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Abstract

The mammalian target of rapamycin (mTOR) pathway is commonly activated in human cancers. The activity of mTOR
complex 1 (mTORC1) signaling is supported by the intracellular positioning of cellular compartments and vesicle
trafficking, regulated by Rab GTPases. Here we showed that tuftelin 1 (TUFT1) was involved in the activation of
mTORC1 through modulating the Rab GTPase-regulated process. TUFT1 promoted tumor growth and metastasis.
Consistently, the expression of TUFT1 correlated with poor prognosis in lung, breast and gastric cancers.
Mechanistically, TUFT1 physically interacted with RABGAP1, thereby modulating intracellular lysosomal positioning and
vesicular trafficking, and promoted mTORC1 signaling. In addition, expression of TUFT1 predicted sensitivity to
perifosine, an alkylphospholipid that alters the composition of lipid rafts. Perifosine treatment altered the positioning
and trafficking of cellular compartments to inhibit mTORC1. Our observations indicate that TUFT1 is a key regulator of
the mTORC1 pathway and suggest that it is a promising therapeutic target or a biomarker for tumor progression.

Introduction

Regulation of intracellular compartment positioning

and vesicular trafficking is essential for multiple biological

processes. Rab GTPases play critical roles as master reg-

ulators in cellular compartment positioning and vesicular

trafficking1, 2. Over 60 RAB genes are encoded in the

human genome. Rab GTPases function as molecular

switches through their guanine nucleotide-binding status,

like the other Ras superfamily proteins. Many Rab pro-

teins are involved in cancer progression. For example,

increased abundance of Rab5A and expression of RAB7

occur in breast and lung cancer, respectively3, 4. RAB25 is

frequently amplified in breast and ovarian cancers and is

associated with poor prognosis5. However, the mechan-

isms by which dysregulated expression of Rab GTPases

contribute to tumorigenesis are poorly understood.

mTOR is a serine-threonine kinase that regulates cell

growth and survival; its deregulation is frequently

observed in human diseases, including type II diabetes

and cancer6, 7. mTOR is an attractive target for cancer

therapy, because the activation of phosphoinositide 3-

kinase (PI3K)-mTOR signaling promotes resistance to

conventional chemotherapies. mTOR forms two distinct

multiprotein complexes, complex 1 (mTORC1) and

complex 2 (mTORC2)8–10. In response to various phy-

siological factors, including growth factors, energy status

and amino acids, mTORC1 regulates multiple types of

cellular processes, including mRNA translation. The small

GTPase Rheb directly regulates mTORC1 activation

downstream of the PI3K and AMP-activated protein

kinase (AMPK) pathways and is activated by growth fac-

tors and glucose11. Amino acid-dependent mTORC1

activation requires four Rag family small GTPases: RagA,
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Fig. 1 TUFT1, a TGF-β-induced poor cancer prognostic factor, regulates tumor cell morphology, motility and proliferation. a Kaplan Meier
plot of overall survival stratified by TUFT1 expression using the KM-Plotter version 2015 of lung cancer meta-analysis data. In the left panel, probability
of overall survival of 1,926 patients split by median was displayed. In the right panel, stage I lung adenocarcinoma cases were subjected to the same
analysis. b qRT-PCR analysis of A549 cells to evaluate the responsiveness of TUFT1 mRNA expression to TGF-β (1 ng/mL) for 48 h. Results are means ±
s.e.m. of three independent experiments. c A549 cells transfected with the indicated siRNAs were treated for 48 h with TGF-β and stained with
fluorescein-conjugated phalloidin to visualize actin stress fibers. Images are representative of three independent experiments. Scale bar, 20 μm. d
A549 cells expressing indicated shRNAs and proteins were seeded in upper chambers with collagen-coated pores. Exogenously expressed proteins
are shown in parentheses. Cells that migrated through the membrane were counted. Representative fields are shown (left). Results are means ± s.e.m.
of six independent experiments (right). *P < 0.05; **P < 0.01; ***P < 0.001. e A549 cells expressing indicated shRNAs and proteins (5 × 104 cells) were
seeded and cultured for 48 h. The live cell number of A549 cells was assessed by trypan blue staining. Exogenously expressed proteins are shown in
parentheses. Data are presented as mean ± s.d. of three independent experiments. *P < 0.05; **P < 0.01. f A total of 1×106 infected A549 cells
expressing indicated shRNAs and proteins were xenografted and the volumes of the resulting tumors were measured. Exogenously expressed
proteins are shown in parentheses. The result shows the combined data of the two independent experiments. Data are shown as mean ± s.e.m. N = 9
(shTUFT1#2 (GFP)) or 10 (others) mice per group. *P < 0.05; **P < 0.01. g Metastatic cells were analyzed by in vivo imaging in nude mice injected with
MDA-231-D cells (1×105 cells) expressing the indicated shRNAs. The horizontal bars indicate the mean for each group. N = 15 mice for the shNC
group, N = 11 mice for the shTUFT1#1 group. The experiment was repeated with similar results, and representative images are shown (left). Dot plot
for number of lesions per mouse from the two independent experiments is shown in the right panel. ph/s: photon counts per second. h A549 cells
were transfected with the indicated siRNAs and treated with or without TGF-β for 48 h. Total amounts of RhoA were detected by immunoblotting.
Results are representative of three independent experiments. mRNA expression was quantified by qRT-PCR (bottom panel). Results are means ± s.e.m.
of three independent experiments. i Cells were cultured as in h. Cell lysates were analyzed by immunoblotting. Results are representative of two
independent experiments. mRNA expression of cyclin D1 (CCND1) was quantified by qRT-PCR (bottom panel). Results are means ± s.e.m. of three
independent experiments.
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RagB, RagC, and RagD12, 13. The nucleotide-binding states

of Rag complexes control the intracellular relocalization

of mTORC1 from the cytosol to the lysosomal surface in

response to amino acids. mTORC1 is then directly acti-

vated by GTP-bound Rheb GTPase on the surface of the

lysosome14.

Intracellular compartment positioning and vesicular

trafficking determine the activity of mTORC1 signaling, in

particular, through lysosomal localization15, 16. In a cel-

lular model of Huntington’s disease, perinuclear accu-

mulation of lysosomes and mTORC1 hyper-activation are

observed. In addition, overexpression of GDP- or GTP-

bound mutants of several Rab GTPases strongly inhibits

mTORC1 activation17. These results indicate that cycling

and cellular trafficking of Rab GTPases are required for

mTORC1 activation. However, the regulatory proteins

that mediate the vesicular trafficking in the context of

mTORC1 remain to be characterized.

Tuftelin 1 (TUFT1) is evolutionally conserved and is

thought to play a role in the mineralization of dental

enamel, which covers vertebrate teeth18, 19. However,

TUFT1 is also found in non-mineralizing tissues and in

various tumors20, 21. In the pheochromocytoma cell line

PC12, TUFT1 abundance is increased by hypoxia in a

hypoxia-inducible factor-1α-dependent manner22, 23.

TUFT1 is therefore considered to be involved in cancer,

but its physiological functions in normal and cancerous

tissues remain uncharacterized.

Here, we demonstrate that TUFT1 is a key regulator of

the mTORC1 signaling pathway. TUFT1 deficiency

caused dispersion of the transport vesicles and lysosomes,

and inhibition of mTORC1 signaling. We determined that

TUFT1 promoted perinuclear lysosomal accumulation

and intracellular vesicular trafficking by binding to

RABGAP1, a GAP for certain Rab GTPases. Our inves-

tigations also highlighted the importance of TUFT1 in

tumor growth and metastasis both in vitro and in vivo.

We also revealed that sensitivity to perifosine, an alkyl-

phospholipid AKT inhibitor, strongly correlated with

expression of TUFT1. Unlike other PI3K-AKT inhibitors,

perifosine acts at lipid rafts and inhibited lysosomal

accumulation and mTORC1 signaling. These findings

implicate that TUFT1 could be a promising therapeutic

target or a biomarker for tumor progression.

Results

TUFT1 is a poor prognostic factor in various cancers

Thyroid transcription factor-1 (TTF-1, also known as

NKX2-1), which is mainly found in thyroid and lung, is a

prognostic indicator of non-small-cell lung cancer24. By

analyzing data from chromatin immunoprecipitation-

based sequencing using antibodies against TTF-1 and

SMAD325, we identified TUFT1 as a direct target of

transforming growth factor β (TGF-β) which was

inhibited by TTF-1 in NCI-H441 lung adenocarcinoma

cells. Based on a public meta-analysis data, we found that

high TUFT1 expression was correlated with poor prog-

nosis in lung (Fig. 1a), breast (Supplementary Figure S1A)

and gastric cancer (Supplementary Figure S1B) patients26,

27. Particularly in the patients with stage I lung adeno-

carcinoma, TUFT1 expression was more significantly

associated with poor prognosis (Fig. 1a).

We observed high expression of TUFT1 in TTF-1-

negative A549 lung adenocarcinoma cells compared to

TTF-1-positive NCI-H441 cells (Supplementary Fig-

ure S1C); furthermore, TUFT1 expression was strongly

induced by TGF-β and the protein was located mainly in

the cytoplasm (Fig. 1b and Supplementary Figure S1D).

To determine whether the induction of TUFT1 by TGF-β

is Smad-dependent, we depleted Smad4 in A549 cells and

examined mRNA expression. Knockdown of Smad4

inhibited the expression of TUFT1, suggesting that TGF-β

stimulates the expression of TUFT1 in a Smad-dependent

manner (Supplementary Figure S1E). Phalloidin staining

revealed morphological change in TUFT1-silenced cells

(Fig. 1c). TGF-β promotes epithelial-mesenchymal tran-

sition (EMT) which is accompanied by increased inva-

siveness of cancer cells, including A549 cells28. However,

the expression of the EMT markers CDH1 (which

encodes E-cadherin), SNAI1 (which encodes SNAIL), and

FN1 (which encodes fibronectin) were not markedly

affected by TUFT1 knockdown (Supplementary Fig-

ure S1F), suggesting that TUFT1 regulates cellular mor-

phology in an EMT-independent manner.

Knockdown of TUFT1 decreased the motility of A549

cells (Fig. 1d). In addition, analysis of the single cell

tracking experiment revealed that knockdown of TUFT1

decreased the average migration speed of these cells

(Supplementary Figure S1G). TUFT1 depletion also

inhibited cell proliferation (Fig. 1e), whereas knockdown

of TUFT1 did not significantly affect the viability of A549

cells (Supplementary Figure S1H). The inhibition of cell

motility and proliferation caused by knockdown of

TUFT1 was rescued by forced expression of wild-type

TUFT1 (Fig. 1d, e). When A549 cells were xenografted

onto nude mice, knockdown of TUFT1 decreased the

tumor volume, and it was rescued by wild-type TUFT1

(Fig. 1f). To further investigate whether TUFT1 also

affects tumor metastasis, nude mice were intracardially

injected with MDA-231-D-luc cells29. Bone metastatic

sites were fewer in number in mice that received MDA-

231-D-luc cells with TUFT1 knockdown (Fig. 1g), while

forced expression of TUFT1 canceled the effect (Supple-

mentary Figure S1I).

Members of the Rho family of small GTPases regulate

subcellular cytoskeletal actin dynamics and cellular

motility30. The total amounts of RhoA, Rac1 and Cdc42

proteins were decreased in A549 cells (Fig. 1h and
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Supplementary Figure S2A and B), and also in MDA-231-

D cells to some extents (Supplementary Figure S2C and

D), upon TUFT1 knockdown without decreases in the

mRNA abundance. Exposure to the proteasome inhibitor

MG132 did not restore the abundance of RhoA and Rac1

(Supplementary Figure S2E), indicating that the decrease

in the abundance of these proteins was not due to

enhanced proteasomal degradation. In addition, knock-

down of TUFT1 led to a decrease in the abundance of

cyclin D1 and cyclin D3, which act as cell cycle regulatory

switch in proliferating cells, without decreasing the

mRNA expression (Fig. 1i and Supplementary

Figure S2F).

We then performed RNA sequencing to comprehen-

sively investigate the effects of knockdown of TUFT1. The

gene set enrichment analysis (GSEA) identified several

significantly enriched gene ontology gene sets in the genes

up-regulated in control siRNA-transfected cells, including

mTORC1 signaling (Supplementary Figure S2G). Because

cyclin D1, cyclin D331, and Rho family members of small

GTPases32 are major targets of mTORC1 at the transla-

tional level, we next focused on mTORC1 signaling.

TUFT1 affects perinuclear accumulation of mTORC1 and

the lysosomes

In response to various physiological stimuli, including

growth factors, energy status and amino acids, mTORC1

regulates multiple types of cellular processes, such as

mRNA translation (Fig. 2a). We found that TUFT1

depletion in A549 cells inhibited insulin-induced phos-

phorylation of 70-kDa ribosomal S6 kinase (S6K1), a

downstream effector of mTORC1 signaling, without

decreasing upstream AKT phosphorylation (Fig. 2b). The

results also indicated that knockdown of TUFT1 partially

increased the amount of phosphorylated AKT in A549

cells, possibly by a feedback regulation33. S6K1 phos-

phorylation in response to stimulation with nutrients was

also decreased in MDA-231-D cells (Supplementary Fig-

ure S3A). To determine the physiological functions of

TUFT1 in vivo, we established Tuft1 mutant mice har-

boring a gene trap allele, Tuft1tm1a(KOMP)Wtsi34. Surpris-

ingly, all Tuft1 homozygous mutant mice died within

hours postnatally, indicating the importance of TUFT1 in

mammalian development. We therefore generated pri-

mary MEF cells lacking Tuft1. Consistent with our earlier

results, phosphorylation of S6K1 was lower in Tuft1

mutant MEF cells than in wild-type MEF cells (Fig. 2c).

We then examined the effect of TUFT1 on mTORC1

recruitment to the lysosomal surface. In cells with TUFT1

knockdown, both mTOR and the lysosomes were diffusely

located in the cytoplasm even after stimulation with

amino acids (Fig. 2d). Electron microscopy analysis also

indicated an inhibition of perinuclear accumulation of

electron-dense organelles, which comprise lysosomes and

other lysosome-related organelles, in TUFT1-depleted

cells (Fig. 2e). Amino acids activate mTORC1 through

heterodimers of the Rag subfamily of small GTPases35. To

assess the involvement of TUFT1 in amino acid signaling,

we utilized MKN45 human gastric cancer cells, in which

the NPRL3 gene is homozygously deleted, and Kato III as

control human gastric cancer cells (Supplementary Fig-

ure S3B). NPRL3 is a component of the GATOR1 com-

plex which displays GAP activity for RagA/B;

mTORC1 signaling was therefore constitutively activated

and mTORC1 was localized at the lysosomes in MKN45

cells irrespective of amino acid stimulation36. We

observed consistent results concerning the activation of

mTORC1 signal in the starved MKN45 cells, and

knockdown of TUFT1 in MKN45 cells decreased the

phosphorylation of S6K1 and S6 protein (Fig. 2f). In

addition, we found that amino acid stimulation para-

doxically reduced the phosphorylation of S6K1 and its

target S6, through an unknown mechanism in our

experimental condition in MKN45 cells. Knockdown of

TUFT1 also caused diffuse localization of mTOR and the

lysosomes in these cells (Fig. 2g). In contrast, amino acid

stimulation increased the phosphorylation of S6K1 in

Kato III cells (Supplementary Figure S3C), and the effect

of amino acids was abolished in TUFT1-silenced Kato III

cells. The eukaryotic translation initiation factor 4E-

binding protein 1 (4E-BP1) is another well-characterized

mTORC1 target. We confirmed depletion of TUFT1

inhibited phosphorylation of 4E-BP1 induced by amino

acid stimulation in Kato III cells (Supplementary Fig-

ure S3C). Translocation of endogenous mTOR to the

lysosomal surface was then examined by an in situ

proximity ligation assay (PLA), an immunoassay that

enables detection of proximity between two proteins. PLA

signals between the antibodies for mTOR and LAMP2

were detected both in control cells and cells with TUFT1

knockdown (Fig. 2h), indicating close proximity between

mTOR and LAMP2. These results show that TUFT1

targets mTORC1 signaling, independently of Rag

signaling-induced recruitment of mTORC1 to the

lysosomes.

TUFT1 controls the network of multiple cellular

compartments

Our data raised the possibility that TUFT1 regulated

lysosomal positioning, which may determine the sur-

roundings of the lysosomes and mTORC1 activity. To

investigate whether lysosomal dispersion affected lysoso-

mal functions, we analyzed the turnover rate of epidermal

growth factor receptor (EGFR) after EGF stimulation.

However, immunoblot analysis revealed that there was

almost no change in the degradation rate of EGFR in

TUFT1 siRNA-treated cells (Supplementary Figure S4A).

Moreover, depletion of TUFT1 did not affect lysosomal
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acidification as assessed by LysoTracker staining intensity

(Supplementary Figure S4B), or lysosomal aspartic pro-

tease cathepsin D processing (Supplementary Figure S4C).

Collectively, these results suggested that depletion of

TUFT1 changed lysosomal positioning but did not reduce

lysosomal function.

We next investigated the involvement of TUFT1 in

positioning of non-lysosomal cellular compartments and

vesicular trafficking. Similar to LAMP2, the early

endosomal marker EEA1 was localized diffusely

throughout the cytoplasm in TUFT1-deficient cells

(Fig. 3a). In addition, the distribution of Alexa594-

conjugated transferrin after the endocytosis was

observed at more peripheral regions in TUFT1-depleted

cells (Fig. 3b). We then tested for recycling defects in

these cells. Although TUFT1 depletion did not affect

recycling efficiency as detected by a loss of fluorescence

(Fig. 3c), the subcellular components containing

Fig. 2 (See legend on next page.)
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fluorescence-labeled transferrin were mislocalized. On the

basis of these findings, we hypothesized that knockdown

of TUFT1 resulted in altered positioning of cellular

compartments and vesicular trafficking that affected

mTORC1 signaling.

Distribution and dynamics of cellular compartments

determine mTORC1 activity

Our present findings suggested the possibility that

TUFT1 regulates positioning of cellular compartments,

vesicular trafficking and mTORC1 signaling by altering

the actin cytoskeletal organization (Fig. 1c). We then

disrupted the actin cytoskeleton with cytochalasin D

(Supplementary Figure S5A) and determined its effects on

lysosomal localization and mTORC1 activation. As pre-

viously reported37, treatment with cytochalasin D had

little effect on subcellular localization of mTOR and the

lysosomes (Supplementary Figure S5B). Cytochalasin D

did not affect phosphorylation of S6K1, S6 or 4E-BP1

(Supplementary Figure S5C). These results suggest that

TUFT1 regulates mTORC1 signaling activity in a RhoA-

actin-independent manner.

We then manipulated retrograde transport with the

cytoplasmic dynein inhibitors ciliobrevin D and erythro-

9-(2-hydroxy-3-nonyl) adenine (EHNA). We found that

these inhibitors caused mislocalization of early endo-

somes, the localization of which is regulated by dynein

activity38 (Supplementary Figure S5D). As previously

described39, the dynein inhibitors disrupted the phos-

phorylation of S6K1 after nutrient treatment without

altering that of AKT (Fig. 4a). In addition, the dynein

inhibitors caused dispersion of the lysosomes and mTOR,

similar to TUFT1 depletion (Fig. 4b). In situ PLA assay

using antibodies for mTOR and LAMP2 indicated that

ciliobrevin D did not disrupt the colocalization of mTOR

and the lysosomes (Supplementary Figure S5E). In

MKN45 cells which have constitutively active RagA/B,

these inhibitors also caused mTORC1 inactivation (Sup-

plementary Figure S5F). In addition, overexpression of

Kif5b, which is required for normal distribution of mul-

tiple organelles including lysosomes40, caused mis-

localization of the lysosomes (Supplementary Figure S5G)

and inhibited S6K1 phosphorylation (Supplementary

Figure S5H). These results suggested that dynein-

regulated vesicular trafficking was necessary for

mTORC1 activity independently of Rag GTPases and

PI3K-AKT signaling.

We next examined whether perinuclear clustering of

the lysosomes affected mTORC1 signaling by utilizing

Rab7a. We used Rab7a and its constitutively active (CA)

mutant (Q67L), which was shown to cause a tight clus-

tering of the lysosomes to the perinuclear region41.

Overexpression of CA forms of Rab7a showed a weak

effect on S6K1 phosphorylation (Fig. 4c) in TUFT1-

depleted cells, indicating that the position of the lysoso-

mal compartment partially affected the mTORC1 activity.

The present findings also suggested that the effect of

TUFT1 depletion on mTOR signaling is mediated by

some other mechanisms independent of the lysosomal

localization.

TUFT1 interacts with RABGAP1, a GAP for certain Rab

GTPases

By searching BioPlex, a human protein interactome

database in HEK293T cells42, we identified an interaction

between TUFT1 and RABGAP1 (also known as TBC1D11

or GAPCenA), which belongs to the group of TBC

(TRE2-BUB2-CDC16) domain proteins. The physiological

functions of RABGAP1 are poorly understood. We found

that exogenously expressed RABGAP1 and TUFT1 co-

(see figure on previous page)
Fig. 2 TUFT1 controls mTORC1 signaling and affects lysosomal positioning. a Schematic model of the mTORC1 activation pathway. b A549
cells treated with indicated siRNAs were serum starved for 24 h before stimulation with or without insulin (10 µg/mL) for 3 h. Cell lysates were
analyzed by immunoblotting. Values in the panel show the amount of phosphorylated protein relative to the total amount of the protein, which
were quantified by ImageJ. Results are representative of three independent experiments. c Cell lysates of wild type (+/+) and Tuft1−/− MEFs (2 clones
for each genotype) were starved (3 h) or starved and restimulated (10 min) with nutrients. Cell lysates were analyzed by immunoblotting. The amount
of phosphorylated protein was quantified as in b. Results are representative of two independent experiments. d A549 cells transfected with indicated
siRNAs were starved (3 h) and restimulated (10 min) with amino acids (a.a.). Proteins were coimmunostained with LAMP2 (red) and mTOR (green)
antibodies. Merged figures are shown in the bottom panels. Images are representative of two independent experiments. Scale bar, 10 μm. e A549
cells were treated with siRNAs as indicated. Electron-dense lysosome-like organelle was observed by electron microscopy. The lower graph show the
quantification of the average distance between the centroid of the nucleus and the lysosome-like organelles. Images are representative of three
independent experiments. Scale bars, 2 μm. **P < 0.01. f MKN45 cells transfected with indicated siRNAs were starved (3 h) or starved and restimulated
(10 min) with amino acids (a.a.). Cell lysates were analyzed by immunoblotting. Results are representative of two independent experiments. The
relative amount of phosphorylated protein was quantified as in b. Note that we consistently observed amino acid stimulation paradoxically reduces
the phosphorylation of S6K1 but not S6 in MKN45 cells. It is possible that some differences in the composition of dialyzed serum affect the
phosphorylation of S6K1. g MKN45 cells were starved of amino acids for 3 h, and cells were stained with antibodies as indicated. Images are
representative of two independent experiments. Scale bar, 10 μm. h A549 cells were treated as in d. Proximity of mTOR to the lysosome was detected
by in situ PLA using mTOR and LAMP2 antibodies. Cell nuclei were counter-stained by DAPI. Images are representative of three independent
experiments. Scale bar, 10 μm.
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immunoprecipitated in HEK293T cells (Supplementary

Figure S6A), and endogenous TUFT1 and RABGAP1 in

A549 cells also co-immunoprecipitated (Fig. 5a and

Supplementary Figure S6B). In addition, to test whether

TUFT1 directly interacts with RABGAP1, we performed

GST pull-down assays using recombinant proteins, and

found that TUFT1 specifically interacted with RABGAP1

in vitro (Fig. 5b). Compared to control A549 and MDA-

231-D cells, those depleted of RABGAP1 showed reduced

mTORC1 signaling (Fig. 5c and Supplementary

Fig. 3 TUFT1 downregulation causes dysregulation of intracellular compartment positioning and vesicular trafficking. a A549 cells that
were starved (3 h) and restimulated (10 min) with nutrients were coimmunostained with antibodies for EEA1 (red) and mTOR (green). Images are
representative of two independent experiments. Scale bar, 10 μm. b A549 cells transfected with the indicated siRNAs were serum starved for 1 h and
incubated with Alexa594-conjugated transferrin (50 μg/mL) at 37 °C for the indicated time periods. Representative fields are shown in the left panel.
Images are representative of two independent experiments. Scale bar, 10 μm. In the right panel, the internalized transferrin fluorescence intensity is
shown. Results are means ± s.d. of two independent experiments. c A549 cells transfected with the indicated siRNAs were serum starved for 1 h and
pulsed with Alexa594-conjugated transferrin (50 μg/mL) at 37 °C for 15 min. Cells were fixed at the indicated time points. Representative fields are
shown in the left panel. Images are representative of two independent experiments. Scale bar, 10 μm. In the right panel, the amount of transferrin in
the cells was quantified using ImageJ software. Results are means ± s.d. of two independent experiments.
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Figure S6C). Moreover, the lysosomes (Fig. 5d) and early

endosomes (Supplementary Figure S6D) were dispersed

in cells transfected with RABGAP1 siRNAs. In addition,

PLAs using mTOR-LAMP2 antibodies demonstrated that

depletion of RABGAP1 did not disrupt nutrient-mediated

mTORC1 translocation to the lysosomes (Supplementary

Figure S6E).

Rab GAPs inactivate their target Rab GTPases by con-

verting them from the GTP-bound to the GDP-bound

states. To determine whether the effect of RABGAP1 is

GAP activity dependent, we established A549 cells stably

expressing either control (GFP), wild-type RABGAP1

(RABGAP1-WT) or GAP activity-deficient RABGAP1

mutant (R612A)43, and performed rescue experiments

(Supplementary Figure S6F). The result showed that only

RABGAP1-WT could rescue the knockdown phenotype,

indicating that GAP activity of RABGAP1 is required for

mTORC1 activity.

RABGAP1 stimulates the GTPase activity of several Rab

proteins, including Rab4, Rab6, Rab11 and Rab3644–46.

Among them, we confirmed that wild-type and CA forms

(Q182L) of Rab36, but not the dominant negative (DN)

form (T137N), interacted with RABGAP1 (Supplemen-

tary Figure S6G). In addition, overexpression of the CA-

form of Rab36 partially suppressed the phosphorylation of

S6K1 (Supplementary Figure S6H) in HEK293T cells,

suggesting that active Rab36 regulated

mTORC1 signaling. Effect of TUFT1 on RABGAP1

activity was also evaluated. Although our findings sug-

gested that the substrate of RABGAP1 is not limited to

Rab36 for regulation of mTORC1 activity, the result

suggested that TUFT1 up-regulated GAP activity of

RABGAP1 (Supplementary Figure S6I). TUFT1 therefore

coordinates with RABGAP1 to control the dynamics of

vesicular trafficking and mTORC1 signaling by regulating

some Rab GTPases including Rab36 or some other

molecules (Fig. 5e).

TUFT1 expression is useful for estimating sensitivity of

perifosine

To address the potential of TUFT1 expression and

related intracellular compartment positioning and vesi-

cular trafficking as a molecular target of cancer treatment,

we examined correlations between drug action and

TUFT1 expression obtained from the data provided by

Cancer Cell Line Encyclopedia (CCLE)47 and our pub-

lished database of drug sensitivity across a panel of 39

human cancer cell lines (JFCR39)48, 49. We performed

correlation analysis using conventional anti-cancer drugs

as well as PI3K-AKT-mTOR pathway inhibitors. We

found a significant sensitivity to perifosine, which nega-

tively correlated with TUFT1 expression in the cell line

panel (Fig. 6a and Supplementary information, Table S1).

Perifosine, an alkylphospholipid PI3K-AKT inhibitor, is

an anti-tumor compound that alters the composition of

lipid rafts of the plasma membrane, and has been sub-

jected to phase III trials for colorectal cancer and multiple

myeloma. However, the mechanism of action of perifosine

has not been fully elucidated due to its wide range of

actions.

We then evaluated the effect of perifosine on lysosomal

positioning, one of the points of action of TUFT1. A549

cells were treated with perifosine, its analog edelfosine,

the PI3K inhibitor wortmannin or the AKT inhibitor MK-

Fig. 4 Dysregulation of vesicular trafficking leads to mTORC1 inactivation. a A549 cells were starved (2 h), incubated with ciliobrevin D (50 µM)
or EHNA (500 µM) for 1 h, and restimulated (10 min) with nutrients. Cell lysates were collected for immunoblotting. The relative amount of
phosphorylated protein was quantified as in Fig. 2b. Results are representative of two independent experiments. b A549 cells were treated as in a.
Cells were immunostained with antibodies for LAMP2 (red) and mTOR (green). Merged figures are shown in the bottom panels. Images are
representative of two independent experiments. Scale bar, 10 μm. c A549 cells transfected with indicated siRNAs and Rab7a expression plasmids
were starved (3 h) and restimulated with nutrients (10 min). Cell lysates were analyzed by immunoblotting. The relative amount of phosphorylated
protein was quantified as in Fig. 2b. Results are representative of two independent experiments. CA, constitutively active form.
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2206; these drugs inhibited AKT and S6K1 phosphoryla-

tion (Supplementary Figure S7A). Under these conditions,

perifosine and edelfosine totally disrupted mTOR and

lysosomal accumulation, while wortmannin or MK-2206

failed to do so (Fig. 6b). Perifosine and edelfosine also

caused early endosomal dispersion (Fig. 6c), indicating

that perifosine targeted the vesicular trafficking system.

Next, we evaluated the effects of TUFT1 overexpression

on the localization of the lysosomes, and found that

overexpression of TUFT1 reduced the sensitivity of A549

cells to perifosine (Supplementary Figure S7B). In addi-

tion, we compared the sensitivity of A549 (high

Fig. 5 RABGAP1 interacts with TUFT1 and regulates lysosomal positioning and mTORC1 signaling. a Lysates of A549 cells transfected with the
indicated siRNAs were subjected to immunoprecipitation using HA or TUFT1 antibodies. Immunoprecipitates and 3% input extracts were
immunoblotted with the indicated antibodies. Results are representative of two independent experiments. b GST pull-down assays were performed
with GST-10xHis-TUFT1, negative control GST, and recombinant RABGAP1. Specific interaction of these proteins was detected by immunoblotting.
The lower panel demonstrates the comparable GST fusion protein loading on the lanes. CBB, Coomassie Brilliant Blue staining. c A549 cells
transfected with the indicated siRNAs were starved (3 h) or starved and restimulated (10 min) with nutrients. Cell lysates were analyzed by
immunoblotting. The relative amount of phosphorylated protein was quantified as in Fig. 2b. Results are representative of two independent
experiments. d A549 cells transfected with the indicated siRNAs were starved (3 h) and restimulated (10 min) with nutrients, then immunostained
with antibodies for LAMP2 (red) and mTOR (green). The merged images are presented in the bottom row. Images are representative of two
independent experiments. Scale bar, 10 μm. e TUFT1 modulates lysosomal positioning, vesicular trafficking and mTORC1 signaling through its
interactions with RABGAP1. A working model illustrating the role of TUFT1-RABGAP1 in lysosomal positioning, vesicular trafficking and mTORC1
activation.

Kawasaki et al. Cell Discovery  (2018) 4:1 Page 9 of 16



expression of TUFT1) and NCI-H460 (low expression

of TUFT1) cancer cells to perifosine in terms of the

distribution of mTORC1 and lysosomes. Calculated GI50

(50% growth inhibition) of perifosine was 4.06 μM (NCI-

H460) and 15.3 µM (A549) (Fig. 6a). Consistent with

the above findings, A549 cells were more resistant

to perifosine in terms of mTORC1 and lysosomal trans-

location than NCI-H460 cells (Supplementary Figure S7C

and D). Although perifosine inhibited the phosphoryla-

tion of both AKT and S6K1, perifosine inhibited

phosphorylation of S6K1 at lower concentrations

than that of AKT in NCI-H460 cells (Fig. 6d). These

results indicated the utility of perifosine as an inhibitor of

mTORC1 signaling, which inhibited both AKT and

mTOR activities.

Discussion

The present study identified TUFT1 as a factor asso-

ciated with poor prognosis in several types of cancers. We

also showed that this protein regulates tumor growth and

metastasis in vitro and in vivo. Our results here showed

that TUFT1, which likely acts as an adaptor or an effector

for RABGAP1, regulated lysosomal positioning and vesi-

cular trafficking. The vesicular trafficking network is

extensively integrated into various signaling pathways.

Among them, the results of RNA sequencing and other

in vitro experiments indicated that TUFT1 is involved in

mTORC1 signaling.

Normally controlled positioning of intracellular com-

partments and vesicular trafficking have been suggested to

be required for mTORC1 activation. RNAi screening

Fig. 6 Perifosine targets vesicular trafficking and mTORC1 signaling. a Relationship between TUFT1 expression and perifosine sensitivity. The
Pearson correlation coefficient (r) and p-value (P) are shown. Twenty-seven cells, of which we obtained both TUFT1 expression profiles from CCLE and
50% growth inhibition (GI50) values of perifosine, were analyzed. b A549 cells were treated with wortmannin (2 μM), MK-2206 (2 μM), perifosine (20
μM) or edelfosine (10 μM). Cells were starved (2 h) in the presence of the indicated inhibitors and with LysoTracker Red (DND-99) for an additional 1 h.
Cells were then restimulated with nutrients (10 min). Proteins were immunostained with antibody for mTOR. Images are representative of three
independent experiments. Scale bar, 10 μm. c A549 cells were starved (3 h) in the presence of the indicated inhibitors and restimulated (10 min) with
nutrients. Cells were fixed and immunostained with EEA1 (red) and mTOR (green) antibodies. Merged figures are shown. Scale bar, 10 μm. Images are
representative of two independent experiments. d NCI-H460 cells were starved (3 h) or starved and restimulated (10 min) with nutrients in the
absence or presence of perifosine at indicated concentrations. Cell lysates were subjected to immunoblot analysis. The relative amount of
phosphorylated protein was quantified as in Fig. 2b. Results are representative of three independent experiments. Calculated IC50 values are shown
in the bottom table.
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showed that knockdown of several Rab GTPases decrea-

ses phosphorylation of Drosophila S6K in Drosophila S2

cells17. Overexpression of Rab5 inhibits

mTORC1 signaling and mislocalization of mTOR to

enlarged, swollen vacuolar structures50. Knockdown of

Rab12 activates mTORC1 signaling by affecting cell sur-

face abundance of the amino acid transporter PAT451.

Consistently, disruption of the vesicular trafficking system

by dynein inhibitors inhibited mTORC1 activation, sug-

gesting that cycling of intact Rab GTPases and their cel-

lular trafficking are required for mTORC1 activation.

Dynein-dependent and Rab-dependent intracellular

compartment positioning could play an important role in

mTORC1 signaling. The relationship between lysosomal

positioning in cells and mTORC1 activity is controversial;

lysosomal positioning to the cell periphery has been

reported to enhance mTORC1 activity in HeLa cells15,

whereas perinuclear accumulation of lysosomes and

mTORC1 hyper-activation were observed in a cellular

model of Huntington’s disease16. We here showed that

the disturbance of the cytoskeletal motor activity by

overexpression of Kif5b, which reduced the perinuclear

accumulation of the lysosomes, caused inactivation of

mTORC1 in A549 cells40. These results appear to support

the importance of perinuclear accumulation of lysosomes

for mTORC1 activity. However, overexpression of Rab7a-

CA, which triggered the accumulation of lysosomes to the

perinuclear region41, could only partially rescue the

knockdown effect of TUFT1. The present findings

therefore suggest that TUFT1-RABGAP1 regulates

mTORC1 signaling by maintaining normal vesicular

trafficking, possibly in part by accumulating the lysosomes

to perinuclear region, although some other mechanisms

may be involved in this phenomenon.

We identified RABGAP1, which is a GAP for Rab

GTPases, as a binding partner for TUFT1. It was also

confirmed that GAP activity of RABGAP1 is required for

mTORC1 activity. RABGAP1 reportedly targets Rab4,

Rab6, Rab11, and Rab3644, 45. Among them, Rab36 has

been identified as a candidate target of RABGAP1 in the

present study. In addition, the presence of TUFT1 could

strengthen the GAP activity of RABGAP1 on Rab36.

Although Rab36 does not appear to be the only target of

RABGAP1-TUFT1 for the regulation of

mTORC1 signaling, these results regarding Rab36 provide

important insights into the mechanism of TUFT1 func-

tion through RABGAP1 and target Rab GTPases,

including Rab36.

Vesicular trafficking is involved in various cellular

functions, such as cell differentiation, transformation,

cytoskeleton formation, and invasion52. The expression of

some Rab GTPase-encoding genes are changed in several

human cancers53. Dysfunction of vesicular trafficking is

thus considered to be involved in cancer progression, but

its mechanisms remain unclear. We showed here that

depletion of TUFT1 or RABGAP1 alleviated the accu-

mulation of transport vesicles and lysosomes, which led to

mTORC1 inactivation and tumor regression in A549 lung

adenocarcinoma cells. In addition, treatment with dynein

inhibitors also suppressed mTORC1 activity, indicating

that these procedures could recover normal vesicular

trafficking patterns in cancer cells. Regulation of

mTORC1 signaling by TUFT1-RABGAP1 may thus be a

factor that links vesicular trafficking and tumor progres-

sion. These findings suggest that regulation of trafficking

system may be a promising target for cancer therapy.

The PI3K-AKT-mTOR signaling pathway is frequently

activated in cancers54, suggesting mTOR as a promising

target for cancer therapy. However, drugs that target the

PI3K-AKT-mTOR signaling pathway have exhibited lim-

ited efficacy. Our drug sensitivity test indicated that the

effect of perifosine, an alkylphospholipid PI3K-AKT

inhibitor, correlated with TUFT1 expression. Unlike

other AKT inhibitors, perifosine directly binds the PH

domain of AKT, preventing its translocation to lipid rafts

of the plasma membrane, which serve as scaffolds for

important signal transduction components55. In addition,

our results suggested a mechanism of action of perifosine

that is related to TUFT1. Perifosine inhibited mTORC1

activation by affecting lysosomal positioning and sub-

cellular vesicular trafficking. In addition, TUFT1-

mediated vesicular trafficking may be involved in the

mechanisms in the generation of drug resistance. Zhou

and colleagues described a role of TUFT1 in the metas-

tasis of pancreatic cancer cells by increasing hypoxia-

inducible factor-1-Snail signaling which promotes EMT22.

We did not detect changes in EMT markers under our

experimental conditions; however, TUFT1 may have dif-

ferent functions in some contexts through the regulation

of vesicular trafficking. Thus, further research may posi-

tion TUFT1 as a biomarker or as a therapeutic target for

various cancers.

Materials and methods

Cell culture

A549 cells were from Cell Resource Center for Biome-

dical Research, Institute of Development, Aging, and

Cancer, Tohoku University. A549, HEK293T, MDA-231-

D (a highly metastatic variant of MDA-MB-231)29, and

MEF cells were cultured in Dulbecco’s Modified Eagle’s

Medium (DMEM #11965; Thermo Fisher Scientific)

supplemented with 10% fetal bovine serum (FBS

#SH30910.03; Thermo Fisher Scientific), 100 U/mL

penicillin G, and 100 µg/mL streptomycin. NCI-H441 and

MKN45 cells were maintained in Roswell Park Memorial

Institute medium 1640 (RPMI 1640 #11875; Thermo

Fisher Scientific) supplemented with 10% FBS, 100 U/mL

penicillin G, and 100 µg/mL streptomycin. NCI-H460-Luc
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cells were obtained from JCRB Cell Bank and maintained

in RPMI 1640 supplemented with 15% FBS, 0.023 IU/mL

insulin, 100 U/mL penicillin G, and 100 µg/mL strepto-

mycin. Cells were grown in a humidified atmosphere with

5% CO2 at 37 °C. Mycoplasma contamination was routi-

nely checked by e-Myco VALiD Mycoplasma PCR

detection kit (CosmoBio).

Reagents and antibodies

Recombinant TGF-β (TGF-β3) was purchased from

R&D Systems. Fluorescein Isothiocyanate Labeled Phal-

loidin (#P5282), LysoTracker Red (DND-99) (#L7528),

Alexa-488 conjugated transferrin (#T13342), perifosine

(#SML0612), and edelfosine (#SML0332) were obtained

from Sigma-Aldrich. MK-2206 (#ENZ-CHM164) was

from Enzo Life Sciences. Cytochalasin D (#037–17561)

was from Wako Pure Chemical Industries. Ciliobrevin D

(#250401) was obtained from Merck Millipore. EHNA

(#13352) was purchased from Cayman Chemical.

Antibodies against the following proteins were pur-

chased from Cell Signaling Technology: mTOR (#2983),

pS6K1 (Thr389) (#9234), S6K1 (#9202), pAKT (Thr308)

(#2965), AKT (#9272), pS6 (Ser240/244) (#2215), S6

(#2217), p4E-BP1 (Ser65) (#9451), 4E-BP1 (#9644) and

pERK1 and 2 (pERK1/2) (Thr202/Tyr204) (#9101). Anti-

bodies against TUFT1 (#sc-47536), cyclin D1 (#sc-718),

cyclin D3 (#sc-182), RhoA (#sc-418) and cathepsin D

(#sc-6487) were obtained from Santa Cruz Biotechnology.

Antibodies against LAMP2 (#ab25631) and RABGAP1

(#ab153992) were purchased from Abcam. HDAC1

(#2E10), ERK1 and 2 (#05–1152) and EGFR (#05–101)

antibodies were obtained from Merck Millipore. Antibody

for EEA1 (#610457) was purchased from BD Biosciences.

Antibody for c-Myc (#017–21871) was obtained from

Wako Pure Chemical Industries. Antibodies against

FLAG (M2; #F3165 and #F1804) and α-tubulin (#T6199)

were obtained from Sigma-Aldrich. Antibody for Cdc42

(#ACD03) was obtained from Cytoskeleton.

Plasmids

Plasmids encoding human TUFT1, RABGAP1, Rab36,

and dog Rab7a were constructed by PCR amplification.

The fragments were subcloned into pcDEF3-FLAG vector

(TUFT1), pGEX-6P-1 vector (TUFT1), pcDNA3-FLAG

vector (Kif5b and Rab7a), or pcDNA3-Myc vector

(Rab36). Mutant Rab7a, RABGAP1 and Rab36 were

generated by PCR mutagenesis. All cDNAs constructed

were verified by sequencing. Plasmids encoding mouse

Kif5b (pKin1B, Addgene plasmid #31604) was a gift from

Dr. Anthony Brown56.

Amino acid starvation and stimulation of cells

Cells were rinsed twice with DMEM with sodium pyr-

uvate, without amino acids (#048–33575; Wako Pure

Chemical Industries) containing 10% dialyzed serum

(#SH30079; GE Healthcare) and incubated for 3 h. Cells

were then stimulated with DMEM (#11965) containing

amino acids and 10% FBS as indicated.

Nutrient starvation and stimulation of cells

Cells were rinsed twice with amino acids (Arg, Leu, and

Lys)-free DMEM (#D9443; Sigma-Aldrich) and incubated

for 3 h. Cells were then stimulated with DMEM (#11965)

containing amino acids and 10% FBS as indicated.

Knockout mouse production

All animal experiments were performed in accordance

with policies of the Animal Ethics Committee of the

University of Tokyo. ES cells harboring Tuft1tm1a(KOMP)

Wtsi allele (EPD0383_4_G08) were obtained from the

International Mouse Phenotype Consortium (http://www.

mousephenotype.org) and cultured in the medium con-

taining 3i components57. C57BL/6N female mice and ICR

mouse strains were used as embryo donors and foster

mothers, respectively. Animals were genotyped using

DNA extracted from tail segments. Wild-type and mutant

alleles were detected by multiplex PCR with the same

reverse primer (WT-R: 5′-CCCTGAGGGACCAGCCA-

CATAGAACAGA-3′) and different forward primers

(mutant allele, Tuft1-F: 5′-TGGTCTGAGCTCGCCAT-

CAGTTTCA-3′; wild-type allele, WT-F: 5′-CTGTTAG-

CATTCTGTCTAAACTTCACCCCA-3′).

Subcutaneous xenograft model

BALB/c nu/nu mice (4 weeks of age) were obtained

from Sankyo Labo Service. Cells (5× 105) were injected

into each mouse. Subcutaneous tumors were measured

externally, and tumor volume was calculated as previously

described58.

In vivo bone metastasis model

Stably transfected MDA-231-D-luc cells (1× 105 cells),

which harbored luciferase, were injected into the left

ventricle of female nude mice. Five weeks after injection,

bone metastatic cells were analyzed by bioluminescence

imaging.

Electron microscopy

A549 cells were transfected with siRNA for TUFT1 or a

negative control siRNA (siNC). For electron microscopic

analysis, cells were treated as previously described59.

Lentivirus production and infection

Lentiviral shRNA expression vectors were generated as

described29. We used the following oligonucleotides

(5′→3′): Human TUFT1 #1, GATCCCCGCTGGT-

CATTCTCTGGCTTACGTGTGCTGTCCGTAAGCCA-

GAGAATGACCAGCTTTTTGGAAAT and CTA
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GATTTCCAAAAAGCTGGTCATTCTCTGGCTTACG

GACAGCACACGTAAGCCAGAGAATGACCAGCGG

G; Human TUFT1 #2: GATCCCCGGATATAAGTA

GCAAGCTTACGTGTGCTGTCCGTAAGCTTGCTAC

TTATATCCTTTTTGGAAAT and CTAGATTTCCAA

AAAGGATATAAGTAGCAAGCTTACGGACAGCACA

CGTAAGCTTGCTACTTATATCCGGG.

Lentiviral expression vectors were obtained from Dr.

Hiroyuki Miyoshi (RIKEN BioResource Center. current

address: Keio University, Tokyo, Japan). shRNAs were

transferred into the lentivirus vector CS-RfA-EG through

the pENTER-4H1 vector. To produce lentivirus,

HEK293FT cells were transfected with the vector con-

structs pCMV-VSV-G-RSV-Rev and pCAG-HIVgp. Virus

was collected, concentrated with the Lenti-X Con-

centrator (Takara Bio), and used to infect A549 cells and

MDA-231-D cells.

RNAi in mammalian cells

RNAi was carried out with the following siRNAs

designed from siDirect (RNAi inc.) (5′→3′): Human

TUFT1#1, GGAUAUAAGUAGCAAGCUUGA and

AAGCUUGCUACUUAUAUCCUC; Human TUFT1#2,

GUAGCCUUUUGCGGAAAAAUU and UUUUUCCG-

CAAAAGGCUACUC; Human mTOR#1, GAUCU-

CAUGGGCUUCGGAACA and UUCCGAAGCCCAU

GAGAUCUU; Human mTOR#2, CCAAUUAUACCC-

GUUCUUUAG and AAAGAACGGGUAUAAUUGGUU;

Human LAMP2#1, GAUAAGGUUGCUUCAGUUAUU

and UAACUGAAGCAACCUUAUCCU; Human

LAMP2#2, GCUCUACUUAGACUCAAUAGC and

UAUUGAGUCUAAGUAGAGCAG; Human RAB-

GAP1#1, GGGAUAUUAACCGAACAUUCC and AAU-

GUUCGGUUAAUAUCCCGG; Human RABGAP1#2,

GACGCAUGUUGGUAGGUCACU and UGACCUAC-

CAACAUGCGUCUA. For human SMAD4 siRNA,

Stealth Select siRNA (HSS106256, UAAG

GCACCUGACCCAAACAUCACC) was used (Thermo

Fisher Scientific), with Negative Control Med GC Duplex

#2 (12935112, Thermo Fisher Scientific, sequence not

available) as a control.

siRNAs were transfected into cells using Lipofectamine

RNAiMAX reagent (Thermo Fisher Scientific) in accor-

dance with the manufacturer’s instructions. The final

concentration of siRNA in the culture medium was 10

nM.

Transfection of cDNA

Transient transfection into cells was performed using

Lipofectamine 2000 or Lipofectamine 3000 reagent

(Thermo Fisher Scientific), as recommended by the

manufacturer’s protocol.

Adenovirus production and infection

Ad-LacZ and Ad-TUFT1 were prepared using pAd/

CMV/V5-DEST vector. The crude adenoviral lysate was

purified using ViraKit (VIRAPUR). Titration was per-

formed by the Adeno-X Rapid Titer Kit (Clontech).

Immunoblotting

All experiments were done at least twice with similar

results. Cultured cells were rinsed with ice-cold phos-

phate-buffered saline (PBS) and lysed with lysis buffer (1%

NP-40, 150mM NaCl, 20 mM Tris-HCl (pH 7.5), and

cOmplete EDTA-free protease inhibitor (Roche)). After

centrifugation at 15,000 rpm at 4 °C for 10min, protein

concentrations were estimated with the BCA Protein

Assay Kit (Thermo Fisher Scientific). Total cell lysates

were subjected to sodium dodecyl sulfate polyacrylamide

gel electrophoresis and transferred to FluoroTrans W

membranes (Pall). Immunoblotting was carried out using

the indicated antibodies, and imaging was performed with

a LAS-4000 lumino-image analyzer (FUJIFILM). Band

intensity was measured using ImageJ 1.50b (National

Institutes of Health).

Immunoprecipitation

Cultured cells were lysed as described above. Immu-

noprecipitation was performed as previously described60.

GST pull-down assay

GST fusion protein of TUFT1 and control GST were

prepared in Escherichia coli. Recombinant RABGAP1 was

obtained from Abcam (#ab161730). The RIPA buffer (50

mM Tris-HCl (pH 8.0), 150mM NaCl, 0.1% SDS, 0.5%

DOC, 1% Triton X-100) was used for the binding assay

between TUFT1 and RABGAP1.

Nuclear/cytoplasmic fractionation

Nuclear/cytoplasmic fractionation of A549 cells was

performed using the NE-PER Nuclear and Cytoplasmic

Extraction Kit (Thermo Fisher Scientific) in accordance

with the manufacturer’s instructions.

Immunofluorescence microscopy

Cells were seeded in eight-well chamber slides (Thermo

Fisher Scientific) and cultured or stimulated as described.

Cells were fixed for 15 min in 4% paraformaldehyde in

PBS, permeabilized in PBS containing 0.1% Triton X-100

for 7 min, and blocked in Blocking One (Nacalai Tesque)

for 1 h at room temperature. After rinsing in PBS, slides

were incubated with primary antibodies in Blocking One

for 12–16 h at 4 °C and washed in PBS. Secondary anti-

bodies were diluted in Blocking One and incubated with

the slides for 1 h at room temperature. Chamber slides

were mounted on glass coverslips using VECTASHIELD

Antifade Mounting Medium with DAPI (Vector
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Laboratories). Images were obtained with an FV10i con-

focal laser-scanning microscope (Olympus).

In situ PLA

Cells were cultured, fixed, and permeabilized as

described above. We used the Duolink (Sigma-Aldrich)

kit in accordance with the manufacturer’s protocol.

Fluorescence images were obtained with an FV10i

microscope. Images were collected from single focal

planes.

RNA extraction and qRT–PCR

Quantitative reverese transcriptase–PCR (qRT–PCR)

was previously described61. For mRNA detection, total

RNA was extracted with TriPure Isolation Reagent

(Roche) or with the RNeasy Mini Kit (QIAGEN). First-

strand cDNAs were synthesized using PrimeScript II

reverse transcriptase (Takara Bio). qRT-PCR was per-

formed with the StepOnePlus Real-Time PCR System

(Thermo Fisher Scientific). All samples were run in

duplicate, and results were averaged and normalized to

the expression of GAPDH (which encodes

glyceraldehyde-3-phosphate dehydrogenase).

Transferrin uptake assay

Cells were starved in serum-free DMEM for 1 h. Then,

cells were incubated with Alexa-488 conjugate transferrin

(50 μg/mL) for the indicated periods at 37 °C. To study

transferrin endocytosis and recycling, cells were incubated

with Alexa-594 transferrin (50 μg/mL), washed with PBS

three times, and then incubated at 37 °C for various

lengths of time. Cells were fixed immediately. Images

were taken with an FV10i confocal laser-scanning

microscope.

Chamber migration assay

The migration assay was performed as described pre-

viously29. Migrated cells were counted as field images that

were selected randomly. The average number of cells was

calculated from these images.

Statistical analyses

Comparisons between two samples were performed

with the Welch's t-test for in vitro data, and the Mann-

Whitney-Wilcoxon test (Mann-Whitney U test) for

in vivo data. Comparisons between the multiple experi-

mental groups were made using Turkey-Kramer test for

in vitro data, and Steel-Dwass test for in vivo data. Sta-

tistical analyses were conducted with the R Project for

Statistical Computing (version R-3.3.2). We calculated the

degree of similarity between drug sensitivity and gene

expression using the Pearson correlation coefficient, as

described49.

RNA sequencing

Total RNA was extracted with the RNeasy Mini Kit

(QIAGEN) from siRNA-transfected A549 cells. mRNA

was purified using the Dynabeads mRNA DIRECT Pur-

ification Kit (Thermo Fisher Scientific). Libraries were

prepared using the Ion Total RNA-Seq Kit v2 according

to the manufacturer’s protocol and directionally

sequenced with the Ion Proton using the Ion PI chip v2

and Ion PI IC 200 Kit (Thermo Fisher Scientific). Reads

were aligned against the human genome (hg19) using

TopHat2. Differential expression was evaluated using the

Cuffdiff function of Cufflinks. Raw sequencing data are

available at GEO (GSE99149).
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