tucker3-HICLAS decomposit ion of  M_M_ in rank (ST ,  S, T)  exists. I~ 
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