
TUI, GUI, HUI: Is a bimodal interface truly worth the sum of
its parts?

Amanda Strawhacker, Amanda Sullivan, and Marina Umaschi Bers
The DevTech Research Group

Tufts University
105 College Ave Medford, MA 02144

{amanda.strawhacker, amanda.sullivan, marina.bers}@tufts.edu

ABSTRACT
This study aims to explore the relative differences in effi-
cacy of three different computer programming interfaces for
controlling robots designed for early childhood education.
A sample of N=36 kindergarten students from 3 different
classrooms participated in this research. Each classroom
was randomly assigned to one of the following three condi-
tions: a tangible user interface, a graphical user interface,
and a hybrid user interface. Comparisons between the three
conditions focus on which interface yields better understand-
ing of the programming concepts taught. Implications for
designing developmentally appropriate computer program-
ming interfaces for early childhood education are discussed.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces; K.3.1 [Computers and Education]: Computer
Uses in Education

Keywords
programming interfaces, robotics, early childhood, tangible
programming, kindergarten

1. INTRODUCTION
While the majority of research on robotics and computer
programming in education focuses on middle school and be-
yond, teaching these subjects during the foundational early
childhood years can be an engaging and rewarding expe-
rience for young learners [1]. Furthermore, when children
program, their role in the learning process changes from pas-
sive listener to active, self-directed learner, a learner with a
personal purpose [10]. Previous research has shown that
children as young as 4 years old can build and program sim-
ple robotics projects [4; 5; 11], and that kindergarteners can
successfully build computational thinking skills through en-
gineering and computer programming activities [2]. In turn,
learning how to program has been shown to have a positive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
IDC ’13, June 24-27 2013, New York, NY, USA
Copyright 2013 ACM 978-1-4503-1918-8/13/06$15.00.

impact on young children’s sequencing abilities, a founda-
tional math and literacy skill set [8; 9]. Children exercise
sequencing when organizing words in a sentence, sorting col-
ors, recognizing patterns, and performing procedural think-
ing tasks from a variety of cognitive domains [9].

In order to make programming robots developmentally ap-
propriate and therefore more accessible in early childhood
education, the DevTech Research Group at Tufts University
developed a unique programming language called CHERP
(Creative Hybrid Environment for Robotic Programming)
[3; 7]. The CHERP software allows children to create phys-
ical programs using interlocking wooden blocks or onscreen
icon-based programs. The CHERP language is composed
of easily-understood icons that represent actions for a sim-
ple robot to perform. For example, a block with the word
“SPIN” and a picture of an arrow swirling in circles will
make the robot spin around. Based on the way the wooden
blocks and the onscreen icons fit together, children never
encounter a syntax error. To make testing easier, programs
can be compiled and sent to the robot in a matter of seconds
[3].

CHERP was inspired by early ideas from tangible program-
ming [11] which have inspired decades of exploration and
a variety of tangible languages for children in research labs
around the world [12; 13]. In contrast to graphical program-
ming, which relies on pictures and words on a computer
screen, tangible programming uses physical objects to rep-
resent the same concepts. CHERP provides a system that
allows children to construct physical computer programs by
connecting interlocking wooden blocks. CHERP’s wooden
blocks contain no embedded electronics or power supplies.
Instead, children use CHERP’s blocks to create the program
for their robot and then take a picture of it using a stan-
dard webcam connected to, or embedded within a computer.
The picture is converted into digital code using the Top-
Codes computer vision library and downloaded to the robot
[3]. Although CHERP can be used to program a variety
of educational robotics kits, this study uses the commer-
cially available LEGO R©WeDoTMrobotics construction set
(see Figure 1).

With CHERP, children can choose to use either the tangi-
ble wooden blocks, the graphical onscreen program, or some
combination of both of these interfaces, in order to pro-
gram their robots. Anecdotal evidence from pilot studies
(including researcher observations and conversations with

309

Short Papers IDC 2013, New York, NY, USA

Figure 1: A sample robot with tangible and graph-
ical interfaces

classroom teachers) indicate that problem solving strategies
employed by students, as well as their subsequent mastery
of programming concepts, may be directly influenced by
the interface. However, as of yet, little research has been
done comparing student learning using these different in-
terfaces. The present study fills in this gap by examining
students’ mastery of basic computer programming concepts
across three CHERP interfaces: tangible, graphical, and hy-
brid.

2. METHOD
The purpose of this study is to compare student learning us-
ing three different CHERP programming interfaces: a Tan-
gible User Interface (TUI), Graphical User Interface (GUI),
and Hybrid User Interface (HUI).

2.1 Sample
Our sample was derived from three Kindergarten classes
from a public early childhood school in urban Boston. The
school hosts Montessori-style classrooms as well as traditional-
education ones. According to the 2012-13 Massachusetts De-
partment of Early and Secondary Education Accountability
Data Report, the student body (200 children in PreK-2nd
grade) is 72.5% Hispanic, 69% Limited English Proficient,
65% Free or Reduced Lunch, and 15.5% Special Education.
All participating classrooms were inclusive education set-
tings, but due to confidentiality reasons, the school could
not release information about specific students with cogni-
tive, behavioral, or learning disabilities. For this reason, we
cannot address the number and distribution of students with
any type of disability in our sample.

2.2 Procedure
A sample of N= 36 Kindergarteners in three classes at one
public, early childhood school in the Boston area partici-
pated in this research. Each classroom completed the same
13 hour introductory robotics and programming curriculum,
taught by the same research assistant over 13 one-hour ses-
sions. Children worked in groups of 2-3 to complete different
programming tasks assigned throughout the lessons. Over
the 13 sessions, two programming units were implemented
to present two specific programming concepts to the chil-
dren: sequencing and repeat-loops. Each unit was built
around a programming project that encouraged students to
use the skills covered in the lessons (for example, the se-
quencing unit project challenged students to program their

robots to “dance” the Hokey Pokey). The robotics curricu-
lum was taught as one of their regularly scheduled “Special”
classes (e.g. music, art, etc.), and was tailored to align with
a curriculum on animals that was already being taught in
the kindergarten classrooms. The three participating class-
rooms were assigned to either the TUI, HUI, or GUI condi-
tion.

2.2.1 TUI Classroom
The TUI classroom consisted of N=15 kindergarten stu-
dents in a traditional public school setting. Children in
this group completed the programming curriculum described
above using only the CHERP tangible wooden blocks. Be-
cause CHERP requires a computer to upload and compile
the tangible programs to the WeDoTMrobots, there were
two stations set up in the classroom where children could
upload their tangible programs and observe their robots per-
forming the actions. At the testing stations, children were
not permitted to edit their programs using the computer,
although they were able to observe the teachers using the
computers embedded webcam to upload/compile their tan-
gible programs.

2.2.2 GUI Classroom
The GUI classroom consisted of N=7 kindergarten students
in a Montessori instructional setting. The sample size for
this group was smaller than that of the TUI and HUI groups
because these seven children represented only a subset of
their Montessori classroom. Montessori learning environ-
ments typically incorporate mixed-aged groups. For the
purpose of this study, we used only those children aged 5-6
years, the same age as the children in the other two class-
rooms. The GUI class completed the programming curricu-
lum described above using only the CHERP graphical inter-
face. Each group of children shared one computer for testing
and programming their robot.

2.2.3 HUI Classroom
The HUI classroom consisted of N=12 kindergarten students
in a traditional public school setting. They worked in small
groups using both the graphical and tangible programming
interfaces. At each groups work station, they shared one
computer and a large supply of tangible programming blocks
for building, uploading, and testing their programs. Chil-
dren could freely switch between the two interfaces at any
point in the programming task and could even use both
while working toward a single goal. Unlike the TUI group,
which used teacher-managed testing stations to test their
tangible programs, children in the HUI classroom used their
groups computer to compile and test all programs on their
robot.

2.3 Assessments
Children worked in groups during their lessons, but we wanted
to measure each individual child’s level of programming knowl-
edge during the final assessments. In order to do this, all
students completed programming tasks called “Solve-Its.”
These Solve-Its, developed by the DevTech Research Group,
were designed to address children’s understanding of the
concepts taught in the curriculum. The tasks were com-
prised of two sequencing tasks (one hard and one easy), two

310

Short Papers IDC 2013, New York, NY, USA

repeat loop tasks (one hard and one easy), and a culminat-
ing task. For four Solve-Its, students were given all the pro-
gramming icons they would need to complete the challenge.
In the culminating task, children were given extra instruc-
tions, and told that they would need to select the correct
components to solve the task. Each Solve-It had only one
correct answer and childrens’ programs were scored on how
precisely they matched this answer. In order to determine
the difficulty of the tasks and the accessibility of the stories,
each Solve-It was pilot-tested with Kindergarten children
from a mixed age Montessori classroom that had completed
a robotics and programming curriculum.

The Solve-Its were presented as games in which the re-
searcher tells the children a story about a robot. Work-
ing individually, children used paper CHERP programming
icons to sequence the program described in the story. Prior
research has demonstrated that young children have an eas-
ier time building a sequence when there is a context that
they can understand and relate to from their own experi-
ence [6; 9]. Because of this, all of the Solve-Its used real-
world examples that a young child would be familiar with.
For example, one Solve-It asked children to recall the song
“Wheels on the Bus,” as part of the context of the story.

3. RESULTS
Statistical comparisons were drawn between the three class-
rooms (TUI, GUI, HUI) in order to explore whether the pro-
gramming interface was a mediating factor on student per-
formance on individual programming tasks (Solve-It). De-
scriptive statistics show that the TUI group had a higher
proportion of correct answers for all but one of the pro-
gramming tasks (see Table 1).

A one-way analysis of variance (ANOVA) was performed
in order to compare differences between the three interface
groups (TUI, GUI, HUI) on Solve-It scores. Statistically
significant differences between the groups were found only
on the easy sequencing task [F(2, 21) = 4.409, p = 0.025].
There were no significant differences between the classes on
any of the other tasks.

Post-hoc testing was used to further explore the differences
between classrooms on the easy sequencing task. Tukey Test
results indicated that although there was no significant dif-
ference between the TUI and HUI classrooms, or HUI and
GUI classrooms, there was a significant difference between
the TUI and GUI classrooms (p¡.05) on the easy sequencing
task.

4. DISCUSSION
A cursory glance at the data reveals that the group with the
tangible interface curriculum outperformed both the graphi-
cal and the hybrid groups in terms of easy and hard sequenc-
ing assessments, easy repeat loop assessments, and the cul-
minating assessment . The GUI group performed the highest
of the three on the hard repeat loop assessment, but rela-
tively poorly on all the rest. The HUI group averages did
not exceed the averages of the other two classrooms on any
of the five Solve It tasks.

It was interesting to see that in the HUI group, having the
option to choose their interface did not seem to provide
the children with any educational advantage, and actually
seemed to hinder their understanding of some programming
concepts. For example, they scored the lowest averages of
all three groups on the hard sequencing Solve It, which indi-
cates that their understanding of long (5-instruction) chains
of ordered commands was not as well developed as either the
GUI or the TUI group. They also performed the worst of
the three groups on the culminating task, displaying a lack
of understanding about repeat loops generally, and espe-
cially about when to be selective in choosing programming
instructions. One possible explanation for these results is
that the HUI group was so inundated with interface options
for building their programs that they had a harder time
learning to par down programs to necessary instructions.
This could also have led them to have difficulty distinguish-
ing between multiple program instructions as their robot
performed them, leading to a disordered understanding of
sequential actions.

As evidenced by their assessment scores, the TUI group de-
veloped a deeper understanding of the core concepts of se-
quencing a program and repeat-loop syntax. This could be
due to the different instructional styles of the regular teach-
ers in each group, or possibly the proportion of inclusive-
education students in each group. However, another ex-
planation is that the simultaneous introduction of a dual
interface was simply overwhelming for the HUI group and
impeded their ability to focus on the programming concepts
behind the tools. The TUI group was able to interact with
an interface that leveraged already-familiar blocks, and con-
sequently the students may have been able to devote more
attention and cognitive resources to understanding the re-
lationship between the blocks and the movements of their
robots.

The low scores of the GUI group served to underscore the
importance of having an alternative way to make the pro-
gramming ideas concrete. Even introducing something as
low-tech as wooden blocks or pieces of paper with program-
ming icons on them can enable the children to experiment
with program building. The manipulability of tangible inter-
faces apparently helps children to mentally model abstract
programming ideas, and the more time spent using tangible
interfaces, the deeper their demonstrated learning.

4.1 Limitations
Part of the low performance by the GUI group may be ex-
plained by the fact that the students in this classroom usu-
ally received Montessori instruction, which is highly focused
on tangible learning environments. In this study, however,
these children were not exposed to the tangible interface at
all, which may have been challenging for them. Also, since
Montessori classrooms are mixed-age and our study called
only for participants aged 5-6, the GUI group was composed
of only those members of the Montessori class who fit the age
criteria, approximately one-third of their total classroom.
The HUI and TUI groups, both traditional education style
classrooms, were each made up of an entire classroom, and
not just a portion of one.

Another possible limitation of this study was the inability

311

Short Papers IDC 2013, New York, NY, USA

Easy Sequencing Hard Sequenging Easy Repeats Hard Repeats Culminating Task
TUI 73.3% 73.3% 46.7% 0% 33.3%

(n=15) (n=15) (n=15) (n=15) (n=15)
HUI 66.7% 33.3% 41.7 % 0% 18.2%

(n=12) (n=12) (n=12) (n=12) (n=11)
GUI 12.5% 50% 66.7% 16.7% 16.7%

(n=7) (n=6) (n=6) (n=6) (n=6)

Table 1: Percentage of Correct Answers on Programming Task by Interface

to distinguish which students in the sample had cognitive
or behavioral disorders. The school from which the sample
was derived is committed to inclusive education, and ap-
proximately 15% of the student body is diagnosed with one
or more cognitive or behavioral disorders. All three groups
included students with varying degrees and types of learning
disabilities, but the specific identities of these children were
not revealed to the instructing researchers.

Finally, all three classrooms had very different group dynam-
ics. The individual styles of each lead teacher and the per-
sonalities of the children resulted in different emphases on
classroom expectations and priorities (i.e., high self-regulation,
respectful interactions with adults and peers, creative ex-
pression). Because of this, the three groups had each culti-
vated a distinct classroom culture, which contributed to the
learning environment of each student.

4.2 Future Work
The work presented in this paper provides exploratory find-
ings related to childrens experiences and programming con-
cept mastery using various CHERP interfaces. In order to
gather more generalizable data on concept retention and
classroom experiences, further research should include a larger
sample size, collect longitudinal data, and examine both in-
dividual learning trajectories and classroom trends.

As part of the National Science Foundation funded Ready
for Robotics Project (DRL-1118897) the DevTech Research
Group is currently expanding the present study in several
ways. Case study data is currently being collected from
the children in this study to examine common and outlying
learning trajectories. Additionally, the curriculum is being
extended to include a unit in which all three groups com-
plete programming challenges using both interfaces. Data
collected from this wave of the study will highlight any order
effects based on which interface children were introduced to
first.

5. CONCLUSION
Prior research has demonstrated that young children can
master basic computer programming concepts. Perhaps more
importantly, new technologies can facilitate students’ problem-
solving abilities, computational thinking skills, and social-
emotional development. Research is essential to understand-
ing the impact of these new technologies on student learn-
ing. Future work should concentrate on both designing new
technologies for young learners and continuing to investigate
the most developmentally appropriate applications of those
tools.

6. FINANCIAL SUPPORT

This project received generous funding from the National
Science Foundation (NSF Grant No. DRL-1118897, DRL-
0735657).

7. REFERENCES
[1] M. U. Bers. Blocks, Robots, and Computers: Learning about

Technology in Early Childhood. New York, Teacher’s College

Press, 2008.

[2] M. U. Bers. The tangiblek robotics program: Applied

computational thinking for young children. Early Childhood

Research and Practice, 12, 2010.

[3] M. U. Bers and M. Horn. Tangible programming in early

childhood: Revisiting developmental assumptions through new

technologies. Greenwich CT, Information Age Publishing, 2010.

[4] M. U. Bers, I. Ponte, K. Jeulich, A. Viera, and J. Schenker.

Teachers as designers: Integrating robotics into early

education. Information Technology in Childhood Education,

pages 123–145, 2002.

[5] E. Cejka, C. Rogers, and M. Portsmore. Kindergarten robotics:

Using robotics to motivate math, science, and engineering

literacy in elementary school. Int. J. Eng. Educ., 22:711–722,

2006.

[6] R. Fivush and J. M. Mandler. Developmental changes in the

understanding of temporal sequence. Child Development,

56:1437–1446, 1985.

[7] M. S. Horn, R. J. Crouser, and M. U. Bers. Tangible

interaction and learning: The case for a hybrid approach.

Special Issue on Tangibles and Children, Personal and

Ubiquitous Computing, 16:379–389, 2011.

[8] E. Kazakoff and M. U. Bers. Programming in a robotics

context in the kindergarten classroom: The impact on

sequencing skills. Journal of Educational Multimedia and

Hypermedia, 12:371–391, 2012.

[9] E. Kazakoff, A. Sullivan, and M. U. Bers. The effect of a

classroom-based intensive robotics and programming workshop

on sequencing ability in early childhood. Early Childhood

Education Journal, 2012.

[10] S. Papert. Mindstorms: Children, Computers, and Powerful

Ideas. New York, Basic Books, 1980.

[11] R. Perlman. Using computer technology to provide a creative

learning environment for preschool children. Logo memo no 24,

page 260, 1976.

[12] H. Suzuki and H. Kato. Interaction-level support for

collaborative learning: Algoblock – an open programming

language. Proceedings Computer Support for Collaborative

Learning CSCL, pages 349–355, 1995.

[13] P. Wyeth. How young children learn to program with sensor,

action, and logic blocks. International Journal of the Learning

Sciences, 17:517–550, 2008.

312

Short Papers IDC 2013, New York, NY, USA

