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TUG-OF-WAR AND THE INFINITY LAPLACIAN

YUVAL PERES, ODED SCHRAMM, SCOTT SHEFFIELD, AND DAVID B. WILSON

1. INTRODUCTION AND PRELIMINARIES

1.1. Overview. We consider a class of zero-sum two-player stochastic games called
tug-of-war and use them to prove that every bounded real-valued Lipschitz func-
tion F' on a subset Y of a length space X admits a unique absolutely minimal
(AM) extension to X, i.e., a unique Lipschitz extension v : X — R for which
Lipyu = Lipgyu for all open U C X \Y. We present an example that shows
this is not generally true when F' is merely Lipschitz and positive. (Recall that a
metric space (X, d) is a length space if for all z,y € X, the distance d(z,y) is the
infimum of the lengths of continuous paths in X that connect x to y. Length spaces
are more general than geodesic spaces, where the infima need to be achieved.)

When X is the closure of a bounded domain U C R™ and Y is its boundary, a
Lipschitz extension u of F'is AM if and only it is infinity harmonic in the interior
of X \Y; ie, it is a viscosity solution (defined below) to A, u = 0, where A
is the so-called infinity Laplacian

(1.1) Asu = |Vu|*2 Zumiuzixjumj
i,

(informally, this is the second derivative of w in the direction of the gradient of
u). Aronsson proved this equivalence for smooth  in 1967, and Jensen proved the
general statement in 1993 [I} [13]. Our analysis of tug-of-war also shows that in this
setting Ao u = g has a unique viscosity solution (extending F) when g: U — R is
continuous and inf g > 0 or sup g < 0, but not necessarily when g assumes values of
both signs. We note that in the study of the homogenous equation A, u = 0, the
normalizing factor [Vu|~2 in () is sometimes omitted; however, it is important to
include it in the non-homogenous equation. Observe that with the normalization,
A coincides with the ordinary Laplacian A in the one-dimensional case.

Unlike the ordinary Laplacian or the p-Laplacian for p < oo, the infinity Lapla-
cian can be defined on any length space with no additional structure (such as a
measure or a canonical Markov semigroup)—that is, we will see that viscosity so-
lutions to As,u = g are well defined in this generality. We will establish the above
stated uniqueness of solutions u to A u = g in the setting of length spaces.

Originally, we were motivated not by the infinity Laplacian but by random turn
Hex [22] and its generalizations, which led us to consider the tug-of-war game. As
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we later learned, tug-of-war games have been considered by Lazarus, Loeb, Propp
and Ullman in [16] (see also [19]).

Tug-of-war on a metric space is very natural and conceivably applicable (like
differential game theory) to economic and political modeling.

The intuition provided by thinking of strategies for tug-of-war yields new results
even in the classical setting of domains in R™. For instance, in Section [4] we show
that if u is infinity harmonic in the unit disk and its boundary values are in [0, 1]
and supported on a d-neighborhood of the ternary Cantor set on the unit circle,
then u(0) < 67 for some 3 > 0.

Before precisely stating our main results, we need several definitions.

1.2. Random turn games and values. We consider two-player, zero-sum
random-turn games, which are defined by the following parameters: a set X
of states of the game, two directed transition graphs FEp, Fy; with vertex set X,
a non-empty set Y C X of terminal states (a.k.a. absorbing states), a termi-
nal payoff function F' : Y — R, a running payoff function f: X \Y — R,
and an initial state zo € X.

The game play is as follows: a token is initially placed at position zg. At the kt®
step of the game, a fair coin is tossed, and the player who wins the toss may move
the token to any zy, for which (zy_1, k) is a directed edge in her transition graph.
The game ends the first time x € Y, and player I's payoff is F(xy) + Zf;ol (x4).
Player I seeks to maximize this payoff, and since the game is zero-sum, player II
seeks to minimize it.

We will use the term tug-of-war (on the graph with edges F) to describe
the game in which E := E; = Ey (i.e., players have identical move options) and E
is undirected (i.e., all moves are reversible). Generally, our results pertain only to
the undirected setting. Occasionally, we will also mention some counterexamples
showing that the corresponding results do not hold in the directed case.

In the most conventional version of tug-of-war on a graph, Y is a union of “target
sets” YT and Y!!, there is no running payoff (f = 0), and F is identically 1 on Y and
identically 0 on Y. Players then try to “tug” the game token to their respective
targets (and away from their opponent’s targets), and the game ends when a target
is reached.

A strategy for a player is a way of choosing the player’s next move as a function
of all previously played moves and all previous coin tosses. It is a map from the
set of partially played games to moves (or in the case of a random strategy, a
probability distribution on moves). Normally, one would think of a good strategy
as being Markovian, i.e., as a map from the current state to the next move, but it
is useful to allow more general strategies that take into account the history.

Given two strategies Sy, Sy, let F_(Sp, Sip) and F.y (S1, Sir) be the expected total
payoff (including the running payoffs received) at the termination of the game, if
the game terminates with probability one and this expectation exists in [—o0, 00];
otherwise, let F_(Sy, Sip) = —oo and F (Sp, Sip) = +oo.

The value of the game for player I is defined as supg, infs;, F_(St, Sir). The
value for player II is infs;, supg, F'y (S1,Sm). We use the expressions ui(x) and
ugr(x) to denote the values for players I and II, respectively, as a function of the
starting state x of the game.

Note that if player I cannot force the game to end almost surely, then u; = —o0,
and if player II cannot force the game to end almost surely, then uj; = co. Clearly,
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TUG-OF-WAR AND THE INFINITY LAPLACIAN 169

ur(z) < upr(z). When ur(z) = unp(x), we say that the game has a value, given by
u(z) == ui(x) = un(x).

Our definition of value for player I penalizes player I severely for not forcing the
game to terminate with probability one, awarding —oo in this case.

(As an alternative definition, one could define F_, and hence player I’s value, by
assigning payoffs to all of the non-terminating sequences xg, 1, z2,. ... If the payoff
function for the non-terminating games is a zero-sum Borel-measurable function of
the infinite sequence, then player I's value is equal to player II’s value in great
generality [T7]; see also [20] for more on stochastic games. The existence of a value
by our strong definition implies the existence and equality of the values defined by
these alternative definitions.)

Considering the two possibilities for the first coin toss yields the following lemma,
a variant of which appears in [16].

Lemma 1.1. The function u = uy satisfies the equation

(1.2) uw@)=5| suwp u(y)+ inf u(y) |+ f(2)
2 \yiwy)ek yi(z,y)EE2
for every non-terminal state x € X \Y for which the right-hand side is well defined,
and ui(z) = —oo when the right-hand side is of the form 1(co+(—00))+ f(z). The
analogous statement holds for ui, except that un(x) = +oo when the right-hand
side of ([I2) is of the form (oo + (—o0)) + f(x).
When E = E; = FEs, the operator

Agu(z):= sup wu(y)+ inf wu(y)—2u(z)
y:(z,y)EE y:(z,y)EE

is called the (discrete) infinity Laplacian. A function v is infinity harmonic
if (2) holds and f(z) = 0 at all non-terminal z € X \'Y. When u is finite, this
is equivalent to A,cu = 0. However, it will be convenient to adopt the convention
that v is infinity harmonic at x if u(z) = 400 (resp. —o0) and the right-hand side
in ([2) is also 400 (resp. —oc). Similarly, it will be convenient to say “u is a
solution to Au = —2 f” at z if u(x) = +oo (resp. —o0) and the right-hand side
in ([L2) is also 400 (resp. —o0).

In a tug-of-war game, it is natural to guess that the value u = u; = wuy; exists
and is the unique solution to

Asu(z) = —2f,

and also that (at least when F is locally finite) player I's optimal strategy will be to
always move to the vertex that maximizes u(x) and that player II’s optimal strategy
will be to always move to the vertex that minimizes u(z). This is easy to prove when
F is undirected and finite and f is everywhere positive or everywhere negative.
Subtleties arise in more general cases (X infinite, E directed, F' unbounded, f
having values of both signs, etc.).

Our first theorem addresses the question of the existence of a value.

Theorem 1.2. A tug-of-war game with parameters X, E,Y, F, f has a value when-
ever the following hold:

(1) Either f =0 everywhere or inf f > 0.

(2) inf F > —o0.

(3) E is undirected.
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Counterexamples exist when any one of the three criteria is removed. In Section[Q]
(a section devoted to counterexamples) we give an example of a tug-of-war game
without a value, where F is undirected, F' = 0, and the running payoff satisfies
f>0but inf f =0.

The case where f = 0, F is bounded, and (X, E) is locally finite was proved
earlier in [I5]. That paper discusses an (essentially non-random) game in which
the two players bid for the right to choose the next move. That game, called the
Richman game, has the same value as tug-of-war with f = 0, where F' takes the
values 0 and 1. Additionally, a simple and efficient algorithm for calculating the
value when f =0 and (X, F) is finite is presented there.

1.3. Tug-of-war on a metric space. Now consider the special case where (X, d)
is a metric space, Y C X, and Lipschitz functions F': Y - Rand f: X \NY =R
are given. Let E. be the edge-set in which z ~ y if and only if d(z,y) < ¢, and let
u® be the value (if it exists) of the game played on E. with terminal payoff F' and
running payoff normalized to be £2f.

In other words, u®(z) is the value of the following two-player zero-sum game,
called e-tug-of-war: fix 2o =z € X \ Y. At the k** turn, the players toss a coin
and the winner chooses an xj with d(xg,zx—1) < €. The game ends when z € Y,
and player I's payoff is F(zy) + &2 Zi':ol (x;).

When the limit u := lim._o u® exists pointwise, we call © the continuum value
(or just “value”) of the quintuple (X, d,Y, F, f). We define the continuum value
for player I (or II) analogously.

The reader may wonder why we have chosen not to put an edge in E. between
x and y when d(z,y) = € exactly. This choice has some technical implications.
Specifically, we will compare the e-game with the 2e-game. If x,z are such that
d(z,z) < 2e, then in a length space it does not follow that there is a y such
that d(z,y) < e and d(y,z) < e. However, it does follow if you replace the weak
inequalities with strong inequalities throughout.

We prove the following;:

Theorem 1.3. Suppose X is a length space, Y C X is non-empty, F : Y — R is
bounded below and has an extension to a uniformly continuous function on X, and
either f : X \Y — R satisfies f = 0 or all three of the following hold: inf |f] >
0, f is uniformly continuous, and X has finite diameter. Then the continuum
value u exists and is a uniformly continuous function extending F. Furthermore,
lu —u||oc — 0 as e \, 0. If F' is Lipschitz, then so isu. If F and f are Lipschitz,
then ||[u — u®||o = O(€).

The above condition that F': Y — R extends to a uniformly continuous function
on X is equivalent to having F' uniformly continuous on Y and “Lipschitz on large
scales,” as we prove in Lemma 3.9 below.

We will see in Section Bl that this fails in general when f > 0 but inf f =
0. When f assumes values of both signs, it fails even when X is a closed disk
in R2, Y is its boundary and F = 0. In Section [£3] we show by means of an
example that in such circumstances it may happen that ui # uf; and moreover,
liminf.\ o ||uf — ufi|lec > 0.
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1.4. Absolutely minimal Lipschitz extensions. Given a metric space (X, d),
a subset Y C X and a function v : X — R, we write
Lipyu = sup [u(y) —u(z)|/d(z,y)
x,ye
and Lipu = Lipyu. Thus v is Lipschitz iff Lipu < co. Given F : Y — R, we say
that u : X — R is a minimal extension of F if Lipyu = Lipy F' and u(y) = F(y)
forally e Y.

It is well known that for any metric space X, any Lipschitz F' on a subset Y
of X admits a minimal extension. The largest and smallest minimal extensions
(introduced by McShane [I8] and Whitney [24] in the 1930’s) are respectively

inf [F(y) + Lipy F'd(z,y)]  and  sup [F(y) — Lipy F'd(z,y)].
yey yeY

We say u is an absolutely minimal (AM) extension of F if Lipu < oo and
Lipyu = Lipyyu for every open set U C X \Y. We say that uis AM on U if it is
defined on U and is an AM extension of its restriction to OU. AM extensions were
first introduced by Aronsson in 1967 [I] and have applications in engineering and
image processing (see [4] for a recent survey).

We prove the following;:

Theorem 1.4. Let X be a length space and let ' :'Y — R be Lipschitz, where
#Y c X. Ifinf F > —oo, then the continuum value function u described in
Theorem (with f =0) is an AM extension of F. If F is also bounded, then u
is the unique AM extension of F.

We present in the counterexample section, Section Bl an example in which F' is
Lipschitz, non-negative, and unbounded, and although the continuum value is an
AM extension, it is not the only AM extension.

Prior to our work, the existence of AM extensions in the above settings was
known only for separable length spaces [14] (see also [I9]). The uniqueness in
Theorem [[.4l was known only in the case that X is the closure of a bounded domain
UCR"and Y = 9U. (To deduce this case from Theorem [[4l one needs to
replace X by the smallest closed ball containing U, say.) Three uniqueness proofs
in this setting have been published, by Jensen [13], by Barles and Busca [6], and
by Aronsson, Crandall, and Juutinen [4]. The third proof generalizes from the
Euclidean norm to uniformly convex norms.

Our proof applies to more general spaces because it invokes no outside theorems
from analysis (which assume existence of a local Euclidean geometry, a measure,
a notion of twice differentiability, etc.), and relies only on the structure of X as a
length space.

As noted in [4], AM extensions do not generally exist on metric spaces that are
not length spaces. (For example, if X is the L-shaped region {0} x [0,1] U [0, 1] x
{0} C R? with the Euclidean metric, and Y = {(0,1), (1,0)}, then no non-constant
F :Y — R has an AM extension. Indeed, suppose that v : X — R is an AM
extension of F' : Y — R. Let a := u(0,0), b := u(0,1) and ¢ := u(1,0). Then,
considering U = {0} x (0,1), it follows that u(0,s) = a + s(b — a). Likewise,
u(s,0) = a+ s(c — a). Now taking U, := {0} x [0,1) U[0,€) x {0}, we see that
lim. o Lipy; u = |b — al. Hence [c —a| < [b—a|. By symmetry, [c —a| = [b — al.
Since F' is assumed to be non-constant, b # ¢, and hence ¢ — a = a — b. Then
[u(0,5) — u(s,0)|/(V2s) = v2|b — al, which contradicts lim. o Lipy_ u = [b — al.)
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One property that makes length spaces special is the fact that the Lipschitz norm
is determined locally. More precisely, if W C X is closed, then either Lipy,u =
Lipgyu or for every § > 0

sup{% cx,y €W, 0 <d(z,y) < 5} = Lipyu.
The definition of AM was inspired by the notion that if u is the “tautest possible”
Lipschitz extension of F', it should be tautest possible on any open V C X \'Y,
given the values of v on AV and ignoring the rest of the metric space. Without
locality, the rest of the metric space cannot be ignored (since long-distance effects
may change the global Lipschitz constant), and the definition of AM is less natural.
Another important property of length spaces is the fact that the graph distance
metric on E. scaled by € approximates the original metric, namely, it is within & of

d(-,-).

1.5. Infinity Laplacian on R". The continuum version of the infinity Laplacian
is defined for C? functions u on domains U C R™ by

Asou = |Vu| 72 Z U U5 U -
i,

This is the same as n7 Hn, where H is the Hessian of u and n = Vu/|Vu|. Infor-
mally, Ay u is the second derivative of u in the direction of the gradient of u. If
Vu(z) = 0, then A u(z) is undefined; however, we adopt the convention that if
the second derivative of u(x) happens to be the same in every direction (i.e., the
matrix {uz,,;} is A times the identity), then A u(z) = A, which is the second
derivative in any direction. (As mentioned above, some texts on infinity harmonic
functions define A, without the normalizing factor |Vu|~2. When discussing vis-
cosity solutions to A, u = 0, the two definitions are equivalent. The fact that the
normalized version is sometimes undefined when Vu = 0 does not matter because
it is always well defined at 2 when ¢ is a cone function, i.e., when (2) has the
form a|z — z| + b for a,b € R and 2 € R™ with z # x, and viscosity solutions can
be defined via comparison with cones; see Section [[L6l) As in the discrete setting,
u is infinity harmonic if A u = 0.

While discrete infinity harmonic functions are a recent concept, introduced in
finite-difference schemes for approximating continuous infinity harmonic functions
[21], related notions of value for stochastic games are of course much older. The
continuous infinity Laplacian first appeared in the work of Aronsson [I] and has
been very thoroughly studied [4]. Key motivations for studying this operator are
the following:

(1) AM extensions: Aronsson proved that C? extensions u on domains U C
R™ (of functions F' on 9U) are infinity harmonic if and only if they are AM.

(2) p-harmonic functions: As noted by Aronsson [1], the infinity Laplacian is
the formal limit, as p — oo of the (properly normalized) p-Laplacians. Re-
call that p-harmonic functions, i.e., minimizers u of [ |Vu(z)|P dz subject
to boundary conditions, solve the Euler-Lagrange equation

V- (|VulP~2Vu) =0,
which can be rewritten

|Vu|7”*2 (Au+ (p— 2)Asou) =0,
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where A is the ordinary Laplacian. Dividing by |[Vu[P~2, we see that (at
least when |Vu| # 0) p-harmonic functions satisfy Apu = 0, where A, :=
Ao + (p —2)7tA; the second term vanishes in the large p limit. It is not
too hard to see that as p tends to infinity, the Lipschitz norm of any limit
of the p-harmonic functions extending F' will be Lipg; F. So it is natural
to guess (and was proved in [7]) that as p tends to infinity the p-harmonic
extensions of F' converge to a limit that is both absolutely minimal and a
viscosity solution to Agu = 0.

In the above setting, Aronsson also proved that there always exists an AM ex-
tension, and that in the planar case U C R2, there exists at most one C? infinity
harmonic extension; however C? infinity harmonic extensions do not always exist
[2.

To define the infinity Laplacian in the non-C? setting requires us to consider
weak solutions; the right notion here is that of wviscosity solution, as introduced
by Crandall and Lions (1983) [11]. Start by observing that if v and v are C?
functions, u(z) = v(x), and v > u in a neighborhood of z, then v — u has a local
minimum at z, whence Ay v(z) > Asu(x) (if both sides of this inequality are
defined). This comparison principle (which has analogs for more general degenerate
elliptic PDEs [5]) suggests that if u is not C?, in order to define A, u(z) we want
to compare it to C? functions ¢ for which A ¢(z) is defined. Let S(z) be the
set of real valued functions ¢ defined and C? in a neighborhood of x for which
A () has been defined; that is, either Vo(x) # 0, or Vo(x) = 0 and the limit
Asoip(x) = limys . 2 %

Definition. Let X be a domain in R” and let v : X — R be continuous. Set

exists.

(1.3) At u(z) = inf{Ap(z) : ¢ € S(z) and x is a local minimum of ¢ — u} .

Thus u satisfies AL (u) > ¢ in a domain X, iff every ¢ € C? such that ¢ — u has
a local minimum at some z € X satisfies AL p(x) > g(z). In this case u is called
a viscosity subsolution of A, (-) = g. Note that if ¢ € C?, then AT p = A
wherever Vo # 0.

Similarly, let

(1.4) AL u(z) =sup{Axp(x) : ¢ € S(z) and x is a local maximum of ¢ — u},

and call u a viscosity supersolution of Ay (-) =g iff AL u<gin X.
Finally, u is a viscosity solution of A (-) =g if A_u<g<Aluin X (ie.,
u is both a supersolution and a subsolution).

Here is a little caveat. At present, we do not know how to show that A, u =g
in the viscosity sense determines g. For example, if u is Lipschitz, g; and g» are
continuous, and A, u = g; holds for j = 1,2 (in the viscosity sense), how does one
prove that g = g»7

The following result of Jensen (alluded to above) is now well known [T}, I3} [4]: if
X is a domain in R™ and u : X — R is continuous, then Lip;u = Lipyyu < oo for
every bounded open set U C U C X (i.e., u is AM) if and only if u is a viscosity
solution to A u =0 in X.

Let ACY C X, where A is closed, Y # 0 and X is a length space. If z € X,
one can define the co-harmonic measure of A from z as the infimum of u(z)
over all functions u : X — [0, 00) that are Lipschitz on X, AM in X \'Y and satisfy
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u > 1 on A. This quantity will be denoted by ws(A) = wg’Y’X)(A). In Section @
we prove

Theorem 1.5. Let X be the unit ball in R™, n > 1, let Y = 0X, let x be the
center of the ball, and for each § > 0 let A5 C'Y be a spherical cap of radius & (of
dimension n — 1). Then

o3 < wao(A5) < C Y3,
where ¢, C > 0 are absolute constants (which do not depend on n).

Numerical calculations [21] had suggested that in the setting of the theorem
weo (As) tends to 0 as & — 0, but this was only recently proved [12], and the proof
did not yield any quantitative information on the rate of decay. In contrast to our
other theorems in the paper, the proof of this theorem does not use tug-of-war. The
primary tool is the comparison of a specific AM function in R? \. {0} with decay
r~1/3 discovered by Aronsson [3].

1.6. Quadratic comparison on length spaces. To motivate the next definition,
observe that for continuous functions v : R — R, the inequality AZ u > 0 reduces to
convexity. The definition of convexity requiring a function to lie below its chords has
an analog, comparison with cones, which characterizes infinity harmonic functions.
Call the function ¢(y) = b|y — z| + ¢ a cone based at z € R™. For an open U C R",
say that a continuous u : U — R satisfies comparison with cones from above
on U if for every open W C W C U for every z € R® ~. W, and for every cone
¢ based at z such that the inequality © < ¢ holds on OW, the same inequality is
valid throughout W. Comparison with cones from below is defined similarly
using the inequality u > .

Jensen [I3] proved that viscosity solutions to Asu = 0 for domains in R™ sat-
isfy comparison with cones (from above and below), and Crandall, Evans, and
Gariepy [9] proved that a function on R™ is absolutely minimal in a bounded do-
main U if and only if it satisfies comparison with cones in U.

Champion and De Pascale [8] adapted this definition to length spaces, where
cones are replaced by functions of the form ¢(x) = bd(z, z) + ¢, where b > 0. Their
precise definition is as follows. Let U be an open subset of a length-space X and let
u: U — R be continuous. Then u is said to satisfy comparison with distance
functions from above on U if for every open W C U, for every z € X \ W,
for every b > 0 and for every ¢ € R, if u(x) < bd(z,z) + ¢ holds on W, then it
also holds in W. The function u is said to satisfy comparison with distance
functions from below if —u satisfies comparison with distance functions from
above. Finally, u satisfies comparison with distance functions if it satisfies
comparison with distance functions from above and from below.

The following result from [8] will be used in the proof of Theorem [[4

Lemma 1.6 ([§]). Let U be an open subset of a length space. A continuous u :
U — R satisfies comparison with distance functions in U if and only if it is AM in

U.

To study the inhomogenous equation A, u = g, because u will in general have a
non-zero second derivative (in its gradient direction), it is natural to extend these
definitions to comparison with functions that have a quadratic term.
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Definitions. Let Q(r) = ar? + br + ¢ with r,a,b,c € R and let X be a length
space.

o Let z € X. We call the function ¢(z) = Q(d(z, z)) a quadratic distance
function (centered at z).

e We say that a quadratic distance function p(z) =Q(d(z, 2)) is *~increasing
(in distance from z) on an open set V' C X if either (1) z ¢ V and for every
x € V, we have Q'(d(z,z)) > 0, or (2) 2 € Vand b = 0 and a > 0.
Similarly, we say that a quadratic distance function ¢ is x-decreasing on
V if —p is x-increasingon V.

o If u: U — R is a continuous function defined on an open set U in a length
space X, we say that u satisfies g-quadratic comparison on U if the
following two conditions hold:

(1) g-QUADRATIC COMPARISON FROM ABOVE: For every open V C V C U
and *-increasing quadratic distance function ¢ on V with quadratic

@, the inequality ¢ > w on OV implies ¢ > u on V.

(2) g-QUADRATIC COMPARISON FROM BELOW: For every open V C V C U

and *-decreasing quadratic distance function ¢ on V with quadratic
term a > sup,cy #, the inequality ¢ < w on 9V implies ¢ < u on

V.

term a < infycy

The following theorem is proved in Section

Theorem 1.7. Let u be a real-valued continuous function on a bounded domain
U in R™, and suppose that g is a continuous function on U. Then u satisfies g-

quadratic comparison on U if and only if v is a viscosity solution to Asou = g in
U.

This equivalence motivates the study of functions satisfying quadratic compar-
ison. Note that satisfying A u(z) = g(x) in the viscosity sense depends only on
the local behavior of u near x. We may use Theorem [[.7] to extend the definition
of Ay, to length spaces, saying that A,u = g on an open subset U of a length
space if and only if every € U has a neighborhood V' C U on which u satisfies
g-quadratic comparison. We warn the reader, however, that even for length spaces
X contained within R, there can be solutions to A u = 0 that do not satisfy
comparison with distance functions (or 0-quadratic comparison, for that matter):
for example, X = U = (0,1) and u(z) = x. The point here is that when we take
V C (0,1) and compare u with some function ¢ on 9V, the “appropriate” notion
of the boundary 0V is the boundary in R, not in X.

The continuum value of the tug-of-war game sometimes gives a construction of
a function satisfying g-quadratic comparison. We prove:

Theorem 1.8. Suppose X is a length space, Y C X is non-empty, F : Y — R is
uniformly continuous and bounded, and either f: X \Y — R satisfies f =0 or all
three of the following hold: inf |f| > 0, f is uniformly continuous, and X has finite
diameter. Then the continuum value u is the unique continuous function satisfying
(—2f)-quadratic comparison on X \Y and u=F onY. Moreover, if i : X — R
is continuous, satisfies t > F on'Y and (—2f)-quadratic comparison from below on
X \Y, then u > u 1 throughout X.
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Putting these last two theorems together, we obtain

Corollary 1.9. Suppose U C R" is a bounded open set, F': OU — R is uniformly
continuous, and f : U — R satisfies either f =0 orinf f > 0 and f is uniformly
continuous. Then there is a unique continuous function u : U — R that is a
viscosity solution to Asou = —2f on U and satisfies u = F on OU. This unique
solution is the continuum value of tug-of-war on (U,d,dU, F, f).

It is easy to verify that F' indeed satisfies the assumptions in Theorem [[L8 In
order to deduce the corollary, we may take the length space X as a ball in R™ which
contains U and extend F' to X \ U, say. Alternatively, we may consider U with its
intrinsic metric and lift F' to the completion of U.

We present in Section [l an example showing that the corollary may fail if f
is permitted to take values of both signs. Specifically, the example describes two
functions u1,us defined in the closed unit disk in R? and having boundary values
identically zero on the unit circle such that with some Lipschitz function g we have
Asuj = g for j = 1,2 (in the viscosity sense), while uq # us.

The plan of the paper is as follows. Section [2] discusses the discrete tug-of-war
on graphs and proves Theorem [[.2] and Section [3] deals with tug-of-war on length
spaces and proves Theorems [[.3] [[L4] and [[.8l Section M is devoted to estimates
of co-harmonic measure. In Section [5] we present a few counterexamples showing
that some of the assumptions in the theorems we prove are necessary. Section [f] is
devoted to the proof of Theorem [[7l Section [ presents some heuristic arguments
describing what the limiting trajectories of some e-tug-of-war games on domains
in R™ may look like and states a question regarding the length of the game. We
conclude with additional open problems in Section [§

2. DISCRETE GAME VALUE EXISTENCE

2.1. Tug-of-war on graphs without running payoffs. In this section, we will
generally assume that F = F; = Epy is undirected and connected and that f = 0.

Though we will not use this fact, it is interesting to point out that in the case
where F is finite, there is a simple algorithm from [I5] which calculates the value u
of the game and proceeds as follows. Assuming the value u(v) is already calculated
at some set V' D Y of vertices, find a path vy, v1,..., v, k > 1, with interior vertices
v1,...,0%—1 € XV’ and endpoints vy, vi; € V’ which maximizes (u(vk) —u(vo))/k
and set u(v;) = u(vo) + i (w(vg) — u(vg))/k for i = 1,2,... .k — 1. Repeat this as
long as V' # X.

Recall that uy is the value function for player I.

Lemma 2.1. Suppose that infy F > —oo and f = 0. Then uy is the smallest
oo-harmonic function bounded from below on X that extends F'. More generally, if
v 18 an oco-harmonic function which is bounded from below on X andv > F onY,
then v > ur on X.

Similarly, if F'is bounded from above on Y, then wyy is the largest oco-harmonic
function bounded from above on X that extends F.

Proof. Player I could always try to move closer to some specific point y € Y. Since
in almost every infinite sequence of fair coin tosses there will be a time when the
number of tails exceeds the number of heads by d(xg,y), this ensures that the game
terminates a.s., and we have u; > infy F' > —o0. Suppose that v > F on Y and
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FIGURE 1. A graph for which the obvious tug-of-war strategy of
maximizing/minimizing u does poorly.

v is co-harmonic on X. Given 6 > 0, consider an arbitrary strategy for player I
and let IT play a strategy that at step k (if IT wins the coin toss) II selects a state
where v(-) is within 627% of its infimum among the states to which II could move.
We will show that the expected payoff for player I is at most v(xo) + §. We may
assume the game terminates a.s. at a time 7 < oo. Let {x;};>0 denote the random
sequence of states encountered in the game. Since v is co-harmonic, the sequence
My, = v(zppr) + 627F is a supermartingale. Optional sampling and Fatou’s lemma
imply that v(zg) +d = My > E[M,] > E[F(z,)]. Thus u; < v. By Lemma[[T] this
completes the proof. O

Now, we prove the first part of Theorem When the graph (X, E) is locally
finite and Y is finite, this was proven in [15, Thm. 17].

Theorem 2.2. Suppose that (X, E) is connected, and Y # (. If F is bounded
below (or above) on'Y and f =0, then ur = ur, so the game has a value.

Before we prove this, we discuss several counterexamples that occur when the
conditions of the theorem are not met. First, this theorem can fail if F is directed.
A trivial counterexample is when X is finite and there is no directed path from the
initial state to Y.

If X is infinite and E is directed, then there are counterexamples to Theorem [2.2]
even when every vertex lies on a directed path towards a terminal state. For exam-
ple, suppose X = N and Y = {0}, with F(0) = 0. If E consists of directed edges of
the form (n,n—1) and (n,n+2), then IT may play so that with positive probability
the game never terminates, and hence the value for player I is by definition —ooc.

Even in the undirected case, a game may not have a value if F' is not bounded
either from above or below. The reader may check that if X is the integer lattice
Z? and the terminal states are the w-axis with F((z,0)) = x, then the players’
value functions are given by ui((x,y)) = « — |y| and un((z,y)) = = + |y|. (Roughly
speaking, this is because, in order to force the game to end in a finite amount of
time, player I has to “give up” |y| opportunities to move to the right.) Observe
also that in this case any linear function which agrees with F' on the z-axis is
oo-harmonic.

As a final remark before proving this theorem, let us consider the obvious strategy
for the two players, namely for player I to always maximize v on her turn and for IT
to always minimize u on her turn. Even when E is (undirected and) locally finite
and the payoff function satisfies 0 < F' < 1, these obvious strategies need not be
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optimal. Consider, e.g., the game shown in Figure [ where X C R? is given by
X = {v(k,j) i =12,..k = 0,1,...,2j}, v(k,j) = (277k,1 —279+1) and E
consists of edges of the form {v(k,j),v(k+ 1,7)} and {v(k,7),v(2k,5 + 1)}. The
terminal states are on the left and right edges of the square, and the payoff is 1 on
the left and 0 on the right. Clearly the function u(v(k, j)) = 1—k/2’ (the Euclidean
distance from the right edge of the square) is infinity harmonic, and by Corollary 2.3
below, we have uy = u = wuy;. The obvious strategy for player I is to always move
left, and for II it is to always move right. Suppose however that player I always
pulls left and player IT always pulls up. It is easy to check that the probability
that the game ever terminates when starting from v(k, j) is at most 2/(k + 2) (this
function is a supermartingale under the corresponding Markov chain). Therefore
the game continues forever with positive probability, resulting in a payoff of —co to
player I. Thus, a near-optimal strategy for player I must be able to force the game
to end, and must be prepared to make moves which do not maximize u. (This is a
well-known phenomenon, not particular to tug-of-war.)

Proof of Theorem [Z2. If F is bounded above but not below, then we may exchange
the roles of players I and II and negate F' to reduce to the case where F' is bounded
from below. Since u; < wuy always holds, we just need to show that up < wur.
Since player I could always pull towards a point in Y and thereby ensure that
the game terminates, we have u; > infy F > —oo. Let u = uy and write §(z) =
SUp,.y~p [U(y) — u(z)]. Let zo,71,... be the sequence of positions of the game.
For ease of exposition, we begin by assuming that F is locally finite (so that the
suprema and infima in the definition of the oo-Laplacian definition are achieved)
and that 6(zg) > 0; later we will remove these assumptions.

To motivate the following argument, we make a few observations. In order to
prove that uy; < wuy, we need to show that player II can guarantee that the game
terminates while also making sure that the expected payoff is not much larger than
u(xo). These are two different goals, and it is not a priori clear how to combine
them. To resolve this difficulty, observe that §(x;) is non-decreasing in j if players I
and IT adopt the strategies of maximizing (respectively, minimizing) u at every step.
As we will later see, this implies that the game terminates a.s. under these strategies.
On the other hand, if player I deviates from this strategy and thereby reduces 6(z;),
then perhaps player II can spend some turns playing suboptimally with respect to
u in order to increase §. Let X :={z € X : 0(z) > d(xo)}UY. Forn=0,1,2,...
let j,, = max{j <n:z; € Xo} and v, = x;,, which is the last position in X, up to
time n. We will shortly describe a strategy for II based on the idea of backtracking
to Xo when not in Xy. If v, # x,, we may define a backtracking move from x,,
as any move to a neighbor y, of =, that is closer to v,, than x, in the subgraph
G, C (X, E) spanned by the vertices z;,,Z;, +1,-..,%,. Here, “closer” refers to
the graph metric of G,,. When II plays the backtracking strategy, she backtracks
whenever not in Xy and plays to a neighbor minimizing u; when in Xj.

Now consider the game evolving under any strategy for player I and the back-
tracking strategy for II. Let d,, be the distance from x,, to v, in the subgraph G,,.
Set

my, = u(v,) + (o) dyy -
It is clear that u(z,) < m,,, because there is a path of length d,, from xz,, to v, in G,
and the change in u across any edge in this path is less than §(z¢), by the definition
of Xy. It is easy to verify that m,, is a supermartingale, as follows. If z,, € Xy, and
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player I plays, then m,+1 < u(x,) + §(z,) = my, + 6(x,), while if IT gets the turn,
then my+1 = u(z,) — 0(xy,). If z, ¢ Xo and II plays, then m, 11 = m,, — §(zq). If
xn ¢ Xo and player I does not play into Xo, then my,1; < m,, + §(x¢). The last
case to consider is that x,, ¢ Xy and player I plays into a vertex in Xy. In such a
situation,

Mpt1 = W Zpt1) < u(@y) +6(x,) < my + 6(x0)

Thus, indeed, m,, is a supermartingale (bounded from below). Let 7 denote the
first time a terminal state is reached (so 7 = oo if the game does not terminate).
By the martingale convergence theorem, the limit lim,, .o mna, exists. But when
player II plays we have m, 11 < m, — 0(x¢). Therefore, the game must terminate
with probability 1. The expected outcome of the game thus played is at most
mo = u(zg). Consequently, uy; < u, which completes the proof in the case where
E is locally finite and §(zg) > 0.

Next, what if E is not locally finite, so that suprema and infima might not be
achieved? In this case, we fix a small n > 0, and use the same strategy as above,
except that if x,, € Xy and II gets the turn, she moves to a neighbor at which
is at most 727 "~! larger than its infimum value among neighbors of x,. In this
case, m, + n2~" is a supermartingale, and hence the expected payoff is at most
u(xo) + n. Since this can be done for any n > 0, we again have that uy < w.

Finally, suppose that d(zg) = 0. Let y € Y, and let player II pull toward y
until the first time a vertex zf with d(z§) > 0 or xf € Y is reached. After that, II
continues as above. Since u(zg) = u(z), this completes the proof. O

Corollary 2.3. If E is connected, Y # () and sup |F| < oo, then v = up = uyy is
the unique bounded co-harmonic function agreeing with F on'Y.

Proof. This is an immediate consequence of Lemma 2] the remark that follows it,
and Theorem O

FE={(nn+1):n=0,1,2,...}, Y = {0} and F(0) =0, then 4(n) =n is an
example of an (unbounded) co-harmonic function that is different from wu.

2.2. Tug-of-war on graphs with running payoffs. Suppose now that f # 0.
Then the analog of Theorem does not hold without additional assumptions.
For a simple counterexample, suppose that F is a triangle with self-loops at its
vertices (i.e., a player may opt to remain in the same position), that the vertex vy
is a terminal vertex with final payoff F'(vg) = 0, and the running payoff is given by
f(v1) = —1 and f(vz) = 1. Then the function given by u(vg) = 0, u(v1) = a — 1,
u(v2) = a + 1 is a solution to Au = —2f, provided —1 < a < 1. The reader
may check that uy is the smallest of these functions and wuyy is the largest. The gap
of 2 between wu; and wuy; appears because a player would have to give up a move
(sacrificing one) in order to force the game to end. This is analogous to the Z2
example given in Section 2.1l Both players are earning payoffs in the interior of the
game, and moving to a terminal vertex costs a player a turn.

One way around this is to assume that f is either uniformly positive or uniformly
negative, as in the following analog of Theorem We now prove the second half
of Theorem

Theorem 2.4. Suppose that E is connected and Y # (). Assume that F is bounded
from below and inf f > 0. Then u; = uy. If, additionally, f and F are bounded
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from above, then any bounded solution @ to Ast = —2f with the given boundary
conditions is equal to u.

Proof. By considering a strategy for player I that always pulls toward a specific
terminal state y, we see that infx u; > infy F. By Lemma [[LT] Asu; = —2f on
X NY. Let @ be any solution to A, = —2f on X \ Y that is bounded from
below on X and has the given boundary values on Y.

Claim. uyp < @. In proving this, we may assume without loss of generality that
G \Y is connected, where G is the graph (X, E). Then if & = co at some vertex in
X \Y, we also have 4 = oo throughout X \ Y, in which case the Claim is obvious.
Thus, assume that @ is finite on X \Y. Fix § € (0,inf f) and let IT use the strategy
that at step k, if the current state is x;_; and II wins the coin toss, selects a state
xy, with @(z) < inf,.,s,_, @(2) +27%6. Then for any strategy chosen by player I,
the sequence M, = @(xy) +27%0 + E;:é f(z;) is a supermartingale bounded from
below, which must converge a.s. to a finite limit. Since inf f > 0, this also forces
the game to terminate a.s. Let 7 denote the termination time. Then

(o) + 6 = My > E(M,) > ]E(ﬂ(:z:T) + i f(xj)) .
§=0

Thus this strategy for II shows that wui(xzo) < @(xo) + J. Since 6 > 0 is arbitrary,
this verifies the claim. In particular, u; < uy in X, so u = ug.

Now suppose that sup F' < oo and sup f < oo, and @ is a bounded solution to
Aot = —2f with the given boundary values. By the claim above, & > uy = uy.
On the other hand, player I can play to maximize or nearly maximize @ in every
move. Under such a strategy, she guarantees that by turn k the expected payoff is
at least @(xo) — E[Q(k)] — &, where Q(k) is 0 if the game has terminated by time
k, and a(xy) otherwise. If the expected number of moves played is infinite, the
expected payoff is infinite. Otherwise, limy E[Q(k)] = 0, since @ is bounded. Thus,
Uy = U1 > U in any case. O

3. CONTINUUM VALUE OF TUG-OF-WAR ON A LENGTH SPACE

3.1. Preliminaries and outline. In this section, we will prove Theorem [[.3], The-
orem [[L8 and Theorem [[L4l Throughout this section, we assume (X, d,Y, F, f) de-
notes a tug-of-war game, i.e., X is a length space with distance function d, Y C X
is a non-empty set of terminal states, F' : Y — R is the final payoff function, and
f: X NY — R is the running payoff function. We let x;, denote the game state at
time k in e-tug-of-war.

It is natural to ask for a continuous-time version of tug-of-war on a length space.
Precisely and rigorously defining such a game (which would presumably involve
replacing coin tosses with white noise, making sense of what a continuum no-look-
ahead strategy means, etc.) is a technical challenge we will not undertake in this
paper (though we include some discussion of the small-¢ limiting trajectory of e-
tug-of-war in the finite-dimensional Euclidean case in Section[7]). But we can make
sense of the continuum game’s value function u® by showing that the value function
u® for the e-step tug-of-war game converges as ¢ — 0.

The value functions u® do not satisfy any nice monotonicity properties as € —
0. In the next subsection we define two modified versions of tug-of-war whose
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values closely approximate u®, and which do satisfy a monotonicity property along
sequences of the form 2", allowing us to conclude that lim,, 2 " exists. Then we
show that any such limit is a bounded from below viscosity solution to Asu = —2f,
and that any viscosity solution bounded from below is an upper bound on such a
limit, so that any two such limits must be equal, which will allow us to prove that
the continuum limit ©° = lim, u® exists.

Because the players can move the game state almost as far as ¢, either player can
ensure that d(zy,y) is “almost a supermartingale” up until the time that z, = y.
When doing calculations it is more convenient to instead work with a related metric
d® defined by

d®(z,y) := & X (min # steps from z to y using steps of length < ¢)

_J0, T =1y,
eteld(z,y)/e], z#y.
Since d° is the graph distance scaled by ¢, it is in fact a metric, and either player
may choose to make d°(xy,y) a supermartingale up until the time z = y.

3.2. II-favored tug-of-war and dyadic limits. We define a game called II-
favored e-tug-of-war that is designed to give a lower bound on player I's expected
payoff. It is related to ordinary e-step tug-of-war, but II is given additional options,
and player I’s running payoffs are slightly smaller. At the (i + 1) step, player I
chooses a point z in B:(x;) and a coin is tossed. If player I wins the coin toss, the
game position moves to a point, of player II's choice, in (Ba:(2) NY) U {z}. (If
d(z,Y) > 2¢, this means simply moving to z.) If IT wins, then the game position
moves to a point in Ba.(2) of I’s choice. The game ends at the first time 7 for
which =z, € Y. Player I's payoff is then —oo if the game never terminates, and

otherwise it is
-

2 .
(3.1) e ;yeégsf(mf(y) + F(z,),
where z; is the point that player I targets on the i*" turn, and f(y) is defined to be
zero if y € Y. We let v be the value for player I for this game. Given a strategy
for player II in the ordinary e-game, player II can easily mimic this strategy in the
II-favored e-game and do at least as well, so v < uj.

Let w® be the value for player II of I-favored e-tug-of-war, defined analogously
but with the roles of player I and player II reversed (i.e., at each move, II selects
the target less than € units away, instead of player I, etc., and the inf in the running
payoff term in equation (B.I]) is replaced with a sup, and games that never terminate
have payoff +0c0). For any € > 0 we have

v® <wuf <up < w.
Lemma 3.1. For any ¢ > 0,
0% <vf <uf <uf < wf <w*.
Proof. We have already noted that v* < uf < uf; < w®. We will prove that
v% < vf; the inequality w® < w?® follows by symmetry. Consider a strategy Si°
for a II-favored 2e-tug-of-war. We define a strategy St for player I for the II-favored

e-game that mimics S7° as follows. Whenever strategy 5S¢ would choose a target
point z, player I “aims” for z for one “round,” which we define to be the time until
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one of the players has won the coin toss two more times than the other player. By
“aiming for z” we mean that player I picks a target point that, in the metric d¢,
is € units closer to z than the current point. With probability 1/2, player I gets
two surplus moves before II, and then the game position reaches z (or a point in
Y N By.(2)) before the game position exits By (z). If player II gets two surplus
moves before player I, then the game position will be in By.(z). (See Figure 1)
The expected number of moves in this round of the II-favored e-game is 4; and the

FIGURE 2. At the end of the round, player I reaches the target
z (or a point in Y N By.(z)) with probability at least 1/2, and
otherwise the state still remains within By.(z). During the first
step of the round, when player I has target Z, the running payoff
is the infimum of f over Ba.(Z) C B4c(z), and during any step of
the round the infimum is over a subset of By.(z).

running payoff at each move is an €2 times the infimum over a ball of radius 2¢ that
is a subset of By.(z) (as opposed to (2¢)? times the infimum over the whole ball).
Hence strategy S} guarantees for the II-favored e-game an expected total payoff
that is at least as large as what S7° guarantees for the II-favored 2e-game. O

6/200 o—n

Thus v® converges along dyadic sequences: v = limy, o v*® exists. A
priori the subsequential limit could depend upon the choice of the dyadic sequence,
i.e., the initial €.

The same argument can be used to show that v*¢ < v® for positive integers k.

3.3. Comparing favored and ordinary tug-of-war. We continue with a pre-
liminary bound on how far apart v and w® can be. Let Lip$ F denote the Lipschitz
constant of F' with respect to the restriction of the metric d* to Y. Since d < d°¢,
the Lipschitz constant Lipy F' of F' with respect to d upper bounds Lip$ F.
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Lemma 3.2. Let € > 0. Suppose that Lip5 F < co and either

(1) f =0 everywhere, or
(2) |f] is bounded above and X has finite diameter.

Then for each x € X andy €Y,
v (z) > F(y) — 2e Lipy, F — (Lipy F + 2 (¢ + diam X ) sup | f]) d° (2, y).

Such an expected payoff is guaranteed for player 1 if she adopts a pull towards y
strategy, which at each move attempts to reduce d*(x4,y). Similarly a pull towards
y strategy for 11 gives

w®(z) < F(y) + 2e Lipy, F + (Lipy F + 2 (¢ + diamX) sup | f]) d°(z, y).

Proof. Let player I use a pull towards y strategy. Let 7 be the time at which Y
is reached, which will be finite a.s. The distance d°(z,y) is a supermartingale,
except possibly at the last step, where player II may have moved the game state
to a terminal point up to a distance of 2¢ from the target, even if player I wins the
coin toss. Thus E[d®(x,,y)] < d*(z,y) + 2¢, whence

E[F(z;)] > F(y) — (d°(z,y) + 2¢) Lip} F*.

If f =0, then this implies v°(x) > F(y) — (d*(z,y) + 2¢)Lip}, F. If f # 0 and X
has finite diameter, then the expected number of steps before the game terminates
is at most the expected time that a simple random walk on the interval of integers
[0,1+ |diam(X)/e]] (with a self-loop added at the right endpoint) takes to reach
0 when started at j := d°(z,y)/e, i.e., at most j (3 + 2 |diam(X)/e] — j). Hence

E [F(QUT) + TZI €2f(xi)}

> F(y) — (d°(z,y) + 2¢) Lip§, F + 7 (3 + 2 |diam(X) /<] — 5) €* min(0, inf f)
> F(y) — (d°(z,y) + 2¢) Lipy, F — d° (2, y) (2 + 2diam(X)) sup | f|.

This gives the desired lower bound on v¢(x). The symmetric argument gives the
upper bound for w®(x). O

Next, we show that the lower bound v® on uf is a good lower bound.

Lemma 3.3. Suppose F' is Lipschitz, and either

(1) f =0 everywhere, or
(2) f is uniformly continuous, X has finite diameter and inf|f| > 0.

Then ||uf — v%|loc — 0 as € — 0. If f is also Lipschitz, then ||uf — v®||cc = O(e).

Note that since X is assumed to be a length space, the assumptions imply that
sign(f) is constant and sup |f| < .

Proof. In order to prove that uf is not much larger than v, consider a strategy St
for player I in ordinary e-tug-of-war, which achieves an expected payoff of at least
uj — € against any strategy for player II. We shortly describe a modified strategy SIS
for player I playing the II-favored game, which does almost as well as St does in the
ordinary game. To motivate SF , observe that a turn in the II-favored e-tug-of-war
can alternatively be described as follows. Suppose that the position at the end of
the previous turn is x. First, player I gets to make a move to an arbitrary point
z satisfying d(z,z) < €. Then a coin is tossed. If player IT wins the toss, she gets

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



184 Y. PERES, O. SCHRAMM, S. SHEFFIELD, AND D. B. WILSON

to make two steps from z, each of distance less than €. Otherwise, II gets to move
to an arbitrary point in Ba.(2) NY, but only if the latter set is non-empty. This
completes the turn. The strategy SIS is based on the idea that after a win in the
coin toss by II, player I may use her move to reverse one of the two steps executed
by II (provided Y has not been reached).

As strategy SIg is playing the II-favored game against player II, it keeps track of
a virtual ordinary game. At the outset, the II-favored game is in state a:g, as is the
virtual game. As long as the virtual and the favored game have not ended, each
turn in the favored game corresponds to a turn in the virtual game, and the virtual
game uses the same coin tosses as the favored game. In each such turn ¢, the target
zf for player I in the favored game is the current state z; in the ordinary game. If
player I wins the coin toss, then the new game state xfﬂ in the favored game is his
current target ztg , which is the state of the virtual game x;, and the new state of
the virtual game z;,1 is chosen according to strategy St applied to the history of
the virtual game. If player IT wins the toss and chooses the new state of the favored
game to be $§+1a where necessarily d(a:fH, x¢) < 2¢, then in the virtual game the
virtual player II chooses the new state x;11 as some point satisfying d(zy1, ;) < €
and d(xtﬂ,xfﬂ) < e. Induction shows that d(z¥,z;) < ¢ as long as both games
are running, and thus the described moves are all legal.

If at some time the virtual game has terminated, but the favored game has not,
we let player I continue playing the favored game by always pulling towards the
final state of the virtual game. If the favored game has terminated, for the sake of
comparison, we continue the virtual game, but this time let player II pull towards
the final state of the favored game and let player I continue using strategy Si.

Let 78 be the time at which the favored game has ended, and let 7 be the time
at which the ordinary virtual game has ended. By Lemma B.2 if 7 < 75, then
the conditioned expectation of the remaining running payoffs and final payoff to
player I in the favored game after time 7, given what happened up to time 7, is
at least F(x;) — O(e) (here the implicit constant may depend on diamX, Lip, F'
and sup|f]). Likewise, u5 < w® from Lemma [3] and the second inequality from
Lemma [B.2] show that if 78 < 7, then the conditioned expectation of the remaining
running and final payoffs in the virtual game is at most F' (xfg) + O(e).

Set A = \. :=sup{|f(z) — f(2')| : z,2' € X \Y,d(z,2") < 2¢e}. Then A = O(e)
if f is Lipschitz and lim._,gA. = 0 if f is uniformly continuous. At each time
t < TATS, since 20 = x4, the running payoff in the virtual game and in the favored
game differ by at most €2 . Lemmas B1] and show that there is a constant C,
which may depend on X,Y, f and F, but not on ¢, such that —C < v* <wuj < C.
Thus, in the case where sup f < 0, since S; guarantees a payoff of at least u(z)—e¢,
we have E[75 A 7] = O(e72). Assume that player II plays the II-favored game (up
to time 7 A 7%) using a strategy SISI such that the expected payoff to player I
who uses SF is at most v. +¢. Then, in the case where inf f > 0, we will have
E[rATS] = O(¢72), again. There is a strategy S for player II in the ordinary game,
which corresponds to the play of player II in the virtual game, when player I uses Sy
and SIg and player IT uses SISI in the favored game. (The description of the virtual
game defines Sy for some game histories, and we may take an arbitrary extension
of this partial strategy to all possible game histories.) The above shows that the
expected payoff for player I in the ordinary game when player I uses St and player 11
uses Sy differs from the expected payoff for player I in the favored game when
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player T uses S§ and player IT uses S5 by at most O(e) + Ae>E[r A 73] < O(e + \).
Thus uf <v° 4 O(e + A). Since u§ > v, the proof is now complete. O
Hence under the assumption of Lemma B3} lim,, o uf? = = v*/27.

3.4. Dyadic limits satisfy quadratic comparison. We start by showing that
uf almost satisfies (—2f)-quadratic comparison from above.

Lemma 3.4. Let ¢ > 0, let V be an open subset of X \Y and write V. = {z :
B.(x) C V}. Suppose that ¢(z) = Q(d(x, 2)) is a quadratic distance function that
is *-increasing on V, where Q(r) = ar? + br + ¢ satisfies
(3.2) a < —sup f(x).

zeVe

Also suppose that supy, f > 0 or diam(V') < oco. If the value function ug for player
in e-tug-of-war satisfies uf < ¢ on V\V, then u§ < ¢ on V.

Proof. Fix some § > 0. Consider the strategy for player II that from a state
xx—1 € Ve at distance r = d(xg_1,2) from z pulls to state z (if r < €) or else
moves to reduce the distance to z by “almost” e units, enough to ensure that
Q(d(z,2)) < Q(r —e) +027%. If r < ¢, then z € V, whence Q(t) = at® + ¢ with
a > 0. In this case, if IT wins the toss, then z;, = z, whence p(zx) = Q(0) < Q(r—e).
Thus for all » > 0, regardless of what strategy player I adopts,

Qlr+e)+Q(r—e)
2

Setting 7 := inf{k : 73, ¢ V.}, we conclude that M}, := @(xn,) —ac?(KAT)+527F
is a supermartingale.

Suppose that player I uses a strategy with expected payoff larger than —oco. (If
there is no such strategy, the assertion of the lemma is obvious.) Then 7 < oo a.s.
We claim that

Elp(zy) | xp_1] — 627871 < =Q(r)+ac® =p(xp_1) +ac?.

(3.3) E[M;] < M.
Clearly this holds if 7 is replaced by 7 A k. To pass to the limit as & — oo, consider
two cases:

e If a <0, then since ¢ is x-increasing on V, it is also bounded from below on
V. Counsequently, My, is a supermartingale bounded from below, so (3.3))

holds.
e If a > 0, then supy, f < 0, by (32). By assumption therefore diamV <
0o, which implies supy |p| < oco. If E[r] = oo, we get E[M,] = —oo,

and hence [B3) holds. On the other hand, if E[r] < oo, then dominated
convergence gives ([33)).

Since uf(z;) < p(z,), we deduce that

T—1

G2
uf(a0) < supEe(er) + 3 f(2)] < supEIM] < My = p(ao) +3,
I +=0 I

where S; runs over all possible strategies for player I with expected payoff larger
than —oco. Since & > 0 was arbitrary, the proof is now complete. (I
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In order for uf to satisfy (—2f)-quadratic comparison (from above), we would
like to know that if uf < ¢ on the boundary of an open set, then this (almost)
holds in a neighborhood of the boundary, so that we can apply the above lemma.
To do this we prove a uniform Lipschitz lemma:

Lemma 3.5 (Uniform Lipschitz). Suppose that F' is Lipschitz, and either

(1) f =0 everywhere, or
(2) |f] is bounded from above and X has finite diameter.

Then for each € € (0,diamX), ui and u5; are Lipschitz on X w.r.t. the metric d°
with the Lipschitz constant depending only on diamX, sup |f| and Lipy F.

Proof. By symmetry, it suffices to prove this for uf. Set
L := 3Lip5 F + 4diamX sup | f|.

Let z,y € X be distinct. If z,y € Y, then |uf(z) — uf(y)| = |F(z) — F(y)| <
Lip$ F d®(z,y). If € X \Y and y € Y, Lemmas and B.1] give

(3.4) |uf(x)fuf(y)| = |uf(x)7F(y)| < Ld°(z,y), reXNY, yeyY.

Now suppose z,y € X \Y. Set Y* =Y U{y}, F* = FonY and F*(y) = uf(y).
Then, clearly, the value of uf(x) for the game where Y is replaced by Y* and
F is replaced by F* is the same as for the original game. By B.4]), we have
Lip$. (F*) < L. Consequently, (3.4) gives

|uf (2) = ui(y)| = [ui(z) — F*(y)| < (3L + 2 (¢ + diamX) sup | f) d° (=, y)
<4ALd (z,y),
which completes the proof. [l

Lemma 3.6. Suppose F is Lipschitz and inf F > —oco, and either (1) f = 0
identically or else (2)inf f > 0, f is uniformly continuous, and X has finite diam-

e/2%°

eter. Then the subsequential limit v =lim, o0 v " satisfies (—2f)-quadratic

comparison on X \Y.

Proof. By Theorems and 24 u§ = uf;, so from Lemma B3] we have ||w® —
v%]|oo — 0 as € — 0. Thus lim, o w®> = =v*/27,

Note that the hypotheses imply that |f| is bounded. Consider an open V C
X \Y and an *-increasing quadratic distance function ¢ on V' with quadratic term

a < —sup,ey f(y), such that ¢ > v¥/2” on OV. We must show that ¢ > v°/2" on
V. Since ||w® —v°| s — 0, we have by LemmaBI that v°2 " converges uniformly to
v¥/27 . So for any ¢ > 0, if n € N is large enough, then v°2” " < ¢ + 6 on V. Note
also that ¢ is necessarily uniformly continuous on V. (If diamV < oo or a = 0, this
is clear. Otherwise, f = 0 and a < 0. However, a < 0 implies that diamV < oo,
since ¢ is x-increasing on V.) Hence, by the uniform Lipschitz lemma, Lemma 35
ui2”" < p+25 on VN Vi for all sufficiently large n € N, where we use the
notation of Lemma[3.4l By that lemma ufrn < p+2donallof V. Letting n — oo
and § — 0 shows that v¥/2” satisfies (—2f)-quadratic comparison from above.

To prove quadratic comparison from below, note that the only assumptions which
are not symmetric under exchanging the roles of the players are inf F' > —oo and
inf f > 0. However, we only used these assumptions to prove we/?”~ = /27,
Consequently, comparison from below follows by symmetry. (I
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3.5. Convergence.

Lemma 3.7. Suppose that v is continuous and satisfies (—2f)-quadratic compar-
ison from below on X \Y, and that f is locally bounded from below. Let § > 0.
Then in 11-favored e-tug-of-war, when player 1 (using any strategy) targets point z;
on step i, player II may play to make MMTE a supermartingale, where

My :=v(axy) +52Z inf y) + 027 ¢

EBZE Z’L
and 7e ;= inf{t : d(z;,Y) < 3¢e}.

Proof. Let z = z; be the point that player I has targeted at time ¢. Assume that
t < 7.. We define the following:
(1) a:=inf{f(x): x € Ba(2)},
(2) A:=inf{v(x):x € Ba.(2)} (the infimum value of v that II can guarantee
if IT wins the coin toss),
(3) p:= UZ)7+A +ae?, and
(@) Q) = —ar? + AHH8E ) (Q(0) = (), Q(26) — 4. QIE) =
and Q" = —2a).
Player II can play so that E[v(z) | 2 and all prior events] < (v(z) + A)/2+ 627,
i.e., so that ]E[Mt ‘ 2 and prior events] — M1 < 8 —v(xg—1). We will show
that whenever d(z,z) < & we have v(z) > 8, and then it will follow that M is a
supermartingale. There are two cases to check, depending on whether a > 0 or
a < 0:

Suppose @ < 0. Note that A < v(z). If v(z) = A, the inequality v(z) > S on
B:(2) follows from « < 0 and the definition of 8. Assume therefore that v(z) > A.
Then Q'(e) = (A —v(z))/(2¢) < 0. Thus @ is decreasing on [0,¢]. Let rg € [¢,2¢]
be the point where @ attains its minimum in [, 2 ¢]. Then @ is decreasing on [0, rg].
Set V := By, (2) \ {z}. We have v(z) = Q(0) = Q(d(z,2)), and for x € 8B, (2)
we have v(z) > A = Q(2¢) > Q(ro) = Q(d(z,z)). Thus, v(z) > Q(d(z,z))
for x € OV. Since v satisfies (—2f)-quadratic comparison from below, and Q” =
—2a > sup,ey —2 f(z), we get v(z) > Q(d(z,z2)) for z € V. In particular, for
z € B:(z) one has v(z) > Q(d(z, 2)) > Q(e) = B.

Now suppose « > 0. The function Lo(z) = —ad(x,2)? + a(2¢)? + A is a lower
bound for v on dBs.(2), and hence applying (—2f)-quadratic comparison in BQE( )
with Lo(+) gives v(z) > Lo(z) = A + 4ae?  Therefore, Q'(0) = (A — v(2) +
4ae?)/(2¢) < 0, which together with Q" < 0 implies that @Q is decreasmg on [0, 2¢].
By applying (—2f)-quadratic comparison on By (2) \ {2} we see that for x € B, (z)
we have v(x) > Q(d(z,2)) > Q(e) = .

Lemma 3.8. Suppose that F is Lipschitz, and either
(1) f =0 everywhere, or
(2) |f] is bounded from above and X has finite diameter.

Also suppose that v : X — R is continuous, satisfies (—2f)-quadratic comparison
from below on X \Y,v>F onY, and infv > —oco. Then v¢ <wv for all €.

Proof. The idea is for player II to make the M defined in Lemma [B7] a super-
martingale, but we need to pick a stopping time 7 such that E[M,] < My, while
ve(z,) is unlikely to be much larger than v(z,). Let W :={x € X : d(z,Y) > 3¢}
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and let 7. be defined as in Lemma B7 that is, 7. := inf{t € N : z; ¢ W}. Set
Ae :=supy_y (v — ), and let § > 0. We first show

(3.5) v <v+ A +9.

In the case that f = 0, the supermartingale M is bounded from below, so we can
choose 7 = 7.. Player I is compelled to ensure 7 < co. Conditional on the game
up to time 7, player I cannot guarantee a conditional expected payoff better than
v (xr) + 0277 < M, + Ae. Since E[M,] < My = v(xo) + 9, we get (B.0)), as desired.

In the case f # 0, we let 7, := 7. An, where n € N. Then E[M,, ] < My. Note
that supv® < oo follows from diamX < oo, v* < uf and Lemma Suppose
player II makes M a supermartingale up until time 7,. Given play until time 7,,

player II may make sure that the conditional expected payoff to player I is at most

8§27 4 (x,,) + €2 inf .
( " ZyeBZE(Zz) f(y)
Taking expectation and separating into cases in which ., € W or not, we get

Tn

v (zg) < { Zr,) +€ZZ mf }4’)\ +027™

UEBza zi)

+ Prfz,, € W] S‘lﬁl/p(v (z) —v(z)).

Since E[M,,] < My = v(zo) + 0, this gives
v¥(xo) < v(x0) + 0 + Ae + Prlz., € W] sup(v®(z) — v(z)) .
W

The first term above is < E[M,, ] < My = v(zo) + ¢, independent of n. Player I
is compelled to play a strategy that ensures 7., is finite a.s., since otherwise the
payoff is —oo < v(x). With such a strategy, Prjx,, € W] — 0 as n — oo, and since
v is bounded from below and sup v® < oo, the last summand tends to 0 as n — oo.
Thus, we get [33) in this case as well.

Next, we show that limsup.\ g A- < 0. Let y € Y, and set Q(r) = ar?+br+ec,
where a := sup|f]|, b < b* := —2sup|f|diamX — LipF, and ¢ := F(y). Let
¢(z) == Q(d(z,y)). Then ¢(y') < F(y') < v(y') for y € Y. Since v satisfies
comparison from below and ¢ is *-decreasing, we get v(x) > ¢(z) on X. Thus,
if z € Bs:(y), then v(z) > F(y) + b*d(z,y) > F(y) + 3b*e. In conjunction with
Lemma B3] this implies that lim sup. o Ae < 0. Choosing § = € and taking € to 0
therefore gives in ([B.3) limsup_. ov® < v. However, the inequality v?% < vf from

Lemma [B1] implies v¢ < lim Sup./\ o ve < v, completing the proof. (]

Proof of Theorem [L3l First, suppose that F' is Lipschitz. Let ¢, > 0. Let v :=
limy, oo v°2 " and v = lim,_oov°2 . We know that these limits exist from
Lemma Bl Lemma B3] tells us that ||uj — v°||cc — 0 as ¢ — 0. Since the
assumptions of that lemma are player-symmetric, we likewise get ||uf; — w®||oc — 0.
From Theorems and [2.4] (possibly with the roles of the players interchanged) we
know that uf = uf, and hence the above gives ||[v® — w®||oc — 0. By Lemma [B1]
v® < v < w and v° < uf < w®, and so we conclude that ||v° — v[| — 0 and
|luf — v||oc — 0. Note that the assumptions imply that sup|f| < oco. Therefore,
from Lemma and |[uf — v|]jcoc — 0 we conclude that v is Lipschitz. Precisely
the same argument gives [[v° — v|loc = O(e) if f is also assumed to be Lipschitz,
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and similar estimates also hold for ||v°" — v/||e. Note that the assumptions imply
that F' is bounded if f # 0. Lemma (applied possibly with the roles of the
players reversed) tells us that v’ satisfies (—2f)-quadratic comparison on X \ Y.
Clearly inf o' > —oo. (If f = 0 identically, then inf v’ > inf F, while if diamX < oo,
we may use the fact that v' is Lipschitz.) Thus, Lemma B.§] implies that v¢ < v'.
Consequently, v < v’. By symmetry v’ < v, and hence v = v'. This completes the
proof in the case where F' is Lipschitz.

Using the result of Lemma [B.9] below, we know that for every ¢ > 0 there is a
Lipschitz Fs : Y — R such that |F — Fs||oc < . Then the Lipschitz case applies
to the functions Fy 4+ ¢ in place of F'. Since the game value u® for F' is bounded
between the corresponding value with Fs 4+ § and Fs — J, and the latter two values
differ by 24, the result easily follows. O

Lemma 3.9. Let X be a length space, and let F':' Y — R be defined on a non-empty
subset Y C X. The following conditions are equivalent:
(1) F is uniformly continuous and sup{(F (y)—F (y'))/ max{1,d(y,v")} : v,y €
Y} < oo.
(2) F extends to a uniformly continuous function on X.
(3) There is a sequence of Lipschitz functions on'Y tending to F in || - || co-

Proof. We start by assuming (1) and proving (2). Let () := sup{F(y) — F(y') :
d(y,y') < 6, y,y € Y} and ¢(t) := sup{tp()/6 : § > t}. We now show that
limpy o ¢(t) = 0. Let € > 0, and let 6, > 0 satisfy p(d:) < €. Such a . exists
because F' is uniformly continuous. Condition (1) implies that M := sup{p(J)/d :
0 >0d.} <oo. Fort < (/M) A, we have

@(t) = sup{t p(8)/8: 6 > 3 >t} Vsup{t(d)/d:6 > b} <p(dc) V(M) <e,

which proves that limy o @¢(¢t) = 0. Two other immediate properties of ¢ which
we will use are that F(y) — F(y') < ¢(d(y,y')) < ¢(d(y,y’)) holds for y,y/ € Y
and @(st) > s@(t) when s € [0,1] and ¢t > 0. It follows that ¢ is subadditive:
Pla) +@(b) > ag(a+b)/(a+b)+bpla+b)/(a+b) =@(a+d) for a,b > 0.

Now for z € X set u(z) := inf{F(y) + ¢(d(y,z)) : y € Y}. Thenu=F on Y.
We now prove

(3.6) ulz) — u(e') < $(d(z, "))
for z,2’ € X. Indeed, let ¥’ € Y. Then

u(z) = F(y) — ¢(dy',2") < F(y') + ¢(d(y', 2)) — F(y') — ¢(d(y/, a"))
=¢(dy',2)) — ¢(d(y', ).
Consequently, subadditivity and monotonicity of ¢ gives
u(@) = F(y') = ¢(dly',2")) < (|d(z,y') — d(2',)]) < @(d(z,2)).

Taking the supremum over all y’ € Y then implies [8.6]). Therefore, u is uniformly
continuous and (2) holds.

We now assume (2) and prove (3). Let u : X — R be a uniformly continuous
extension of F' to X. It clearly suffices to approximate u by Lipschitz functions
on X in ||+ [|oo. For z € X let ur(z) := inf{u(z’) + Ld(z,2") : 2’ € X}. The
same argument which was used above to prove ([B.6]) now shows that Lip(uy) < L.
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Clearly, ur(z) < u(x). Let ¢(t) := sup{u(z) — u(a’) : d(z,2') <t} for t > 0. Since
X is a length space, ¢ is subadditive. Let t > 0 and k := |d(x,2")/t|. Then

u(z) —u(z’) — Ld(z,2") < p(d(z,2")) — Ld(z,2") < p((k+1)t) — Lkt.

Taking the supremum over all 2’ and using the subadditivity of ¢ therefore gives
u(z) —ur(x) < sup(cp((k +1)t) — th) < (t) +supk (o(t) — Lt).
keN kEN

Therefore, u(x) — ur(x) < p(t) once L > (t)/t. Since infi~gp(t) = 0 and vy <
u(x), this proves (3).

The passage from (3) to (1) is standard, and therefore omitted. This concludes
the proof. O

Proof of Theorem [L8 Lemma [3.9] tells us that F' extends to a uniformly continu-
ous function on X and that it can be approximated in || - ||« by Lipschitz functions.
We know from Theorem [[3] that the continuum value u exists and is uniformly
continuous. Suppose first that F' is Lipschitz. Lemma (applied possibly with
the roles of the players reversed) says that u satisfies (—2f)-quadratic comparison
on X \Y. If F is not Lipschitz, we may deduce the same result by approximating F’
from below by Lipschitz functions and observing that a monotone non-decreasing
| - |loo-limit of functions satisfying (—2f)-quadratic comparison from above also
satisfies (—2f)-quadratic comparison from above, and making the symmetric argu-
ment for comparison from below. Now suppose that u is as in the second part of the
theorem. This clearly implies inf @ > —oco. Now Lemma B8 gives v < @ (again, we
may need to first approximate F' by Lipschitz functions). The uniqueness follows
directly. O

Proof of Theorem [L4l If x € X\Y and y € Y, then from Lemma[32it follows that
’u(x) - u(y)| < Lipy Fd(z,y). Let U C X \'Y be open and define F*(z) = u(x)
for 2 € Y UOU. It is clear that the continuum value u* of (X,d,Y U JU, F*,0) is
the same as u, since any player may first play a strategy that is appropriate for the
(X,d, Y U9U, F*,0) game, and once Y U QU is hit, start playing a strategy that is
appropriate for the original game. The above argument shows that |u(x) — u(y)| <
d(z,y) Lipspyu if y € OU and € U. In particular, Lipyyq,3u = Lipgyu, which
implies Lipy;u = Lipgu; that is, v is AM in X \Y.

Now suppose that u* : X — R is an AM extension of F' and sup |F| < oc.
Lemma tells us that u* satisfies comparison with distance functions. Observe
that the proof of Lemma [3.8 shows that in the case f = 0 we may replace the
hypothesis that v satisfies 0-quadratic comparison from below on X \ Y by the
hypothesis that v satisfies comparison with distance functions from below (since
only comparisons with distance functions are used in this case). Thus, u < wu*.
Similarly, © > u*, which implies the required uniqueness statement and completes
the proof. O

4. HARMONIC MEASURE FOR Ao

Here, we present a few estimates of the co-harmonic measure w.,. Before proving
Theorem [[.5] we consider the co-harmonic of porous sets. Recall that a set S in
a metric space Z is a-porous if for every r € (0,diamZ) every ball of radius r
contains a ball of radius ar that is disjoint from S. An example of a porous set
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is the ternary Cantor set in [0, 1]. We start with a general lemma in the setting of
length spaces.

Lemma 4.1. Suppose X is a length space and 0 < F < 1 on the terminal states Y,
where F 1Y — R is continuous. Let S := suppF'. Suppose that for some integer k
and positive constants £g, dmin and vy € (0,1), for every x € X with d(x,S) > dyin,
there is a sequence of points x = zo, ...,z such that z, € Y, F(z) =0, and

d(Zi, S) Z 2d(Z“ Zi—l) + 260 —+ ’)/d(Z(), S)
fori=1,... k. Then the AM extension u of F satisfies
0 < u(x) < (1 _ 2—k)log,y(dm;n/d(m,5)).

Proof. We will obtain bounds on u®(x) that are independent of £ (as long as € €
(0,£0)), and these yield bounds on u(z). Since u® > 0, we need only give a good
strategy for player II to obtain an upper bound on u(x). The idea is for player II
to always have a “plan” for reaching a terminal state at which F' is 0, while staying
away from the terminal states at which F' is non-zero. A plan consists of a sequence
of points zg, z1,...,2r, where zy is the game state when the plan was formed,
zr € Y, and F(z;) = 0. As soon as the game state reaches z;, player II starts
pulling towards z;11. If player I is lucky and gets many moves, player II may have
to give up on the plan and form a new plan. When tugging towards z;, we suppose
that player IT gives up and forms a new plan as soon as d°(z¢, z;) = 2d°(z;, 2i—1),
and otherwise plays to ensure that d°(zy, z;) is a supermartingale. While tugging
towards z;, the plan will be aborted at that stage with probability at most 1/2, so
with probability at least 2% the plan is never aborted and succeeds in reaching zy.

Suppose player II aborts the plan at time ¢ while tugging towards z;, and forms
a new plan starting at z), = z;. Then d(zy,2;) < d(x4,2;) = 2d°(zi,2i-1) <
2d(z;,zi—1) + 2¢&, so

d(x¢, S) > d(zi, S) — d(xy, z) > d(z:,S) — [2d(2i, zi—1) + 2€] > v d(20, 5),

so the game state remains far from S. Since player II can always find a short plan
(length at most k) when the distance from S is at least dpin, player I gets to S
with probability at most (1—27%) [og., (dmin/d(z0,5)] which yields the desired upper
bound. ]

The reader may wish to check that the lemma implies lims\ o woo (As) = 0 in the
setting of Theorem [[H] (i.e., when X is the unit ball in R*, n > 1, Y = 90X and A;
is a spherical cap of radius 9).

We are now ready to state and prove an upper bound on the co-harmonic measure
of neighborhoods of porous sets.

Theorem 4.2. Let X C R", n > 1, be the closed unit ball and letY be its boundary,
the unit sphere. Let o € (0,1/2) and let § > 0. Let S be an a-porous subset of Y,
and let S5 be the closure of the §-neighborhood of S. Then

w(()g’Y’X)(S[;) S 5ao(1>.

Of course, in the above, S is a-porous as a subset of Y. (Every subset of Y is
(1/3)-porous as a subset of X.)

Proof. The plan is to use the lemma, of course. Let dpin := 2/a. Let 29 € X \Y,
and suppose that dy := d(zg, S) > dmin. Let yo € Y be a closest point to zg on Y.
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Inside By, (yo) NY there is a point y; such that Bag, (y1) NS = 0. (See Figure 3)
Therefore, d(yi1, Ss) > ady — 6 > ady/2. We define the sequence z; inductively, as
follows. If d(z;,Ss5) > 3d(z;,Y), then we take z;11 to be any closest point to z;
on Y. Otherwise, let z;4+1 be the point on the line segment from z; to y; whose
distance from z; is d(z;,y1)/10. It can be checked that after k = O(—log ) steps
the sequence hits Y \ S and that the assumptions of the lemma hold with this &,
with v = /10 and with some gy > 0, independent of zy. The theorem now easily
follows from the lemma. (]

We now proceed to study the co-harmonic measure of spherical caps.

Proof of Theorem [LOl It turns out to be more convenient to work with —As =
{—y :y € As} in place of As. By an obvious comparison argument, it is sufficient
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FIGURE 3. The terminal states are the unit sphere, and the sup-
port of F'is Sy, the d-neighborhood of a porous set on the unit
sphere. From a starting point zg, player II finds a point y; on the
sphere that is near the closest point yy on the sphere but far from
Ss. Player II then tugs towards y; along a sequence of points, and
then when it gets much closer to the sphere than to Ss, it tugs
straight to the sphere.
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to estimate u(0), where u = us is the AM function in X \'Y with boundary values

1 ) Yy € _A5 )
F(y) =10, d(ya _A5) > 67
1_d(y7 _A5)6_17 0 < d(ya _A(S) S(S

The function u is invariant under rotations of X preserving (1,0,...,0) € R™.
Therefore, u is also AM in R? N X. Thus, we henceforth restrict ourselves to the
case n = 2, with no loss of generality.

Aronsson [3] constructed a family of viscosity solutions G, to A,u = 0 in
R2 . {0} that are separable in polar coordinates: G, (r, ) =™ /@m=1p_(6) (for
m € Z). We are interested in the m = —1 solution, which may be written as
(4.1) o [ oo —Jrane1 1

' 1+ |tan(0/2)[*/3 + | tan(6/2)[8/3 '

Observe that when —m/2 < 6§ < 7/2 this solution is non-negative, and G > cr
when 0 € [—7/4,7/4], say, where ¢ > 0 is some fixed constant. Then F < O(1) Gs,
where

—1/3

Gs(z,y) =02 Gz+1+426,y).

Since u(0) is monotone in F, and Gy satisfies Ay G5 = 0, it follows that u(0) <
0(1) Gs(0) = O(5'/3).

We now show that the bound u(0) = O(6'/3) is tight. It is easy to see, using
comparison with a cone centered at (—1,0), say, that u(—1+§/10,0) > ¢ > 0, where
c is a constant that does not depend on . Comparison with a cone centered at any
point z in the unit disk shows that u(z’) > u(z)/2 if |z — 2’| < (1 —|z|)/2. Using
such estimates, it is easy to see that there is a constant ¢’ > 0 such that u > ¢ on
the disk B of radius § centered at ¢ := (—1 + 26,0), provided that § < 1/4, say.
Now consider the function

Gi(z,y) = 62 G((x,y) — q) -

By the choice of the constant ¢/, we have G < u on 9B, since G < r~/3 in R2~.{0}.
If (r',6") denote the polar coordinates centered at ¢, the center of B, and (r,0)
denote the standard polar coordinates centered at 0, then 210'| > 7 — |6 — 7| when
r = 1, and we choose ¢’ € [—m, 7). Also, 7’ is bounded from below by a constant
times |0 — 7| when 6 € [0, 2] and r = 1. Since |G| < O(1) ((/2) —|6]) r~1/3 when
0 € [, m), it follows that on the unit circle

G5 <0(1) ((n/2) = 18']) (") "1/* < 0(1) 6"/ 16 — w[*/* < O(61%).

Therefore G — O(6'/3) < u on the boundary of the unit circle, as well as on 9B.
Consequently, u > G% — O(5'/?) in the complement of B in the unit disk. This
implies that there is some 7 € (0, 1) such that us(—r,0) > 6~/ for all sufficiently
small §. The required estimate us(0) > ©(5~1/3) now follows by several applications
of comparison with cones (the number of which depends on ), similar to the above
argument estimating a lower bound for u on B. O

One could also try to use Aronsson’s other solutions G, to bound oco-harmonic
measure of certain sets in other domains. Also, Aronsson has some explicit solutions
for Apu = 0, which may serve a similar purpose.
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5. COUNTEREXAMPLES

5.1. Tug-of-war games with positive payoffs and no value. Here we give the
promised counterexample showing that the hypothesis inf f > 0 in Theorem
cannot be relaxed to f > 0. As we later point out, a similar construction works in
the continuum setting of length spaces.

The comb game is tug-of-war with running payoffs on an infinite graph shaped
like a comb, as shown in Figure 4l The comb is defined by an infinite sequence of
positive integers £o, 1,/ ..., and has states (vertices) {(z,y) € Z?:0 < x and 0 <
y < £;}. The edges of the comb are of the form (x,y) ~ (z,y + 1) and (z,0) ~
(r +1,0), giving the graph the shape of a comb, where the z*® tooth of the comb
has length ¢,.. The running payoff f(z,y) is 1/, if y = 0 and zero otherwise. (Later
we will consider a variation where f > 0 everywhere.) The terminal states are the
states of the form (z,/,), and the terminal payoff F' is zero on all terminal states.

FIGURE 4. A comb.

Lemma 5.1. For any comb (choice of the sequence {{,}), we have u1(0,0) = 2.

Proof. First we argue that u;(0,0) > 2. Denote by ¢(¢t) = Zf;é f(zi,y;) the
accumulated running payoff. Fix a large B > 0 and equip player I with the following
strategy: at all times t < 7 for which ¢ (t) < B, player I pulls down if y; # 0, left
if y; = 0 and z; # 0, and right if (x4, y¢) = (0,0); if ¥(x;) > B, then player I pulls
toward the closest terminal state. Define the termination time 7 = inf{¢ : y; = {5, }
and also the stopping time o9 = inf{¢ : z; = 0}A7. Fix any strategy for player IT and
observe that {Zins, }¢t>0 IS & non-negative supermartingale, which must converge
a.s.; therefore, from any initial state, g < oo a.s.; therefore, the stopping time
o =inf{t : ¢(t) > B} A7 is almost surely finite, whence 7 < 0o a.s. as well.
Consider the process

Then M, is a submartingale. Note that if y, = 0, then M, = ¢(0) + 2 and
¥(o) > B, while if y, > 0, then 0 = 7 and M, = ¢¥(0). In any case, M, <
¥(0)(1+ 2/B). Thus by optional stopping,

2= My < EM, < (1+ 2)E0(0) < (1+ 2)us(0,0).
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Next, to show that u(0,0) < 2, suppose that player II adopts the strategy
of always pulling up, and player I knows this and seeks to maximize her payoff.
Because player II always pulls up, M; is a positive supermartingale, so M; a.s.
converges to M., and by optional stopping,

oo

2(1 - yO/Ea:o) = MO Z E[Moo] 2 E[Z f(xt’yyt’)}'
t'=0

This shows that by always pulling up, player II can force player I's expected payoff
from (zg,yo) = (0,0) to be no more than 2(1 — yo/ly,) = 2. O

Remark 5.2. Note that the strategy for player II of always pulling up does not neces-
sarily force the game to end with probability one; this strategy always gives an upper
bound on (0, 0), but it only yields an upper bound on u(0,0) if Y5 = oo,
when the Borel-Cantelli Lemma ensures termination. B

Suppose that the teeth of the comb are long, i.e., Z?:O 0,1 < oo, and that
player I plays the strategy of always pulling down if y; > 0 and always pulling right
if y, = 0. If player II plays the strategy of always pulling up, then we may calculate
the probability that the game terminates when started in state (x,0). Either the
state goes to the terminal state of the tooth or goes to the base of the next tooth,
and the latter probability is £,/(£; + 1). When the teeth of the comb are long,
the game lasts forever with probability [[, ¢z/(¢z + 1) > 0. If player II needs to
ensure that the game terminates, she will need to be prepared to sometimes pull
left instead of up, and this necessity will be costly for player II.

Lemma 5.3. For every s > 0 there is a suitable comb (choice of the sequence {¢;})
such that urr(0,0) > s.

Proof. Let player I play the strategy of pulling down when y > 0 and pulling to the
right when y = 0. We will estimate from below the expected payoff when player 11
plays any strategy which guarantees that the game terminates in finite time a.s.
against the above strategy for player I. Let a, denote the probability that the game
terminates at the terminal state (z,/;). Then Y >° ja, = 1. For every z € N let
L,,U, and R, denote the expected number of game transitions from (z,0) to the
left, upwards and to the right, respectively (that is, to (z — 1,0), to (z,1) and to
(x 4+ 1,0), respectively).
First, observe that
Uz > ag by,

because every time that the game state arrives at (z, 1), with conditional probability
at most 1/¢,, the game terminates at (z,¢,) before returning to (z,0). Next,
observe that

LerlZRz_la

because the number of transitions from (z,0) to (z + 1,0) can exceed the number
of transitions from (z + 1,0) to (x,0) by at most one. (More precisely, we have
Lyy1 =R, — Zj>x a;, but this will not be needed.) Finally, note that

Ry > Ly +Us,

because player I always pulls right at (x,0). (We set Lo :=0.)
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An easy induction shows that the above relations imply

x
Rx EZajfj—:U.
7=0

The expected payoff £ satisfies

We plug in the above lower bound on R, to obtain

§=0 z=j =0

Since Y_,50az = 1, the lemma follows if we choose £, = (c+ z)® with ¢ > 0
sufficiently large. O

Note that when player II always pulls up, for every vertex v in the comb there
is a finite upper bound b(v) on the expected number of visits to v, which holds
regardless of the strategy used by player I. Since in the proof of Lemma B player 1T
always pulls up, it follows that the value for player I is at most 3 even when f is
replaced by f(-)+q(-)/(b(-) + 1), where ¢ > 0 and >_, gq(v) = 1. This modification
will certainly not decrease the value for player II. Therefore, in Theorem [[.2] the
assumption inf f > 0 cannot be replaced by the assumption f > 0, even if FF =0
throughout Y.

Note that we may convert the discrete comb graph to a continuous length space
by adding line segments corresponding to edges in the comb. It is then easy to define
the corresponding continuous f and conclude that in Theorem [[.3] the assumption
inf | f| > 0 cannot be relaxed to f > 0. The details are left to the reader.

Remark 5.4. The dependence of uy1(0, 0) on the growth of {£, } is somewhat surpris-
ing. If {¢,} grows slowly enough so that > -, ¢;* = oo, then ur(0,0) < 2, because
(as remarked above) the Borel-Cantelli lemma implies that the strategy of always
pulling up is guaranteed to terminate, and thus the proof of Lemma [B.] applies.
We have seen that for some sequences {/,} of polynomial growth, ur;(0,0) can be
arbitrarily large. However, if {£, } grows rapidly enough so that ¢, /¢, — oo, then
urr(0,0) < 2. This is immediate from the following more general statement: for
every k > 0, we have ur(0,0) < 2 4 24 Zj>k éj_l. To prove this, suppose player 11
adopts the strategy of always pulling left when x; > k and y; = 0 and up otherwise.
Let 9(t, k) denote the payoff accumulated for player I at points in [0, k] x {0} up
to time ¢. Then Ey(t, k) < 2, because

My =2(1 - 2) + (k. k)

is a positive supermartingale with MO = 2. Then we claim that
E[(t) — (. k)] <20 Y 61
i>k
Fix j > k. Starting at (k,0), the expected number of visits to (j,0) before

returning to (k,0) is at most 1 (by comparison to simple random walk). The
expected number of visits to (k,0) is at most 2¢, since each time (x¢,y:) = (k,0),
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there is a chance of at least 1/(2(;) of terminating at (k,¢;) without returning to
(k,0). Thus the expected accumulated payoff at (j,0) is at most 2€k€j_1; summing
over j > k proves the claim.

5.2. Positive Lipschitz function with multiple AM extensions. Here we
show that uniqueness in Theorem [[L4] may fail if F' is unbounded; that is, we give
an (X,Y, F) (here f = 0) for which F is Lipschitz and positive and the continuum
value is not the only AM extension of F'.

Let T be the rooted ternary tree, where each node has three direct descendants
and every node but the root has one parent. Let X be the corresponding length
space, where we glue in a line segment of length 1 for every edge in T'. For every
node v in T, we label the three edges leading to descendants of v by 1, —1 and .
(One may interpret T as the set of finite stacks of cards, where each card has one
of the three labels 1, —1, and x.)

We define a function w on the nodes of T' by induction on the distance from the
root. For any vertex v let k(v) be the number of edges on the simple path from the
root to v whose label is not *. Set w(root) := 0. Next, if v is the parent of v and
the edge from v to v’ is labeled £1, then w(v’) = w(v) £ 1, respectively. Finally, if
the edge from v to v’ is labeled *, let w(v') = w(v) + 1 — 275" say. This defines
w on the vertices of T. We define it on X by linear interpolation along the edges.

Let Vj denote the set of nodes consisting of the root and all vertices v such
that the edge from v to its parent is not labeled *. For each v € V let b(v) be
some large integer, whose value will be later specified, and let g(v) be the vertex
at distance b(v) away from v along the (unique) infinite simple path starting at v
which contains only edges labeled *. Let Y1 = {q(v) : v € Vo} and let Y}, be the set
of all nodes v such that w(v) < 3/2. Set Y := Yy UY].

We first claim that w is AM on X \ Y. Indeed, let U be an open subset of
X NY. If U does not contain any tree node, then Lip;w = Lipg,w, because w
interpolates linearly inside the edges. Suppose now that v € U is a node. Let (3
be the infinite path starting at v always going away from the root which uses only
edges labeled —1. For each positive integer m let ~,,, be the infinite path starting at
v always going away from the root whose first m edges are labeled 1 and the rest are
labeled *. Observe that v, meets Y1 and 8 meets Yy. Consequently, v, N OU #
and S NOU # 0. If 1 € 7, NOU and zg € BN AU, then w(zy) — w(xg) >
(1 —27™)d(x1,x0) by the construction of w. Thus Lipyyw > 1. Since Lipyw = 1,
this proves that w is AM on X \Y.

Next, we consider the discrete tug-of-war game on the graph T, where f = 0
and F' is the restriction of w to Y. Let xg, the starting position of the game, be the
third vertex on the infinite simple path from the root whose edges are all labeled
1. We claim that the value uy for player I satisfies ur(xg) < w(zo). Before proving
this we explain the idea: at each step, player I has one or two moves that increase
the value of w by 1 (either moving away from the root along an edge with label 1
— i.e., “adding a 1 card to the deck” — or moving towards the root along an edge
labeled —1 — i.e., “removing a —1 card from the top of the deck”), and similarly,
player II has one or two moves that decrease the value of w by 1. Player I can thus
make w(z;) a submartingale by always making moves of this type.

This does not force the game to terminate, however. In order to end the game
favorably by reaching a point in Y7, player I must add a sequence of cards labeled
* to the top of the deck. If player II adopts the strategy of always choosing the
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edge labeled —1 (“adding a —1 card to the deck”), then (provided that b(-) increases
rapidly enough) the expected number of suboptimal moves that player I must make
(by moving along an edge with label %) to reach any particular element of Y7 is
large enough to significantly decrease the total expected payoff for player I.

We proceed to prove that up(zg) < w(zg). Let vg be a vertex in Vo \ Y, which

is in the same connected component of 7'\ Y as xg. Let (vo,v1,..., V() be
the simple path from vy to ¢(vg). We now abbreviate n = b(vg), h = w(vg) and
a=1-—2"kwo),

Let player II use the naive strategy of always trying to move from the current
state along the edge labeled —1 going away from the root. For i € {0,1,...,n}
let 7; be the first time t such that z; = v;, and if no such ¢ exists let 7; = oo.
(As before z; is the game position at time ¢.) Let Mt(l) = w(axy) for t < 7; and
Mt(i) =w(v;_1)+ 1 for t > ;. Then Mt(i) is clearly a supermartingale, regardless
of the strategy used by player 1. Since the game terminates at time ¢ if w(z;) < 1,
this implies that for ¢ € N,

’U)(’Ui_l) B 1

Pr[n<oo|ﬂ'—1<00]§m: h+(i—1a+1

< e (7))

Consequently,

n

Pr(r, < oo] < []Pr[n <oo|mi1 <o) < eXpGZm)
i 1=1
" ds h+1 e
SeXp(f/o h+1+sa):(an+h+1) .

h+1 Ve
Pr[r, < oco]F(v,) < (h+mna) (m) '

Since a < 1, we can make this smaller than any required positive number by
choosing n = b(vg) sufficiently large. We may therefore choose the function b :
Vo — N so that

Therefore

Z Pr[game ends at v] F(v) < 1/2.
veY;
Since F < 3/2 on Yy, this implies ur(zo) < 2 < 3 = w(xo).

Let u, be the linear interpolation of u; to the edges. By Lemma [[.T] u; is discrete
oo-harmonic. It follows that in the II-favored e-tug-of-war game, for every § > 0
and ¢ € (0,1/2), player II can play to make wu,(x:) + 27!§ a supermartingale.
Consequently, Lemma [3.3] implies that the value of the continuum game is bounded
by w1 on the vertices. Since the continuum value is AM on X \Y, by Theorem [[.4]
this proves our claim that the assumption sup F' < oo is necessary for uniqueness
to follow in the setting of that theorem.

5.3. Smooth f on a disk with no game value. The following example is a
continuum analog of the triangle example at the beginning of Section

Let X be a closed disk in R?, and let Y = 0X be its boundary. We now show
that for some smooth function f : X — R, the value uf for player I and the value
ufp for player II differ in e-tug-of-war with F' = 0 on Y. Not only are the values
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different, but the difference does not shrink to zero as € \, 0. There is a lot of
freedom in the choice of the function f, but an essential property, at least for the
proof, is that f is anti-symmetric about a line of symmetry of X.

It will be convenient to identify R? with C, and use complex numbers to denote
points in R2. Let f be a C™ function such that:

(1) f > 1 inside the disk |z — 1| < 1/2,

(2) 0 < f <2 in the right half plane Rez > 0,

3) f=0in{z€C:Rez>0,|z—1] > 11/20}, and
(4) f is anti-symmetric about the imaginary line.

Let R > 2 be large, let X = {2 : 2] <R}, Y ={z:]2l=R}and F=0onY.
Consider € > 0 small. We want to show that for an appropriate choice of R, then

5.1 liminf [|uf — u5 || > 0.
(5.1) 121\161 luf — ufrlloo >

Indeed, suppose that this is not the case. Let § > 0 be small, and suppose that
luf — ufplloc < 0. Symmetry gives uf(z +iy) = —uf(—z +iy). The assumption
[|uf —ufl|oo < O therefore tells us that |uf(z+iy)+uf(—x+iy)| < 0. In particular,
|uf| < 2§ on the imaginary axis. We now abbreviate w = uf. Clearly w > —6 on
{z€ X :Rez>0} and w < on {z € X : Rez < 0}. By considering strategies
which pull towards the imaginary axis and then using whatever strategy gives a
value in [—24, 2], it is easy to see that |w| = O(1) (as usual, f = O(g) means that
there is some universal constant C' such that f < Cg) and that |w| < O(6 +¢) in
{z € X :|Rez| < 2¢}, say. (See, e.g., the proof of Lemma [BHl) It is then easy to
see that there is a constant ¢; > 0, which does not depend on R and € (as long as €
is sufficiently small and R > 2, say), such that w > ¢; on the disk |z — 1| < 3/4 and
w < —c¢; on the disk |2+ 1] < 3/4. Since w is nearly anti-symmetric, it is enough to
prove the first claim. Indeed, a strategy for player I which demonstrates this is one
in which she pulls towards 1 until she accumulates a payoff of 1. If successful, she
then aims towards the boundary Y, but whether successful or not, whenever the
game position comes within distance € of the imaginary axis, she changes strategy
and adopts an arbitrary strategy that yields a payoff O(6 4 €). We assume that ¢
and e are sufficiently small so that the O(J + €) term is much smaller than ¢;.

It now easily follows from Theorem that |w(z)| < O(1) 2|72 + O(6 + ¢).
Consequently, there is some constant r; > 2 such that |w| < ¢;/100n {z € X : |z| >
r1}, provided that € + ¢ is sufficiently small. Set L = ¢1/(871), and let Zp = Z¢§
be the set of points z € X such that

sup{w(2’) : 2’ € B,(e)} —inf{w(2’) : 2’ € B,(e)} >2Le.

Since |w| < ¢;/100n |z| =y and |w| > ¢ on S := {|z—1| < 3/4}U{|z+1]| < 3/4},
it follows that every path in the graph (X, E.) from S to Y must intersect Z . (We
are assuming R > r1.) Let Z 1, denote the union of Z;, and all connected components
of (X \ Zp, E.) that are disjoint from Y.

We now claim that there is some ro > 71 (which does not depend on &) such
that Z;, C {|z| < 2} and therefore Z;, C {|z| < ro}. Indeed, if 21,2, € X satisfy
|21 — 22| < € and |z1] > 37y, say, then the strategies for either player of pulling
towards 29 and only giving up when the current position is within distance e of
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|z| = r1 show that

[w(z1) = w(22) Z sup{[w(2)] : [¢] 2 1} <

3
< _ 10.
|_‘Zl|—’l"1—2 ECl/

|Z1| — T — 2
This proves the existence of such an rs.

We now let player II play a strategy very similar to the backtracking strategy
she used in the proof of Theorem 2.2, which we presently describe in detail. Let
Zo,Z1,... denote the sequence of positions of the game. Assume that zo € Zy.
For each t € N, let j, ;= max{j e N:j <t z; € Zr}. Note that if j; < t, then
xj, € Zr,. By Lemma [[Tlinside {z € X : |z — 1| > 3/4, |z + 1] > 3/4} the function
w satisfies Asow = 0. If 2, € Z;, and player II gets the turn, she moves to some
2 € By, (¢) that satisfies w(z) < inf{w(z') : z € By, (¢)} +527""'. While if z; ¢ Zp,
and player II gets the turn, she moves to any neighbor z of x; that is closer (in the
graph metric) to z;, than z; in the subgraph G, of (X, E.) spanned by the vertices
LjrsLjy41ye-yLt-

Now consider the game evolving under any strategy for player I and the above
strategy for player II. Let d; be the graph distance from x; to z;, in G;. Set

t
my = w(xj,) +dieL+527" +Zf(:ck).
k=0

As in the proof of Theorem B2] it is easy to verify that w(z;) < my; and that m;, is
a supermartingale.

Let 7 be the time in which the game stops; that is, 7 := inf{t € N : 2, € Y}.
Assume that 7 < 0o a.s. Suppose that we could apply the optional stopping time
theorem. Then we would have

w(zo) > E[m,| = E[w(z;,) + 627 7] + ¢ LE[d,] + E [payoff].

Thus,
E [payoff] < O(1) — e LE[d,].

But d, > (R — r3)/e, because the Euclidean distance from Y to Zj is at least
R —ry. Since w(zg) is at most the supremum of expected payoffs under the current
strategy for player II and an arbitrary strategy guaranteeing 7 < oo for player I,
we obtain w(zg) < O(1) — R + ro. This contradicts our previous conclusion that
lw]leo = O(1), because we may choose r large.

How do we justify the application of the optional stopping time theorem? We
slightly modify the strategy for player II. So far, our analysis utilized one advantage
to player II in the calculation of w = uf; that is, that it is player I's responsibility to
make sure that 7 < co. Now we have to use the other advantage to player II, which
is that player II gets to choose her strategy after knowing what player I’s strategy
is. Let tp be the first time such that with the strategy which player I is using and
the above strategy for player II, the game terminates by time t; with probability
at least 1/2. The new strategy for player II is to play the above strategy until time
to, and if the game lasts longer, to use an arbitrary strategy which would guarantee
a conditioned expected future payoff of uf(z,,) = O(1). We may certainly apply
the optional stopping time theorem at time 7 A ty. This does give a contradiction
as above, because E[d,rt,] > (R — 12)/(2¢), and the contradiction proves our

claim (EJ)).
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5.4. Lipschitz g on unit disk with multiple solutions to A, u = g. Here we
construct the counterexample showing that if we omit the assumption inf f > 0,
in Corollary [L9, then it may fail. In the example, X is the unit disk in R?, Y
is its boundary, F' = 0, and f is Lipschitz and take values of both signs. The
example is motivated by and similar to the example of Section (.3l However, since
the assumptions of Corollary do not hold (obviously), we need to construct the
solutions u to A u = g not by using tug-of-war, but by other means. In fact, we
will use a smoothing of Aronsson’s function (d.J).

The following analytic-geometric lemma will replace the use of the backtracking
strategy for player II in Section (.3l The following notation will be needed. For
reUandu: R — Rlet

Lip,u := inf{Lipyyu: 2 € W C U, W open}.

Lemma 5.5. Let X be a length space, and let Fy, Fy be bounded Lipschitz real-
valued functions on a non-empty subset Y C X. Let uy and uy be the corresponding
AM extensions to X \Y. Fiz L > 0, and let Zy, := {x € X : Lip,u; > L}. Suppose
that Fy = Fy on Z; NY, that Lipy 7, F>» < L and

aup{F20) = 11(2)

(5:2) d(y, z)

:er\ZL,erL}gL.

Then u; = ug in Zp,.

We need a few simple observations before we begin the proof. Suppose that U
is an open connected subset of a length space X, that X \ U is non-empty, and
that /' : X ~\ U — R is Lipschitz and bounded. Let AU denote the set of all
points z € U such that there is a finite length path v C X where yNU # () and
YN\ U = {z}. Set U, := UUAU, and for two points z,y € U, let d.(z,y) = d¥ (z,y)
be the infimum length of paths v C U, joining x and y such that v N AU is finite.
Note that (Us,d.) is a length space. Also, since d. > d on U, x U, the restriction
of F to dU is Lipschitz. Consequently, this restriction of F' has an AM extension
u : U, — R with respect to d,. We claim that this is also an AM extension of F’
with respect to d.

Observe that for any Lipschitz function w : V' — R where V C X is open, we
have

Lipyw < (sup Lipww) \Y (Lipavw) .
zeV
(This can be verified by considering for every pair of distinct points z,y € V the

restriction of w to a nearly shortest path joining x and y in X.) Hence, to show
that v is AM with respect to d it is enough to prove that

(5.3) sup Lip,w < Lipyyw
zeV

holds for arbitrary open V' C U. Observe that for € U we have Lip,w = Lip,w,
where Lip* refers to d.. Since w is AM with respect to d.., we have Lip,w < Lipjy,w
for all z € V. Finally, Lipj,w < Lipgyw because d. > d on U, x U,. This
proves (53) and thereby shows that w is AM on U with respect to d. In particular,
we conclude that

(5.4) Lipy;, w = Lip,w
for the AM extension of F' to U.
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Proof of Lemma [0l First, it is clear that Zj, is a closed set. Let

Fu() = ui(z), z€Zp,
* Fy(z), ze€Y N Zp,

and let w : X — R be the AM extension of F, to X ~ (Y U Z1). We claim that
w is also an AM extension of F5 : ¥ — R to X \ Y. Since uniqueness of AM
extensions holds in this setting, this will imply w = us and complete the proof,
because w = uq on Zp,.

Let U be a connected component of X ~ Zr, and let d, = dV denote the
corresponding metric on U U dU. Note that Lingul < L, since Lip,u; < L
for v € X N\ Zp. By (B2) and the assumption Lipy ,, F» < L, it follows that
Llngu(YﬁU)F* < L. Thus, we get Lip,w = Lip,w < L for € U, which implies
Lip,w < Lforz € X \ Zr.

Now let V. C X Y be open. In order to prove that w is AM, we need to
establish (B3]). Without loss of generality, we assume that V is connected. If
VN Zg =0, then (.3) certainly holds, since w is AM in X \ (Z, UY).

Suppose now that VN Zy # (. Then Ly := Lipy,u; > L, by the definition of Z,.
Since u; is AM, by (5.4) with u; in place of w, V in place of U and d! in place of
dY, there is a sequence of pairs (xj,y;) in OV and a sequence of paths v; C VU v
from z; to y;, respectively, such that z; # y;,

oy (@) —w(y;)]

(5:5) j—oo  length(y;)

:Ll

)

and ; N AV is finite. For all sufficiently large j, |u1(x;) — u1(y;)| > L length(y;).
Hence v; N Zr, # 0. Let 2/ be the first point on «; that is in Zz, and let y; be
the last point on +; that is in Z. Note that d(z},z;)/length(y;) — 0 as j — oo,
because L < L = Lipyu;, (3] holds and [u(2) — u(z;)| < Ld(z},x;). (If at
some significant proportion of the length of 7; the function u does not change in
speed very close to Li, it will not have enough distance to catch up.) Similarly,
d(y;,y;)/ length(y;) — 0. Since sup,gz, Lip,ur < L and sup,gz, Lip,w < L
and u; = w on Zy, it follows that [ui(z;) — w(z;)| < 2 Ld(x;,2)) and similarly
u1(y;) — wly;)| < 2Ld(y;,y;). Thus, [w(z;) — w(y;)|/length(v;) — L1, proving
that Lipgyw > Lipyw, as needed. g

Our example is based on smoothing two different modifications of Aronsson’s co-
harmonic function G from {@I]). For L > 0 let Z;, be the set of points in R? \ {0}
such that |VG| > L. Define the inner and outer radii of Zp: Ry := sup{|z| : z €
Zp} and rp = inf{|z| : 0 # z ¢ Z}, and note that limy,_., Ry, = 0, while r;, >0
for every L > 0. Now fix some large L. Let u denote G restricted to the annulus
A ={2€R?:r./2 <|z] <1}. Let u;, j = 1,2, denote the AM function on Ay,
whose boundary values are equal to w on the inner circle and are j on the outer
circle, respectively. Lemma implies that u1 = u = ug on A N Zp, (provided
that L was chosen sufficiently large). Shortly, we will show that there is a function
v defined on the unit disk that agrees with u in Ay, and such that As,v = ¢ (in the
viscosity sense), where ¢ is a Lipschitz function. Assuming this for the moment, we
can then define v; = u; — j in Ay, and v; = v — j inside the disk |z| < r;/2. Then
vy and vy are both 0 on the unit circle, and both satisfy A, v; = g, providing the
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required example. It thus remains to prove

Lemma 5.6. For every ro > 0 there are Lipschitz functions g,v : R> — R such
that v agrees with G on |z| > ro and Axv = g holds in the viscosity sense.

Proof. Let
1/3

a(f) := { cos B (1 — | tan(h/2)|*/3)? }

" |1+ |tan(6/2)[4/3 + |tan(6/2)[8/3
be the angle factor of G in ([@I]). First, observe that a(f+7) = —a(d) and a(—0) =
a(f). Next, note that a(d) > 0 when 0 € (—n/2,7/2). We now verify that a(f) is
C* in a neighborhood of /2. Write

a(f) = cosd (1 + | tan(6/2)|*® + |tan(0/2)‘8/3)—1/3(1 — |t:zr;£99/2)|4/3)2/3.

The first two factors are real-analytic near 7/2. Setting ¢ = |tan(0/2)|?/3, which
is real-analytic near § = 7/2, allows us to rewrite the last factor as

(cos (9/2))_4/3 (1 — |tan(9/2)‘4/3)2/3 ~ (cos (9/2))_4/3 (1 — ¢?>2/3

1 —tan?(6/2) 1—¢3
—4/3 1+¢ \2/3
= (COS (9/2)) (m) ,

which is also real-analytic near § = 7/2. We conclude that a(#) is real-analytic at
every 0 ¢ wZ.

It is instructive to see that G is co-harmonic in R? \ {0}. Verifying A G = 0
away from the real line can be done by differentiation. At points where 8§ = 0,7 > 0,
we have VG/|VG| = (—1,0). At such points 902G = 92r~'/3 = 4r=7/3/9, and
indeed AL G = 4r=7/3/9 there. However,

(5.6) a(@) =1-16"136*2 —62/6 + 0(6°),

near § = 0. This implies that there is no C*° function u that satisfies u(r,0) =
G(r,0) and v < G in a neighborhood of (r,0). Thus, ALG = —o0.

We return to the proof of the lemma, and first establish that the lemma holds
when we only require that g be continuous, instead of Lipschitz. In this case, the
function v may be written as

(5.7) o(r,0) :== p(r) (\(r) a(8) + (1 — A(r)) cosb)
for appropriately chosen functions ¢ and A. The functions ¢ and A will be C*°, will
satisfy A(r) = ¢(r) = 0 in a neighborhood of 0 and ¢(r) = r=/3, X\(r) = 1 for all
r > ro/2. It follows that v is Lipschitz and that Ay v is C* away from the z-axis
and in a neighborhood of 0. It remains to check the behavior of A, v at points on
and close to the z-axis. Based on (5.6, we may estimate Ay v for 6 # 0 close to 0
and r > 0O:

4 )3 3 P(r,\, 0,0, X)

817 (¢)? 0 (')

where P is some polynomial. Let 71,175,735 satisfy 0 < r3 < ry <11 < 1r9/2. Choose
A(r) as a C* function that is 0 for r < ry, is 1 for r > rq, and is strictly monotone
in [rg,71]. Choose ¢(r) as a C* function that is 0 in [0, 3] and is r—1/3 for r > 5.
When r < rg, A =0, and hence A v is C* by (7). In the range r € [ra,71], we
use (B.8) to conclude that the limit as § — 0 of A v exists.

(5.8) Agov = " 0*/3 1+ 0(9),
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We now argue that there is a continuous function g such that A v = g in
the viscosity sense. Suppose that 1 is a C? function defined in a small open set U
containing the point zg = (r,0) such that the minimum of n—wv in U occurs at zy. We
will now perturb 7. For sufficiently small s; > 0 the function 71 (2) := n+s; |2 —20]?
is a C? function defined in U and zg is the unique minimum of 7, — v in U. If
s2 > 0 is chosen much smaller, then the function n3(z) = 1 (2) + sz y will still
satisfy that the infimum of 7y — v is attained in U. Moreover, that infimum cannot
be attained on the z-axis, because s;y is zero on the z-axis, Vy is not parallel
to the z-axis, and Vv exists. Since so and s; are arbitrarily small, we conclude
that Axon(z0) > lim, Av(z) as z tends to zp through a point not on the x-axis.
Thus, At v(z) > lim, Ayv(z). Similarly, AL v(z29) < lim, Ayv(2). This proves
Asv = g, where g is the continuous extension of A v off the xz-axis to the whole
plane.

If we want g to be Lipschitz, we need to eliminate the #2/3 term in (5.8). Define

a1(0) == —16"3(a(6) — cos O — (1/12) sin®26) ,
as(0) := cos @ + (1/8) sin? 26,
az() := (1/4) sin®26.

Then near 6 = 0 we have

a1(0) = 0%+ 0(0%),
az() =1+ 0(6%),
as(f) = 62 + 0(6%).

Set
(5.9) v(r,0) := A1(1) a1(0) + Aa(r) az(0) + A3(r) as(6),
where A1, Ao and A3 are to be chosen soon. A calculation shows that near § = 0 we
have
64 \3
A —\ 1
R RETYSVAE

16, 64 A7 — 16271 N (N)3 42772 A (A5)2 (312 NY 4+ 37 A5 —10 A3) 61540(6).

729 76 (X\})*
Of course, when A1, Ay and A3 are chosen so that v = G, all the terms on the right
hand side vanish. Our goal is to choose these functions so that the following holds:

(1) for r > rg we have v = G,

(2) when r is sufficiently small, we have v = 0,

(3) the 6%/3 term vanishes identically,

(4) we don’t have a blow up due to \; = 0, and finally

(5) the functions A; are C'™°, say.
This is not hard. Fix rq,r9,73,74 such that 0 < 7y < r3 < 19 < 11 < 1r9/2. For
r > 71, we choose the \; so that v = G. In particular, Ay = r~1/3 in this range.
In the range r > r3 we maintain Ay = r~1/3. The function \; is chosen so that
throughout [r3, 2] we have A\; = A}, while A\; does not vanish in [rz,r;]. This is
possible, because X, < 0 for r > r3 and A\ = —16~Y3 < 0 at r = r;. For every
r € [r3,m1], A3(r) takes the unique value for which the #2/3 term vanishes. Since \;
and A, do not vanish in the interval, it is clear that such a choice for A3 is possible
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and A3 is C'°° provided that A\; and Ay are also C'°°. Throughout r < ry we take
A1 = A,. This allows us to simplify the expression for A, v in this range, to obtain
64 )\, 416 27072 X3 — (64 + 8173) Ny + 8174 \J 02/3 |
8174 729 r6

Now the denominators cannot vanish before » = 0. Thus, A3 takes care to make
the #2/3 term vanish while Ay evolves to become zero throughout r < r4. This
completes the proof. O

Asov = \J +

0(9).

6. VISCOSITY SOLUTIONS AND QUADRATIC COMPARISON IN R"

In this section we prove Theorem [[.7] which states that in bounded domains in
Euclidean space R™, u is a viscosity solution of A, u = g iff u satisfies g-quadratic
comparison. The following lemma will be useful in that proof. Let D?p(x) denote

the Hessian matrix (8@‘6_7'()0(1:))1':17”.7”

Jj=1,...,n"

Lemma 6.1. Let ¢ be any real-valued function which is C? in a neighborhood of
xo € R™ and satisfies V() # 0. Then for every § > 0, there exist quadratic
distance functions 1 and po such that:

(1) p1(zo) = @) = w2(x0); Vo1 (z0) = V(o) = Vipa(20).

(2) 0 < |[Asopi(zo) — Acop(zo)| < & for i € {1,2}. Also, as quadratic forms,
D%py(xg) strictly dominates D?p(xg), which in turn strictly dominates
DZ(pl(.IQ). _

(3) Consequently, p1 < ¢ < @2 at all points x # xg in a neighborhood U of .

(4) @1 and @o are centered at z; and za, respectively, with 0 < |z; — x| < & for
i€ {1,2}.

(5) In a neighborhood of xq, the function 1 is x-decreasing in the distance from
z1 and o is *-increasing in the distance from zo.

Proof. We begin with preliminary calculations about the quadratic distance func-
tion @, p(z) = alz|® + b|z|, centered at the origin. Fix some z # 0. Let v = z/|x|
be the unit vector in the z-direction and vo be any unit vector orthogonal to v.
Write M = M(z) = D?*pq ().

Then direct calculations show:

(1) Vap(z) = (2a]z| + b) v.
(2) vI'Mv = 2a.

(3) vEMvo = 2a + blz| L.
(4) vEMv = 0.

(5) Accpap(z) = 2a whenever Vo, p(z) # 0.
Of course, it is enough to complete this calculation in dimension two when x = (1, 0)
and ¢ = 1 and to deduce the general case by symmetry.
We now construct the ¢o described in the lemma (the construction of ¢; is

similar). We will take 2o = 2o — 7;%33\ for some small value of v > 0 (specified

below) and write @o(x) = @qp(x — 22) +c¢, where we first choose a to be an arbitrary
real with the property that 0 < 2a — Ay p(zg) < J, we then choose b so that
Va(zo) = V(xo) and we then choose ¢ so that pa(zo) = p(x0). We must now
show that the o thus constructed satisfies the requirements of the lemma.

We can compute b explicitly in terms of a, xg, V(zo), 7, and 2y using the
relation Vo (xg) = (2ay + b) ‘ig:zg‘ = Vp(zp). As ~ tends to zero, b tends to
V(o)
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The description of D?p, () given above implies that if v = (g — 22)/|z0 — 22
and vp is a unit vector orthogonal to v, and M = D2<pa7b(x0), then

(1) vI'Mv = 2a.
(2) vEMvo = 2a + by~
(3) vEMov = 0.

Note that x := vIMvo = 2a + by~ = 771 |Vip(z0)| tends to oo as v ™\, 0.
Let M’ := D?p(x¢). We claim that by choosing + sufficiently small we can make
sure that M dominates M’ as a quadratic form (or any other fixed quadratic form
satisfying vI' M'v < 2a, for that matter). Let C' := sup{wd M'w; : wo,w; €
R", Jwo| = |wy| = 1} and a’ := vT' M'v/2 < a. If w € R™ is non-zero, we may write
w = av+ wo, where a € R and wp is orthogonal to v. Then

w'M'w <2d o®+2Calwo|+ C |lwol*.

On the other hand w” Mw = 2a a®+x |wo|?. Since 2C a|wo| < 5% a?+C" jwo|?
for some constant C’ = C'(C, a,a’), the domination follows from lim,\ o x = oc.
This constructs @9 with the required properties. A similar construction applies to

P1- O

Proof of Theorem [Ill Let xg € U and suppose that u satisfies g-quadratic com-
parison in a neighborhood of zy. Let ¢ be a C? real-valued function defined in a
neighborhood of zy. Suppose that Vi(zg) # 0 and ¢ —u has a local minimum at xg.
The above lemma implies that for every § > 0 there is a quadratic distance function
po(z) = alz—2|? + b |z — 2| such that po(x) — p(x) > @a(z0) — p(x0) for all z # x¢
in some neighborhood of zp, A2 < A+ and s is *-increasing in a neighbor-
hood of xy. Since @ —u has a strict local minimum at xg, it follows by g-quadratic
comparison that arbitrarily close to xq there are points = for which a > g(z)/2. By
continuity of g, this implies a > g(z¢)/2. That is, Accpa(zo) > g(zo). Since § > 0
was arbitrary, this also implies Ao @(x0) > g(xo).

Now we remove the assumption that V() # 0 and assume instead that p(z) =
alz—x|? +o(|r — z0|?) as * — xg. If @ > 0, we may take po(z) = (a+6) |v — z0|?,
and the same argument as above gives A, ¢(xg) > g(zg). Now suppose a < 0 and
let § € (0,]al). In this case, we have to modify the argument, because g2 is not
*-increasing in a neighborhood of zy. Recall that ¢ — u has a local minimum at
xo and @s — @ has a strict local minimum at xy. Therefore, ¢ — u has a strict
local minimum at zg. Let r > 0 be sufficiently small so that po(z) — u(z) >
w2(zo) — u(xo) = —u(xrg) on {r € R™ : 0 < |z — a9 < r}. By continuity, for
every n € R™ with || sufficiently small po(z + 1) — u(z) > —u(xg) for every
x € OBy, (r). Fix such an 7 satisfying 0 < |n| < r, and let z, be a point in By, (r)
where po(x + 1) — u(z) attains its minimum. Since

(
wa(xo + 1) —u(z) < —u(xo) < inf{apg(x +n) —u(z) : x € 0By, (T‘)},
it follows that . ¢ 0By, (). On the other hand, x, # z¢ — 7, because
©2((xo —n) + 1) — u(wo — 1) = —u(zo — 1) > —p2(xo — 1) — u(w0) > —u(x0)

Therefore, Vs (x.) # 0. The first case we have considered therefore gives g(x,) <
Asopa(ze) =2 (a+0). Since 6 € (0, |a|) was arbitrary, continuity gives g(zo) < 2a,
as required. Thus, we conclude that AX u > g. By symmetry, A u < g, and hence
u is a viscosity solution as claimed.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TUG-OF-WAR AND THE INFINITY LAPLACIAN 207

This completes the first half of the proposition. For the converse, suppose that
u is a viscosity solution of Aju = g. Let W € W C U be open. Suppose that
o(x) = alr — 2> + b|r — 2| + ¢ is a x-increasing quadratic distance function in
W, ¢ > u on OW and there is some xg € W such that u(zg) > ¢(zg). For all
sufficiently small § > 0 we still have ps(x) := @(z) — 5|z — 2|*> > u on OW. Let
z, be a point in W where ¢;(z) — u(z) attains its minimum. Note that z, ¢ OW,
since @g(zo) — u(zo) < w(xo) — u(zg) < 0. Consequently, g(z.) < AL u(z,.) <
Asops(zy) = 2(a —§). Thus, 2a > infy g. Therefore, u satisfies g-quadratic
comparison on W, and the proof is complete. ([l

7. LIMITING TRAJECTORY

7.1. A general heuristic. For every ¢, when both players play optimally in e-tug-
of-war, the sequence {z}} of points visited is random. Do the laws of these random
sequences, properly normalized, converge in some sense to the law of a random
continuous path as ¢ tends to zero?

We give a complete answer in only a couple of simple cases. However, we can
more generally compute the limiting trajectory when u is C? in a domain contained
in R™ and the players move to maximize/minimize u instead of u¢; we suspect but
cannot generally prove that the limiting behavior will be the same when the players
use u°.

Consider a point z in the domain at which Vu(zg) # 0. If € is small enough,
then Vu # 0 throughout the closed ball B (), so the extrema of u on the closed
ball B.(z¢) lie on the surface of the ball. Then at any such extremum z, by the
Lagrange multipliers theorem, z — zy = AVu(x) for some real A = O(e). Since
w is C?, we have Vu(x) = Vu(zo) + D?u(zo)(z — z0) + o(€), where D?u(zg) =
(818ju(x0))32112 We define n = Vu(zg), H = D?u(x), and ¢ = nT Hn/|n|?.
Then x —xo = AM(n+ H(x —x0) +0(g)), where A = O(e). If we solve this with small
A, we find

x—x9= (I - H) "X+ o(e)) = Ay + N2Hn + o(e?).

Then €2 = |z —z0|? = |n]*A% +2¢|n|* A3 + 0(?), and thus +e = ||\ +c|n|A? +o(e?),
and so A = +¢/|n| — e%¢/|n|? + o(¢?). Hence,

x —wo = xeln| T+ 20| (H — D)y + o(e?).
When v is C? and has non-zero gradient in a domain, this suggests the SDE
(71) dXt = T‘(Xt) dBt +5(Xt) dt,

where 7(X;) = |Vu(X;)| 71 Vu(X;) and s(X;) is equal to |[Vu(X;)| 72D?u(X;) Vu(Xy)
minus its projection onto Vu(X;) (so that r(X;) and s(X;) are always orthogonal).
Now It6’s formula implies that, as expected, u(X;) — 3 fst=o Aou(Xs)ds is a mar-
tingale. In particular, when w is infinity harmonic, u(X}) is a martingale.

All of the above analysis applies only when players make moves to optimize u
instead of u®, as they would do if they were playing optimally. This difference is
what makes the calculation of the limiting trajectory a heuristic, except in a few
special cases as described in the next subsection.
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7.2. Special cases. The above analysis does apply to optimally played games in
a couple of simple cases for which u = u®. Let X = R? and let Y C X be the
complement of a bounded set. Then the following are infinity harmonic functions
u which satisfy both Aou =0 and A5 ju = 0:

(1) u(v) is the distance from v to a fixed convex set whose e-neighborhood is
contained in Y.

(2) wu(v) is the argument of v on a 2e-neighborhood of X \Y, and defined
arbitrarily elsewhere (here we assume that the 2 e-neighborhood of X \Y
does not contain a simple closed curve surrounding 0, so that the argument
can be defined there).

(Due to boundary errors the above need not hold when X \Y is a bounded domain
and Y is its boundary.) In the first case, X; is simply a Brownian motion along a
(straight) gradient flow line of u. In the second case, X; is a diffusion with drift in
the —X; direction and diffusion of constant magnitude orthogonal to X;.

Crandall and Evans [10] have explored the following question in some detail, and
it has recently been answered affirmatively by Savin [23] when n = 2: is every oo-
harmonic function on a domain in R™ everywhere differentiable? This question can
be rewritten as a question about the amount of variation of the optimal direction of
the first move (as a function of the starting point) in e-tug-of-war. An affirmative
answer might be a step towards a more complete analysis of the limiting game
trajectories when f = 0 and when u is not smooth, since it would at least ensure
that r(X;) is well defined everywhere that the gradient is non-zero.

8. ADDITIONAL OPEN PROBLEMS

(1) If U € R™ is open and bounded, F : U — R Lipschitz, and g : U —
R Lipschitz, is there a unique viscosity solution for A, u = g 4+ ¢ with
boundary values given by F for generic ¢ € R? Here, generic could mean
in the sense of Baire category, or it could mean almost every, or perhaps
this could be true except for a countable set of c.

(2) Does Theorem [[.8 continue to hold if F' and f are merely continuous instead
of uniformly continuous? Can the inf |f| > 0 requirement be replaced with
f >0 (or f <0) when X has finite diameter? When solving Au = g
on bounded domains in R™, can the condition that g be continuous be
replaced with a natural weaker condition (e.g., semicontinuity or piecewise
continuity)?

(3) In Section we gave a triple (XY, F) with F positive and Lipschitz for
which the continuum value of tug-of-war is not the unique AM extension
of F.

Is there an example where X is the closure of a connected open subset
of R® and Y is its boundary? In particular, let X be the set of points in R?
above the graph of the function |x|'*9, let Y be the boundary of X in R?,
and let F(z,y) =y on Y. Is y the only AM extension of F' to X? What is
the value of the corresponding game? (Note added in revision: Changyou
Wang and Yifeng Yu (personal communication) have recently shown that
y is the only AM extension of F' to X. The proof turned out to be rather
simple.)
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(4) Suppose that v : U — R is Lipschitz and g;,¢g2 : U — R are continuous
on an open set U C R™ and that Au = g1 as well as A u = go, both in
the viscosity sense. Does it follow that g3 = g2? (Note added in revision:
Yifeng Yu [25] proved this in the case n = 2.)
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