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The development and response to treatment of tumor are modulated by

inflammation, and chronic inflammation promotes tumor progression and

therapy resistance. This article summarizes the dynamic evolution of

inflammation from acute to chronic in the process of tumor development,

and its effect on T cells from activation to the promotion of exhaustion. We

review the mechanisms by which inflammatory cells and inflammatory

cytokines regulate T cell exhaustion and methods for targeting chronic

inflammation to improve the efficacy of immunotherapy. It is great

significance to refer to the specific state of inflammation and T cells at

different stages of tumor development for accurate clinical decision-making

of immunotherapy and improving the efficiency of tumor immunotherapy.
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Abbreviations: TILs, Tumor-infiltrating T lymphocytes; TAM, Tumor-associated macrophages; TAN,

Tumor-associated neutrophils; MDSCs, Myeloid-derived suppressor cells; DC, Dendritic cells; Treg, T

regulatory cell; FRC, Fibroblast reticulate cells; TRCs, T region reticulate cells; CTLA4,T lymphocyte

antigen 4; PD-L1, Programmed death ligand-1; PD-1, Programmed death-1; DAMPs, Damage-related

proteins; PAMPs, Pathogen-associated molecular patterns; TGFb, Transforming growth factor-beta; TNF-

a, Tumor necrosis factor-alpha; PGE2, Prostaglandin E2; ROS, Reactive oxygen species; RNS, Reactive

nitrogen; LPS, Lipopolysaccharides; EMT, Epithelial-to-mesenchymal transition; EGF, Epidermal growth

factor; NETs, Neutrophil external traps; IDO1, Indindamine-2,3-dioxygenase; iNOS, Inducible Nitric oxide

synthase; TLR5, Toll-like receptor 5; PAF, Platelet activation factor; TME, Tumor microenvironment;

TSP1, thrombospondin-1; ARG, Arginase; CSF-1, Colony-stimulating factor 1; GPCRs, G protein-coupled

receptors; TDAG8, T cell death-associated gene 8; OGR1,Ovarian tumor G-protein-coupled receptor 1;

mtDNA, Mitochondrial DNA; TCA cycle, Tricarboxylic acid cycle; T2D, Type 2 diabetes; TOX, thymocyte

selection-associated high mobility group box protein; Nr4a, Nuclear receptor 4A; Foxo1, Forkhead box

transcription factor O1; Blimp-1, B lymphocyte-induced maturation protein 1; BATF, The basic leucine

zipper transcription factor activating transcription factor-like; IRF, interferon-regulatory factor;

OSM, Oncostatin.
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1 Background

There seems to be a role for chronic inflammation in

modulating all phases of malignant disease, including

morbidity and mortality (1). There is substantial evidence that

chronic inflammation caused by persistent infections,

autoimmune reactions, or exposure to toxic chemicals

increases the risk of tumor (2). However, not all chronic

inflammation leads to tumors, the tissue where chronic

inflammation occurs also affects cancer development.

Inflammation of the gut or liver can greatly increase the risk

of tumor, while inflammation of the joints or muscles rarely

affects the development of tumor (3).

Tumor-associated inflammation underwent a transition

from acute inflammation to chronic inflammation. Acute

inflammation is a protective response elicited by injury and

infection, being positive for immune activation. While, chronic

inflammation supports immunosuppression rather than

immune activation, thereby resulting in the growth and

progression of tumors (4). Acute inflammation makes a

difference in tissue regeneration and plays an important

immunostimulatory function (5). However, due to the

persistence of damage, a repair can not be completed in time,

and inflammation is transformed from acute inflammation to

chronic inflammation. Chronic inflammation can lead to genetic

mutations and epigenetic changes in normal tissues that drive

malignant transformation (6).

Largely due to the exhaustion of T cells, chronic

inflammation inhibits immunity, leading to tumor progression.

T cell exhaustion is one of the mechanisms that tumor cells are

able to escape from immune control (7).

As monoclonal antibodies are increasingly used in tumor

medicine, more options are available across a wide range of

oncological indications. Some patients, nevertheless, may not

benefit from an inhibitor of immune checkpoint receptors. Even

patients who benefit do not last. It appears that tumor-induced

inflammation is an important driver of malignant progression in

many solid malignancies. A chronic inflammatory response is a

significant contributing factor to a majority of solid and

hematopoietic tumors (3). Immune-related adverse events

(irAEs) are also significant factors that limit the use of

immune checkpoint blockers besides drug resistance in

patients who are suitable for immunotherapy (8). T-cell

exhaustion caused by chronic inflammation is a negative

feedback regulator in response to infection and tissue damage.

Immune-related adverse reactions occur partly because

immunotherapy disrupts this regulatory mechanism (9).

Immune checkpoint blockers partially reversed T cell

exhaustion, breaking this negative feedback mechanism,

increasing the immunotherapeutic efficiency. It also unties the

reins of immune cells and increases the damage of immune cells

to normal tissues, resulting in serious immune-related events.
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Therefore, it is greatly significant to deeply learn the complex

i n t e r a c t i o n b e tw e e n t h e c h r on i c i nfl amma t i o n

microenvironment and immunity to improve the effect of

immunotherapy and reduce related adverse events.

In addition to immunotherapy, traditional radiotherapy and

chemotherapy remain clinically mainstream. However, radio-

chemotherapy induced dying cells are of great concern, a variety

of cell death patterns may occur, as well as the release of complex

factors, and promote the occurrence of chronic inflammation in

the tumor microenvironment, thus orchestrating repopulation

cascades of tumor (10). Dead cells enhance the survival of

residual viable tumor cells, boost proliferation, and hasten

tumor cell metastasis (11). Therefore, further study of tumor-

related chronic inflammation and finding appropriate

intervention targets is not only necessary to improve the effect

of immunotherapy, but also necessary to improve the long-term

therapeutic effect of radiotherapy and chemotherapy.
2 T cell exhaustion

For tumor cells, the immune cells that play the main effect are

CD8+ T cells, but due to the chronic inflammatory continuous

stimulation, the killing function of T cells will gradually decline,

presenting a state of exhaustion. T cell exhaustion is the body’s

self-protective mechanism to prevent excessive immunity from

damaging normal tissues in the tumor microenvironment. T cell

exhaustion is a compromise of the autoimmune system for the

repair of long-standing viral, bacterial infections, or chronic

tissue damage machine-processed. In these settings, perhaps

(partial) T cell exhaustion strikes the balance between

maintaining limited infection control capacity and moderating

immuno-pathology. For a long time, exhaustion is thought to

represent a series of cellular dysfunctions. Exhausted cells do

make a significant contribution to infection control, although

they can not clear it all (12).
2.1 Characteristics of the
T cell exhaustion

The loss of function in exhausted CD8+ T cells occurs

hierarchically, with some properties being lost before others

(13). Usually, the first thing that gets lost in exhausted T cells is

their ability to produce IL-2 and to proliferate. Other properties

are lost during the intermediate stages of cell exhaustion,

including the ability to produce tumor necrosis factor. When

cells become severely exhausted, they can no longer produce

large quantities of interferon-gamma (IFN-g) or beta-

chemokines or to degranulate. When T cells are completely

exhausted, they become exhausted T cells with total

disappearance of their effector functions (14). Exhaustion is
frontiersin.org
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often consistent with the expression of inhibitory surface

receptors, including PD1, CD160, 2B4, LAG-3, and CTLA-4

(7). Poor effector function and persistent expression of

inhibitory receptors are key features of T cell exhaustion (15).
2.2 Inflammatory regulation of
T cell exhaustion

In the inflammatory microenvironment, T cell failure is

regulated by inflammatory factors (IL-10/IL-35/IL-7/IL-21/

TGF-b, etc.) (16) inflammatory cells (Treg, MDSCS,

macrophages, neutrophils, mesenchymal cells, etc.), and

related nutrients (glucose, amino acids, fatty acids, etc.) (12).

The specific mechanism of action will be discussed in the

following article.
3 Sources and effects of
inflammation in tumor development

In tissues, inflammation occurs earlier than in tumors. Local

inflammation is largely caused by infection or the stimulation of

environmental factors, and systemic inflammation is mostly

related to obesity and metabolic diseases. Both local and

systemic inflammation interact through the circulatory system.

The tumor and related radiotherapy and chemotherapy can

promote both local inflammation and systemic inflammation.

During tumor progression, inflammation undergoes a transition

from acute to chronic, and its effect on T cells also switches from

activation to promotion of exhaustion. It is very essential to

understand how inflammation transforms in different stages of

tumor growth to improve the effectiveness of immunotherapy.
3.1 Inflammation and precancerous
lesions

3.1.1 Local inflammation
Pathogen microbial infection and local stimuli are the main

causes of chronic local inflammation, such as Helicobacter pylori

infection, Hepatitis virus infection pancreatitis, colitis,

esophagitis, cholangitis, etc. (17). Environmental and chemical

human carcinogens induce pro-tumor inflammation, including

UV, aflatoxins, nitrosamines, and tobacco (18, 19). Local chronic

inflammation activates the NF-kB pathway, which suppresses

apoptosis with malignant potential, leading to a malignant

transformation in the tissue (20). The activation of NF-kB
plays a vital role in the control of the communication between

tumor cells and inflammatory cells (21). The microenvironment

of a tumor and normal tissues are always filled with activation

signals. NF-kB pathway activation occurs when p53 is
Frontiers in Immunology 03
dysfunctional, issuing in increased expression of inflammatory

genes (22). NF-kB activity can be induced by many factors, such

as TNFa, IL-1b, LPS, ionizing radiation, ROS, etc. (23). The ROS
produced by neutrophils and macrophages can not only activate

the NF-kB pathway, but also cause DNA disruption, induce gene

mutations, and increase susceptibility to tumors (24). In

addition, in the chronic inflammatory microenvironment,

the formation of tumor progression is conducive to the

immune suppression microenvironment, this inhibitory

microenvironment will not only lead to immune escape but

also a screening of tissues, only to adapt to this inhibitory

environment of malignant cells that can survive, this selection

process becomes immune editing (25). In conclusion, chronic

inflammation plays an important role in the malignant change of

cells, and later immune escape.

3.1.2 Systemic inflammation and precancerous
lesions

Systemic inflammation can evolve from local inflammation or

result from systemicmetabolic diseases. The local immune response

consists of cytokines derived from a tumor and inflammatory

proteins derived from the host, as well as infiltrating immune

cells, acting in the local tumor micro-environment (26). On the

other hand, systemic inflammation is also associated with small

molecules in local inflammation. The difference is that these

mediators flow in the systemic circulation and lead to

paraneoplastic syndromes in cancer patients. It is evident that

mediators in the systematic inflammatory microenvironment and

the local microenvironment communicate extensively (26).

As a result of adipose expansion and chronic obesity, an

inflammatory program is activated, permanently skewing the

immune system in favor of inflammation (27). There is ample

evidence that obesity is closely associated with colon tumors,

oesophageal tumors (adenocarcinoma), renal tumor (renal cell

carcinoma), breast tumor (postmenopausal), and endometrial

tumor (28).

Adipose tissue necrosis causes macrophage infiltration,

while the metabolism of adipose tissue itself, produces

chemokines and resident factors, causing the indwelling of

macrophages. Invasive macrophages produce inflammatory

factors to further shape the inflammatory microenvironment.

In addition to TAMs, MDSCs and DCs are also recruited by

adipose tissue, both of which can promote chronic inflammation

in the context of obesity (29, 30). In adipose tissue, the number

or proportion of Treg cells decreases will further promote the

development of chronic inflammation (31). The adipose tissue is

directly resulted from the nutrient excess, which also leads to

reactive oxygen species (ROS) production sourced from

mitochondrial (32). ROS stimulates chronic inflammation by

activating the upstream kinases I-kB and JNK to provoke

proinflammatory transcription factors, such as AP-1 and NF-

kB (33). Inflammation in adipose tissue may also be influenced

by commensal flora metabolism, through bacterial products
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(34). The inflammation caused by adipose tissue is chronic, and

metabolic. It does not disappear unless the adipose

tissue disappears.

According to the current study, the gut microbiota and its

metabolites can trigger inflammation in obese and diabetic

individuals. The chronic inflammatory response further

increases insulin resistance, and the two promote each other,

forming a bad cycle (35).
3.2 Inflammation and tumor

Chronic inflammation plays an important role in the

occurrence, development, distant metastasis, and recurrence of

most tumors (Figure 1). That is, the occurrence of certain tumors

and inflammation are not closely related, but the treatment of

inflammation to intervene, can still achieve positive efficacy

(36, 37).

3.2.1 The dynamic evolution of tumor,
inflammation and immunity

Acute inflammation is caused by the recognition of

pathogen-associated molecular patterns (PAMPs), or damage-

associated molecular patterns (DAMPs), which activate pro-

inflammatory cytokines and chemokines, thereby enhancing

immune responses (38). Granulocytes constitute the majority

of infiltrating inflammatory cells in acute inflammation (39).
Frontiers in Immunology 04
Acute inflammatory responses typically stimulate dendritic cell

(DC) maturation and antigen presentation, favoring the

activation of CD8+ T cells. During the tumor, acute

inflammation mostly occurs in the early stage of the tumor

(40), which is caused by tumor-specific antigens or tumor-

associated antigens (41). Acute inflammation can also be led

by tumor growth and invasion to destroy normal tissue (42),

tumor-specific chemotherapy and low-dose, radiation (43).

The simultaneous occurrence of tissue destruction and

repair is a hallmark of chronic inflammation. The main

infiltrating immune cells at sites of chronic inflammation are

macrophages and lymphocytes (44). Chronic inflammation

leads to the presence of high amount of immunosuppressive

cells (TAM2,Treg cells, MDSCs etc.) and cytokines in the tumor

microenvironment (45), which induces T cell exhaustion and

produces an immunosuppressive microenvironment. Before the

occurrence of tumors, chronic inflammation already exists and

produces immunosuppression, which is a risk factor for

tumorigenesis. In the process of the tumor, most solid tumors

develop chronic inflammation that promotes tumor progression

(45). Tumor cells and stromal cells release chemokines, recruit

macrophages and neutrophils (46), tumor growth and invasion

can damage normal tissues and release damage-associated

molecular patterns that activate granulocytes (42). Tumor-

specific metabolic patterns result in an acidic and hypoxia

TME, leading to neovascularization and recruitment of

macrophages (47).
FIGURE 1

Chronic inflammation of different sources accompanies the whole process of tumor development: in precancerous lesions, chronic local
irritation, and chronic inflammation caused by systemic metabolic diseases not only activate the NF-kB pathway, but also induce gene
mutations that lead to tissue malignant transformation. At the same time, it can inhibit the immune monitoring and make the tumor cells
escape. Tumor treatment could result in the necrosis of tumor cells. Necrosis of the tumor cells chemotactic inflammatory cell aggregation,
suppression of immunity; At the same time, a large number of cytokines are released to generate factor storms leading to the aggregation and
recurrence of tumor cells. Chronic inflammation and epithelial-mesenchymal transformation promote each other and form a vicious cycle,
which is conducive to distant metastasis of tumors. Inflammatory factors are closely related to the production of tumor cachexia.
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3.2.2 Inflammation and tumor necrosis
Chemoradiation-induced death of tumor cells releases

complex factors, thereby coordinating the cascade of tumor

regeneration. Dead cells enhance the survival of residual live

tumor cells and promote metastasis. In addition, dead cells can

also contribute to chemoradiation-induced side effects (11, 48).

Cells dying from chemoradiotherapy also secrete platelet

activation factor (PAF)-like phospholipids, which further

exacerbate immunosuppression by binding to the PAF

receptor (49, 50). Tumor-related therapy can also lead to drug

resistance in patients (51).

3.2.3 Inflammation and chemotherapy
Chemotherapy can trigger inflammation through ROS and

damage-related proteins (DAMP) (52). Chemotherapy or

immunotherapy damages the normal tissue, thereby inducing

the migration of macrophages, and cytotoxic lymphocytes to

damaged and non-damaged sites, causing chronic inflammation

of the tissue (53). Tumor treatment will also promote the

production of ROS (54). Reactive oxygen species result in

mitochondrial DNA (mtDNA) and nuclear DNA damage.

DAMP from the mitochondria enters the cellular cytoplasm,

activates intercellular spatial receptors, and further triggers the

recruitment of immune effector cells (55). Computer modeling

study shows that increased tumor cell death from

chemoradiotherapy leads to short-term tumor shrinkage, but

ultimately can accelerate tumor growth and metastasis in the

long-term (56).

3.2.4 Inflammation and radiation therapy
Antitumor immunity can be stimulated by low-dose radiation

therapy (57). Radiotherapy can contribute to the expression of

proinflammatory chemicals, cytokines, and NK cells, stimulate the

formation of inflammation and be conducive to activating the

immune response (58). High-dose radiotherapy acts directly on

sphingal membrane-bound sphingolipid, decomposes sphingolipid,

and generates ceramide by sphingingholipase. This process results

in the accumulation of ceramides in damaged tissues. Angiogenesis

is suppressed by ceramides, which damage endothelial cells (59).

Immune cells are less likely to be attracted to damaged/

inflammatory regions through blood flow areas when angiogenic

inhibition is present. It is a failure to recruit immune cells

(macrophages, T cells, and endocytic) resulting in PD-L1

accumulation and immunosuppression.

3.2.5 Inflammation and metastasis
EMT is important for tumor metastasis. The EMT program

not only enables tumor cells to exhibit enhanced invasiveness,

stem cell-like characteristics, and resistance to apoptosis, but

also stimulates tumor cells to produce pro-inflammatory factors.

At the same time, inflammation further induces EMT.

Therefore, in an alliance of metastatic growth, these
Frontiers in Immunology 05
phenomena may support each other (60). In the tumor

microenvironment, inflammatory cells can effectively promote

EMT. Macrophages induce EMT by the production of EGF (61).

Bone marrow-derived suppressive cells infiltrate the primary

tumor and induce EMT in tumor cells through the TGF-b, EGF,
and HGF signaling pathways, leading to metastasis and the

spread of tumor cells (62). In addition to inflammatory cells,

many inflammatory factors also play important roles in EMT,

such as TGF-b、IL-6、CCL-20/CCL-8 et al. (63–65). In

conclusion, chronic inflammation not only suppresses the

anti-tumor immunity but also promotes distant tumor

metastasis by promoting EMT.

3.2.6 Inflammation and cachexia
Tumor cachexia, also known as wasting syndrome, is closely

associated with chronic inflammation. Cachexia is characterized

by severe atrophy of skeletal muscle and gradual weight loss due

to partial adipose tissue. Epidemiological data suggest that

circulating CRP levels are associated with cachexia levels and

mortality risk in patients. Inflammatory cytokines such as IL-6,

IL-1b, and TNF-a are boosted in the TME in patients with

systemic or cachexia (66). Pro-inflammatory factors have direct

causal relationships with cachexia. TNF-a, tumor proteolytic

inducible factors and lipid mobilization factors are directly

relevant to the breakdown of muscle and adipose tissue (67).

Other pro-inflammatory cytokines, including IL-1 and IL-6

induced a strong reduction in transporters involved in bile

formation and bile acid secretion, further aggravating the

development of cachexia (68).
4 Chronic inflammation and
T cell exhaustion

Different aspects of inflammation seem to play a role in all

stages of malignant disease. Although acute inflammation can

stimulate immunity, tumor-associated inflammation suppresses

immunity and promotes tumor progression (69). The

suppression of chronic inflammation on immunity is mainly

reflected in the induction of T cell exhaustion, so this section

discusses in detail how chronic inflammation regulates T cell

exhaustion (Figure 2). It is concluded that the signals regulating

T cell exhaustion are mainly divided into the following three

categories. Sustained antigenic stimulation (signal 1) from

viruses or tumor cells is a central factor in T cell exhaustion

(70). Proinflammatory cytokines and inhibitory cytokines

(signal 2) produced by virus-infected cells, immunoregulatory

cells, and tumors are important players in regulating T cell

exhaustion in chronic inflammation. Inhibitory receptors on the

surface of T cells (signal 3) provide a negative costimulatory

signal, which blocks the activation of T cell effectors and renders

T cells unable to mount a robust immune response (71).
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4.1 Mechanism of T cell exhaustion

It has been conducted for the research on immunosuppressive

receptors such as PD-1, TIM-3, LAG3, CTLA-4 and BTLA (72).

However, there are still few studies on the mechanisms regulating

receptor and ligand expression in tumor-associated chronic

inflammation. The expression of inhibitory receptors and their

ligands plays a critical role in T cell exhaustion (73).

It is one of the hallmarks of T cell exhaustion that the

expression of inhibitory receptors on the surface of T cells. The

nuclear factor of activated T cells (NFAT) controls CD8+ T cell

exhaustion by binding to the promoter of exhaustion-related genes

like Pdcd1 (PD-1) and Havcr2 (TIM3) (74). STAT3/STAT4 can

induce the expression of PDCD1 by acting on the transcription

factor NFAT (75). This may partly explain the specific mechanism

how chronic inflammation induces T cell exhaustion (76). Nuclear

receptor 4A (Nr4a) and Thymocyte selection-associated high

mobility group box protein (Tox) transcription factors promote

T cell exhaustion by acting on NFAT. Tox2 transcription factor

and Nr4a transcription factor may be promising targets for future

immunotherapy (77). T-bet directly inhibits the transcription of

PD-1-encoding genes, resulting in decreased expression of other

inhibitory receptors. Sustained antigenic stimulation leads to T-bet
Frontiers in Immunology 06
downregulation, leading tomore severe exhaustion of CD8+ T cells

(78). The progression of T cell exhaustion is associated with

additional repressor genes and transcriptional pathways, such as

Forkhead box transcription factor O1 (Foxo1) (79), B lymphocyte-

induced maturation protein 1 (Blimp-1) (80), Basic leucine zipper

transcription factor ATF-like -interferon-regulatory factor (BATF-

IRF) interaction (79).

Inhibitory ligands on the surface of immune cells and tumor

cells are also important factors affecting T cell exhaustion.

Hyperactivated ALK signaling pathway promotes PD-L1

expression via STAT3 which is activated by NPM-ALK gene

fusion (80). Other pathways that are associated with chronic

inflammation such as the NF-kB pathway, PTEN/PI3K pathway

and MAPK pathway are all involved in the regulation of PD-L1

expression (81–84).
4.2 Chronic inflammation regulates
T cell exhaustion

In conclusion, soluble microkinis have an important role to

play in regulating immunity (Tabel 1), in inflammatory

microenvironment and even in a sense, the composition of
FIGURE 2

Every coin has two sides, and inflammation is no exception. In the tumor microenvironment, the role of inflammatory cells and inflammatory
factors on T cells is not static. The different mechanisms between inflammatory factors for promoting T cell activation or exhaustion are
important issues to be considered in future studies.
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different types of cytokines determines the quality of T cell

pathogen-specific response. Inflammation-related factors can

not only induce the expression of inhibitory receptors on the

T cell surface, but also activate oncogenic pathways and alter the

expression of inhibitory ligands (Table 1). Notch signaling

promotes T cell exhaustion by affecting NFAT transcription

factors (103). Notch signaling is involved in both malignancies

and chronic inflammatory diseases (104, 105). IL-6 can promote

T cell exhaustion through IL-6/STAT3/PD-1 transcription

regulation (106). Other pro-inflammatory cytokines in TME

promote the expression of PD-1 on the surface of T cells, leading

to the exhaustion of T cells such as Il-10,TGF-b (106–109).

Inflammatory factors (IFN-a, IFN-b, TNF-a, TGF-b) can also

induce PD-L1 expression and attenuate immune cell

activation (110).

Inflammation-related cells can promote T cell exhaustion,

possibly through cell-surface immunosuppressive ligands or by

self-secreting inhibitory inflammatory factors (Table 2).

Immunosuppressive ligands on the surface of tumor cells and

macrophages (127), bind to receptors on the T cell surface,

inhibiting the killing function of T cells and promoting the

exhaustion of T cells (128). TAMs and MDSCs were associated

with the expression of PD-1 on the T cell surface (129, 130). Treg

cell-derived IL-10 and IL-35 promote BLIMP1-dependent

depletion of CD8+ TILs, thereby limiting effective antitumor

immunity (94).
4.3 The mechanism of inhibitory
receptor/ligand

When the inhibitory receptor on the surface of T cells binds

to the corresponding ligand, it can block the binding of other

stimulatory ligands and inhibit the activation of T cells (131).

Inhibitory receptors can induce a decrease or disappearance of

the expression of intracellular receptors that positively regulate
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immunity or costimulatory factors (132). In addition, inhibitory

receptors induce the expression of certain inhibitory genes that

promote T cell exhaustion (133).
5 Methods to reverse T cell
exhaustion by targeting
inflammatory microenvironment

As tumor treatment enters the immune era, the application

of immune checkpoint blockers has become more and more

extensive. T-cell exhaustion is a negative feedback mechanism in

the body, and immune checkpoint blockers directly disrupt this

negative feedback regulatory state, sometimes resulting in

immune cells destroying normal tissues in the body. This

phenomenon is known as immune-related adverse reactions,

which can sometimes be more deadly than tumors. Therefore, it

is greatly important for the safe application of immunotherapy

to keep the balance between the state of T cells and the body’s

protective mechanism.

Moreover, immune checkpoint blockers can partially reverse

T cell exhaustion, but sometimes the treatment is not durable.

One of the reasons for this is the continuous stimulation of the

chronic inflammatory environment in the tumor (131).

For the T cell exhaustion induced by chronic inflammation,

researchers have developed many treatments that are combined

with immune checkpoint blockers to improve treatment

responsiveness and persistence of efficacy. The first is the

simultaneous use of multiple immune checkpoint blockers

(134). Since T cell failure is not only manifested by elevated

PD-1 expression, other immune checkpoints also make a

difference. The simultaneous application of multiple immune

checkpoints blockers can not only directly reverse the T cell

exhaustion, but also increase the glucose uptake and utilization

ability of T cells, thus conducive to the activation of T cells (135).
TABLE 1 Factors in chronic inflammation.

Factors Effects on immune cell Refs

TNFa Active the NF-kB pathway, Promote expression of PD-L1 (85–87)

TGFb Acts as an important mechanism of immune evasion
Induce the expression of pd-l1

(88–90)

IFNa/b Activate of innate immune cells
Induce the expression of negative regulators, Mediate T cell death through Fas/Fasl

(91, 92)

IL-10 Induce t cell exhaustion by BLIMP1 (93, 94)

IL-6 Improve the action of CD4+ T cells
Inhibit the differentiation of Treg cells

Promote TH17 differentiation

(95, 96)

IL-2 Maintain memory CD8+ T cells (97)

IL-21 Induce BATF expression (98, 99)

IL-7 Regulate the mechanisms of memory T cell survival (100, 101)

adenosine Inhibit T cell function through A2AR (102)
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While applying immunotherapy, the combination with

traditional radiotherapy can also increase the effect of

immunotherapy. Radiation therapy can increase the

infiltration of T cells while causing acute inflammation can

enhance cellular immunity (136). Certain chemotherapeutic

drugs or radiation can induce immunogenic death of tumor

cells, followed by the release of tumor antigens which are

recognized by antigen-presenting cells and facilitate the

activation of T cells (137).

Both local and systemic chronic inflammation increases the

incidence of malignancies and is closely associated with a poor

prognosis (27). Anti-inflammatory treatment (Table 3) and the

treatment for metabolic diseases are beneficial to prevent tumors;

the combined application of immune checkpoint blockers is

expected to enhance therapeutic efficiency of immune

checkpoint blockers and delay tumor progression (143).

In addition to systemic metabolism, the lack of amino acids,

glucose, cholesterol, and the accumulation of lactate and lipid

can also affect T cell exhaustion, and targeting these metabolic

targets for treatment will also strongly promote T cell activation

(144). Immune checkpoints inhibit T cell function by inhibiting

glycolysis in immune cells. So immune checkpoint blockers can

restore glucose uptake by immune cells (145). Blocking the
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tumor metabolism of glutamine not only brings about reduced

hypoxia, acidosis, and nutrient consumption in the tumor

microenvironment but also promotes T cell activation and

extends the life span of T cells (146). Targeted arginase (ARG)

restores arginine levels, leading to tumor regression and

improved T cell function (147). The combination of the ARG1

(arginase 1) targeted vaccine with anti-PD-1 also leads to

increased T cell infiltration and promotes T cell activation

(148). Adenosine-producing enzyme CD73 is inhibited by

mAb19 and adenosine-mediated T cell exhaustion is

suppressed in vitro by mAb19 (149).

Strategies that target fatty acid synthases or fatty acid

oxidation to improve lipid abundance and thereby improve

immune efficacy are beneficial in mouse tumor models (150).

The accumulation of lactic acid can inhibit immunity, and one

way to target lactic acid is to inhibit lactic acid transporters to

reduce lactate acid accumulation (151).

Cytokines in the inflammatory microenvironment have

different directions on T cell exhaustion. Increasing factors

that antagonize T cell exhaustion or blocking factors that

promote T cell exhaustion, combined with immune

checkpoint blockers, has been actively explored in anti-tumor

therapy. During chronic viral infection, increasing the IL-2 or
TABLE 3 Anti-inflammatory treatment are beneficial to prevent tumors.

Anti-inflammatory treatment Outcomes Refs

Aspirin Reduce risk of colorectal tumor, and possibly of a few other digestive tract tumors (138)

Indomethacin Promote SYVN1-mediated ubiquitination of ITGAV, and potentiating cytotoxic CD8 T cell responses (139)

Metformin Induce activation of the JAK1/2/3/STAT5 and AKT/mTOR pathways in a p38 MAPK-dependent manner (140)

Statins Activate antigen-presenting cells and tumor-specific CD8+ T cells (141)

The dietary patterns Lower the risk of developing several tumors (142)
frontiers
TABLE 2 Immune cells in chronic inflammation.

Immune cells Outcome Refs

TAMs Release immunosuppressive molecules
Express the ligands of PD-1, PD-L1, PD-L2

(111–116)

Treg cells Release immunosuppressive molecules
Induce DCs to express immunosuppressive molecules
Express cytotoxic T lymphocyte antigen 4 (CTLA4)
Produce adenosine,
Inhibit tumor-associated antigen presentation,
Inhibit cytolytic granule release

(114, 117, 118)

MDSCs Disrupt dendritic cells (DCs) antigen presentation
Inhibiting cytotoxicity of NK cells
Express high levels of arginase I
Induce nitric oxide synthase (iNOS), and GR1

(119, 120)

TANs Produce ROS,RNS and angiogenic factors
Increases inhibitory receptor expression on T cells
Recruitment of Treg
Release arginine-1/neutrophil external traps (NETs)

(121–124)

Mesenchymal cells Induce NO
Express co-stimulatory molecules

(125, 126)
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IL-7 content in the inflammatory microenvironment can

improve the virus-specific CD8+ T cell response and accelerate

viral clearance (152, 153). Blocking the interleukin-10 receptor

increases the effect of CD8+ T cells and accelerates the rate of

virus clearance (154). The blockade of TGF-b, TNF-a, also
showed meaningful results in reversing T cell exhaustion

(155, 156).

In addition to targeting their secreted inflammatory factors,

direct intervention in the polarization and recruitment of

inflammatory cells is also a promising therapeutic modality.

Reduction of Treg cells or block of Treg cell differentiation may

allow CD8+ T cells to increase their immune surveillance of

tumor cells (157). Targeting MDSCs with monoclonal

antibodies restored the function of TILs (119). Colony-

stimulating factor 1 (CSF-1) as a signal for macrophage

recruitment and aggregation, using a small molecule PLX3397

that effectively inhibits the activity of the CSF-1R tyrosine

kinase, can effectively reduce macrophage recruitment and

improve tumor recurrence (158). In addition to blocking

recruitment, M2 macrophages can be reeducated. It has been

shown that blocking NF-kB activation in TAMs can convert

TAMs from a tumor-promoting M2 phenotype to an m1-similar

cytotoxic phenotype, thereby alleviating immunosuppression

and enhancing the tumor control effect (159). Neutrophils are

able to promote angiogenesis and promote distant tumor

metastasis. Targeted granulineolytic colony-stimulating factors

(G-CSF) can inhibit the recruitment of neutrophils and enhance

the efficacy of antiangiogenic agents (160). The combination of

therapy targeting the inflammatory microenvironment with

immune checkpoint blockers is expected to further improve

the efficiency of immunotherapy in clinical application.
6 Discussion

Cancer development and its response to therapy are

modulated by chronic inflammation, and chronic

inflammation promotes tumor progression and therapy

resistance. We discuss in detail how chronic inflammation

induces T cell exhaustion in tumors and the prospects of

targeting chronic inflammation in combination with immune

checkpoint blockers for tumor therapy.

In addition, this article summarizes the dynamic evolution of

inflammation and the results of different effects on the body’s

immunity during tumor development. Discuss the positive role

of inflammation and T cell exhaustion in maintaining health

from a new perspective. The research in this paper has important

reference significance for making the accurate clinical decision

in different stages of tumor development, by combining with the

specific state of inflammation and T cells.

In the treatment of reversing T cell exhaustion, in addition to

directly using immune checkpoint blockers to act on CD8+ T

cells, targeting related helper cells can also effectively promote T
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cell activation. At present, there is further research on the

exhaustion of CD4+ T cells, which is beneficial to stimulating

stronger anti-tumor immunity (161). Fibroblasts retain an

effective inflammatory environment in chronic inflammation,

resulting in immunosuppression in malignant tumors (162).

Future studies could further focus on the link between associated

helper cells and T cell exhaustion, providing more targets for

reversing T cell exhaustion.

Inflammation factors in the tumor microenvironment play an

dual-directional and dynamic role in the regulation of T cell

exhaustion (163). IL-2 has a dual role in regulating tumor-

associated immunity (164). IL-2 can promote the activation and

proliferation of CD8+ T cells in the early stage of tumor, but it can

switch its function to induce the exhaustion of CD8+ T cells in the

late stage of tumor. This change may be related to the increase of

IL-2 content (165). Oncostatin (OSM), as a member of the Il-6

family, also has two-sided effects on immunity. In the early stages

of tumors, OSM can activate immunity and inhibit tumor

progression (166). However, in the late stage of the tumor, it

will inhibit the immune system and promote the progression of

the tumor (167). The mechanism of this effect may be related to

the activation of JAK-STAT signaling pathway (168). It may also

be due to the accumulation of the concentration (169), which has

transformed its effect. The tumor microenvironment is a small

ecosystem (170), and the interaction of tumor cells with immune

cells and cytokines cannot be viewed in isolation (171).

Bioinformatics and single-cell sequencing technologies are

playing an increasingly important role in tumor research. Under

the background of the era of precision therapy, it is very

necessary to apply relevant analysis techniques to perform

accurate subgroup analysis and marker analysis for T cell

exhaustion. Therefore, for the degree of T cell exhaustion and

the evaluation of the effect of immune checkpoint blockers

therapy, it is necessary to further study for related markers to

clarify the indication of the application of immune checkpoint

and the timing of stopping the immune checkpoint inhibitors, so

as to improve the anti-tumor efficacy and reduce the damage of

excessive immunity to the body (146). With the application of

single-cell sequencing, recent studies have defined the

heterogeneity of T lymphocyte populations at the genetic level

(150). This approach may be used to monitor the effects of

different immunotherapies on specific subsets of TIL and specific

diseases. This paves the way for the use of blockers at specific

immune checkpoints in the future.

The gut microbiota directly or indirectly affects the

differentiation and function of immune cells, and the gut

microbiota is a promising target for the treatment of

inflammation-related cancers. Little is known about the

mechanisms by which gut microbiota regulates T cell

exhaustion. It is believed that the intervention of intestinal

flora can further improve the effect of immunotherapy.

There are many studies on the mechanism of inhibitory

receptors on T cells, but little is known about how the expression
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of inhibi tory receptors is regulated in the tumor

microenvironment. This also indirectly leads to less research

on the specific regulatory mechanism of inflammatory mediators

and inflammatory cells intervening in T cell exhaustion, only

focusing on the correlation between inflammatory factors or

cells and the expression of inhibitory receptors. There are some

studies on the regulation of T-bet and NFAT on the expression

of immunosuppressive receptors. While relative to the complex

inhibitory receptors, the current research is still insufficient.

Moreover, the current mechanism research is still far from the

clinical application of targeted inhibitory receptor combined

immunotherapy. Therefore, future research can focus more on

the mechanism of the tumor microenvironment regulating the

expression of immunosuppressive receptors on the basis of

modern technologies such as bioinformatics and single-cell

sequencing, combined with existing experimental techniques.
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