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Abstract

Background: The link between reproductive life history and incidence of ovarian tumors is well known. Periods of

reduced ovulations may confer protection against ovarian cancer. Using phenotypic data available for mouse, a

possible association between the ovarian transcriptome, reproductive records and spontaneous ovarian tumor rates

was investigated in four mouse inbred strains. NIA15k-DNA microarrays were employed to obtain expression

profiles of BalbC, C57BL6, FVB and SWR adult ovaries.

Results: Linear regression analysis with multiple-test control (adjusted p ≤ 0.05) resulted in ovarian tumor

frequency (OTF) and number of litters (NL) as the top-correlated among five tested phenotypes. Moreover, nearly

one-hundred genes were coincident between these two traits and were decomposed in 76 OTF(–) NL(+) and 20

OTF(+) NL(–) genes, where the plus/minus signs indicate the direction of correlation. Enriched functional categories

were RNA-binding/mRNA-processing and protein folding in the OTF(–) NL(+) and the OTF(+) NL(–) subsets,

respectively. In contrast, no associations were detected between OTF and litter size (LS), the latter a measure of

ovulation events in a single estrous cycle.

Conclusion: Literature text-mining pointed to post-transcriptional control of ovarian processes including oocyte

maturation, folliculogenesis and angiogenesis as possible causal relationships of observed tumor and reproductive

phenotypes. We speculate that repetitive cycling instead of repetitive ovulations represent the actual link between

ovarian tumorigenesis and reproductive records.

Background
Epidemiological evidence indicates that multiparity and

breastfeeding as well as endocrine disrupting agents -

used in oral contraception, hormone replacement ther-

apy and infertility treatment- modulate the risk of ovar-

ian cancer [1]. Repetitive lifetime ovulations would

induce a persistent wound repair process of the ovarian

surface epithelium cells leading to pre-neoplastic altera-

tions [2]. In addition, oral contraceptives and pregnancy

reduce levels of circulating gonadotropins whereas

fertility drugs induce follicle-stimulating hormone (FSH)

production. Gonadotropins also increase with reproduc-

tive ageing, and have been implicated in ovarian cancer

etiology since this malignancy predominantly occurs in

menopausal women [3].

The laboratory mouse has been increasingly used to

model several aspects of ovarian cancer [4]. Indeed,

reproductive biology of mouse resembles human repro-

duction in many aspects. Analogous to menstrual cycles

in women, female mice undergo estrous cycles that last

4-5 days and consist of four successive phases. Proestrus

and estrous phases together constitute the follicular

phase while metestrus and diestrus phases together

represent the luteal phase [5]. Similar to humans, the
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length of estrous cycles increases while the monthly

cycle frequency decreases in ageing mice [6]. The num-

ber of ovulations roughly reaches 500 during the repro-

ductive life of women while in mice this number can be

achieved earlier than middle age due to multiple ovula-

tions in a single cycle [7] as judged by the litter size

observed in mice [5]. Cysts, invaginations and cell layer-

ing are also common observations in the mouse and

human ovaries [7].

Mouse inbred strains display measurable traits that are

described as continuous phenotypes in the Mouse Phe-

nome [8] and the Mouse Tumor Biology [9] databases.

The natural variability observed in mice strains offers

the opportunity to study disease susceptibility in a

genetically defined background. In simple terms, pheno-

typic variability could be due to the interplay of gene

transcripts and/or proteins expressed at different relative

abundances across individuals in a tissue or cell type

implicated in a phenotype. Thus, if a correlation exists

between a continuous phenotype and gene expression, a

measure of each gene’s contribution to the observed

phenotype can be inferred. DNA microarrays are suited

to measure transcript levels for hundreds or thousands

of genes simultaneously, and thus such contribution

can be addressed in a wide-genome format. A number

of statistical approaches have been recently formulated

to correlate DNA microarray data with phenotypic

covariates [10].

In an attempt to gain novel information linking repro-

ductive parameters with ovarian tumorigenesis we

describe here a correlation analysis between sponta-

neous ovarian tumors, reproductive phenotypes and

gene expression profiles obtained with NIA15k-DNA

microarrays from ovaries of four mouse inbred strains.

Using a linear regression approach with control of mul-

tiple testing, “ovarian tumor frequency” (OTF) and

“number of litters” (NL) were the top-correlated of 5

analyzed phenotypes. About one hundred genes were

coincident between OTF and NL. The enriched biologi-

cal functions in this overlapped sub-set were “RNA-

binding/mRNA-processing” and “protein folding”. The

relevant information concerning the significant genes

was mined and the relationship between ovarian func-

tion and ovarian tumorigenesis at the molecular level is

discussed.

Results
Consistency of microarray data and Q-PCR assays

The robustness and reliability of the mouse NIA-15K

cDNA microarray platform has been demonstrated in

our previous work [11,12] and by others [13-15]. Experi-

mental design employed a common reference RNA and

replicate dye-swap. Raw data was subjected to print-tip

loess normalization, a numerical correction based on

local deviations across the microarray surface aimed to

counteract the inherent noise of these devices [16].

Further adjustment consisted of inter-slide scale normal-

ization, after which statistical comparisons were per-

formed. The complete normalized dataset for 14,586

cDNA clones in 23 microarrays corresponding to 4 sam-

ples (i.e. 6 replicates for 3 samples and 5 replicates for 1

sample) is available as a Supplementary spreadsheet

(Urzua_complete_dataset.xls) and has been deposited to

the GEO database (http://www.ncbi.nlm.nih.gov/geo/)

with the accession code GSE18045. One of the 24 hybri-

dization experiments was discarded because not meeting

with minimal image quality parameters. Figure 1, panels

A through C, shows microarray data comparison for

expression of genes Tsc22, Col3a1 and Fubp1 in 2

strains assayed each in 6 microarray replicates. These

genes were selected because they were present as multi-

ple cDNA clones in the NIA-15K collection, so that

intra-slide consistency could also be evaluated. The

expression change (ec), defined as the difference

between log2 ratio averages of all clones in the 6x2

replicate arrays, was similar among the 3 genes. How-

ever, the adjusted p value was significant for the Fubp1

gene only. Additionally, quantitative-PCR (Q-PCR) con-

firmation assays were performed for seven genes

assessed in a previous mouse ovarian study, and for

which primer pairs were available. Three of these genes

showed statistical significance after an ANOVA test

across the 4 mouse strains (see next section). The CT

values for test and reference samples were corrected

with the 18S-rRNA as internal control transcript and

then converted to log2-based ratios to compare with

microarray results. As shown in Figure 1D, the squared

correlation between Q-PCR and microarray platforms

was R2 = 0.749, a value over the range observed in a

recent large-scale study aimed to validate microarray

data using Q-PCR [17]. Microarray data roughly ranged

from -4.0 to +1.5 while the correspondent Q-PCR

results ranged from -4.9 to +3.4. Except for one data

pair, out of 28 comparisons, the ratio direction (up- or

down-regulation) more than the absolute value, was

consistent between both methodologies. Additional

file 1, Table 1 (Urzua_Suppl_Results) shows detailed

microarray log2 ratio values and CT values for the seven

genes in all test and reference samples.

Tumor and reproductive parameters correlated with

ovarian gene expression

A preliminary ANOVA analysis resulted in 628 cDNA

clones (4.27 % of the whole dataset) with statistically

significant differences (adjusted p<0.05) between 2 of

any of the four mouse ovarian tissue profiles (data not

shown). These results simply indicate that transcrip-

tional differences indeed occur among ovarian tissue
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across strains. Thus, in order to add physiological mean-

ing to this observation, the whole microarray dataset

was subjected to a linear regression analysis with each

of the continuous covariates shown in Table 1. A sum-

mary of regression results is shown in Table 2. Using an

adjusted p value <0.05 as cut-off, a total of 590 clones

that represented 401 known genes, 93 unknown genes,

45 transcribed locus and 9 expressed sequences were

significantly correlated to 4 of the 5 traits analyzed. The

overlap between the regression analysis and the

ANOVA test was 386 clones. The phenotype productive

matings (PM) did not result in any significantly

Figure 1 Consistency of microarray results and Q-PCR confirmation of selected genes Normalized microarray data of 5 cDNA clones of

Tsc22 (A), 4 clones of Col3a1 (B) and 4 clones of Fubp1 (C) were compared between samples s1 and s2 (corresponding to 2 of the 4 mouse

ovarian samples assayed) across 6 microarray replicates each. Adjusted p-values and expression change (ec), defined as the difference between

log2 averages are shown. In D, the coordinates of scatter plot depicts the average of normalized microarray ratios (5-6 replicates) and the

average of duplicate Q-PCR assays for the genes Spp1, Txnrd1, Anxa5, Fn1, C1s, Ctsl, and Mt1 in each of the 4 mouse strains. The internal control

transcript was the 18S rRNA. Q-PCR data was converted to log2 scale ratios as described in Methods. The squared correlation coefficient (R2)

shown corresponds to the overall gene subset in the 4 strains (i.e. 28 data pairs). Raw Q-PCR results and individual microarray ratios are detailed

in Additional file1, table 1.

Table 1 Ovarian tumor and reproductive phenotypes in selected mouse strains

Strain Tumor frequencya Litter sizeb Number of litters Productive matings (%) Relative fecundity

BALB/c 3.80 4.9 3.6 55.6 9.80

C57BL/6 1.60 6.6 3.8 87.4 21.9

FVBc 7.00 9.5 4.8 90.0 41.0

SWR 57.0 7.5 2.3 58.3 10.1

a Refers to spontaneously arisen tumors in inbred mice. Data corresponds to the “highest reported tumor frequency” in all literature records collected in the

Mouse Tumor Biology Database [9], (http://tumor.informatics.jax.org/mtbwi/dynamicGrid.do;jessession=89370725979E9B939D3DD40AB4961BA5) for each strain/

organ combination where organ=ovary.
b Litter size, number of litters, and productive matings were taken from the Mouse Phenome Database [8] (http://www.jax.org/phenome). Data acquisition,

curation and handling are described at http://phenome.jax.org/db/q?rtn=docs/aboutmpd. The parameter “relative fecundity” is derived form the other 3

reproductive parameters [5].
c Data of FVB strain was taken from Silver’s Mouse Genetics textbook [5].
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correlated gene. The gene ontology (GO) profile of the

401 known genes included “regulation of transcription”

(67 genes; p= 4.4e-7), “RNA binding” (44 genes; p=

4.3e-16) and “RNA metabolism” (26 genes; p= 1.0e-7)

with the highest statistical significance in a hypergeo-

metric test. Notably, even though GO terms are inher-

ently redundant, the combined 3 functional groups

corresponded to 26% (105) of known significant genes.

The overall functional profile of the 401 genes list is

detailed in Additional file 1, table 3. Ovarian tumor fre-

quency (OTF) was the top correlated trait followed by

number of litters (NL). The relationship between the

squared correlation coefficient (R2) for each of the 425

OTF correlated clones and its corresponding gene-

expression shift is depicted in Figure 2. Negative and

positive correlation was observed for 328 and 97 clones,

respectively. Notably, a large fraction of strongly corre-

lated genes (R2 = 0.8 to 1.0) showed gene-expression

shifts under 1 unit in the log2 ratio scale (mean +0.53

and -0.58 in the yellow highlighted quadrants) which

equals to less than 2-fold up- or down-regulation in

the linear scale across the 4 strains. Selected clones

either with high significance, large expression shift or

both are tagged with red and green dots in Figure 2.

OTF positively correlated genes included the unknown

function H3055D10 clone, the BC003993 clone coding

for the KIAA1604 protein presumably implicated in

nuclear mRNA splicing [18], the heat shock proteins

Hspb1, Hsp90aa1 and Dnajb1 involved in protein fold-

ing and cellular stress [19], and the gene Star (steroi-

dogenic acute regulatory protein), which mediates

mitochondrial cholesterol transport for its conversion

to pregnenolone [20]. On the other hand, genes nega-

tively correlated with OTF included Ogt, coding for a

N-acetylglucosamine transferase enzyme activity impli-

cated in heat-stress response [21], the mRNA splicing

genes Hnrnpa2b1, a possible early detection marker of

lung cancer [22], and Sfrs5 which is overexpressed in

breast tumors [23]. Additional OTF(-) genes included

2310043N10Rik corresponding to a virus-inducible

non-coding RNA (VINC) expressed in brain and sev-

eral adult non-neuronal mouse tissues [24], the two

clones of Malat1, a long, non-coding metastasis-asso-

ciated lung cancer transcript up-regulated various

tumors including ovarian cancer [25], and Clk1 (CDC-

like kinase 1), involved in nuclear phosphorylation

of serine/arginine-rich proteins in the spliceosomal

complex [26].

Table 2 Summary of correlation results between ovarian gene expression and phenotypes

Trait Correlated clonesa Trait interactionsb Direction and strength of correlation (R value range)c Gene expression shift
(δ log2 value range)d

OTF NL LS RF Positive Negative Positive Negative

Ovarian tumor frequency (OTF) 425 (280) - 145 0 0 97 (1.00-0.51) 328 (1.00-0.52) 3.26 - 0.19 2.96 - 0.21

Number of litters (NL) 234 (82) 145 - 0 7 161 (1.00-0.73) 72 (0.99-0.67) 2.94 - 0.32 3.00 - 0.24

Litter size (LS) 73 (66) 0 0 - 7 53 (0.99-0.78) 20 (0.99-0.62) 2.50 - 0.32 2.18 - 0.41

Relative fecundity (RF) 17 (3) 0 7 7 - 12 (0.98-0.78) 5 (0.98-0.90) 1.50 - 0.29 0.85 - 0.51

a Number of clones resulting from a regression analysis with false discovery rate (FDR) control performed with the multiple test tool Pomelo (accessible at http://

pomelo2.bioinfo.cnio.es/). For each trait, genes were filtered with an adjusted p<0.05 resulting in a total of 590 unique arrayed clones showing statistically

significant correlation. Under this criterion, the trait “productive matings” did not show correlation. The number of clones exclusively correlated with the

indicated trait is shown between parentheses.
b Interactions correspond to the number of clones correlated with two or more traits as obtained with Boolean comparisons.
c Pearson correlation coefficients (R) were calculated using gene expression log2 ratios as independent variable and each of phenotypic trait (see Table 1) as

dependent variables. The observed range of R values for all correlated genes is shown between parentheses.
d Gene expression ratios (log2) for the extreme trait values were subtracted (δ) and then ranked. The highest and the lowest ratio difference are shown between

parentheses.

Figure 2 Strength of OTF correlation as a function of ovarian

gene expression shift The squared correlation coefficient (R2) for

the 425 clones positively and negatively correlated (adjusted

p<0.05) with ovarian tumor frequency (OTF) were plotted against

their respective gene expression shifts. The shift is defined as the

resultant of the subtracted gene expression log2 ratios between

extreme values (see Table 1 and Additional file 1, 2, 3 Results file).
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Functional analysis of genes associated both to

OTF and NL

Table 2 also shows the number of genes correlated with

more than one trait. The highest overlap was 145 clones

associated both with OTF and NL. No overlap was

observed between OTF and litter size (LS), or between

OTF and relative fecundity (RF). The latter parameter

-numerically derived from NL, LS and PM [5] - resulted

in 17 correlated genes, 14 of them also correlated to NL

and LS, 7 genes each trait. Interestingly, LS showed the

highest percentage (90%) of exclusively correlated genes.

Figure 3 shows scatter plots for a combined total of 40

Figure 3 Ovarian gene expression correlated to OTF and NL The gene expression ratios of the top-20 OTF(-), NL(+) best correlated clones

(A) and the top-10 OTF(+), NL(-) best correlated clones (B) are plotted against their respective phenotypic variables. The average of squared

correlation coefficients and four representative tendency lines are shown in each plot. Insets show hierarchical clusters for genes (vertical trees)

and samples (horizontal trees). Yellow clusters represent negative correlation and blue clusters represent positive correlation. Color scales and

Unigene IDs are shown at the bottom and right side of each cluster, respectively. Unknown clones appear with the NIA-15K clone code.
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OTF and 20 NL correlated transcripts. Genes with the

top correlation coefficients (R) and equivalent distribu-

tion of positive and negative correlation are shown.

R values of negatively correlated clones ranged -0.999 to

-0.798, and +0.998 to +0.875 for the positively correlated

ones. Similarly, R values for NL correlated genes ranged

-0.986 to -0.845 and +0.999 to +0.756 [Additional file 1,

2, 3 “OTF&NL_correlated_transcripts.xls”]. Following

exclusion of unknown clones and merging of repeats,

the OTF/NL-145 clones list was reduced to 117 single

Unigene IDs including 21 transcribed loci of known

chromosomal location but unassigned biological func-

tion. Thus, the final list actually consisted of 96 unique

gene identities and was further decomposed in 2 sub-

lists based on direction of correlation: 76 OTF(-) NL(+)

genes and 20 OTF(+) NL(-) genes, where the minus

sign indicates negative correlation and the plus sign

indicates positive correlation. The genes in enriched

functional categories (56 out of the 96) are shown in

Additional file 4. Overall, the predominant functions

were related to RNA-metabolism (i. e. RNA binding,

mRNA processing, regulation of transcription, zinc ion

binding) and protein folding and degradation. Eleven of

the 56 genes have not been linked to a defined cellular

or physiological process since they comprise recently

identified genes for which GO terms were inferred from

electronic annotation. Importantly, 15 genes are linked

to normal or pathological ovarian processes, including

Cited1 and Ece1 directly implicated in reproductive

functions. Further links to reproduction involve the

genes Aplp2, Dnaja1, Htt, Rps6kb1 and Spin1 which

were part of the overall correlated 590 clones subset

(see Discussion). In addition, as shown in Additional file

4, five genes have been described in normal or altered

hematopoiesis, 5 genes are associated to neurological

disorders, 3 genes are muscle-related and 3 genes are

linked to non-ovarian endocrine function.

Discussion
Complex phenotypes are the outcome of many genes

interacting with each other and with endogenous or

exogenous factors. Mouse strains displaying phenotype

variability allow interrogation on their molecular basis

in a particular tissue or condition. In this report, the

ovarian expression of roughly 400 genes (corresponding

to 590 transcripts in Table 2) was significantly corre-

lated to 4 of 5 mouse tumor and reproductive pheno-

types assessed with a linear regression model. The

predominant gene ontology (GO) terms were “regulation

of transcription”, “RNA binding” and “RNA metabolism”

accounting for 105 of all correlated genes. A minor, but

significant group was “ubiquitin cycle” with 14 genes.

Links to reproductive processes are described for Aplp2,

Chuk, Dnaja1, Htt, Pten, Rps6kb1, Sf1, Spin1 and Tnc in

the GO directory. Rps6kb1 is involved in proliferation of

granulosa cells in response to FSH [27]. Rps6kb1 and

Chuk, in addition to Nfkb1, Map3k10, Flna, Kras,

Rap1a, and Hspb1 belong to the MAP kinase signaling

pathway which has been implicated in mammalian

oocyte maturation and fertilization [28]. The correlation

of Kras (K-Ras 2), commonly mutated in various human

tumors, with litter size (LS) can be supported by its

involvement in granulosa cell differentiation and ovula-

tion [29].

In a study on null Foxo3 mice, a mutant displaying

early ovarian hyperplasia due to synchronous primordial

follicle activation, 6 genes (Spin1, Slc45a3, Rspo2, Star,

Trim71 and Gm196) present in our 400-genes list were

postulated as fertility factors [30]. Star (steroidogenic

acute regulatory) protein was positively correlated to

OTF (see Figure 2). Star transports cholesterol into the

mitochodria, a key process in steroid-hormone synthesis

in all major steroidogenic tissues [20]. Additional genes

related to steroid metabolism and present in the 400-list

included Hmgcr (3-hydroxy-3-methylglutaryl-CoA

reductase), the major regulatory step in cholesterol

synthesis; Idi1 (isopentenyl-diphosphate delta isomerase)

involved in conversion of mevalonate into activated iso-

prene units, and Lss (lanosterol synthase) that catalyzes

the cyclization of squalene-2,3-epoxide to lanosterol. A

recent work has implicated metabolic products of lanos-

terol in primordial folliculogenesis by regulation of

oocyte meiosis and apoptosis [31]. Other indirectly ster-

oid-related gene was Mbtps2, a membrane-embedded

zinc metalloprotease which activates signaling proteins

involved in transcription induced by steroids [32].

A large portion of the 590 list (24.6%, i.e. 145 clones)

was found to be associated both to spontaneous ovarian

tumor frequency (OTF) and number of litters (NL) as

shown in Table 2. A link between OTF and NL agrees

with an increased risk of ovarian tumorigenesis due to

successive menstrual cycles in women. In contrast, con-

ditions that interrupt cycles block ovulations and thus

reduce risk [2]. Accordingly, a mouse strain displaying

high NL has been subjected to a longer period without

cycling than compared with a low NL strain. Successive

pregnancies and lactation may be responsible of this

effect. We detected a set of 76 mouse genes that were

positively correlated to NL, i.e. elevated expression levels

were observed in strains showing high NL. Thus, since a

concomitant negative correlation was observed with

ovarian tumor frequency (OTF), over-expression of

these 76 genes set could be considered “protective”. By

analogy, the 20 genes that were negatively correlated to

NL, i.e. down-regulated in high NL mice, may have a

role as “susceptibility” genes since they showed a parallel

positive correlation with OTF. Importantly, high litter

sizes (LS) involve multiple simultaneous ovulations but
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no association was detected between OTF and LS in our

data. It may be hypothesized that the damage caused to

the epithelial surface during a multiple-ovulation event

can be repaired during subsequent pregnancy and lacta-

tion, a period without cycling and ovulations.

Additional file 4 shows that 11 of the 76 OTF–/NL+

genes are implicated either in normal or pathological

ovarian processes. RNA binding was the predominant

GO term in the 76-genes list reaching 22 genes. RNA

binding proteins have been implicated in mammalian

germ cell development [33]. The genes Cpsf6, Ddx17,

Fubp1, Hnrpa2b1, Rbm25, Rbm39, Sfrs2 and Sfrs6 share

GO terms (RNA binding, mRNA processing) and a rela-

tionship with normal ovarian function or ovarian-related

disease. Some genes not related to RNA metabolism but

linked to ovarian function were correlated to OTF–/NL

+. These include Ece1, expressed in steroidogenic and

follicular endothelial ovarian cells in a parallel fashion to

corpus luteum maturation [34], and the genes Arnt and

Nfat5 that regulate the activity of vascular endothelial

growth factor (VEGF), an important angiogenesis modu-

lator in normal and pathological conditions including

ovarian malignancies [35]. Arnt (alias HIF-beta) binds

the hypoxia inducible factor-1 alpha (HIF-1alpha) to

form a heterodimer that recognizes the VEGF promoter

[36]. Arnt can alternatively bind the aryl hydrocarbon

receptor (AHR) forming an AHR/ARNT complex which

controls FSH and LH concentrations in response to

AHR ligands [37]. Furthermore, down-regulation of

Nfat5 (nuclear factor of activated T-cells 5) parallels a

decrease in VEGF’s receptor VEGFR1 and an increase in

VEGFR2 in hemangioma endothelial cells [38].

Additional regulators of VEGF’s function in the

OTF–/NL+ list were the genes Sfrs6 and Rbm39. The

splicing factor Sfrs6 (alias SRp55) upregulates the anti-

angiogenic VEGF isoform, an alternative splicing pro-

duct involving the 8th exon of VEGF’s pre-mRNA [39].

Since Sfrs6 displayed an OTF–/NL+ correlation pattern,

this is suggestive of an anti-angiogenic condition asso-

ciated to multiparity and low ovarian tumor incidence.

VEGF levels itself were neither differentially expressed

nor correlated to any phenotype in this study, but the

CDC-like kinase 1 (Clk1), which mediates Sfrs6 activity

on anti-angiogenic VEGF levels [39], was also part of

the OTF–/NL+ list (see Additional file 3 “OTF&NL_-

correlated_transcripts.xls”). In addition, Rbm39 (alias

CAPERalpha) is able to alter the VEGF-121/VEGF-189

ratio in breast cancer cells [40]. Rbm39 was originally

described as an ERa/b transcriptional coactivator [41].

Analogous role has been reported for the DEAD-box

RNA helicases Ddx17 (alias p72) and Ddx5 (alias p68).

[42]. Ddx17 was in a OTF–/NL+ fashion while Ddx5

plus Ddx26b, Ddx3x and Ddx42 were present in the

overall 400-genes list.

Regarding the OTF+/NL– correlated genes, the predo-

minant GO term was “protein folding” including

Dnajb1, Hsp90aa1 and P4hb (see Additional file 4 and

Figure 2). Dnajb1 is a member of the Hsp40 co-chaper-

one protein family of which its Drosophyla homolog

participates in oogenesis [43]. Related Hsp-40 genes

Dnaja1, Dnajb6, and Dnajc7 were present in the overall

400-genes list. Hsp90aa1 expression is up-regulated in

ovarian endometriosis [44] while P4hb is involved in

post-translational modifications of procollagen synthesis

[45]. Other transcripts with OTF+/NL– correlation were

Spin1 (Spindlin 1), a protein that associates to CPEB, a

RNA-binding protein implicated in polyadenylation dur-

ing meiotic progression in oocytes [46], and the tran-

scription factor Cited1, reported as a FSH regulated

gene in human granulosa cells [47].

All the five phenotypes studied are complex and many

causal effects are certainly involved. It is quite possible

that a large fraction of correlated transcripts may be

simply bystanders but not lie behind the measured phe-

notype. Of the 56 genes listed in Additional file 4,

seventeen are classified under the GO term “regulation

of transcription”. These may be considered “master

genes”, i.e. encoding for protein products that somehow

interact with DNA regulatory sequences or transcrip-

tional multiprotein complexes thus modulating the tran-

scriptional activity of downstream genes. Among the

OTF–/NL+ correlated genes with roles in regulation of

transcription, we identified Fubp1, Rbm39 and Arnt

which are directly linked to ovarian biology or disease

(see Additional file 4). Fubp1 encodes a ssDNA binding

protein that activates the “far upstream element” of c-

myc thus stimulating its transcription. Interestingly, pro-

moter regions of the OTF–/NL+ genes Ccnl1, Clk4,

Coq10a, Ddx17, Ict1, Zc3h11a and Zc3h7a were found

to contain binding sites for Arnt (data not shown). In

addition, the genes Hnrpdl, Sltm, Tardbp, Ccnl1, Ccnl2,

Dmtf1, Mll3, Mycbp2, Nfat5, Suv420h2, and

1810007M14 display diverse roles in cancer and devel-

opmental processes (see Additional file 4 for Refer-

ences). Special mention deserve the c-myc binding

protein Mycbp2, the gene Sltm, which has been

described as modulator of estrogen induced transcrip-

tion, and the cyclins Ccnl1 and Ccnl2 which are tran-

scriptional regulators of pre-mRNA splicing.

Phenotypic information obtained from independent

studies on animals need to be integrated in order to

reliably compare results across different mice colonies

and laboratory set-ups. The sources of phenotypic data

used in the present study are metadatabases in which

uniformity criteria and manual curation has been

imposed on assembled records. The Mouse Tumor Biol-

ogy Database (MTB) contains both spontaneous and

induced tumor information for over 50 inbred strains,

Urzúa et al. BMC Genomics 2010, 11(Suppl 5):S1

http://www.biomedcentral.com/1471-2164/11/S5/S1

Page 7 of 11



which is primarily extracted from the literature, from

tumor pathology images submitted by investigators, and

from routine animal health screenings of mouse colonies

at Jackson Laboratory [9]. Then, is curated with the help

of natural language processing tools to cope with

increasing amounts of phenotype information in the lit-

erature [48]. Similarly, the Mouse Phenome Database

(MPD) has developed standards for deposition of pheno-

typic data of mice including strain purity, study design,

animal age and statistical power. Contributors are

requested to provide complete measurement descrip-

tions, experimental protocols as well as housing, diet

and health status of animals. MPD curates data and

computes summary statistics for each measurement in

all strains [8].

Results presented here were obtained with a linear

regression analysis. However, interplaying gene networks

linked to phenotypes may not necessarily follow linear

relationships with regard to transcript levels. Recently, a

few reports have attempted to identify non-monotone or

non-linear phenotype-transcriptome associations. Lin et

al. (2008) proposed the coefficient of multiple determi-

nation (R2) of a natural cubic spline regression model

[49]. In a related work, three correlation methods (Pear-

son, Spearman and Hoeffding’s D) were compared to

analyze co-expressed genes. Hoeffding’s D dependence

measure was found to be the best suited to identify non-

linear and non-monotonic associations [50]. These types

of analytical approaches are needed to uncover causal

phenotype-transcriptome connections that do not follow

obvious linear behaviors.

Finally, since one of the strains showed a much higher

OTF than the other three, we were interested in search

for stronger gene links with this phenotype in the SWR

strain. A t-test conducted between SWR versus the

remaining 3 strains resulted in 530 statistically signifi-

cant clones (see Additional file 1, figure 1). Of these,

373 clones were common with the regression test while

280 were coincident with the ANOVA test. The overlap

between the 3 tests resulted in a list of 266 clones hav-

ing a functional profile that resembled the terms

described in Additional file 1, Table 2 for the regression

results. On the other hand, 143 clones were exclusive in

the t-test. Reduction of the latter subset resulted in 92

unique gene identities which were subjected to a GO

analysis summarized in Additional file 1, table 3. The

combined 10-terms list suggests the involvement of

intracellular vesicle traffic, protein sorting and actin

cytoskeleton dynamics in the observed high OTF of

SWR strain. Indeed, oocyte meiotic maturation involves

events related to spindle assembly. In somatic cells,

chromosome segregation errors during mitosis may con-

tribute to cancer development and progression [51]. The

genes App, Aplp2 and Appbp2, all related to the amyloid

beta precursor protein, were recurrent in Additional file

1, table 3. The well known involvement of amyloid beta

protein in Alzheimer’s disease pathogenesis may actually

be due to a chromosomal instability process [52]. Analo-

gous mechanisms may partly explain the high OTF

observed in SWR mice.

Conclusion
This work describes statistically significant variation in

ovarian gene expression of four commonly studied

mouse strains. We found that over 60% of these differ-

ences are linked to the biological variability observed in

spontaneous ovarian tumor rates and reproductive para-

meters across strains. If NL is equivalent to multiparity,

the inverse relationship detected between genes corre-

lated to OTF and NL points to a protective effect of

successive pregnancies. Post-transcriptional control of

ovarian angiogenesis, folliculogenesis and oocyte

maturation seems to be major contributors to this effect.

Conversely, overexpression of protein folding genes

might be considered as a susceptibility factor. These

findings, in addition to the lack of association between

OTF and LS -a measure of multiple ovulation- support

repetitive menstrual cycling instead of repetitive ovula-

tions as an important contributor to ovarian tumorigen-

esis. Further experimental research as well as

development of bioinformatic and statistical tools to

uncover complex phenotype-transcriptome associations

is needed.

Methods
Animals, RNA extraction and cDNA labeling

Mouse strains BALB/c, C57BL/6, FVB and SWR were

maintained at the Laboratory Animal Sciences Program,

SAIC-NCI Frederick (Frederick, MD), under protocols

of the Institutional Animal Care and Use Committee

(IACUC). Adult (8-weeks old) females grown from trio

mating-established colonies were euthanised on late

metestrus phase by cervical dislocation after gaseous

CO2 administration. Whole ovaries from 4-5 animals

were removed from surrounding adipose tissue, there-

after pooled and immediately frozen in liquid nitrogen.

Total RNA was extracted with Trizol (Invitrogen, CA)

and directly labeled as Cyanine-3 or Cyanine-5 fluores-

cent cDNA using reverse transcription under conditions

previously described [11].

Microarray experiments

NIA-15K mouse cDNA microarrays were used. This is a

curated collection consisting of 15,261 clones derived

from expression libraries obtained from pre- and peri-

implantation embryos, E12.5 female gonad/mesonephros

and newborn ovaries [53]. Microarrays were spotted at

the Laboratory of Molecular Technology, SAIC-NCI
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Frederick (Frederick, MD) with a BioRobotics Microgrid

arrayer (Genomic Solutions, MI). Hybridization condi-

tions and washes have been described elsewhere [11].

Samples were co-hybridized against a whole-newborn

mouse total RNA as common reference sample using a

replicated dye-swap design. A total of 24 microarray

hybridizations were performed. TIFF images were cap-

tured with a GenePix 4000B fluorescent scanner (Mole-

cular Devices, CA) and then saved for further analysis.

Statistical and bioinformatic analysis

Scanned microarray images were extracted as GPR files

using the GenePix 5.0 software and uploaded to the

NCI’s Microarray Database (“mAdb”; http://nciarray.nci.

nih.gov). Data files containing updated gene annotation

were subjected to local (“print-tip”) loess normalization,

scale adjustment, and filtering/imputation of missing

values with the “DNMAD” and “PreProcessor” tools at

the GEPAS server (http://www.gepas.org). Reproductive

and spontaneous ovarian tumor records were extracted

from the MPD at http://www.jax.org/phenome[8] and

from the MTB at http://tumor.informatics.jax.org/

mtbwi/index.do[9] databases, respectively. Tumor data

corresponds to the “highest reported tumor frequency”

in all literature records collected in MTB for each strain.

Continuous tumor and reproductive data for the 4

mouse strains (see Table 1) were correlated to gene

expression log2 ratios using linear regression analysis

under multiple-test control (FDR indep) with the tool

Pomelo II using 200,000 permutations (http://pomelo2.

bioinfo.cnio.es/). The ANOVA test among the 4 strains

and a t-test between SWR and the 3 remaining strains

were also conducted with Pomelo II using 200,000 per-

mutations. Gene functionality was primarily assessed

with Gene Ontology (GO) terms using hypergeometric

tests conducted with WebGestalt (http://bioinfo.vander-

bilt.edu/webgestalt). Literature mining with HUGO

approved gene symbols, associated aliases and keywords,

was carried out in PubMed queried through GeneCards

(http://www.genecards.org) and with SciMiner (http://

jdrf.neurology.med.umich.edu/SciMiner/).

Quantitative PCR confirmation of microarray results

Primer pairs design, cDNA preparation, thermocycling

conditions and equipment has been previously described

[11]. Quantification of mRNAs was based on CT values,

which is defined as the PCR cycle at which an increase

in reporter fluorescence above baseline signal can be

detected. Normalization was done with the 18S rRNA as

reference transcript assayed under identical conditions

respective to the gene of interest in both the test and

the reference RNA samples. The ∆∆CT-Sample value

(∆∆CT-Sample = ∆∆CT-Sample - ∆CT-Reference) was trans-

formed by taking the result of the expression: If 2(-∆∆CT)

- 1 > 0 then the result = 2(-∆∆CT) - 1 or else the result =

-1 / 2(-∆∆CT) This calculation converted the linear range

for down regulation from 1®0 to 0®(-∞), and up regu-

lation from 1®(+∞) to 0®(+∞) in the log2 scale.

Additional file 1: Contains: Table 1: Detailed microarray ratios and

Q-PCR results of selected transcripts. Table 2: Functional analysis of

genes correlated to all phenotypes. Table 3: Gene Ontology profile

of genes differentially expressed between SWR and the remaining

three strains. Figure 1: Summary of statistical tests among ovarian

transcriptional profiles of four mouse strains.

Additional file 2: Contains the complete, loess normalized dataset

for 14,586 transcripts.

Additional file 3: Contains results for all 145 clones correlated both

to OTF and NL in mouse ovaries.

Additional file 4: Functional profile of transcripts correlated both to

OTF and NL in the mouse ovary
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