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Tukey g-and-h Random Fields

Ganggang Xu1 and Marc G. Genton2

Abstract

We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random

fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexi-

ble marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range

of applications. The special formulation of the TGH random field enables an automatic search

for the most suitable transformation for the dataset of interest while estimating model parame-

ters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties

of the TGH random fields are investigated. An efficient estimation procedure, based on maxi-

mum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is

formulated. Kriging and probabilistic prediction with TGH random fields are developed along

with prediction confidence intervals. The predictive performance of TGH random fields is demon-

strated through extensive simulation studies and an application to a dataset of total precipitation in

the south east of the United States.

Some key words: Continuous Rank Probability Score; Heavy tails; Kriging; Log-Gaussian ran-

dom field; Non-Gaussian random field; PIT; Probabilistic prediction; Skewness; Spatial outliers;

Spatial statistics; Tukey g-and-h distribution.
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1 Introduction

Gaussian random fields are among the most popular tools for analyzing spatial data because they

can be simply characterized by a mean structure and a valid covariance function. Various para-

metric and nonparametric covariance functions have been studied in the literature and have proven

useful in practice, which further enhances the modeling power of Gaussian random fields. Un-

fortunately, Gaussianity is a strong assumption that is rarely met in reality. Data collected from

a wide range of applications often display strong skewness and heavy tails in their distributions;

for example, wind speed data (Zhu and Genton, 2012), temperature data (North et al., 2011), and

precipitation data (Marchenko and Genton, 2010), to mention but a few.

As a motivating example, we consider total precipitation data (in centimeters) in November

1994 over the southeastern United States. Longitude in the region under study ranges from −91.23

to −75.55 and latitude ranges from 25.02 to 37.38. The data are available at

http://www.image.ucar.edu/Data/US.monthly.met. Although there are 991 observations recorded

in this region, as illustrated in Figure 3(a), the locations with observed values still appear quite

sparse on the map. It is of great interest to create a precipitation map with a much finer resolution

based on the observed data from monitoring stations, which can be useful for revealing short and

long-term climate patterns. There are ongoing projects to create such climate maps for precip-

itation and temperature patterns on a regular basis, see, for example, the PRISM climate group

(http://www.prism.oregonstate.edu). To this end, it is critical to build geostatistical models that can

explain spatial or spatio-temporal variations in precipitation well. However, precipitation data usu-

ally do not have a marginal normal distribution (Allcroft and Glasbey, 2003; Johns et al., 2003;)

and special care must be taken to accommodate the skewness and potential outliers in the data.

Various approaches have been proposed to model non-Gaussian geostatistical data, such as
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skew-Gaussian processes (Zhang and El-Shaarawi, 2010; Genton and Zhang, 2012; Kim and

Mallick, 2012; Rimstad and Omre, 2014), scale mixing Gaussian random fields (Palacios and

Steel, 2006; Fonseca and Steel, 2011), log-skew-elliptical random fields (Marchenko and Gen-

ton, 2010), T-distributed random fields (Røislien and Omre, 2006), trans-Gaussian random fields

(Cressie, 1993; De Oliveira et al., 1997; Allcroft and Glasbey, 2003; Butler and Glasbey, 2008),

spatial copula models (Gräler, 2014) and non-Gaussian Matérn fields (Wallin and Bolin, 2015). Of

these methods, one particularly appealing approach is the trans-Gaussian random field obtained by

applying some non-linear transformations to the original data. Typically, Y(s), s ∈ Rq, q ≥ 1, is

said to be a trans-Gaussian random field if there exists a transformation, ψ(∙), so that

ψ{Y(s)} = ξ + X(s)Tβ + V(s) + ε(s), (1)

where ξ ∈ R is a location parameter, X(s) ∈ Rp is a vector of some observed covariates at location s,

β ∈ Rp is a vector of regression parameters, V(s) is a Gaussian random field with mean 0 and some

covariance function, and ε(s) is a Gaussian white noise process independent of V(s) with mean 0

and variance σ2
e . Common choices of transformation ψ(∙) include log-normal (De Oliveira, 2006),

square-root (Johns et al., 2003), Box-Cox (De Oliveira et al., 1997), and power transformations

(Allcroft and Glasbey, 2003). In principle, statistical analyses can be carried out on the transformed

data, ψ{Y(s)}, using any techniques available for Gaussian random fields, which adds significant

flexibility to the trans-Gaussian random fields when modeling real spatial data. However, it can

be difficult to find an adequate transformation ψ(∙), if not impossible. Furthermore, for a given

ψ(∙), some appealing properties of the latent Gaussian random field, V(s), may not be inherited

by the transformed random field, Y(s). For example, Wallin and Bolin (2015) pointed out that the

transformation ψ(∙) in (1) may induce dependence between the mean structure and the covariance

function of Y(s). As a result, even if V(s) is second-order stationary, the covariance function of Y(s)

2
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may still be nonstationary. Wallin and Bolin (2015) proposed non-Gaussian Matérn fields derived

from stochastic partial differential equations to model non-Gaussian spatial data. Although this

provides an interesting alternative, their approach is mathematically involved and its statistical

properties are much less understood than the trans-Gaussian random field; see Wallin and Bolin

(2015) for a detailed discussion.

Another challenge of modeling non-Gaussian spatial data lies often in the presence of potential

outliers. Although some moderate outliers can be accommodated by using a random field with

heavy-tailed marginal distributions, such as the Student-t distribution, there is no guarantee that

the suggested model will be flexible enough to cope with more extreme outliers, which in turn may

have significant impacts on the estimation of model parameters. Consequently, if one wishes to

conduct a probabilistic prediction/forecast of the distribution of some uncertain quantity at a spatial

location (Gneiting et al., 2007; Gneiting and Katzfuss, 2014), imprecise parameter estimates may

lead to appreciable deviations from the truth. Therefore, not only it is of great importance to

construct non-Gaussian random fields with more flexible marginal distributions, it is also important

to develop methods that can effectively identify extreme outliers that cannot be accommodated

well by the suggested model. Identifying spatial outliers in a systematic way can be challenging

because unlike the independent case, extreme outliers in a spatial random field are not necessarily

the largest or the smallest observations from that field. But rather, because of spatial dependence,

they are more likely to be some observations that appear to be significantly different from their

local neighbors. We will show how to identify extreme spatial outliers using our proposed method.

In this paper, we propose a new class of trans-Gaussian random fields named the Tukey g-and-h

(TGH) random fields, which have extremely flexible marginal distributions. The proposed model

is parameterized in a way such that all parameters in the transformation can be estimated together

with the covariance function of the latent Gaussian random field. This enables us to search for the

3

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

most suitable transformation for the observed data in a very large family of transformations. In this

sense, the TGH random field is more flexible than existing trans-Gaussian random fields based on

pre-given transformations. We will show that the TGH random field enjoys appealing statistical

properties and can be used to effectively identify extreme spatial outliers, an issue that has not been

well studied for existing trans-Gaussian random fields.

The rest of our paper is organized as follows. The probabilistic properties of TGH random

fields, such as second-order moments, are investigated in Section 2, whereas their estimation,

based on maximum approximated likelihood, is described in Section 3. Point prediction, also

called kriging, and probabilistic prediction with TGH random fields is considered in Section 4,

along with prediction confidence intervals. The results of Monte Carlo simulation studies of the

estimation and predictive performance with TGH random fields are reported in Section 5. An

application of our methodology to the aforementioned spatial precipitation dataset is presented in

Section 6. The article ends with a discussion in Section 7. Derivations of our theoretical results

are collected in the supplementary materials.

2 Tukey g-and-h Random Fields

2.1 Definitions

The g-and-h distribution was introduced by Tukey (1977) to model distributions that are severely

skewed and subject to large outliers. Tukey’s g-and-h transformation is

τg,h(z) = g−1{exp(gz) − 1} exp(hz2/2), (2)

which is a strictly monotone function of z when h ≥ 0 and g ∈ R. Here and in the sequel, for all

quantities involving g, their values for the case with g = 0 are defined as their limits attained when

g → 0. The random variable Y = τg,h{Z} is said to have a Tukey g-and-h distribution if Z follows

4
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a standard normal, N(0, 1), distribution. The first parameter, g, in (2) controls the skewness of

Y’s distribution, where g > 0 yields a right-skewed distribution and g < 0 makes the distribution

left-skewed. The second parameter, h, governs the tail behavior of Y’s distribution, with a larger

value of h indicating a heavier tail. Because of its flexible shapes, the Tukey g-and-h distribution

provides a powerful tool to model non-normal data; see, for example, Field (2004) and He and

Raghunathan (2012).

In this paper, we apply the Tukey g-and-h transformation to a Gaussian random field. More

specifically, let Z(s), s ∈ Rq, q ≥ 1, be a standard Gaussian random field, that is, E{Z(s)} = 0

and var{Z(s)} = 1, with some correlation function corr{Z(s1),Z(s2)} = ρZ(s1, s2). A standard Tukey

g-and-h (TGH) random field, T (s), is defined by

T (s) = τg,h{Z(s)}. (3)

Then, a more general Tukey g-and-h random field, Y(s), can be defined as

Y(s) = ξ + X(s)Tβ + ωT (s), (4)

where ξ ∈ R is a location parameter, ω > 0 is a scale parameter, and X(s),β ∈ Rp are vectors of

some observed covariates at location s and their regression coefficients. This formulation of Y(s)

is close in spirit to the definition of finite dimensional multivariate Tukey g-and-h distributions in

Field and Genton (2006) and He and Raghunathan (2012). The TGH random field, Y(s), includes

a large family of trans-Gaussian random fields with extremely flexible marginal distributions; for

example, when g = h = 0, Y(s) reduces to a Gaussian random field. For h = 0 and g > 0,

Y(s) is essentially a shifted log-Gaussian random field and for g = 0 and h > 0, Y(s) becomes a

random field with a Pareto-like marginal distribution. In fact, the Tukey g-and-h distribution can

adequately approximate many distributions including the Student’s t, exponential, Cauchy, Weibull

and logistic distributions (Martinez and Iglewicz, 1984; Hoaglin, 1985). In Figure 1, we give a few
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examples of distributions with different levels of skewness and tail heavyness that can be well

approximated by the Tukey g-and-h distribution; see Genton (2004) and Azzalini and Capitanio

(2014)’s books for more information on the skew-normal and skew-t distributions.

2.2 Second-order moments of TGH random fields

The following lemma gives the mean, variance, and covariance functions of a standard Tukey

g-and-h random field, T (s).

Lemma 1 If h < 1, then the standard TGH random field T(s)defined in (3) has a mean

E{T (s)} = 1

g
√

1 − h

[
exp

{
g2

2(1 − h)

}
− 1

]
, (5)

and if h < 1/2, then T (s) has a covariance function CT (s1, s2) = cov{T (s1),T (s2)} as

CT (s1, s2) =

exp
[

1+ρZ (s1,s2)

1−h{1+ρZ(s1,s2)}g
2
]
− 2 exp

[
1−h{1−ρ2

Z
(s1,s2)}

(1−h)2−h2ρ2
Z

(s1,s2)

g2

2

]
+ 1

g2

√
(1 − h)2 − ρ2

Z
(s1, s2)h2

− [E{T (s)}]2. (6)

The proof is given in the supplementary materials. Following Lemma 1, for the general TGH

random field, Y(s), defined in (4), we have

E{Y(s)} = ξ + XT(s)β + ωE{T (s)}, cov{Y(s1),Y(s2)} = ω2cov{T (s1),T (s2)}.

As in any other trans-Gaussian random field, we can introduce complicated mean and co-

variance structures for Y(s). Any stationary or non-stationary covariance structure available for

Gaussian random fields can be applied to the TGH random field. Additional non-stationarity can

be added into the formulation of (4) by allowing the scale parameter, ω, to depend on the location,

s. For the ease of presentation, we shall keep ω as a constant in this paper. The following theorem

is a direct consequence of Lemma 1.

6
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Theorem 1 Suppose that the Gaussian random field Z(s) in (3) is second-order stationary and

that h < 1/2 in the standard TGH random field T(s). Then we have: (a) T (s) is also second-order

stationary; (b) T (s) is mean-square continuous if and only if Z(s) is mean-square continuous; (c)

T (s) is m-times mean-square differentiable if Z(s) is m-times mean-square differentiable.

The proof is given in the supplementary materials.

Theorem 1 states that unlike many other trans-Gaussian random fields, nice properties such as

stationarity, mean-square continuity, and degrees of mean-square differentiability can be inherited

by the TGH random field from the latent Gaussian random field, Z(s). The key difference between

the TGH random field (4) and the traditional trans-Gaussian random field (1) is that the parame-

terizations of model (4) allow us to separate the mean structure from the transformation function

τg,h(∙) and assume that the latent Gaussian random field Z(s) always has a mean 0. This leads to

Theorem 1. Of course, we can do this because model (4) is flexible enough for us to estimate

ξ, ω, g, h,β together with the parameters in the correlation function simultaneously.

Figure 2 presents realizations of the standard Gaussian random field Z(s) with Matérn spatial

correlation function (17) and its corresponding standard TGH random fields with various values of

g and h. The blank areas indicate extreme values produced by the transformation that cannot fit into

the color scheme. Figure 2(a) appears to be much smoother than Figure 2(c), indicating longer and

stronger spatial dependence. Another observation is that although increasing either values of g or

h leads to large observations, they seem to work in different fashions. Between (a)-(b), the overall

image patterns appear to be similar except that almost every local area becomes more extreme

because h can produce both positive and negative outliers. On the contrary, a positive g produces

mainly positive large values while shrinking smaller values of Z(s) toward 0 and thus changes the

overall image pattern.

7
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2.3 Connection with log-Gaussian random fields

Log-Gaussian random fields are popular for spatial data analysis in areas such as ecology and

meteorology, where the data collected often have right-skewed distributions with possible outliers

(De Oliveira, 2006). In what follows, we show that log-Gaussian random fields can be viewed

as a special type of TGH random field defined in (4) with h = 0 and appropriately chosen ξ, ω

and g. Following the setting of De Oliveira (2006), we say that Y∗(s) is a log-Gaussian random

field if Z∗(s) = log{Y∗(s)} is a Gaussian random field with E{Z∗(s)} = µZ∗ and cov{Z∗(s1),Z∗(s2)} =

σ2
Z∗ρZ∗(s1, s2) for some µZ∗ ∈ R, σ2

Z∗ > 0 and some correlation function ρZ∗(s1, s2).

Lemma 2 For the TGH random field, Y(s), defined in (4), by lettingβ = 0, h = 0, and setting the

constraint ξ = ω/g and g > 0 for parameters ξ, ω and g, Y(s) becomes a log-Gaussian random

field with Z∗(s) = exp(ω) + gZ(s).

The proof of Lemma 2 is trivial and is thus omitted. From Lemma 2, we see that the TGH

random field is more flexible than the log-Gaussian random field in modeling spatial data. For

example, while the log-Gaussian random field is usually used to model right-skewed data, the

TGH random field can also model left-skewed data with g < 0.

3 Estimation of TGH Random Fields

3.1 Asymptotic properties of the MLE

Denote θ1 = (βT, ξ, ω, g, h)T and let θ2 be the parameter vector of ρZ(s1, s2) in (4). Consider

a dataset Dn = {(y(s1), x(s1)), . . . , (y(sn), x(sn))} collected from the TGH random field, Y(s), at

locations s1, . . . , sn. The maximum likelihood estimator (MLE) θ̂n of θ = (θT
1
,θT

2
)T is defined as

8
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the maximizer of the log-likelihood function

Ln(θ1,θ2|Dn) ∝ −1

2
ZT

θ1
(R−1

θ2
+ hIn)Zθ1

− 1

2
|Rθ2
|

−
n∑

i=1

log
[
exp(gzθ1,si

) + g−1{exp(gzθ1,si
) − 1}hzθ1,si

]
− n logω,

(7)

where zθ1,si
= τ−1

g,h

{
y(si)−x(si)

Tβ−ξ
ω

}
, Zθ1

= (zθ1,s1
, . . . , zθ1,sn

)T, and Rθ2
is the n × n correlation matrix

whose (i, j)th element is ρZ(si, s j).

To study the asymptotic properties of θ̂n, we follow the work of Sweeting (1980). Suppose

Θ is an open subset of Rp and assume that Ln(θ1,θ2|Dn) is twice continuously differentiable for

any θ ∈ Θ. Let Hn(θ) be the random matrix consisting of sub-matrices Hθ iθ j,n = −
∂Ln(θ1,θ2 |Dn)

∂θ i∂θ
T
j

,

i, j = 1, 2. Following Sweeting (1980), we use →u and ⇒u to indicate uniform convergence and

uniform weak convergence in compact subsets of Θ, respectively. Define the norm of a matrix A

as ‖A‖ =
√

tr(ATA) and a matrix sequence A1, . . . ,An converges to A if and only if ‖An −A‖ → 0

as n → ∞. Assume that Bi,n(θ) = Eθ (Hθ iθ i,n), i = 1, 2, exist and are positive definite for all

θ ∈ Θ. The following conditions are sufficient to ensure the asymptotic normality of the maximum

likelihood estimator θ̂n:

C1 (Information Growth): The non-random matrices B1,n(θ) and B2,n(θ) are both continuous

in θ and as n→ ∞, ‖B−1
i,n (θ)‖ →u 0, i = 1, 2, for all θ ∈ Θ.

C2 (Convergence): There exists a (random) matrix W(θ), which is positive definite with prob-

ability 1, such that for any θ ∈ Θ, as n→ ∞:

Wn(θ) =


B
−1/2

1,n
(θ) 0

0 B
−1/2

2,n
(θ)



Hθ1θ1,n Hθ1θ2,n

Hθ2θ1,n Hθ2θ2,n



B
−1/2

1,n
(θ) 0

0 B
−1/2

2,n
(θ)

⇒u W(θ).

C3 (Continuity): Let An(θ) = diag{B1/2

1,n
(θ),B

1/2

2,n
(θ)}. We assume that for any c > 0, (i)

supθ ′ ‖A−1
n (θ)An(θ′) − Ip‖ →u 0, where the supremum is taken over the set {θ′ : ‖An(θ)(θ′ −

θ)‖ ≤ c}; (ii) define a p × p matrix Γ = (θ′
1
, . . . , θ′p) with θ′

k
∈ Θ and let Hn(Γ) be the

9
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matrix whose kth row is the kth row of Hn(θ′
k
), k = 1, . . . , p. Then, sup

Γ
‖A−1

n (θ){Hn(Γ) −

Hn(θ)}A−1
n (θ) − Ip‖ →u 0 in probability, where the supremum is taken over the set {Γ :

‖An(θ)(θ′
k
− θ)‖ ≤ c, k = 1, . . . , p}.

Theorem 2 Under conditions C1-C3, the MLE θ̂n is consistent for θ and

An(θ)(θ̂n − θ)⇒u Np(0,W−1(θ)),

where An(θ) = diag{B1/2

1,n
(θ),B

1/2

2,n
(θ)} and ‖A−1

n (θ)‖ →u 0 as n→ ∞.

Theorem 2 follows readily from Theorems 1-2 of Sweeting (1980) and thus the proof is omit-

ted. Conditions C1-C3 are standard conditions used to derive asymptotic normality of a general

maximum likelihood estimator and have been used by many authors, for example, see Sweeting

(1980), Mardia and Marshall (1984), and Cressie and Lahiri (1993). Condition C3 essentially

imposes some mild smoothness conditions on the likelihood function and is generally reasonable

for a spatial model with a covariance function that is twice differentiable with respect to its pa-

rameters. Condition C1 is critical to ensure the consistency of θ̂n. Tailored to the likelihood

function (7), Theorem 3 of Mardia and Marshall (1984) shows that, under the increasing domain

asymptotic framework, when the data are observed in a spatial domain s ∈ Dn ⊆ Rd that is in-

creasing with the sample size n, one has that ‖B−1
2,n

(θ)‖ →u 0 and B
−1/2

2,n
(θ)Hθ2θ2,nB

−1/2

2,n
(θ) ⇒u Ip2

.

In addition, under the increasing domain framework, condition (i) of Theorem 2 in Mardia and

Marshall (1984) requires that λmax{Rθ2
} < C for some constant C > 0, which essentially controls

the overall strength of the spatial dependence. It is reasonable to expect that ‖B−1
1,n

(θ)‖ →u 0 and

B
−1/2

1,n
(θ)Hθ1θ1,nB

−1/2

1,n
(θ) ⇒u Ip1

as long as the overall spatial dependence is not too strong, with

an extreme case Rθ2
= In being supported by Xu and Genton (2015). Our simulation study in

Subsection 5.1 also confirms the consistency of the MLE θ̂n.

10
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Conditions C1-C2 are suitable for increasing domain asymptotic framework but may break

down in the infill asymptotic framework, when the spatial domain D ⊆ Rd is fixed as the sample

size n increases. Let Pk, k = 1, 2, be two probability measures defined on the same measurable

space (Ω,F). If P1(A) = 0 for any A ∈ F such that P2(A) = 0, P1 is said to be absolutely continuous

with respect to P2, denoted as P1 ≪ P2. Next, P1 is said to be equivalent to P2, denoted as P1 ≡ P2,

if P1 ≪ P2 and P2 ≪ P1. It is well known that for a family of equivalent measures {Pθ : θ ∈ Θ},

regardless of what is observed, any estimator θ̂n cannot be weakly consistent for all θ ∈ Θ; see

Stein (1999) and Zhang (2004) for more detailed discussions. Using this argument, the following

theorem indicates that, under the infill asymptotic framework, the parameter θ for the TGH random

field may not be consistently estimable.

Theorem 3 Let D be a bounded subset of Rd for d = 1, 2, 3 and PY,k, k = 1, 2, be two probability

measures such that under PY,k, Y(s), s ∈ D, is a TGH random field (4) withβk = 0 and a Matérn

correlation function (17). Assume that the parameter vector associated with PY,k is of the form

θ(k) = (ξ, ωk, gk, hk, φk, ν)
T, hk > 0, k = 1, 2. If g1/ω1 = g2/ω2, h1/ω

2
1
= h2/ω

2
2

and ω2
1
/φ2ν

1
=

ω2
2
/φ2ν

2
, then PY,1 ≡ PY,2 on the path of Y(s), s ∈ D.

The proof is given in the supplementary materials.

In practice, for a given n, both infill and increasing domain asymptotics may be appropriate.

The key difference is whether the condition C1 can be met, see Zhang and Zimmerman (2005). Our

results show that the TGH random field may be more suitable for applications where the increasing

domain framework is appropriate. More general infill asymptotic properties of TGH random fields

is an interesting future research topic.
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3.2 Efficient computation of the MLE

Although the maximum likelihood estimator θ̂n has appealing asymptotic properties, its compu-

tation is challenging. The main reason is that the inverse function of τg,h(z) in (2), denoted by

τ−1
g,h

(∙), does not have a closed form. As a result, a direct maximization of Ln(θ1,θ2|Dn) in (7) is

not feasible. For independent data, one popular strategy to bypass this issue is to estimate ξ, ω, g,

and h by matching a set of sample quantiles with their population counterparts; see Xu and Gen-

ton (2015) and references therein for a complete review. However, for spatial data, how to define

quantiles is still an open problem and thus the quantile-matching method is not applicable. As

an alternative, Xu and Genton (2015) proposed to use the estimator obtained by maximizing an

approximated likelihood function, which was shown to be as efficient as the maximum likelihood

estimator. The following estimation procedure can be viewed as an extension of Xu and Genton

(2015) from independent to spatially dependent data.

For a fixed sample size n, we first choose a positive number bn and then introduce Kn equally

spaced knots over the interval [−bn, bn], denoted as −bn = t1 < t2 < ∙ ∙ ∙ < tKn
= bn. Cor-

respondingly, Tk,θ1
= ξ + ωτg,h(tk), k = 1, . . . ,Kn define Kn knots in the transformed scale. If

y(si)− x(si)
Tβ ∈ [T1,θ1

,TKn,θ1
], there must exist a k such that Tk,θ1

≤ y(si)− x(si)
Tβ < Tk+1,θ1

. Since

τg,h(∙) is a monotone function, the zθ1,si
associated with y(si) − x(si)

Tβ must lie between the knots

tk and tk+1. As a result, we can define the following approximation to zθ1,si
as

z̃θ1,si
= tk +

y(si) − x(si)
Tβ − Tk,θ1

Tk+1,θ1
− Tk,θ1

(tk+1 − tk) if Tk,θ1
≤ y(si) − x(si)

Tβ < Tk+1,θ1
, (8)

i = 1, . . . , n. Since τg,h(z) is continuous with a bounded derivative for any z ∈ [−bn, bn], zθ1,si

can be well approximated by z̃θ1,si
provided that Kn is sufficiently large. Furthermore, if we can

choose an appropriate bn such that all data points in Dn meet the condition that y(si) − x(si)
Tβ ∈

[T1,θ1
,TKn,θ1

], the likelihood function (7) can also be well approximated by replacing zθ1,si
with

12
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z̃θ1,si
for i = 1, . . . , n. Such a choice of bn is equivalent to finding a bn such that all zθ1,si

’s fall

into the interval [−bn, bn]. When θ1 = θ10 with θ10 being the true values of θ1, the zθ1,si
’s are

realizations from the standard Gaussian random field Z(s) by definition. From a practical point of

view, almost all observations from a N(0, 1) distribution lie between [−4, 4] and hence bn needs

not be an extremely large value. In fact, we found that bn = 10 is sufficiently large for most

applications, as long as θ1 is not too far away from its true value θ10. More rigorous discussions

can be found in Xu and Genton (2015). After choosing appropriate values for Kn and bn, for any

given θ = (θT
1
,θT

2
)T, if all y(si) − x(si)

Tβ ∈ [T1,θ1
,TKn,θ1

], i = 1, . . . , n, we define the approximated

likelihood function as

L̃n(θ1,θ2|Dn) ∝ −1

2
Z̃T

θ1
(R−1

θ2
+ hIn)Z̃θ1

− 1

2
|Rθ2
|

−
n∑

i=1

log
[
exp(gz̃θ1,si

) + g−1{exp(gz̃θ1,si
) − 1}hz̃θ1,si

]
− n logω,

(9)

where Z̃θ1
= (z̃θ1,s1

, . . . , z̃θ1,sn
)T with z̃θ1,si

’s obtained using (8) for all y(si)− x(si)
Tβ’s. If there exist

any y(si) − x(si)
Tβ < [T1,θ1

,TKn,θ1
], we set L̃n(θ1,θ2|Dn) = −∞.

Using this L̃n(θ1,θ2|Dn), it is important to pick a sensible starting value θ2,0 = (βT
0
, ξ0, g0, h0)T

such that all observed y(si) − x(si)
Tβ0’s fall into the interval [ξ0 + ω0τg0,h0

(−bn), ξ0 + ω0τg0,h0
(bn)].

Once a sensible initial θ1,0 is chosen, Algorithm I described below will start searching for local

maxima in a neighborhood of θ1,0. Like in many other maximum likelihood estimation proce-

dures, one can try multiple initial starting values to search for a global maximum.

13
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Algorithm I: the maximum approximated likelihood estimator

Step I: Set Kn = max(1000, n) and bn = 10;

Step II: obtain initial values for θ1 = (βT, ξ, ω, g, h)T:

(a) Find the ordinary least square fit β̂0 = {XTX}−1XTY where X is the covariate design

matrix and Y the vector of observations;

(b) Use the residuals ε̂i(si) = y(si) − x(si)
Tβ̂0 to find initial estimators (ξ̂0, ω̂0, ĝ0, ĥ0) using

Algorithms in Xu and Genton (2015).

Step III: Suppose we have obtained an estimator θ̂k = (θ̂kT
1
, θ̂kT

2
)T, k = 0, 1, 2, . . .;

(a) Fix θ1 = θ̂k
1
, obtain θ̂k+1

2
by maximizing (9) with respect to θ2;

(b) Fix θ2 = θ̂k+1
2

, obtain θ̂k+1
1

by maximizing (9) with respect to θ1;

Repeat Step III until θ̂k+1 = (θ̂
(k+1)T

1
, θ̂

(k+1)T

2
)T converges.

The choice Kn = max(1000, n) is recommended by Xu and Genton (2015) and yields sufficiently

good estimation accuracy in all our simulation studies. In practice, one can increase Kn as long as

the computational cost is acceptable. In all our simulation studies, Algorithm I converges quickly.

To increase the chance of finding the global maxima of the approximated likelihood function, it is

highly recommended to use multiple starting values for parameters in θ2.

With regard to the computational cost of Algorithm I, Step I costs O(Kn+n) floating operations

(Xu and Genton, 2015) provided that R−1
θ2

and |Rθ2
| were returned from Step II, which cost O(n3)

floating operations to compute. Hence, the overall computational complexity of Algorithm I is

of the order O(Kn + n3), which is only feasible for small to moderate n. If n is large to massive,

tools such as Gaussian predictive processes (Banerjee et al., 2008), fixed rank kriging (Cressie and

Johannesson, 2008), or Gaussian Markov Random Fields (Rue and Held, 2005; Xu et al., 2015),

can be used for the efficient computation of the TGH random field; see also the review by Sun et

al. (2012).
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3.3 Detection of extreme spatial outliers

In practice, every geostatistical model has its limitations and it is always possible that some ex-

treme observations from a spatial random field cannot be modeled well. In such cases, even a small

number of extreme outliers may have a significant impact on model estimation. In particular, the

parameter h in the definition of the TGH random field (4) is introduced to accommodate possible

outliers in the random field and therefore its estimation is more sensitive to extreme outliers. De-

tection of extreme spatial outliers can be challenging because unlike in the independent case, the

extreme outliers in a spatial random field are not necessarily the largest or the smallest observations

from that field. Instead, because of the spatial dependence, they are more likely to be observations

that appear to be significantly different from their local neighbors.

Next, we show how to use the TGH random field to identify extreme spatial outliers. Suppose

we have obtained an initial estimator of θ1 and θ2 using Algorithm I with all available data and

denote them by θ̂int
1

and θ̂int
2

where “int” stands for “initial”. Define
Ẑint = L̂Z̃θ̂ int

1
, (10)

where L̂ = R
−1/2

θ̂ int
2

, Z̃θ̂ int
1

and Rθ̂ int
2

are as defined in (9) with θ j = θ̂int
j

for j = 1, 2. The L̂ ma-

trix can be computed through an eigen decomposition of R−1

θ̂ int
2

= PΛPT with the diagonal matrix

Λ = diag{λ1, . . . , λn} and then let L̂ = PΛ
1/2PT where Λ

1/2 = diag{λ1/2

1
, . . . , λ

1/2
n }. If the TGH

random field (4) provides an adequate fit for the dataset Dn, the elements in the n × 1 vector Ẑint

are independent N(0, 1) random variables. Unusually large values in Ẑint often indicate potential

existence of extreme outliers in the spatial random field. Denote the jth element of Ẑint as ẑint
j

and

L̂T
j = (l̂ j,1, . . . , l̂ j,n) as the jth row of the matrix L̂. Then we have the relationship ẑint

j
= L̂T

j Z̃θ̂ int
1

. If

|ẑint
j
| is suspiciously large, for example, larger than 3, we can trace the major source of this abnor-

mality back to those components in Z̃θ̂ int
1

. Then we shall remove the most extreme outlier from the

entire random field and refit the TGH random field to compute new values of Ẑint. We will keeping
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repeating this process until the resulting Ẑint appears to be close enough to N(0, 1) distribution. We

summarize the extreme spatial outlier detection procedure in the following algorithm.

Algorithm II: extreme spatial outlier detection

Step I: Find the initial estimates θ̂int
1

and θ̂int
2

using Algorithm I with all available data;

Step II: Find Rθ̂ int
2

and Z̃θ̂ int
1

in (9) by plugging in θ j = θ̂int
j

for j = 1, 2;

Step III: Perform the eigen-decomposition of R−1

θ̂ int
2

= PT
ΛP and L̂ = PT

Λ
1/2P;

Step IV: Find Ẑint = L̂Z̃θ̂ int
1

, compute the p-value of Shapiro-Wilk test on Ẑint;

(a) If p-value> 0.10, stop the algorithm; otherwise, continue as follows;

(b) If the set J = { j : |zint
j
| > η} for some η > 0 (we recommend using η = 3) is empty, stop

the algorithm; otherwise, continue as follows;

(c) Let jo = arg maxl=1,...,n; |zint
j
| and remove the largest contributor to zint

j0
, that is, remove the

point k = arg maxl=1,...,n;{|l̂ jo,lz̃θ̂ int
1
,l|}.

Repeat Steps I-IV until algorithm stops.

As an illustration, we apply Algorithm II to the precipitation dataset described in Section 6.

Figure 3(c) gives the QQ-plot of the initial fitted value of Ẑint in (10) obtained by fitting the TGH

random field (20) with all n = 991 observed data points. Obviously, the potential inadequate fit

to the data is indicated by the existence of very large and small values in Ẑint. By applying the

Algorithm II with η = 3, we successfully identify 13 extreme spatial outliers in the original dataset

as indicated in Figure 3(a). To see whether these 13 points are truly extreme spatial outliers, we

give the boxplots of observations of identified locations together with their nearest 20 neighbors

in Figure 3(b). We can see that all 13 points can be considered as extreme outliers in their local

spatial neighborhoods, which demonstrates the effectiveness of Algorithm II in detecting extreme

spatial outliers.

After identifying these 13 extreme spatial outliers, we manually remove them and refit the

TGH random field (20) with the remaining n = 978 data points. Denote the resulting estimator

of θ1 and θ2 as θ̂
psc

1
and θ̂

psc

2
, where the superscript “psc” stands for the “post-screen” estimator.
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As illustrated in Figure 3(d), the components in Ẑpsc obtained by replacing θ̂int
1

and θ̂int
2

with θ̂
psc

1

and θ̂
psc

2
in (10) appear to be much closer to a N(0, 1) distribution. The vector Zpsc was computed

based only on the remaining 978 data points. This is a strong indication of an adequate fit of the

TGH random field to the remaining precipitation data. In Table 3 of Section 6, we summarize the

parameter estimates for the TGH random field before and after removing the 13 extreme spatial

outliers, where we can see that the estimate for the parameter h decreases from 0.095 to 0.045. This

is expected considering that the role of h is to model outliers in the TGH random field, making it

sensitive to extreme spatial outliers.

4 Spatial Prediction with TGH Random Fields

One of the primary goals of geostatistical modeling is to make predictions at spatial locations

without observations. There have been two major approaches to make spatial predictions: (i) point

prediction or kriging (Cressie, 1993); (ii) probabilistic prediction or forecast (Gneiting et al., 2007;

Gneiting and Katzfuss, 2014). The goal of kriging is to predict the actual value of Y(s0) at a new

location s0 based on observed dataDn. On the contrary, probabilistic prediction aims at providing

a complete predictive distribution for Y(s0) conditional on Dn. Either approach requires partial or

full knowledge of the conditional distribution of Y(s0) given Dn, which we derive in this section

for the TGH random field. First, we give a definition of the multivariate g-and-h distribution. For

simplicity, from now on, we use τg,h(Z) (or τ−1
g,h

(Z)) to denote componentwise (or componentwise

inverse) g-and-h transformation of elements in a vector Z.

A random vector T = (T1, . . . , Tn)T is said to have a multivariate g-and-h distribution if T =

τg,h(Z) with Z = (Z1, . . . , Zn)T having a multivariate normal distribution Nn(µn,Σn) with a mean

vector µn and a covariance matrix Σn. We denote it by T ∼ GHn(µn,Σn, g, h). With this definition,
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the following Lemma 3 states that if two random vectors T1 and T2 have a joint multivariate g-

and-h distribution, then the marginal distributions of T1, T2 and the conditional distribution of T1

given T2 are all still within this family of distributions.

Lemma 3 Suppose that (TT
1
,TT

2
)T ∼ GHn1+n2




µ1

µ2

 ,


Σ11 Σ12

Σ21 Σ22

 , g, h
 for some µ1,µ2 and

h ≥ 0. Then we have

T1 ∼ GHn1
(µ1,Σ11, g, h), T2 ∼ GHn2

(µ2,Σ22, g, h), and

T1|T2 ∼ GHn1

[
µ1 +Σ12Σ

−1
22 {τ−1

g,h(T2) − µ2},Σ11 −Σ12Σ
−1
22Σ21, g, h

]
.

The proof is given in the supplementary materials.

4.1 Kriging with TGH random fields

The goal of kriging is to find an optimal point estimator of Y(s0) by minimizing some accuracy

measures. For TGH random fields, we consider two such measures: the absolute loss and the

squared loss, under which the optimal predictors for Y(s0) are:

absolute loss: Ŷ
opt

1
(s0) = arg min

c
E[{|Y(s0) − c|}|Dn] = med{Y(s0)|Dn},

squared loss: Ŷ
opt

2
(s0) = arg min

c
E[{Y(s0) − c}2|Dn] = E{Y(s0)|Dn},

where E{Y(s0)|Dn} and med{Y(s0)|Dn} stand for the conditional mean and the conditional median

of Y(s0) given the data Dn. For a general trans-Gaussian random field Y(s) = ψ{Z(s)}, the exact

form of E{Y(s0)|Dn} is usually not available except for some special ψ(∙). The following theorem

provides closed-form solutions for Ŷ
opt

1
(s0) and Ŷ

opt

2
(s0).

Theorem 4 Given a dataset Dn = {(y(s1), x(s1)), . . . , (y(sn), x(sn))} generated from the TGH ran-

dom field, Y(s), defined in (4) with0 ≤ h < 1, let Rθ2
and Zθ1

be as defined in (7) andrθ2
be the
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n × 1 vector whose ith element is ρZ(si, s0) for a new location s0. Then the conditional distribution

of T (s0) given the dataDn is

T (s0)|Dn ∼ GH1(µ̃, σ̃2, g, h), (11)

where µ̃ = rT
θ2

R−1
θ2

Zθ1
and σ̃2 = 1 − rT

θ2
R−1

θ2
rθ2

. As a result, the optimal predictors for Y(s0) given

the datasetDn using the absolute loss and the squared loss are:

Ŷ
opt

1
(s0) = ξ + X(s0)Tβ + ωτg,h(µ̃), (12)

Ŷ
opt

2
(s0) = ξ + X(s0)Tβ +

ω

g
√

1 − hσ̃2
exp

{
hµ̃2

2(1 − hσ̃2)

} [
exp

{
g2σ̃2 + 2gµ̃

2(1 − hσ̃2)

}
− 1

]
. (13)

The proof is given in the supplementary materials.

Although both Ŷ
opt

1
(s0) and Ŷ

opt

2
(s0) can be used in practice, we shall focus on Y

opt

1
(s0) because

it is more robust to the skewness and potential outliers.

4.2 Probabilistic prediction with TGH random fields

Unlike kriging, probabilistic prediction aims at predicting the whole conditional distribution of

some uncertain quantity at a location without observations (Gneiting et al., 2007; Gneiting and

Katzfuss, 2014), which is more informative and better at capturing the uncertainty in prediction.

Tailored to our case, we wish to use the conditional distribution of Y(s0)|Dn based on the TGH

random field, denoted by Fs0
, to predict the true conditional distribution of Y(s0)|Dn, denoted as

Gs0
. By Theorem 4, the closed form of Fs0

can be easily obtained through the distribution (11). The

general practice of probabilistic prediction involves two steps: (i) calibration; and (ii) assessment

of the sharpness of the predictive distribution (Gneiting et al., 2007). The calibration step is to

provide some guidance on how close are Fs0
and Gs0

. Let Fs0
(∙) and Gs0

(∙) be the cumulative

distribution functions of Fs0
and Gs0

, respectively. An important tool to assess the calibration is

the probability integral transform (PIT, Dawid, 1984; Diebold et al., 1998), whose value is defined
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as ps0
= Fs0

{y(s0)}, where y(s0) is an observed value from the distribution Gs0
. If the predictive

distribution Fs0
= Gs0

and Fs0
is continuous, then ps0

should have a uniform distribution. In

practice, a histogram of PIT values at different locations of the random field can be created and

an approximately uniform PIT histogram indicates calibration (Gneiting et al., 2006). After the

predictive distribution passes the calibration, its sharpness can be assessed by the average width of

confidence intervals, as discussed in Subsection 4.3.

Numerical assessments of probabilistic predictions are usually done based on some proper

scoring rules such as the Hyvärinen score (Hyvärinen, 2005) and the continuous ranked probability

score (CRPS, Gneiting et al., 2007). In particular,

CRPS (F, y) =

∫ ∞

−∞
{F(x) − I(y ≤ x)}2 dx = E(|Y − y|) − 1

2
E(|Y − Y∗|), (14)

where F(∙) is a cumulative distribution function, I(∙) is an indicator function, Y and Y∗ are inde-

pendent random variables with the same cumulative distribution function F(y) and a finite first

moment (Gneiting and Katzfuss, 2014). The CRPS enjoys many appealing properties but may be

difficult to derive in closed-form for a general distribution. However, using Theorem 4, we can

easily derive the closed form of CRPS for the predictive distribution based on the TGH random

field.

Lemma 4 The continuous ranked probability score for the predictive cumulative distribution func-

tion Fs0
(∙) given in Theorem 4 for the TGH random field is

CRPS {Fs0
, y(s0)} =

{
y(s0) − ξ − xT(s0)β

} [
2Φ

{
z(s0) − µ̃

σ̃

}
− 1

]
(15)

+

2ω exp

(
hµ̃2

2p∗

)

g
√

p∗

(
Φ

[ √
p∗

σ̃

{
z(s0) − µ̃

p∗

}]
+ Φ

(
hµ̃σ̃

q∗

)
− 1

)

−
2ω exp

(
g2σ̃2+2µ̃g+hµ̃2

2p∗

)

g
√

p∗

(
Φ

[ √
p∗

σ̃

{
z(s0) − µ̃ + gσ̃2

p∗

}]
+ Φ

(
hµ̃σ̃ + gσ̃

q∗

)
− 1

)
,

with µ̃ and σ̃ as defined in (11),0 ≤ h < 1 and z(s0) = τ−1
g,h

{
y(s0)−ξ−xT(s0)β

ω

}
, p∗ = 1 − hσ̃2and
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q∗ =
√

2 − 3hσ̃2 + h2σ̃4.

The proof is given in the supplementary materials.

4.3 Prediction confidence intervals with TGH random fields

Whether it is to quantify the uncertainty of kriging or to assess the sharpness of the predictive dis-

tribution from the probabilistic prediction, a valid prediction confidence interval plays an important

role. By Theorem 4, the most straightforward (1 − α)100% prediction confidence interval can be

defined as [ξ + xT(s0)β +ωτg,h(µ̃ − z1−α/2σ̃), ξ + xT(s0)β +ωτg,h(µ̃ + z1−α/2σ̃)], where µ̃ and σ̃2 are

as given in Theorem 4 and zα is the αth quantile of the standard normal distribution. However, this

interval can be unnecessarily wide when the predictive distribution Fs0
is severely skewed (i.e., |g|

is large). To resolve this issue, we follow the work of De Oliveira and Rui (2009) and propose the

following shortest prediction interval for the TGH random field

[
ξ + xT(s0)β + ωτg,h(µ̃ − z1−γoptσ̃), ξ + xT(s0)β + ωτg,h(µ̃ + z1−α+γoptσ̃)

]
, (16)

where γopt ∈ [0, α] is chosen by minimizing the length of the interval

γopt = arg min
γ∈[0,α]

{
τg,h(µ̃ + z1−α+γoptσ̃) − τg,h(µ̃ − z1−γoptσ̃)

}
.

In practice, we need to plug-in the estimated values for parameters in the TGH random field and

then obtain γopt numerically. As De Oliveira and Rui (2009) pointed out for log-Gaussian random

fields, such a plug-in strategy may lead to undercoverage and needs to be adjusted when the sample

size is small. We believe this might also be the case for the TGH random fields. How to make such

adjustments is an interesting research topic.
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5 Monte Carlo Simulation Study

In this section, we use Monte Carlo simulations to evaluate the performance of the proposed TGH

random field. In all simulation studies, we assume that the latent Gaussian random field Z(s) has

the Matérn correlation function

ρZ(s1, s2) =
1

Γ(ν)2ν−1

(
4
‖s1 − s2‖

φ

)ν
Kν

(
4
‖s1 − s2‖

φ

)
, (17)

where ‖s1 − s2‖ is the distance between locations s1 and s2, ν is the smoothness parameter, φ is the

range parameter, Γ(∙) is the gamma function, and Kν(∙) is the modified Bessel function of the second

kind. We adopt this special parameterization for the range parameter φ such that ρZ(s1, s2) ≈ 0.05

for ‖s1 − s2‖ = φ when φ = 40 and ν = 1. For all simulations, we fix parameters ξ = 0, ω = 2,

φ = 40, ν = 1 for the TGH random field. In addition, one covariate X ∼ N(0, 1) was introduced

in (4) as the regression random variable, whose coefficient was set to β = 2.

5.1 Evaluation of estimation accuracy with TGH random fields

In this simulation study, the data were generated using the TGH random field (4) with multiple

values of g and h. The main goal is to investigate whether Algorithm I can produce consistent

estimators for all parameters in model (4). To be consistent with the conditions of Theorem 2,

we choose the spatial locations in an increasing domain as follows: n = c2
n locations were drawn

uniformly over the region [0, 10cn] × [0, 10cn], with cn = 10, 15, 20. Furthermore, for each simu-

lation run, we applied the Algorithm II to the simulated data set and removed the detected outliers

first. Then the remaining data were used to estimate the parameters. The empirical bias and root

mean-squared error (RMSE) of the proposed estimators were computed based on 500 simulation

runs, which are summarized in Table 1. In particular, β̂0 represents the least squares estimator for

β by ignoring spatial dependence in (4) while β̂ is the estimator of β using Algorithm I. As we can
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see from Table 1, β̂ is much more efficient than β̂0, which could lead to better spatial predictions

because the mean structure of model (4) is estimated more precisely. Overall, from Table 1, we

can see that the proposed estimators obtained using Algorithm I are unbiased and consistent for all

parameters when the sample size is large enough. For the spatial case g = h = 0, we also report

the estimation accuracies of the maximum likelihood estimator using the Gaussian random field

(GRF), which appears to be quite close to those of the estimators obtained using Algorithm I. This

partially illustrates the effectiveness of the estimation procedure outlined in Algorithm I.

5.2 Evaluation of kriging with TGH random fields

In this subsection, we compare the kriging performance of the TGH random field with that of the

Gaussian random field. When generating data, we fix g = 0.5 and change h from 0 to 0.4 to

illustrate the impacts of outliers on prediction accuracy. The data were generated on a 15 × 15

regular lattice over the region [0, 100] × [0, 100], as illustrated in Figure 4(a). Observations from

125 locations were used as the training data, and the remaining observations were held out as the

validation data. The same set of spatial locations were used for estimation and prediction in each

of 500 simulation runs. Therefore, each location in the validation set has 500 predictions. Three

kriging approaches are considered: the TGH random field (gh-krig), the TGH random field by

fixing h = 0 (g-krig), and the Gaussian random field (Gau-krig). For each prediction location, the

kriging accuracy was measured by the following criterion

MAD(s
p

i
) = med

{
|̂y(s

p

i
)b − y(s

p

i
)b|, b = 1, . . . , 500

}
, i = 1, . . . , 100, (18)

where y(s
p

i
)b and ŷ(s

p

i
)b are the observed and predicted values at a prediction location s

p

i
for the

bth simulation run, respectively. In Figure 4(b), we summarize the predictive performance of

these three kriging methods for h = 0, 0.2, 0.4 at 100 prediction locations. As we can see from
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Figure 4(b), when h = 0, gh-krig and g-krig yield almost identical results, and both are better

than Gau-krig. As h increases, g-krig is not flexible enough to accommodate additional outliers

introduced by large values of h and thus yields suboptimal prediction results compared to those of

gh-krig. Nevertheless, g-krig still manages to control the effect of the skewness in the random field

to some extent and was able to outperform Gau-krig.

5.3 Evaluation of probabilistic prediction with TGH random fields

The same simulation setup was used as in the previous subsection. For each prediction location,

the accuracy of the probabilistic prediction was measured by

mCRPS (s
p

i
) = med{CRPS (F̂b

s
p

i

, y(s
p

i
)b), b = 1, . . . , 500}, i = 1, . . . , 100, (19)

where F̂b

s
p

i

is the estimated predictive distribution at the prediction location s
p

i
for the bth simulation

run and y(s
p

i
)b is the observed value. For h = 0, 0.2, 0.4, boxplots of mCPRS (s

p

i
)’s in Figure 4(c)

are used to illustrate the performance of predictive distributions using the general TGH random

field (gh-pred), the simplified TGH random field with h = 0 (g-pred), and the Gaussian random

field (Gau-pred). We can see that as the value of h increases, the benefit of using the general TGH

random field becomes more significant. In Figure 4(d-f), we also plot the PIT histograms of the

three predictive distributions for the case with g = 0.5 and h = 0.2. In this case, the difference

in the mCRPS between gh-pred and and g-pred is much smaller than the difference between their

PIT histograms, indicating that simple comparison of mCRPS may be misleading for assessing the

performance of probabilistic prediction.

5.4 Evaluation of prediction confidence intervals with TGH random fields

To study the sharpness of the three predictive distributions, we compute the average length of the

50% and 90% confidence intervals. For the gh-pred and g-pred methods, the confidence interval
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defined in (16) is adopted while for the Gaussian random field, the usual symmetric prediction

interval is used. The results are summarized in Table 2. As expected, the gh-pred gives the shortest

confidence intervals on average.

6 Application to Precipitation Data

In this section, we apply the proposed TGH random field to the precipitation dataset introduced

in Section 1; see Figure 3(a). Denote by V(s) a stationary Gaussian random field with mean 0,

variance σ2
v , and a Matérn correlation function as defined in (17). Let ε(s) be a Gaussian white

noise process independent of V(s) with a variance σ2
e . Three covariates were considered for the

mean structure: the longitude (Lon(s)), the latitude (Lat(s)), and the elevation (Elev(s)), which

were standardized by removing the means and then dividing them by the standard deviations in the

region under study.

The first model we use to model this dataset is a TGH random field

Y(s) = ξ + β1Lon(s) + β2Lat(s) + β3Elev(s) + ωτg,h{V(s) + ε(s)}, (20)

which is a special case of (4) with Z(s) = V(s) + ε(s) after imposing the constraint σ2
v + σ

2
e = 1.

For comparison, we also consider trans-Gaussian random fields of the form

ψ{Y(s)} = ξ + β1Lon(s) + β2Lat(s) + β3Elev(s) + V(s) + ε(s). (21)

Two transformations are studied: ψ(y) =
√

y and ψ(y) = y, corresponding to the Root-Gaussian

random field (RGRF) and the Gaussian random field (GRF).

The parameters of models (20) and (21) were estimated in two ways: the first approach uses

all n = 991 observations for estimation (Without Screen) and the second approach first removed

the 13 extreme outliers identified in Subsection 3.3 and then used the remaining data to estimate
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all parameters (With Screen). Results are summarized in Table 3. In addition, we use the lengths

of the 90% bootstrap confidence intervals (bLen) based on 500 parametric bootstrap samples gen-

erated using estimated models to quantify the uncertainties of point estimators. It is also worth

pointing out that estimated regression coefficients for Root-Gaussian random field have different

interpretations than those for other fields and should not be compared directly with them.

We want to further evaluate the predictive performances of all fitted models. To compute

the PIT and CRPS values, we use the following re-sampling approach: (a) randomly choose 80%

of the data to estimate three random fields; (b) use the estimated random fields to compute PIT

and CRPS values at the remaining 20% spatial locations. Repeat (a) and (b) for 500 times and

record all PIT and CRPS values. We then first use the PIT histograms to calibrate the predictive

distributions made by these three models, as illustrated in Figure 5. Obviously, the PIT histogram

of predictive distributions made by the TGH random field estimated after screening out all extreme

spatial outliers using Algorithm II appears more uniform than for all other models. In contrast,

we observe systematic deviations from uniformity in Figure 5(b)-(c), suggesting departures of the

predictive distributions based on the Root-Gaussian and Gaussian random fields from calibration.

Another noticeable feature is that by removing 13 extreme outliers, the PIT histograms of the

Root-Gaussian random field and even the Gaussian random fields become better. This indicates

that the proposed Algorithm II for identifying extreme spatial outliers not only can improve the

probabilistic predictive ability of the TGH random field, but also can be beneficial for other models.

Table 4 summarizes numerical assessments of prediction performances of the three models

using the re-sampling approach mentioned above. The MAD and mCRPS are as defined in (18)

and (19), respectively. The CP and mLen represent the empirical coverage probabilities and median

interval length of the prediction confidence intervals, respectively, for all spatial locations. We can

see that while the MAD and mCRPS do not show much differences between models, the TGH
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random field fitted with screen gives the overall shortest confidence intervals with satisfactory

coverage probabilities. Considering that the TGH random field fitted with screen also gives the

best PIT histogram, we argue that it provides the best fit for this precipitation data among all

candidates.

Finally, as mentioned earlier, one important goal in spatial modeling of precipitation data is

to create a high resolution precipitation map in a spatial region using the observed data. In Fig-

ure 6(a)-(b), we plot the precipitation map produced by the fitted TGH random field (with screen)

and the fitted Gaussian random field. Figure 6(c) illustrates the length differences of the 90% pre-

diction confidence intervals produced using the TGH and Gaussian random field (Gaussian−TGH).

We observe that the TGH random field produces much shorter prediction confidence intervals than

the Gaussian random field in most areas of the map, except for those areas with large predicted

values.

7 Discussion

We have introduced a new class of trans-Gaussian random fields named Tukey g-and-h random

fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flex-

ible marginal distributions and can, therefore, be applied to a wide range of applications. Unlike

most of the existing trans-Gaussian random fields, the special formulation of TGH random fields

enables us to automatically search for the best transformation among a large class of candidates for

the dataset in hand while estimating model parameters. We have investigated the statistical proper-

ties of the TGH random field, proposed an efficient estimation approach and developed an extreme

spatial outlier detection procedure based on the TGH random field. The estimation and predictive

performances of the TGH random field were evaluated through extensive simulation studies and an

application to a precipitation dataset, all of which demonstrated the effectiveness of the proposed
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model.

One limitation of the current work lies in that if the measurement error is of interest, it can

only be included in the Tukey g-and-h transformation function, as we did in the model (20) of the

rainfall application. While this may make sense for some applications, an interesting alternative is

to consider a TGH random field with additive measurement errors of the form Y(s) = ξ+X(s)Tβ+

ωτg,h{Z(s)} + ε(s), where ε(s) is a Gaussian measurement error process. The current Algorithm I

cannot be directly used to estimate such a model because the joint finite-dimensional distribution

of the random field τg,h{Z(s)} + ε(s) is a convolution of a multivariate Tukey g-and-h distribution

given in Lemma 3 and a multivariate normal distribution, which is quite complicated. As a result,

the likelihood function does not have a closed form as given in (7) and thus the Algorithm I is no

longer applicable. We believe this issue can be resolved under a suitable Bayesian framework and

this will be studied in future work.
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Table 1: Empirical biases and RMSE (in parentheses) of the parameter estimators of the TGH

random field using Algorithm I for various values of (g, h) and of parameters defined in the text.

(g, h) n ĝ ĥ ξ̂ ω̂ φ̂ ν̂ β̂ β̂0

g = 0 102 0.000 0.008 −0.03 −0.11 −3.37 0.45 0.000 0.01

h = 0 (0.08) (0.03) (0.45) (0.25) (9.66) (1.36) (0.09) (0.18)

152 −0.001 0.004 0.01 −0.06 −1.82 0.16 −0.000 0.004

(0.05) (0.01) (0.33) (0.16) (6.48) (0.52) (0.06) (0.13)

202 0.001 0.004 −0.01 −0.03 −0.68 0.07 −0.001 −0.006

(0.04) (0.01) (0.25) (0.12) (5.04) (0.19) (0.04) (0.10)

g = 0 102 n/a n/a −0.03 −0.07 −3.04 0.43 0.000 0.01

h = 0 n/a n/a (0.43) (0.23) (9.81) (1.35) (0.09) (0.18)

(GRF 152 n/a n/a 0.01 −0.03 −1.51 0.15 −0.000 0.004

Estim.) n/a n/a (0.32) (0.15) (6.62) (0.52) (0.06) (0.13)

202 n/a n/a −0.01 −0.01 −0.44 0.06 −0.002 −0.006

n/a n/a (0.25) (0.11) (5.07) (0.19) (0.04) (0.10)

g = 0.5 102 −0.03 −0.03 0.01 −0.02 −3.25 0.41 0.001 0.02

h = 0.1 (0.13) (0.07) (0.46) (0.37) (9.61) (1.30) (0.09) (0.29)

152 −0.02 −0.01 0.02 −0.004 −1.86 0.16 0.001 0.01

(0.10) (0.05) (0.32) (0.25) (6.73) (0.56) (0.06) (0.20)

202 −0.006 −0.007 0.005 0.000 −0.82 0.07 −0.001 −0.01

(0.07) (0.03) (0.26) (0.19) (5.08) (0.20) (0.04) (0.15)

g = 0.5 102 −0.03 −0.04 0.003 −0.01 −3.06 0.43 0.004 0.02

h = 0.3 (0.22) (0.11) (0.47) (0.40) (9.69) (1.32) (0.11) (0.59)

152 −0.01 −0.02 0.01 −0.01 −1.83 0.16 0.002 −0.004

(0.16) (0.08) (0.33) (0.25) (6.67) (0.55) (0.06) (0.47)

202 −0.01 −0.01 0.000 0.004 −0.78 0.07 −0.001 −0.02

(0.13) (0.06) (0.27) (0.20) (5.11) (0.20) (0.05) (0.31)
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Table 2: Coverage probabilities (CP) and average lengths (Length) of prediction CIs.

(g, h) Method CP(50%) Length CP(90%) Length

g = −0.5 gh-pred 47.9% 2.11 88.5% 6.14

h = 0.2 g-pred 54.7% 2.55 89.6% 6.39

Gau-pred 45.9% 3.51 81.5% 8.56

g = 0.5 gh-pred 48.0% 2.15 88.5% 6.22

h = 0.2 g-pred 55.1% 2.58 89.6% 6.49

Gau-pred 47.4% 3.81 82.0% 9.27

g = −0.5 gh-pred 47.9% 2.51 88.7% 8.62

h = 0.4 g-pred 64.3% 4.31 91.1% 10.79

Gau-pred 61.7% 7.70 89.1% 18.80

g = 0.5 gh-pred 47.9% 2.48 88.5% 8.37

h = 0.4 g-pred 63.3% 4.17 90.9% 10.42

Gau-pred 61.5% 7.58 89.2% 18.35
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Table 3: Parameter estimates of the precipitation data

Model β̂1 β̂2 β̂3 ξ̂ ω̂ ĝ ĥ φ̂ ν̂ σ̂2
v σ̂2

e

Without TGH 0.55 1.41 0.38 9.53 3.98 0.31 0.095 8.16 0.73 0.81 0.19

Screen (bLen) 1.10 1.10 0.55 3.61 1.23 0.23 0.07 3.93 1.07 0.16 0.16

RGRF 0.16 0.07 0.09 3.18 n/a n/a n/a 13.11 0.93 1.19 0.13

(bLen) 0.98 0.75 0.09 1.60 n/a n/a n/a 10.54 1.03 1.31 0.03

GRF 0.73 0.29 0.55 10.98 n/a n/a n/a 10.55 1.20 45.61 4.76

(bLen) 5.86 4.24 0.56 7.91 n/a n/a n/a 8.30 1.60 48.26 1.16

With TGH −0.14 1.53 0.31 9.56 4.15 0.29 0.045 8.41 0.65 0.86 0.14

Screen (bLen) 1.47 1.26 0.49 4.01 1.47 0.16 0.06 4.09 0.78 0.14 0.14

RGRF 0.19 0.07 0.09 3.19 n/a n/a n/a 15.48 0.78 1.25 0.09

(bLen) 0.98 0.94 0.11 1.82 n/a n/a n/a 10.02 0.73 0.83 0.03

GRF 0.90 0.37 0.54 11.13 n/a n/a n/a 12.44 1.03 51.21 3.42

(bLen) 6.92 5.38 0.58 10.17 n/a n/a n/a 8.87 0.98 50.00 0.83
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Table 4: Predictive performances of models for the precipitation data

Model MAD mCRPS 50%CI 90%CI

CP mLen CP mLen

Without Screen TGH 1.32 0.82 54.5% 2.65 91.1% 6.74

RGRF 1.29 0.85 59.0% 3.17 92.0% 7.74

GRF 1.30 0.84 59.8% 3.28 92.4% 8.00

With Screen TGH 1.11 0.76 52.7% 2.47 89.8% 6.14

RGRF 1.20 0.77 54.9% 2.73 90.0% 6.65

GRF 1.23 0.77 56.8% 2.87 90.6% 6.99
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Figure 1: TGH distribution (red dash line) approximations to several distributions (solid line):

(left) standard cauchy; (middle) skew-normal with location 0, scale 1 and skewness 1.5; (right)

skew-t with location 0, scale 1, degrees-of-freedom 3 and skewness 1.5.
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Figure 2: Realizations of standard TGH random fields (after removing the mean) with Matérn

spatial correlation function (17).
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Figure 3: (a) Locations (“×”) of 13 extreme outliers; (b) Boxplots of 13 extreme identified outliers

(“×”) and their nearest 20 neighbors, (“+” indicate other identified outliers in its neighborhoods);

(c)-(d) Q-Q plot of components in Ẑint in (10) and Ẑpsc.
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(f) Gau−pred
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Figure 4: (a) Spatial locations: “◦” training sites and “+” prediction sites; (b)-(c) MAD(s
p

i
)’s

and mCRPS (s
p

i
)’s of three kriging approaches for g = 0.5 and h = 0, 0.2, 0.4 at 100 prediction

locations; (d)–(f) PIT histograms of three predictive distributions for g = 0.5 and h = 0.2.
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(a) TGH (without screen)
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(b) RGRF (without screen)
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(c) GRF (without screen)
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(d) TGH (with screen)
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(e) RGRF (with screen)
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(f) GRF (with screen)

Probability Integral Transform

R
e
la

ti
ve

 f
re

q
u
e
n
c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

Figure 5: The PIT histogram of the probabilistic predictions made by three models: (a)-(c) without

screen; (d)-(f) with screen.
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(a) TGH random field
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(b) Gaussian random field
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(c) 90% CI Length Differences
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Figure 6: Predicted values using (a) TGH random field (with screen) and (b) Gaussian random

field; (c) Length differences of 90% prediction intervals (Gaussian−TGH).
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