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 Tumor Antigen Escape from CAR 
T-cell Therapy      
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         Mini review    

 ABstrAct  Emerging data from chimeric antigen receptor (CAR) T-cell trials in B-cell malignan-

cies demonstrate that a common mechanism of resistance to this novel class of 

therapeutics is the emergence of tumors with loss or downregulation of the target antigen. Antigen loss 

or antigen-low escape is likely to emerge as an even greater barrier to success in solid tumors, which 

manifest greater heterogeneity in target antigen expression. Potential approaches to overcome this 

challenge include engineering CAR T cells to achieve multispecifi city and to respond to lower levels of 

target antigen and more effi cient induction of natural antitumor immune responses as a result of CAR-

induced infl ammation. In this article, we review the evidence to date for antigen escape and downregu-

lation and discuss approaches currently under study to overcome these obstacles. 

  Signifi cance:  Antigen escape and downregulation have emerged as major issues impacting the durabil-

ity of CAR T-cell therapy. Here, we explore their incidence and ways to overcome these obstacles in 

order to improve clinical outcomes.  Cancer Discov; 8(10); 1219–26. ©2018 AACR.       
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  introDUction 

 Adoptive T-cell therapy for cancer was pioneered by Rosen-
berg and colleagues at the NCI. Tumor-infi ltrating lympho-
cytes (TIL) were surgically harvested, expanded  ex vivo , and 
infused back into the patient, inducing complete responses 
(CR) in approximately 20% of patients with metastatic mela-
noma, and fi rmly establishing the clinical potential for T cells 
to exert antitumor activity in humans ( 1–3 ). TILs express 
natural T-cell receptors (TCR) that can recognize antigens 
expressed by a patient’s tumor in an MHC-restricted manner. 
In an attempt to develop receptors capable of tumor anti-
gen recognition independent of MHC expression, researchers 
developed chimeric antigen receptors (CAR). Groups led by 
Eshhar and Kuwana fi rst fused the heavy and light chain vari-
able regions of a monoclonal antibody to the constant regions 
of the TCR and demonstrated that these synthetic receptors 
can recognize antigen and enact T-cell effector functions ( 4, 
5 ). Drawing on the fi nding that CD3ζ is the master switch 
for T-cell activation ( 6 ), CARs were simplifi ed to contain only 
the CD3ζ component of the TCR. The addition of CD28 
and other costimulatory domains increased the potency and 

persistence of CARs ( 7 ), resulting in highly effective therapeu-
tics that have demonstrated remarkable clinical activity ( 8–15 ). 

 CAR T cells are transforming the care of patients with 
relapsed and refractory B-cell malignancies. Early-phase clini-
cal trials demonstrate robust effi cacy that has led to FDA 
approval of two CD19 CAR T-cell products, tisagenlecleu-
cel and axicabtagene ciloleucel ( 16, 17 ). However, careful 
follow-up of patients treated with CAR-based therapies for 
B-cell malignancies has demonstrated a high rate of post-
therapy relapse through acquired tumor resistance ( 18 ). Most 
commonly, immune pressure by CAR T cells drives cancers 
to evolve by modulating expression of their target anti-
gens, through either loss of detectable antigen or diminished 
expression of the antigen to a level below a threshold required 
for CAR T-cell activity. In this article, we review the evidence 
for tumor resistance to CAR therapeutics via the emergence 
of antigen-negative/low variants and discuss approaches that 
could be undertaken to overcome this problem. 

  Antigen Loss: cLinicAL DAtA 

 Initial reports from phase I trials of CD19 CAR T cells in 
pediatric B-cell acute lymphoblastic leukemia (B-ALL) dem-
onstrated response rates ranging from 70% to 90% ( 8–10 ), and 
similarly impressive results were seen in adults ( 11, 14, 15 ). 
However, the durability of these responses was sometimes lim-
ited by the outgrowth of CD19-negative leukemia, especially 
in patients whose CAR T cells persist for long periods. In the 
fi rst publication of a phase I trial of a CD19-4-1BB-ζ CAR for 
pediatric B-ALL from the Children’s Hospital of Philadelphia 
(CHOP), 3 of 27 (11%) responders relapsed with leukemia with-
out detectable CD19 ( 8 ). An abstract from CHOP with longer 
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follow-up from these initial patients, which also included addi-
tional treated patients, reported that 13 of 55 patients (24%) 
who had a CR experienced a CD19-negative relapse ( 19 ). In a 
global phase II trial of Novartis’s tisagenlecleucel, among 16 
relapses characterized for CD19 expression, 15 were demon-
strated to be CD19-negative. Therefore, with limited follow-up, 
at least 15 of 61 (25%) complete responders went on to develop 
CD19-negative or partially negative relapse (an additional six 
relapses were not analyzed for CD19 expression; ref.  17 ). In a 
clinical trial from Seattle Children’s Research Institute (SCRI) 
of a similar CD19-4-1BB-ζ CAR for B-ALL, 7 of 40 patients 
(18%) who achieved a CR later relapsed with loss of CD19 ( 10 ). 

 A trial of a CD19-CD28-ζ CAR at the NCI in pediatric 
patients was marked by shorter T-cell persistence and patients 
frequently underwent hematopoietic stem cell transplant 
(HSCT) after CAR therapy, but 2 of 12 patients who had 
achieved a minimal residual disease (MRD)–negative response 
also developed CD19-negative B-ALL (neither patient under-
went HSCT; ref.  9 ). A follow-up report in abstract form that 
included expansion cohorts from the NCI study indicated 
that 5 of 28 patients (18%) who were MRD-negative after CAR 
eventually relapsed with diminished expression of CD19, 
including some patients who relapsed following HSCT ( 20 ). 

 Data from post-CAR relapses of adults with B-ALL are 
scant: The Fred Hutchinson Cancer Center (FHCC) phase I 
trial of a CD19-4-1BB-ζ CAR found CD19-negative relapses  
in 2 of 29 patients (7%) who achieved a CR ( 11 ). Similarly, a 
trial from Memorial Sloan Kettering Cancer Center (MSKCC) 
of a CD19-CD28-ζ CAR in adults with B-ALL saw CD19-
negative leukemia in only 4 of 44 patients (9%) achieving a CR 
( 21 ). The reason for the lower rates of CD19-negative leuke-
mia in trials of adults versus children is unclear. The shorter 
persistence of the CD19-CD28-ζ CAR T cells employed by 
MSKCC may partially explain the low rate of CD19-negative 
relapse in their trial, as a shortened period of immune pres-
sure due to the limited persistence of the CD19-CD28-ζ CAR 
could diminish the risk of antigen loss escape ( 21 ). Similarly, 
most post-CR relapses in the FHCC trial were CD19-positive 
relapses among patients who did not receive fl udarabine as 
part of their conditioning regimen, which has been shown to 
limit the persistence of CAR T cells ( 11 ). A summary of the 
rate of CD19-negative relapse in CD19 CAR trials for B-ALL 
can be found in  Table 1 , although caution should be taken 
when comparing across studies given that they differ greatly 
in the period of follow-up. CD19-negative relapse of B-ALL 
is also observed after treatment with the bispecifi c T-cell 

engager blinatumomab (CD3 × CD19), occurring in 12% to 
21% of complete responders, depending on the study ( 22–24 ). 
In summary, although CD19-negative escape is a major cause 
of relapse following CD19-CAR therapy for B-ALL, the true 
incidence of this phenomenon has not been defi ned and fac-
tors that predict for an increased likelihood of CD19-negative 
relapse are poorly understood. Nonetheless, as the appli-
cation of CD19-directed immunotherapy with both CD19 
CARs and blinatumomab grows, it is clear that the clinical 
impact of CD19-negative B-ALL will increase as well.  

 CD19 CARs have also demonstrated impressive activity 
in high-grade, relapsed, refractory non-Hodgkin lymphoma 
(NHL), and both tisagenlecleucel and axicabtagene ciloleucel 
are FDA-approved for this indication ( 16 ). The role of CD19 
antigen loss or downregulation is more poorly defi ned in 
lymphoma than in B-ALL. Unlike leukemia, biopsies in NHL 
are not always obtained at the time of relapse, and many trials 
have therefore not analyzed CD19 expression at relapse ( 12 ). In 
addition, the determination of CD19 expression is often made 
based on IHC, which is not reliable for distinguishing between 
intracellular versus membranous antigen expression and more 
diffi cult to quantify than fl ow cytometry, which is commonly 
employed for B-ALL. The unreliability of IHC for CD19 is illus-
trated by a recent clinical trial of CD19 CAR T cells for adults 
with NHL in which 6 of 8 patients who were noted to have 
CD19-negative disease by IHC prior to CAR infusion demon-
strated an objective response to anti-CD19 CAR T cells ( 16 ). 

 In a combined analysis of phase I and phase II trials of 
axicabtagene ciloleucel for NHL, of the 11 patients who pro-
gressed after having a response to CD19 CAR and also had 
tissue available for analysis, 3 patients had biopsy proven 
CD19 loss by IHC ( 16 ). Notably, however, a very stringent 
cutoff (<1% of cells expressing CD19) was used for negativ-
ity in this assessment, and it remains possible that a higher 
frequency of patients could have experienced emergence of 
CD19 antigen loss that contributed to relapse. In a trial at 
the University of Pennsylvania of a CD19 CAR for NHL, 5 
nonresponders underwent postinfusion biopsies and one 
demonstrated absent CD19 expression ( 25 ). Other cases of 
CD19-negative lymphoma following CD19-CAR therapy 
have been reported by CHOP and the NCI in pediatric 
patients ( 26, 27 ) and by the NCI in an adult ( 28 ). Together, 
the data demonstrate that emergence of antigen loss variants 
is the most common cause of relapse following CD19-CAR 
therapy for B-ALL, and emerging data provide evidence that 
CD19-negative relapses also occur in NHL, although the 

 table 1.    A summary of antigen escape in CD19 CAR trials for ALL   

Trial Population CD19 CAR construct Relapse rate

CD19-negative 

relapse rate References

Children’s Hospital of Philadelphia phase I Pediatric FMC63-4-1BB-ζ 36% (20/55) 24% (13/55)  8, 19 

Novartis phase II (ELIANA) Pediatric FMC63-4-1BB-ζ 33% (20/61) 25% (15/61)  17 

Seattle Children’s Research  Institute phase I Pediatric FMC63-4-1BB-ζ 45% (18/40) 18% (7/40)  33 

NCI phase I Pediatric FMC63-CD28-ζ 29% (8/28) 18% (5/28)  9, 20 

Memorial Sloan Kettering phase I Adult SJ25C1-CD28-ζ 57% (25/44) 9% (4/44)  21 

Fred Hutchinson Cancer Center phase I Adult FMC63-4-1BB-ζ 31% (9/29) 7% (2/29)  11 
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incidence of this phenomenon remains less clear. Furthermore, 
loss of target antigen has also been observed in a patient with mul-
tiple myeloma treated with a CAR targeting BCMA (29) as well as 
in patients with glioblastoma multiforme who were treated with 
CARs targeting either EGFRvIII (30) or IL13Rα2 (31).

Antigen Loss: MechAnisM

Given the large clinical experience of CD19 CARs in pediat-
ric B-ALL, most data regarding the mechanism of antigen loss 
come from studies of patient samples in those trials (10, 32, 
33). Thus far, the published data have demonstrated CD19 loss 
occurring via two distinct mechanisms: antigen escape or lin-
eage switch (34). In antigen escape, after achieving a remission 
in response to CD19 CAR, patients relapse with a phenotypi-
cally similar disease that lacks surface expression of a CD19 
molecule capable of binding the anti-CD19 antibodies incor-
porated into the CARs. Lineage switch occurs when a patient 
relapses with a genetically related but phenotypically different 
malignancy, most often acute myeloid leukemia (AML; Fig. 1).

The group at the CHOP described mechanisms responsi-
ble for at least some of the antigen escape seen in pediatric 
patients with B-ALL after CD19 CAR. Sotillo and colleagues 
found several CD19 splice variants expressed by B-ALL, 
including ∆exon-2, which specifically lacks the exon contain-
ing the extracellular epitope of CD19 recognized by both the 
FMC63 (CHOP-University of Pennsylvania/Novartis, NCI/
Kite, FHCC-SCRI/Juno-JCAR017) and SJ25C1 (MSKCC/
Juno-JCAR015) anti-CD19 binders. In addition, they observed 
variants ∆exon-5,6, which lack the transmembrane domain 
of CD19 and therefore lead to loss of surface expression. 
Immune pressure by the CD19 CAR results in selection of 
leukemia cells expressing higher proportions of these splice 
variants, leading to escape from detection by CD19 CAR T 
cells (32). Recent work suggests that patients with ALL already 
express CD19 splice variants at diagnosis and therefore anti-

CD19 therapy may simply select for cells that express these 
alternative forms of CD19 (35). This mechanism does not 
account for all cases of CD19 loss in cells that retain a B-ALL 
phenotype, and other mechanisms merit exploration (36). 
For instance, one group reported a single patient with loss 
of CD81, a chaperone protein for CD19, as a mechanism for 
CD19 loss after blinatumomab (37).

Lineage switch is another mechanism for CD19 loss that 
has been observed in clinical trials (33). Most often seen in 
patients who harbor MLL rearrangements, such as infants 
with B-ALL, lineage switch occurs when the leukemic pheno-
type changes from lymphoid to myeloid in response to CD19-
directed immunotherapy. The evolved leukemic population 
not only no longer expresses CD19, but also acquires other 
phenotypic characteristics of AML. This was observed in 2 
pediatric patients with MLL-rearranged ALL treated with 
CD19 CAR on the SCRI trial (33) and one adult on the CD19 
CAR trial at the FHCC (11). In addition, this phenomenon 
was modeled in a murine leukemia by Jacoby and colleagues, 
who demonstrated that CD19 CAR induces lineage switch 
in a murine ALL model that is dependent on the E2a:PBX 
transgene, which, like MLL rearrangement, can drive the 
development of either lymphoid or myeloid neoplasms (36). 
Lineage switch has also occurred in both MLL-rearranged 
and nonrearranged patients after CD19-directed therapy 
with blinatumomab (38–40). Similarly, a single case of CLL 
that transformed to a clonally related plasmablastic lym-
phoma after CD19 CAR treatment has been reported (41).

overcoMing Antigen Loss

Delineation of the multitude of mechanisms involved in 
CD19 antigen loss suggests that creating CARs to target 
alternative epitopes on CD19 may not prove effective, because 
many of the examples involve loss of CD19 surface expres-
sion. The data also suggest that neither CD19-CAR nor  

Figure 1.  Mechanisms of tumor antigen escape. CAR T cells encounter adequate amounts of target surface antigen on cancer cells, activate, and 
kill the target cells. Tumor cells can escape killing by expressing alternative forms of the target antigen that lack the extracellular epitopes recognized 
by CAR T cells (“antigen escape”), by switching to a genetically related but phenotypically different disease (“lineage switch”), or by downregulating the 
surface target antigen to levels below those needed for CAR T-cell activation (“antigen downregulation”).
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blinatumomab-mediated T-cell killing drives meaningful 
induction of immune responses to coexisting immunogenic 
targets on B-ALL, sometimes referred to as “epitope spreading.” 
This may reflect the relative low tumor mutational burden in 
B-ALL, which likely limits inherent immunogenicity of this 
disease (34, 42). In addition, the use of lymphodepleting agents 
prior to adoptive transfer of T cells could blunt the native 
immune response as host T cells are depleted, similar to what 
has been observed in murine models. In one study, Pmel-1 T 
cells recognizing gp100 were adoptively transferred to lym-
phopenic versus lymphoreplete mice bearing B16 melanomas. 
This therapy was found to be more effective in lymphoreplete 
animals, largely due to enhanced epitope spreading (43).

Thus far, the degree to which epitope spreading is induced 
by CAR T cells has been incompletely studied. In a murine CAR 
model targeting EGFR, mice that were cured of EGFR+ tumors 
by EGFR CAR T cells later rejected EGFR− tumors when rechal-
lenged (44). This elegant model demonstrated that epitope 
spreading can be induced by CAR T cells, but it is unclear to 
what extent this occurs in human studies and whether the 
incidence of this phenomenon might be more common if 
effective CAR-based therapeutics were used to target tumors 
with higher inherent immunogenicity. One clinical trial of a 
CAR targeting mesothelin did find that patients who received 
CAR T cells also developed an antitumor antibody response 
(45). It is possible that combining CAR T cells with radiation 
(46), checkpoint inhibition (47–49), vaccines (50, 51), or other 
immune agonists (34, 52) will result in epitope spreading that 
could help counter immune escape, and we anticipate such 
studies will emerge as the field matures.

Another approach to overcoming antigen loss following CAR 
T-cell therapy is to simultaneously target more than one antigen 
on cancer cells, an approach that is compelling for B-ALL, given 
that CD22 CAR T cells have also demonstrated substantial 

clinical efficacy (53). There are several ways to engineer a T-cell 
product for multispecificity (Fig. 2). T-cell products that are 
separately transduced for different CARs can be simultaneously 
or sequentially administered (“coadministration”; Fig. 2; ref. 54), 
or vectors for two CARs can be combined during cell production 
to achieve a mixed product with some cells that are positive for a 
single CAR and others that are positive for both CARs (“cotrans-
duction”; Fig. 2). The disadvantages of these approaches are the 
high cost of producing multiple vectors and the heterogeneity 
of the infused product, which can complicate clinical analysis.

A CAR molecule itself can also be engineered to recog-
nize multiple antigens. This can be accomplished by link-
ing two binders on a single molecule (“tandem CAR”; Fig. 
2), which appears, in some cases, to enhance the strength 
of the immune synapse. Hegde and colleagues developed 
a tandem CAR that can simultaneously target both HER2 
and IL13Rα2. They demonstrated enhanced potency and 
antitumor activity in vivo when two CARs were expressed as a 
single molecule compared with expressing two separate CARs 
individually on each T cell or coinfusing two populations of 
cells, each expressing a monospecific receptor (55). In design-
ing so-called tandem CARs, the position of the target antigen 
should determine how each binder is oriented relative to the 
membrane. For instance, in a study of a tandem CD19-CD20 
bispecific CAR, the authors found that given the proximal 
location of CD20 to the cell membrane, the anti-CD20 ScFv 
needed to be in the distal position in the CAR molecule (56).

Alternatively, two or three separate CARs can be expressed 
on a single T cell using a single vector by taking advantage 
of ribosomal skip sequences or internal ribosomal entry 
sites (“bicistronic CAR”; Fig. 2). Recently, a trivalent vector 
encoding three independent CARs, each targeting a different 
antigen on glioblastoma, was described (57). It is likely that 
over the next several years, multiple methods for creating 

Figure 2.  Engineering CAR T-cell multispecificity. CAR T-cell products can be made multispecific in several ways. A single vector encoding two 
independent CAR molecules separated by a ribosomal skip sequence can be used to make a “bicistronic CAR T cell.” Alternatively, a bivalent “tandem CAR” 
that recognizes two different antigens can be engineered. This can result in enhanced function when both antigens are engaged. More expensive and 
labor-intensive is producing two separate CAR T-cell products and administering them together or sequentially to a patient (“coadministration”). Alterna-
tively, T cells can be modified with two separate vectors to achieve a mixed product in which some T cells express both CARs but others express only one 
(“cotransduction”). This method is more expensive and results in a heterogeneous T-cell product.
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multispecific CARs will be evaluated and compared for effi-
cacy in both preclinical and clinical settings.

Several clinical trials are under way testing multispecific CAR 
T cells. We recently reported on a tandem CAR targeting both 
CD19 and CD22 (53) that is now in clinical trials in children 
and adults (NCT03241940, NCT03233854, and NCT03448393), 
and other groups have generated tandem CARs targeting  
CD19 and CD20 (56, 58, 59), one of which is currently being 
tested in humans (NCT03019055). The mixed product approach 
is currently being explored in a clinical trial for pediatric B-ALL 
targeting CD19 and CD22 (NCT03330691). An abstract was 
recently presented for a trispecific CAR recognizing CD19, CD20, 
and CD22 (60). In addition, one group has reported a bispecific 
CD19 and CD123 CAR in the aims of overcoming both antigen 
escape and lineage switch as CD123 is expressed broadly in the 
hematopoietic compartment (61), although such an agent would 
be expected to induce substantial hematopoietic toxicity (62). We 
anticipate increasing numbers of trials testing CARs capable of 
simultaneously targeting two or more antigens in the near term.

Low Antigen Density: cLinicAL DAtA

In recognizing that single antigen targeting was unlikely 
to be successful in many cases of pediatric B-ALL, we devel-
oped a CAR targeting CD22, another B-cell antigen broadly 
expressed on lymphoblasts (63). In the first clinical trial of this 
CAR in B-ALL, we observed a high remission rate in patients 
with both CD19-negative and CD19-positive disease. How-
ever, 8 of 12 patients (67%) attaining a CR relapsed within 
12 months after CD22-CAR infusion and at the time of 
relapse, CD22 expression was retained in 7 patients, albeit at 
lower levels than observed at the time of CD22-CAR therapy. 
The diminished expression of CD22 was not accompanied by 
any detected mutations at the genomic level or diminished 
expression of CD22 mRNA, suggesting that downregulation 
of CD22 expression occurs at a posttranscriptional level. In sev-
eral patients, both CD22-low lymphoblasts and persistent anti-
CD22-CAR T cells were found in the bone marrow, indicating 
that the CAR was unable to effectively eliminate CD22-low 
cells (53). This was further demonstrated by generating leu-
kemia lines with variable CD22 expression levels, and directly 
demonstrating that the capacity for the CD22 CAR to produce 
cytokine and control tumor cells in xenograft models was 
exquisitely dependent upon surface expression levels of CD22.

However, this mechanism of escape is consistent with 
substantial emerging data regarding CAR T-cell activation 
requirements. We and others have demonstrated the need for 
high target antigen density in order for CARs to fully activate 
and exert in vivo activity (64–66). This was recently described 
in detail in studies focused on a CAR targeting anaplastic 
lymphoma kinase (ALK), wherein cytokine production was 
highly dependent upon antigen expression levels, with sub-
maximal levels observed below 10,000 molecules/cell. As a 
result, although cell lines engineered to express very high 
levels of ALK were readily eradicated in vivo, those expressing 
physiologic levels were not controlled by ALK-CAR T cells. 
Whether the activity of CD19-CAR T cells might be limited by 
insufficient CD19 expression remains unknown. This seems 
unlikely in B-ALL, because the pattern of CD19 expression 
in this disease appears to be homogeneously high. However, 

CD19 expression in CAR trials for NHL has not been sys-
tematically studied, as researchers have largely relied on IHC 
where quantification is unreliable (16).

The biological basis for the requirement for high target 
antigen levels for optimal CAR T-cell activity remains incom-
pletely understood, but could reflect limitations in the nature 
of antigen recognition by CAR receptors (Fig. 1). Natural 
TCRs are capable of recognizing antigen at low density, mak-
ing it tempting to speculate that the differences in antigen 
density requirements may emerge from the dramatic differ-
ences in structure between natural TCRs and CARs. CARs 
are elegant in their simplicity, but are also a crude imitation 
of the highly evolved system of TCR antigen recognition. 
Natural TCRs contain several signaling domains (gamma, 
delta, epsilon, zeta), whereas CARs typically incorporate TCRζ 
as the sole TCR signaling element. Although data suggest 
that signals downstream of TCRζ largely replicate that of the 
complete TCR signaling complex (6, 67), this matter remains 
incompletely investigated. Furthermore, during the course of 
antigen recognition, natural TCRs create a highly organized 
immune synapse that incorporates coreceptors to enable rec-
ognition of very low antigen density (68, 69). Emerging stud-
ies demonstrate that the immune synapse created when CARs 
recognize antigen is less organized than that of a natural 
TCR (70). Finally, the nature of antigen binding itself differs 
substantially between the TCR and the CAR receptor, because 
TCRs are low-affinity binders (Kd in the micromolar range), 
whereas scFvs incorporated into most CARs recognize anti-
gen with very high affinity (Kd in nanomolar range; ref. 71). 
These distinctions are likely to significantly affect the quality 
of responses induced in T cells expressing CARs as compared 
with natural TCRs (72), but the full extent of the distinctions 
remains incompletely characterized.

The recognition that CARs require high antigen expression 
for significant activity has numerous implications for the future 
development of these therapeutics for solid tumors. Given that 
nearly all targets on solid tumors for which clinical trials of CAR 
T cells are planned are heterogeneously expressed (57, 73–76), 
it is likely that as monospecific CARs targeting solid tumors 
become more potent, clinical successes will be limited by the 
rapid selection of antigen low variants. CARs for AML face 
similar hurdles (77). Alternatively, a CAR T-cell requirement for 
high antigen density also opens the possibility of a therapeutic 
window based upon differential target antigen density between 
malignant and nonmalignant tissues. The potential for CAR T 
cells to attack normal tissues based upon low levels of antigen 
has been debated at length as a result of a fatal event in a single 
patient treated with a CAR targeting HER2 at the NCI. This 
patient died of cardiovascular collapse following infusion of 
10e10 Her2-28-41BB-ζ CAR T cells (78, 79). CAR T-cell infiltra-
tion was found in the patient’s lungs and the cause of death was 
initially attributed to on-target, off-tumor toxicity. However, 
additional insights regarding the pathophysiology of cytokine 
release syndrome (CRS) following CAR T-cell therapeutics sug-
gest that cardiovascular collapse in this patient was more likely 
related to uncontrolled, systemic T-cell activation leading to 
fatal CRS (80). The cell dose administered to this patient (78) 
is one hundred times the maximum tolerated dose later found 
for CD19-CAR T cells (21). In addition, the patient received 
exogenous IL2, itself associated with high levels of toxicity (81). 
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Consistent with CRS were dramatic elevations in circulating 
IFNγ levels. Moreover, Ahmed and colleagues have since used 
escalating doses of HER2-CD28-ζ CAR T cells to treat patients 
with sarcomas and demonstrated both safety and initial signs 
of clinical efficacy, including a CR in a patient with rhabdo-
myosarcoma in his bone marrow (82, 83). Together, the clinical 
experience is most consistent with a model whereby differential 
expression of the HER2 target antigen between tumor and 
normal tissues provides a therapeutic window for safety, which 
is consistent with the emerging understanding of the need for 
high antigen density for optimal CAR activity in vivo.

overcoMing Low Antigen Density

For appropriate targets where the differential expression of 
target antigen between tumor and normal tissue is high, we 
predict that the efficacy of CAR therapies would be enhanced 
by engineering CAR T cells to respond to lower antigen densi-
ties. One approach would be to treat patients with agents that 
increase expression of the target antigen. In preclinical stud-
ies, this approach has been taken using all-trans retinoic acid 
to increase expression of folate receptor beta in AML (84), 
and researchers at the NCI have found that bryostatin can 
increase expression of CD22 on leukemia cells, which could 
lead to increased efficacy of the CD22 CAR or prevention of 
outgrowth of CD22-low variants (85, 86).

Alternatively, CAR engineering could be used to enhance 
activity against lower antigen densities. The most commonly 
attempted modification has been to enhance the affinity of the 
ScFv for its target. For some CARs, it appears that altering the 
affinity can result in recognition of lower levels of target anti-
gen. Two groups have demonstrated that altering the affinity 
of EGFR and/or HER2 CARs can result in T cells that are more 
or less likely to recognize lower levels of antigen as might be 
expressed on normal tissue (87, 88); however, it remains unclear 
whether the impact of enhancing scFv activity plateaus. This is 
suggested by the fact that increasing the affinity of two different 
CD22 CARs did not result in enhanced function (63, 85).

concLUsion

Clinical experience with B-cell malignancies has demon-
strated that CAR T cells have the potential to alter the land-
scape of cancer immunotherapy. However, the emergence of 
antigen-negative and antigen-low tumor variants has shown 
that, like all anticancer agents, CARs are likely to require 
combinatorial approaches to bring about cures in a high 
fraction of patients. Whereas in hematologic malignancies, 
lineage-derived antigens are expressed at high levels and can 
be efficiently targeted by CARs, in solid tumors most viable 
antigens are expressed at lower levels and more heterogene-
ously. Reengineering CARs for multispecificity and activity at 
lower levels of antigen will be an area of important research 
as the community attempts to enhance the potency of CAR 
T cells and the breadth of diseases for which they can provide 
clinically meaningful effects.
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